JPH0737702Y2 - Micro bubble generator - Google Patents

Micro bubble generator

Info

Publication number
JPH0737702Y2
JPH0737702Y2 JP1989019714U JP1971489U JPH0737702Y2 JP H0737702 Y2 JPH0737702 Y2 JP H0737702Y2 JP 1989019714 U JP1989019714 U JP 1989019714U JP 1971489 U JP1971489 U JP 1971489U JP H0737702 Y2 JPH0737702 Y2 JP H0737702Y2
Authority
JP
Japan
Prior art keywords
gas
liquid
pressure pump
solution
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989019714U
Other languages
Japanese (ja)
Other versions
JPH02112321U (en
Inventor
鶴雄 中河
Original Assignee
鶴雄 中河
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鶴雄 中河 filed Critical 鶴雄 中河
Priority to JP1989019714U priority Critical patent/JPH0737702Y2/en
Publication of JPH02112321U publication Critical patent/JPH02112321U/ja
Application granted granted Critical
Publication of JPH0737702Y2 publication Critical patent/JPH0737702Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、液体と気体を分散性よく混合する気液混合装
置を用いた微細気泡発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a fine bubble generating device using a gas-liquid mixing device for mixing liquid and gas with good dispersibility.

〔従来の技術〕[Conventional technology]

従来、液体と気体を共存させた容器内でインペラーを回
転させて混合攪拌し又はエジェクタ及びインジェクタを
組み合わせて原液に気体を吸い込ませた後、加圧して液
体中に気体を溶解させ、そして貯留タンクに導いて溶解
し得なかった気体と気体を溶解した溶解液を分離し、溶
解液を減圧しながら気泡槽に流入させて該溶解液中の気
体を開放し、気泡槽内で微細な気泡を発生させる微細気
泡発生装置は提供されているが、インペラーで単に混合
攪拌した状態又はエジェクタで気体を吸い込んだ状態で
は、液体中の気泡は比較的大きいため、加圧してもその
圧力での理論的な溶解限界である溶解度にまで気体の溶
解量を増加させることはできず、従って気泡槽内での気
泡の発生量は比較的少なかった。
Conventionally, an impeller is rotated in a container in which a liquid and a gas coexist to mix and stir, or a gas is sucked into the stock solution by combining an ejector and an injector, and then pressurized to dissolve the gas in the liquid, and a storage tank. The gas that could not be dissolved and the dissolved solution in which the gas was dissolved are separated, and the dissolved solution is depressurized and allowed to flow into the bubble tank to release the gas in the dissolved solution, thereby forming fine bubbles in the bubble tank. Although a fine bubble generator for generating is provided, the bubbles in the liquid are relatively large when simply mixed and stirred by the impeller or when the gas is sucked by the ejector. It was not possible to increase the amount of gas dissolved to the solubility which is the limit of dissolution, so the amount of bubbles generated in the bubble tank was relatively small.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

本考案が前述の状況に鑑み、解決しようとするところ
は、液体と気体を混合する際に、液体中に気体を微小な
気泡となして均一に分散混合させ、液体と気体の接触面
積を増大させることが可能な気液混合装置を用いて微細
な気泡を大量に発生することのでる微細気泡発生装置を
提供する点にある。
In view of the above-mentioned situation, the present invention is to solve the problem that when the liquid and the gas are mixed, the gas is made into minute bubbles to be uniformly dispersed and mixed to increase the contact area of the liquid and the gas. Another object of the present invention is to provide a fine bubble generator capable of generating a large amount of fine bubbles using a gas-liquid mixing device capable of producing the fine bubbles.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案は、前述の課題解決の為に、エジェクタにより気
体を吸い込んだ原液を加圧ポンプにより加圧し、コンプ
レッサーにより発生された圧縮気体とともに、筒状容器
の両端に流入口と流出口を設け、内部に螺線状の右回り
スクリューと左回りスクリューをそれぞれ少なくとも1
つ以上交互に所定間隔を隔てて同軸となして固定し且つ
両スクリューの外縁を該容器の内壁に密接してなる気液
混合装置の前記流入口に供給し、該気液混合装置内で気
体を混合溶解した溶解液を作り、前記流出口から流出す
る溶解液を該溶解液中に含まれる余剰気体を開放し得る
タンクに導いて貯留し、該タンクに形成した供給口から
溶解液を減圧して適宜取り出せるようになした微細気泡
発生装置を構成した。
In order to solve the above-mentioned problems, the present invention pressurizes a stock solution sucking gas by an ejector with a pressure pump, and provides an inlet and an outlet at both ends of a cylindrical container together with a compressed gas generated by a compressor. At least one spiral right-hand screw and at least one left-hand screw
One or more are alternately provided at a predetermined interval so as to be coaxial and fixed, and the outer edges of both screws are supplied to the inflow port of the gas-liquid mixing device that is in close contact with the inner wall of the container, and gas is supplied in the gas-liquid mixing device. To dissolve and dissolve the solution flowing out from the outlet to a tank capable of releasing excess gas contained in the solution, and reduce the pressure of the solution from a supply port formed in the tank. Thus, a fine bubble generating device was constructed so that it could be taken out appropriately.

更に、加圧ポンプとしてインペラーを内装した渦流式加
圧ポンプを用いて、エジェクタで吸い込んだ気体をポン
プ内でも混合攪拌できるようになした。
Further, by using a vortex type pressure pump having an impeller as an internal pressure pump, the gas sucked by the ejector can be mixed and stirred in the pump.

〔作用〕[Action]

本考案の微細気泡発生装置に用いられる気液混合装置
は、流入口から供給した液体と気体は左回りスクリュー
で左回り回転を与えられながら前方へ導かれた後右回り
スクリューで急激に回転方向を右回りに位相変換して乱
流状態を作り液体と気体を混合し、更に右回り回転を与
えられながら前方へ導かれた後左回りスクリューで再度
急激に回転方向を左回りに位相転換して乱流状態を作り
液体と気体を混合し、適宜これを繰り返して気体を微小
な気泡となして液体中に一様に分散混合するものであ
る。
The gas-liquid mixing device used in the micro-bubble generator of the present invention, the liquid and gas supplied from the inlet are guided forward while being rotated counterclockwise by the counterclockwise screw, and then rapidly rotated by the clockwise screw. Is phase-shifted clockwise to create a turbulent state, which mixes the liquid and gas, and is guided forward while being given a clockwise rotation, and then the left-handed screw again rapidly changes the phase to the counterclockwise direction. A turbulent flow state is created by mixing a liquid and a gas, and this is appropriately repeated to form the gas into minute bubbles to uniformly disperse and mix in the liquid.

そして、本考案の微細気泡発生装置は、エジェクタに供
給された原液はその中に気体を吸い込んだ状態で加圧ポ
ンプにより加圧され、気体の一部を液体に溶解し、特に
加圧ポンプとしてインペラーを内装した渦流式加圧ポン
プを用いた場合には該インペラーで攪拌混合されてより
多く溶解し、更に気体を予備溶解したこの液体とコンプ
レッサーにより発生された圧縮気体とともに気液混合装
置に送り、該気液混合装置内の右回りスクリュー及び左
回りスクリューにより一様に攪拌混合されながら前記加
圧ポンプ及びコンプレッサーによる圧力に応じた理論的
な溶解限界である溶解度に近い量の気体が溶解した溶解
液が作られ、そしてその溶解液をタンクに貯留して溶解
し得なかった余剰気体を開放し、該タンクの供給口から
前記溶解液を減圧しながら気泡槽に流入させることによ
り、溶解液に溶解された気体が一気に飽和状態となり、
微細な気泡として気泡槽内に開放されるのである。
In the device for producing fine bubbles of the present invention, the stock solution supplied to the ejector is pressurized by the pressure pump while sucking the gas into the ejector, and a part of the gas is dissolved in the liquid. In the case of using a vortex type pressure pump equipped with an impeller, it is agitated and mixed by the impeller to dissolve more, and the liquid in which gas is pre-dissolved and the compressed gas generated by the compressor are sent to the gas-liquid mixing device. While being uniformly agitated and mixed by a clockwise screw and a counterclockwise screw in the gas-liquid mixing device, an amount of gas which is close to the solubility which is a theoretical solubility limit according to the pressure by the pressure pump and the compressor is dissolved. A solution is made, and the solution is stored in a tank to release excess gas that could not be dissolved, and the solution is depressurized from the supply port of the tank. While by flowing into the bubble bath, a gas dissolved in the solution becomes once saturated,
It is opened as fine bubbles in the bubble tank.

〔実施例〕〔Example〕

次に添付図面に示した実施例に基づき更に本考案の詳細
を説明する。
The present invention will be further described in detail with reference to the embodiments shown in the accompanying drawings.

第1図は本考案の微細気泡発生装置の全体配置図を示
し、図中Aは気液混合装置、Bはエジェクタ、Cは加圧
ポンプ、Dはコンプレッサー、Eは貯留タンクをそれぞ
れ示している。本考案の微細気泡発生装置は、エジェク
タBに供給された原液が気体を吸い込んだ後加圧ポンプ
Cにて加圧され、更にコンプレッサーDで発生した圧縮
気体とともに気液混合装置Aに送り、液体と気体を一様
に混合分散させ液体に気体を溶解させた後、該溶解液を
貯留タンクEに送って貯留するとともに、溶解されなか
った余剰気体を開放し、そして該タンクEから溶解液を
減圧しながら別途設けた気泡槽に送って、溶解していた
気体を微細な気泡として開放するのである。更に、本考
案を以下に具体的に述べる。
FIG. 1 is an overall layout view of the fine bubble generator of the present invention, in which A is a gas-liquid mixing device, B is an ejector, C is a pressure pump, D is a compressor, and E is a storage tank. . In the fine bubble generator of the present invention, the undiluted solution supplied to the ejector B sucks the gas, is pressurized by the pressure pump C, and is further sent to the gas-liquid mixing apparatus A together with the compressed gas generated by the compressor D, and the liquid And the gas are mixed and dispersed uniformly to dissolve the gas in the liquid, the dissolved solution is sent to the storage tank E to be stored, the undissolved excess gas is released, and the dissolved solution is removed from the tank E. While decompressing, it is sent to a separately provided bubble tank to release the dissolved gas as fine bubbles. Further, the present invention will be specifically described below.

前記気液混合装置Aは、第2図に示す如く円筒状容器本
体1の両開放端にフランジ2,3を固着するとともに、該
フランジ2及び3にはそれぞれ内部と連通する流入口4
及び流出口5を開設して容器を形成し、該容器本体1の
中心に同軸となして配した支持杆6の両端を前記両フラ
ンジ2,3の中心に固定し、そして該支持杆6と容器本体
1の内壁7間にそれぞれ密接状態となして帯状板体8を
螺線状に巻回固定して左回りスクリュー9と右回りスク
リュー10を形成し且つそれぞれを所定間隔を隔てて交互
に複数設けたものである。本実施例では両側に左回りス
クリュー9,9を配し、その中間に右回りスクリュー10を
配した構造となし、それぞれのスクリューの巻数を1タ
ーン以上好ましくは数ターンに設定して前記支持杆6と
一体となして形成し、前記容器本体1に嵌挿している。
尚、左回りスクリュー9と右回りスクリュー10をそれぞ
れ分離形成し、容器本体1内に交互に嵌挿して固定する
ことも可能である。また、前記フランジ2及び3には連
結用のボルト11を挿通するための孔12,…を形成してい
る。そして、前記流入口4から導入された液体と気体を
左回りスクリュー9又は右回りスクリュー10の隣接した
帯状板体8間及び支持杆6と容器本体1の内壁7間で囲
まれた螺線状空間に沿って回転流動させ、左回りスクリ
ュー9と右回りスクリュー10の間の空間13で急激にその
回転方向を変えて分散混合するようになしたもので、こ
の空間13で一層の圧入圧の増強がなされ溶解を促進する
のである。更に、図示しないが前記支持杆6を回転さ
せ、即ち左回りスクリュー9と右回りスクリュー10を同
一方向に回転させて、容器本体1内を通過する流体に部
分的に圧力差を生じさせて、その分散混合をより促進す
るようになすことも可能である。
The gas-liquid mixing apparatus A has flanges 2 and 3 fixed to both open ends of a cylindrical container body 1 as shown in FIG. 2, and the flanges 2 and 3 each have an inlet 4 communicating with the inside.
And the outlet 5 is opened to form a container, and both ends of a supporting rod 6 arranged coaxially with the center of the container body 1 are fixed to the centers of the flanges 2 and 3, and the supporting rod 6 and The strip-shaped plate body 8 is spirally wound and fixed between the inner walls 7 of the container body 1 to form a left-handed screw 9 and a right-handed screw 10, which are alternately arranged at predetermined intervals. A plurality of them are provided. In this embodiment, the left-handed screws 9 and 9 are arranged on both sides, and the right-handed screw 10 is arranged in the middle of the structure. The number of turns of each screw is set to 1 turn or more, preferably to several turns, and the supporting rod is set. 6 is formed integrally with and is fitted into the container body 1.
It is also possible to separately form the left-handed screw 9 and the right-handed screw 10 and alternately insert and fix them in the container body 1. Further, the flanges 2 and 3 are formed with holes 12, ... For inserting the connecting bolts 11. Then, the liquid and gas introduced from the inflow port 4 are surrounded by the left-handed screw 9 or the right-handed screw 10 between the adjacent strip-shaped plate bodies 8 and between the support rod 6 and the inner wall 7 of the container body 1 in a spiral shape. It is made to rotate and flow along the space, and in the space 13 between the left-handed screw 9 and the right-handed screw 10, the direction of rotation is suddenly changed to disperse and mix. It is enhanced and promotes dissolution. Further, although not shown, the support rod 6 is rotated, that is, the counterclockwise screw 9 and the clockwise screw 10 are rotated in the same direction to partially generate a pressure difference in the fluid passing through the container body 1, It is also possible to promote the dispersion and mixing.

前記エジェクタBは、第3図に示す如く流入口14に連続
したノズル15を筒状容器16内の中央部に形成した縮径部
17へ向けて軸方向に突設するとともに、該ノズル15の近
傍に外部から気体を導入する流入管18を前記筒状容器16
に連結し、更に筒状容器16の両端には連結用のフランジ
19,19を固着したものである。該エジェクタBは、流入
口14から供給された液体をノズル15から勢いよく筒状容
器16内の縮径部17に向けて噴射させ、その際の噴射流に
よる負圧及び噴射流の拡散によって前記流入管18から気
体を吸い込む作用をするものであり、該エジェクタBを
通過した液体中には気体が比較的大きな気泡として取り
込まれる。尚、前記流入管18は他端を開放して空気を取
り入れるようになすことも、また空気以外の気泡を発生
させる場合には、所望の気体を詰めたボンベに連通連結
するようになすことも可能である。
As shown in FIG. 3, the ejector B has a reduced diameter portion in which a nozzle 15 continuous to the inflow port 14 is formed in the central portion of the cylindrical container 16.
The cylindrical container 16 is provided with an inflow pipe 18 that projects in the axial direction toward the nozzle 17 and that introduces gas from the outside in the vicinity of the nozzle 15.
Flanges for connection at both ends of the tubular container 16.
It is a fixed piece of 19,19. The ejector B vigorously ejects the liquid supplied from the inflow port 14 from the nozzle 15 toward the reduced diameter portion 17 in the cylindrical container 16, and by the negative pressure and the diffusion of the jet flow at that time, The gas has a function of sucking gas from the inflow pipe 18, and the gas is taken into the liquid passing through the ejector B as relatively large bubbles. The inflow pipe 18 may be opened at the other end to take in air, or may be connected to a cylinder filled with a desired gas when air bubbles other than air are generated. It is possible.

前記加圧ポンプCは、前記エジェクタBで気体を吸い込
んだ液体を加圧し、液体への気体の溶解量を増加させる
とともに、本装置により処理した液体を別途設ける気泡
槽の底部に供給するためのものであるが、インペラーを
内装した渦流式のものを用いることにより、前記エジェ
クタBからの気体が粗く混合した状態の液体を撹拌する
ことができ、気体の溶解をより促進させることができる
のである。尚、該加圧ポンプCは、その到達圧力が5〜
10kg/cm2の性能のものを用いている。
The pressurizing pump C pressurizes the liquid sucking the gas by the ejector B to increase the amount of the gas dissolved in the liquid and supplies the liquid treated by the present apparatus to the bottom of a bubble tank provided separately. However, by using a vortex flow type in which an impeller is installed, it is possible to stir the liquid in a state where the gas from the ejector B is roughly mixed, and to further promote the dissolution of the gas. . The ultimate pressure of the pressurizing pump C is 5 to 5.
It has a performance of 10 kg / cm 2 .

前記コンプレッサーDは、気体を圧縮して前記加圧ポン
プCにより加圧された気体を含む液体内に合流させるも
ので、該加圧ポンプCによって加圧された液体の圧力に
応じてその圧縮気体の圧力を適宜設定できるものであ
る。尚、空気以外の気体を用いる場合には、所望の気体
を詰めたボンベから吸入して圧縮するようになすことも
可能で、この場合前記エジェクタBに供給するボンベと
共用するのである。
The compressor D is for compressing the gas and joining it into the liquid containing the gas pressurized by the pressure pump C. The compressed gas is compressed according to the pressure of the liquid pressurized by the pressure pump C. The pressure can be set appropriately. When a gas other than air is used, it can be sucked from a cylinder filled with a desired gas and compressed, and in this case, it is also used as the cylinder to be supplied to the ejector B.

前記貯留タンクEは、前記気液混合装置Aにより気体を
溶解した液体を加圧状態で貯留するとともに、上端に設
けたエアーアウトサイレンサー20から溶解しなかった余
剰気体を外部へ開放するものである。尚、気体として空
気や安価で且つ無害の気体を用いた場合には、直接大気
中に放出することができるが、その他の気体を用いた場
合には、前記エアーアウトサイレンサー20の放出口21を
図示しない回収タンクに連結して回収するものとする。
The storage tank E stores the liquid in which the gas is dissolved by the gas-liquid mixing device A in a pressurized state and releases the undissolved excess gas from the air out silencer 20 provided at the upper end to the outside. . When air or an inexpensive and harmless gas is used as the gas, it can be directly discharged into the atmosphere, but when other gas is used, the discharge port 21 of the air out silencer 20 is used. It shall be connected to a recovery tank (not shown) for recovery.

次に、本考案の微細気泡発生装置の全体構成を第1図に
基づき説明すれば、気泡槽に満たされた液体と同一液体
を供給又は該気泡槽から回収する給液パイプ22を前記エ
ジェクタBの流入側のフランジ19に連結し、該エジェク
タBの流出側のフランジ19を前記加圧ポンプCの吸入側
に連結し、そして該加圧ポンプCの排出側には前記コン
プレッサーDからの圧縮気体を供給する給気パイプ23を
合流連結する分岐管24を設けた連結管25を連結し、更に
該連結管25を前記気液混合装置Aの流入口4側にフラン
ジ2を用いてボルト11で連結するとともに、流出口5側
にフランジ3を用い、両端に寸法の異なる変換フランジ
を設けた連結管26を介して前記貯留タンクEに連結し、
そして該貯留タンクEに設けた減圧バルブ27を有する供
給口28には気泡を発生させる気泡槽に気体を溶解した液
体を供給する供給パイプ29を連結したものである。尚、
前記連結管25は特に設ける必要はなく、前記加圧ポンプ
Cを直接気液混合装置Aに連結し、そしてコンプレッサ
ーDからの給気パイプ23を該気液混合装置Aの流入口4
の近傍に形成した分岐管に連結することも可能で、更に
前記連結管26も省略することが可能である。
Next, the overall structure of the fine bubble generator of the present invention will be described with reference to FIG. 1. The ejector B is provided with a liquid supply pipe 22 for supplying or recovering the same liquid as the liquid filled in the bubble tank. Of the ejector B is connected to the suction side of the pressure pump C, and the discharge side of the pressure pump C is connected to the compressed gas from the compressor D. A connecting pipe 25 provided with a branch pipe 24 which joins and connects the air supply pipe 23 for supplying the gas is further connected to the inlet 4 side of the gas-liquid mixing apparatus A by using the flange 2 and the bolt 11. In addition to the connection, the flange 3 is used on the outflow port 5 side, and the storage tank E is connected via a connection pipe 26 provided with conversion flanges having different dimensions at both ends,
A supply port 28 having a pressure reducing valve 27 provided in the storage tank E is connected to a supply pipe 29 for supplying a liquid in which a gas is dissolved to a bubble tank for generating bubbles. still,
The connecting pipe 25 need not be provided in particular, and the pressurizing pump C is directly connected to the gas-liquid mixing apparatus A, and the air supply pipe 23 from the compressor D is connected to the inlet 4 of the gas-liquid mixing apparatus A.
It is also possible to connect to a branch pipe formed in the vicinity of, and the connecting pipe 26 can be omitted.

しかして、本考案の微細気泡発生装置は、エジェクタB
に供給された原液はその中に流入管18より気体を吸い込
んだ状態で加圧ポンプCにより加圧され、気体の一部を
液体に溶解し、特に加圧ポンプCとしてインペラーを内
装した渦流式加圧ポンプを用いた場合には該インペラー
で撹拌混合されてより多く溶解し、更に気体を予備溶解
したこの液体とコンプレッサーDにより発生された圧縮
気体とともに気液混合装置Aに送る。そして、該気液混
合装置A内では、流入口4から圧入された液体と気体は
左回りスクリュー9で左回り回転を与えられながら前方
へ導かれた後、空間13を通って右回りスクリュー10で急
激に回転方向を右回りに位相変換して乱流状態を作り液
体と気体を混合し、更に右回り回転を与えられながら前
方へ導かれた後、空間13を通って左回りスクリュー9で
再度急激に回転方向を左回りに位相転換して乱流状態を
作り液体と気体を混合し、適宜これを繰り返して気体を
微小な気泡となして液体中に一様に分散混合し、前記加
圧ポンプC及びコンプレッサーDによる圧力に応じた理
論的な溶解限界である溶解度に近い量の気体が溶解した
溶解液が作られる。それから、その溶解液を貯留タンク
Eに貯留するとともに、溶解し得なかった余剰気体をエ
アーアウトサイレンサー20より開放し、該貯留タンクE
の減圧バルブ27で前記溶解液を減圧しながら供給口28か
ら気泡槽に流入させることにより、供給パイプ29及び気
泡槽内で溶解液に溶解された気体が一気に飽和状態とな
り、微細な気泡として気泡槽内に開放されるのである。
その結果、本考案の微細気泡発生装置により発生した気
泡の直径は、流体におけるストークスの式を用いた計算
によれば、水中における空気の気泡の場合2〜5μmの
微細なものが得られていることが判明し、しかもその発
生量は従来のものと比較して格段に多いものであった。
Therefore, the device for generating fine bubbles of the present invention is configured to include the ejector B.
The undiluted solution supplied to is pressurized by a pressure pump C in a state where the gas is sucked in through the inflow pipe 18, and a part of the gas is dissolved in the liquid. Particularly, the vortex flow type in which an impeller is installed as the pressure pump C. When a pressurizing pump is used, it is agitated and mixed by the impeller to dissolve more, and the gas is sent to the gas-liquid mixing device A together with the pre-dissolved liquid and the compressed gas generated by the compressor D. Then, in the gas-liquid mixing device A, the liquid and gas press-fitted from the inflow port 4 are guided forward while being given counterclockwise rotation by the counterclockwise screw 9, and then pass through the space 13 and the clockwise screw 10 Then, the rotation direction is rapidly phase-shifted clockwise to create a turbulent state to mix the liquid and gas, and after being guided forward while being given clockwise rotation, it passes through the space 13 and is rotated counterclockwise by the screw 9. The phase is rapidly changed again counterclockwise to create a turbulent state, and the liquid and gas are mixed, and this is repeated appropriately to form gas into minute bubbles to uniformly disperse and mix in the liquid. A solution in which an amount of gas close to the solubility, which is the theoretical solubility limit, is dissolved according to the pressure by the pressure pump C and the compressor D is prepared. Then, the dissolved liquid is stored in the storage tank E, and excess gas that cannot be dissolved is released from the air out silencer 20.
By injecting the solution into the bubble tank from the supply port 28 while decompressing the solution with the decompression valve 27, the gas dissolved in the solution in the supply pipe 29 and the bubble tank is saturated at once, and bubbles are formed as fine bubbles. It is opened in the tank.
As a result, the diameter of the bubbles generated by the fine bubble generator of the present invention is as small as 2 to 5 μm in the case of air bubbles in water according to the calculation using the Stokes equation in the fluid. It was found that the amount generated was much higher than that of the conventional one.

本考案の微細気泡発生装置は、各種の用途に供される
が、活魚を捕獲地から料理店へ輸送する水槽又は料理店
で一時養殖する水槽に適用した一例を第4図に示す。図
中Pは微細気泡発生装置を示し、減圧バルブ27から供給
パイプ29にて水槽30の底部に空気を溶解した溶解液を供
給するようになしたもので、急速に減圧された溶解液中
に溶解した空気は水槽30内の養殖水31の中で飽和状態と
なって微細な気泡32,…として開放される。この気泡32
は非常に微細なので、上昇速度が遅く養殖水31の中に長
時間滞留して水平方向にも拡散し、養殖水31の酸素濃度
を魚類に最適に設定できるのである。尚、前記水槽30内
の周囲には、側壁33と所定間隔を隔てて網34を吊り下げ
て活魚が該側壁33に衝突して傷付くことを防止してい
る。そして、この水槽30をトラックに搭載したり、また
料理店に設置するのである。
The microbubble generator of the present invention is used for various purposes, and an example of application to a tank for transporting live fish from a catching place to a restaurant or a tank for temporarily culturing live fish is shown in FIG. In the figure, P indicates a fine bubble generator, which is adapted to supply a dissolving solution in which air is dissolved from the pressure reducing valve 27 to the bottom of the water tank 30 through a supply pipe 29. The dissolved air becomes saturated in the culture water 31 in the water tank 30 and is released as fine bubbles 32. This bubble 32
Since is extremely fine, the rising speed is slow and it stays in the aquaculture water 31 for a long time and diffuses in the horizontal direction, and the oxygen concentration of the aquaculture water 31 can be optimally set for fish. A net 34 is hung around the inside of the water tank 30 at a predetermined distance from the side wall 33 to prevent live fish from colliding with and damaging the side wall 33. Then, this aquarium 30 is installed in a truck or installed in a restaurant.

一般的に、微細な気泡は物質を吸着する特性を有すると
ともに、気泡が破裂する際に圧力変化を生じさせる特性
を有し、更にその圧力変化は気泡が小さい程大きい特性
を有する。これらの特性を利用した他の用途としては、
浮遊不純物を吸着浮上して分離除去する水の浄化、洗浄
及び洗濯、泡風呂等があり、更にオゾンの気泡による貯
蔵水の滅菌及び脱臭、そして醗酵槽内に空気の気泡を送
り込むことによる醗酵の促進等があげられ、その用途は
枚挙にいとまないものである。
In general, fine bubbles have a property of adsorbing a substance and a property of causing a pressure change when the bubble bursts, and the pressure change has a larger property as the bubble is smaller. Other uses for these properties include:
There are purification, washing and washing of water to separate and remove floating impurities by adsorption, floating, etc., and sterilization and deodorization of stored water by bubbles of ozone, and fermentation by sending air bubbles into the fermentation tank. Its uses are enumerated, and its uses are enumerated.

〔考案の効果〕[Effect of device]

本考案の微細気泡発生装置に用いられる気液混合装置に
よれば、流入口から供給した液体と気体を筒状容器内で
左回りスクリューで左回り回転を与えながら前方へ導い
た後右回りスクリューで急激に回転方向を右回りに位相
変換して乱流状態を作り液体と気体を混合し、更に右回
り回転を与えながら前方へ導いた後左回りスクリューで
再度急激に回転方向を左回りに位相転換して乱流状態を
作り液体と気体を混合することができ、適宜これを繰り
返して気体を極めて微小な気泡となして液体中に一様に
分散混合して流出口から連続的に取り出すことができ、
しかもその構造は簡単でコンパクトに且つ安価に製造で
き、また供給する液体と気体の圧力によらず常に作動す
るのである。
According to the gas-liquid mixing device used in the fine bubble generator of the present invention, the liquid and gas supplied from the inlet are guided to the front while being rotated counterclockwise by the counterclockwise screw in the cylindrical container, and then the clockwise screw. , Abruptly phase-shifts the direction of rotation to create a turbulent state, mixes liquid and gas, guides it forward while giving clockwise rotation, and then again turns the direction of rotation abruptly counterclockwise with a counterclockwise screw. The liquid and gas can be mixed by creating a turbulent state by phase conversion, and by repeating this appropriately, the gas is made into extremely minute bubbles, uniformly dispersed and mixed in the liquid, and continuously taken out from the outlet. It is possible,
Moreover, its structure is simple, compact and inexpensive to manufacture, and it always operates regardless of the pressures of the liquid and gas supplied.

そして、本考案の微細気泡発生装置によれば、エジェク
タによりそれに供給した原液中に気体を吸い込ませ、そ
の状態で加圧ポンプにより加圧して気体の一部を液体に
溶解させる予備溶解を行った後に、この気体を含む液体
とコンプレッサーにより発生された圧縮気体とともに気
液混合装置に送って、左回りスクリューと右回りスクリ
ューで一様に撹拌混合して気体を溶解させるので、前記
加圧ポンプ及びコンプレッサーによる圧力に応じた理論
的な溶解限界である溶解度に近い量の気体を液体に溶解
させることができ、その結果その溶解液を減圧しながら
気泡槽に流入させることにより、微細な気泡を大量に効
率よく発生させることができるのである。
Then, according to the fine bubble generator of the present invention, gas is sucked into the undiluted solution supplied thereto by the ejector, and in that state, pre-dissolving is performed by pressurizing with a pressure pump to dissolve a part of the gas into the liquid. After that, the liquid containing the gas and the compressed gas generated by the compressor are sent to a gas-liquid mixing device, and the counterclockwise screw and the clockwise screw uniformly agitate and mix to dissolve the gas. It is possible to dissolve a quantity of gas close to the solubility, which is the theoretical limit of dissolution according to the pressure of the compressor, into a liquid, and as a result, the dissolved solution is decompressed and allowed to flow into the bubble tank, thereby generating a large amount of fine bubbles. It can be efficiently generated.

更に、加圧ポンプとしてインペラーを内装した渦流式加
圧ポンプを用いた場合には、該インペラーで撹拌混合さ
れてより多くの気体を液体中に溶解させることができ
る。
Furthermore, when a vortex type pressure pump having an impeller installed therein is used as the pressure pump, a larger amount of gas can be dissolved in the liquid by stirring and mixing with the impeller.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の微細気泡発生装置の全体配置図、第2
図は微細気泡発生装置に用いた気液混合装置の断面図、
第3図は同じくエジェクタの断面図、第4図は本考案の
微細気泡発生装置を用いて構成した活魚の水槽の簡略断
面図である。 A:気液混合装置、B:エジェクタ、C:加圧ポンプ、D:コン
プレッサー、E:貯留タンク、1:容器本体、2:フランジ、
3:フランジ、4:流入口、5:流出口、6:支持杆、7:内壁、
8:帯状板体、9:左回りスクリュー、10:右回りスクリュ
ー、11:ボルト、12:孔、13:空間、14:流入口、15:ノズ
ル、16:筒状容器、17:縮径部、18:流入管、19:フラン
ジ、20:エアーアウトサイレンサー、21:放出口、22:給
液パイプ、23:給気パイプ、24:分岐管、25:連結管、26:
連結管、27:減圧バルブ、28:供給口、29:供給パイプ、3
0:水槽、31:養殖水、32:気泡、33:側壁、34:網。
FIG. 1 is an overall layout view of the fine bubble generator of the present invention, and FIG.
Figure is a cross-sectional view of the gas-liquid mixing device used in the micro-bubble generator
FIG. 3 is a sectional view of the ejector, and FIG. 4 is a simplified sectional view of an aquarium of live fish constructed by using the fine bubble generating device of the present invention. A: Gas-liquid mixing device, B: Ejector, C: Pressurizing pump, D: Compressor, E: Storage tank, 1: Container body, 2: Flange,
3: Flange, 4: Inlet, 5: Outlet, 6: Support rod, 7: Inner wall,
8: band-shaped plate, 9: counterclockwise screw, 10: clockwise screw, 11: bolt, 12: hole, 13: space, 14: inlet, 15: nozzle, 16: cylindrical container, 17: reduced diameter part , 18: Inflow pipe, 19: Flange, 20: Air out silencer, 21: Outlet port, 22: Liquid supply pipe, 23: Air supply pipe, 24: Branch pipe, 25: Connection pipe, 26:
Connection pipe, 27: Pressure reducing valve, 28: Supply port, 29: Supply pipe, 3
0: Aquarium, 31: Aquaculture water, 32: Bubble, 33: Side wall, 34: Net.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】エジェクタにより気体を吸い込んだ原液を
加圧ポンプにより加圧し、コンプレッサーにより発生さ
れた圧縮気体とともに、筒状容器の両端に流入口と流出
口を設け、内部に螺線状の右回りスクリューと左回りス
クリューをそれぞれ少なくとも1つ以上交互に所定間隔
を隔てて同軸となして固定し且つ両スクリューの外縁を
該容器の内壁に密接してなる気液混合装置の前記流入口
に供給し、該気液混合装置内で気体を混合溶解した溶解
液を作り、前記流出口から流出する溶解液を該溶解液中
に含まれる余剰気体を開放し得るタンクに導いて貯留
し、該タンクに形成した供給口から溶解液を減圧して適
宜取り出せるようになしたことを特徴とする微細気泡発
生装置。
1. An undiluted solution in which a gas is sucked by an ejector is pressurized by a pressure pump, and an inlet and an outlet are provided at both ends of a tubular container together with a compressed gas generated by a compressor, and a spiral-shaped right is provided inside. At least one rotating screw and at least one counterclockwise screw are alternately and coaxially fixed at a predetermined interval, and the outer edges of both screws are supplied to the inlet of the gas-liquid mixing device in close contact with the inner wall of the container. Then, in the gas-liquid mixing device, a dissolved solution is prepared by mixing and dissolving gas, and the dissolved solution flowing out from the outlet is guided to a tank capable of releasing excess gas contained in the dissolved solution and stored therein. A fine air bubble generator characterized in that the solution is decompressed from the supply port formed in the above and can be appropriately taken out.
【請求項2】前記加圧ポンプとして、インペラーを内装
した渦流式加圧ポンプを用いてなる実用新案登録請求の
範囲第1項記載の微細気泡発生装置。
2. The fine bubble generator according to claim 1, wherein a vortex type pressure pump having an impeller installed therein is used as the pressure pump.
JP1989019714U 1989-02-22 1989-02-22 Micro bubble generator Expired - Lifetime JPH0737702Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989019714U JPH0737702Y2 (en) 1989-02-22 1989-02-22 Micro bubble generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989019714U JPH0737702Y2 (en) 1989-02-22 1989-02-22 Micro bubble generator

Publications (2)

Publication Number Publication Date
JPH02112321U JPH02112321U (en) 1990-09-07
JPH0737702Y2 true JPH0737702Y2 (en) 1995-08-30

Family

ID=31235467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989019714U Expired - Lifetime JPH0737702Y2 (en) 1989-02-22 1989-02-22 Micro bubble generator

Country Status (1)

Country Link
JP (1) JPH0737702Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842786B1 (en) * 2007-04-25 2008-07-01 경상대학교산학협력단 Dissolution oxygen generator by using a floating bubble
KR101475508B1 (en) * 2014-02-18 2014-12-29 주식회사 세종플랜트 fine bubble generator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573899B2 (en) * 1992-05-14 1997-01-22 株式会社エフ・テックス Purification equipment for rivers, lakes, etc. and oil / water separation equipment
JP3921600B2 (en) * 1997-08-25 2007-05-30 冷化工業株式会社 Stir and mixing device
JP2001300276A (en) * 2000-04-24 2001-10-30 Isao Endo Bubble generating device
JP3762206B2 (en) * 2000-09-13 2006-04-05 株式会社アスプ Ultra-fine bubble generator
YU78403A (en) * 2001-04-06 2004-11-25 Nicol, Scott Carbonation system and method
JP4313541B2 (en) * 2002-03-26 2009-08-12 日鉄鉱業株式会社 Fluid transfer device
JP4009566B2 (en) * 2003-07-28 2007-11-14 東京電力株式会社 Dissolved oxygen reduction device
JP4076088B2 (en) * 2004-10-13 2008-04-16 オルガノ株式会社 Purification method and apparatus for contaminated groundwater and contaminated formation
JP2006136777A (en) * 2004-11-11 2006-06-01 Maruwa Biochemical Co Ltd Mixing apparatus for fine bubble
JP4559289B2 (en) * 2005-04-28 2010-10-06 株式会社荏原製作所 Oxygen dissolving apparatus and oxygen dissolving method
JP4151681B2 (en) * 2005-07-19 2008-09-17 株式会社日立製作所 Fine bubble generating apparatus and method
WO2008029525A1 (en) * 2006-09-05 2008-03-13 Ohta, Shigeo Process and equipment for mass production of liquid containing gas dissolved therein by continuous pressure flowing method
JP5792533B2 (en) * 2011-07-11 2015-10-14 岩井機械工業株式会社 Gas dissolving apparatus and gas dissolving method
JP6276603B2 (en) * 2014-02-03 2018-02-07 啓二 山▲崎▼ Mixing equipment
JP6771960B2 (en) * 2016-06-17 2020-10-21 株式会社アスプ Gas-containing liquid generator and gas-containing liquid treatment mechanism
JP6847338B2 (en) * 2016-06-24 2021-03-24 高橋 賢 Gas-containing liquid generator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521560A (en) * 1975-06-24 1977-01-07 Emupaiya Boeki Kk Mixer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842786B1 (en) * 2007-04-25 2008-07-01 경상대학교산학협력단 Dissolution oxygen generator by using a floating bubble
KR101475508B1 (en) * 2014-02-18 2014-12-29 주식회사 세종플랜트 fine bubble generator

Also Published As

Publication number Publication date
JPH02112321U (en) 1990-09-07

Similar Documents

Publication Publication Date Title
JPH0737702Y2 (en) Micro bubble generator
US3969446A (en) Apparatus and method for aerating liquids
JP2008272719A (en) Fine bubble generating apparatus
JP2006136777A (en) Mixing apparatus for fine bubble
JP2000317488A (en) Device for underwater aeration and agitation
JP2001276878A (en) Submerged aerating and stirring device
JP2002059186A (en) Water-jet type fine bubble generator
JP2003117368A (en) Gas-liquid or liquid-liquid mixer, mixing apparatus, method of manufacturing mixed liquid and method of manufacturing fine bubble-containing liquid
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
KR102339246B1 (en) Device and method for generating fine-bubble
JPH11333491A (en) Microbubble jet water purifying apparatus
JP3555557B2 (en) Aeration device
JP6968405B2 (en) Gas-liquid mixing nozzle
JP3747261B2 (en) Dispersion method of gas-liquid mixed fluid and dispersion device used in the method
JP2008086986A (en) Microbubble generating device and water treatment apparatus using the same
KR100968752B1 (en) Multi aeration-mixing machine
JP2011011178A (en) Method and apparatus for gas-liquid mixing dissolution
KR20010067951A (en) A oxygen supplies equipment for water pool
JP3173135U (en) Microbubble generator and water treatment apparatus using the same
JP2002200415A (en) Equipment for dissolving air into water
JP2009178702A (en) Gas-liquid mixing equipment
JP3749156B2 (en) Liquid quality reformer
JPS5839840Y2 (en) Aeration device
RU156912U1 (en) DEVICE FOR GAS SURFACE OF LIQUID MEDIA
JP2522730B2 (en) Aeration device that also generates liquid flow

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term