JP4009566B2 - Dissolved oxygen reduction device - Google Patents

Dissolved oxygen reduction device Download PDF

Info

Publication number
JP4009566B2
JP4009566B2 JP2003202483A JP2003202483A JP4009566B2 JP 4009566 B2 JP4009566 B2 JP 4009566B2 JP 2003202483 A JP2003202483 A JP 2003202483A JP 2003202483 A JP2003202483 A JP 2003202483A JP 4009566 B2 JP4009566 B2 JP 4009566B2
Authority
JP
Japan
Prior art keywords
tank
water
nitrogen
circulation
dissolution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003202483A
Other languages
Japanese (ja)
Other versions
JP2005040699A (en
Inventor
康衛 古田
英明 伊藤
裕之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2003202483A priority Critical patent/JP4009566B2/en
Priority to KR1020040046455A priority patent/KR20050013489A/en
Publication of JP2005040699A publication Critical patent/JP2005040699A/en
Application granted granted Critical
Publication of JP4009566B2 publication Critical patent/JP4009566B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/005Processes using a programmable logic controller [PLC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/03Pressure
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、常圧水槽内の水を循環利用する水循環利用システムにおいて、金属配管や機器等の腐食を防止するために使用する溶存酸素低減装置に関し、とくに、水を蓄熱媒体として循環利用する蓄熱式空調システムに適用して有効な技術に関する。
【0002】
【従来の技術】
通常、水には大気中の酸素がその分圧に応じた一定率で溶存している。この溶存酸素は金属配管や機器等を腐食させる原因となる。そこで、蓄熱媒体として水を循環利用する空調システム等では、たとえば特許文献1のように、水循環利用系の腐食防止のために、循環水の溶存酸素を不活性ガスである窒素に置き換えて低減させる処理が行われる。
【0003】
特許文献1では、水槽内の水を利用側に供給して再び水槽に循環させる水循環利用系において、その水利用の循環系とは別に、上記水槽内の水を窒素置換処理して戻す循環処理系を設置する。この循環処理系には、窒素注入部、循環ポンプ、および溶解促進タンクが設けられている。
【0004】
水槽内の水はポンプで循環させられるとともに、そのポンプの吸入側で窒素(窒素ガス、以下同じ)が注入される。窒素注入された循環水には、溶解しきれない窒素が気泡の形で多く含まれている。この気泡状窒素は、循環ポンプで細かく攪拌された後、溶解促進タンクへ送り込まれて溶解促進される。
【0005】
特許文献1の技術では溶解促進タンクの設置を特徴としている。この溶解促進タンクは溶解バッファ槽(バッファタンク)としての機能を有する。窒素が水に溶解するには時間を要する。そこで、循環水をタンク内の高静圧下に長時間曝すことにより窒素の溶解を促進する。つまり、溶解バッファタンクとして使用する。これにより、たとえば床下に設置される平型の水槽であっても、その水槽内の水の溶存酸素を窒素置換により低減させることができる。
【0006】
【特許文献1】
特開2001−342583公報
【0007】
【発明が解決しようとする課題】
上述した従来の装置では、次のような問題を生じることが判明した。
すなわち、循環水に注入された窒素が溶解促進されるのは、上述したように、循環処理系内に配置した溶解促進タンク内であって、それ以外のところでの溶解はほとんど期待できない。また、循環ポンプの吸入側で注入した窒素は、その循環ポンプの回転翼で攪拌されるが、その循環ポンプの吸入側には負圧が生じる。この負圧発生部分で窒素を攪拌しても、そこで溶解が促進されることはなく、ほとんどが気泡のまま溶解促進タンクへ送り込まれる。
【0008】
溶解促進タンクで窒素を効率良く溶解させるためには、窒素の気泡をあらかじめ十分に攪拌してできるだけ細分化することが望ましい。その気泡の攪拌を十分に行わせるためには、その攪拌を担う回転翼を高速で回転させる必要がある。しかし、その回転翼を高速回転させるとキャビテーション現象が生じて、逆に気泡が発生してしまう、という背反が生じる。
【0009】
結局、注入した窒素の溶解が行われる個所は、実質的に上述した溶解促進タンク(溶解バッファ槽)内だけとなる。溶解促進タンク内に窒素と共に送り込まれた循環水は、そのタンク内の高静圧下に長時間曝されることにより、窒素を溶解させることができる。この溶解時間を確保するためには、溶解促進タンクを通過する循環水が、その溶解タンク内に長時間曝されるようにする。つまり、循環水が溶解促進タンク内を十分な時間をかけて通過するようにすればよい。
【0010】
しかし、そのためには、溶解促進タンクの容積を十分に大きくするか、あるいは循環水の流量を少なくする必要が生じる。前者の場合は装置が大型かつ高コスト化し、後者の場合は処理能力が低下するという問題が生じる。
【0011】
この発明は以上のような問題を鑑みてなされたもので、その目的は、常圧水槽内の水を循環利用する水循環利用システムにおいて、腐食防止のための窒素置換処理を、比較的小型かつ低コストな構成で高効率に行わせることができるようにした溶存酸素低減装置を提供することにある。
【0012】
【課題を解決するための手段】
本発明の手段は、常圧水槽内の水を循環利用する水循環利用系に付設され、この水循環利用系の腐食防止のために、上記水槽内の水の溶存酸素量を窒素置換処理により低減させる溶存酸素低減装置であって、上記水槽内の水を上記利用系とは別の水循環経路に導いて気体窒素の注入および攪拌と溶解による窒素置換処理を行わせる循環処理系を設置するとともに、その循環処理系のうち、少なくとも上記気体窒素の注入および攪拌の個所を含む範囲の循環経路全体を、上記水槽内に対して所定以上の加圧状態に置くようにしており、上記水槽内の水を窒素注入部、回転翼式の気泡攪拌部、溶解バッファ槽、脱気槽に順次通して上記水槽内に戻すことにより上記窒素置換処理を行う循環処理系を有するとともに、この循環処理系内全体を上記水槽内に対して所定以上の加圧状態に置く圧力保持手段を備え、上記溶解バッファ槽と上記脱気槽間の管路に回転翼式ポンプを設けて脱気槽側を増圧させるとともに、そのポンプの吸入側に第2の窒素注入部を設けることにより、そのポンプの回転翼による気泡攪拌と、そのポンプ以降の循環経路にて窒素溶解促進を行わせるようにしたことを特徴とする。
【0013】
上記手段により、常圧水槽内の水を循環利用する水循環利用システムにおいて、腐食防止のための窒素置換処理を、比較的小型かつ低コストな構成で高効率に行わせることができる。
【0014】
また、上記水槽内の水を窒素注入部、回転翼式の気泡攪拌部、溶解バッファ槽、脱気槽に順次通して上記水槽内に戻すことにより上記窒素置換処理を行う循環処理系を有するとともに、この循環処理系内全体を上記水槽内に対して所定以上の加圧状態に置く圧力保持手段を備えるから、溶解バッファ槽と脱気槽の両方でそれぞれに窒素溶解を促進させることができる。
また、上記溶解バッファ槽と上記脱気槽間の管路に回転翼式ポンプを設けて脱気槽側を増圧させるとともに、そのポンプの吸入側に第2の窒素注入部を設けることにより、そのポンプの回転翼による気泡攪拌と、そのポンプ以降の循環経路にて窒素溶解促進を行わせる。これにより、窒素置換処理を循環経路全体で効率良く行わせることができる。
【0015】
上記手段の上記水槽内の水を上記循環処理系に加圧して送り込むポンプ装置と、上記循環処理系の末端部に介在する圧力作動弁とによって、上記循環処理系内全体を上記水槽内に対して所定以上の加圧状態に置く。これにより、簡単かつ確実な構成でもって、循環処理系全体を所定の加圧状態に置くことができる。
【0016】
上記気泡攪拌部は、循環処理系の管路にて循環水を圧送する回転翼式のポンプによって構成することができる。
【0018】
上記脱気槽は縦型円筒状タンクにより構成され、そのタンクの下側から導入した循環水をタンク内周に沿って旋回流させることにより、そのタンク軸心付近に遠心分離されて集まった気泡を上部から排気させる。これにより、余剰気体を効率良く分離および除去することができる。
【0019】
【発明の実施の形態】
図1は本発明の一実施例による溶存酸素低減装置の概略構成を示す。同図に示す装置20は、床下に設置した平型の常圧水槽10の水11を蓄熱媒体として循環利用する蓄熱式空調システムに付設されて使用される。この溶存酸素低減装置20は、空調システムからは独立した第2の閉鎖的(クローズ)な水循環経路21を使用して構成される。この水循環経路21には、水中ポンプ22、第1の窒素注入部23、ラインポンプ24、溶解バッファ槽25、第2の窒素注入部26、自給式ポンプ27、脱気槽28、一次圧力調整弁29などが順次接続されている。これにより、水槽10内の水11を循環させながら窒素置換させる循環処理系が構成されている。水中ポンプ22の吐出側および一次圧力調整弁29の流入側にはそれぞれ指示流量計31,32が配置されて、上記循環処理系内の循環水(被処理水)量をモニターできるようになっている。
【0020】
図1において、水槽10内の水11は、その水槽10内に設置された水中ポンプ22で汲み上げられるとともに加圧されて、第1の窒素注入部23へ送り込まれる。第1の窒素注入部23は、図2に示すように、循環水の流路を形成する直管部23aに細い分岐管部23bが直角に接続するT字ジョイントを用いて構成され、分岐管部23bの端部から窒素を加圧注入させるようになっている。分岐管部23bは耐圧コネクタおよび耐圧チューブを介して窒素発生源(図示省略)に接続されている。窒素発生源としては、大気から窒素ガスを分離して供給する窒素発生装置が好適に使用されるが、窒素ボンベでもよい。
【0021】
注入された窒素は気泡状となって循環水に混入する。窒素気泡はラインポンプ24の回転翼(回転羽)で加圧攪拌されて細分化された後、そのポンプ24でさらに加圧された循環水と共に、溶解バッファ槽25内へ送り込まれる。ポンプ24は回転翼式(回転羽式)であって、その回転翼は本来、水を搬送駆動(ポンピング)するためのものであるが、ここでは気泡攪拌部も兼ねている。
【0022】
溶解バッファ槽25は縦型タンクを用いて構成されている。そのタンク内部は、そのタンク上部に設けられた自動エア抜き弁25aにより、循環水だけをほぼ満水状態で貯留できるようになっている。窒素注入された循環水はこの溶解バッファ槽25内にいったん滞留するような形で導入された後、所定の溶解促進時間をかけて通過する。
【0023】
溶解バッファ槽25を通過した循環水は、第2の窒素注入部26で窒素を再度注入された後、自給式ポンプ27で脱気槽28へ送り込まれる。第2の窒素注入部26は、図3に示すように、自給式ポンプ27の吸入側に設置されている。窒素は流量計26aを介してポンプ27の吸入側に加圧注入される。注入された窒素は気泡状となって循環水に混入する。ここで新たに混入させられた窒素気泡は、その自給式ポンプ27の回転翼により加圧攪拌されて細分化された後、循環水とともに脱気槽28へ送り込まれる。この場合も、ポンプ27は回転翼式(回転羽式)であって、その回転翼は気泡攪拌部を兼ねる。
【0024】
脱気槽28は上記バッファ槽25と同様、縦型円筒状タンクを用いて構成されている。循環水はそのタンクの下側から円周方向に導入される。タンク内に導入した循環水をタンク内周に沿って旋回流させることにより、そのタンクの中心軸付近に気泡が遠心分離されて集まる。ここで分離される気泡は溶解飽和により残った余剰気体であって、この余剰気体はタンク上部の自動エア抜き弁28aから排気される。
【0025】
タンク内は、上記旋回流を生じさせるために、循環水をタンク内周面に沿って流れるように導入する構造となっている。タンクの内周面付近には気泡が分離・除去された循環水が集まる。脱気処理された循環水は、管路33および指示流量計32を通って一次圧力調整弁29に至る。
【0026】
管路33の頂部には自動エア抜き弁33aが設置されていて、ここで最終的なエア抜きが行われる。一次圧力調整弁29は所定の圧力となるように保持する圧力作動弁であって、背圧弁とも呼ばれる。この一次圧力調整弁(背圧弁)29がその流入側の圧力を所定の圧力となるように保持した状態で循環水を通過させる。これにより、循環処理系全体に所定の加圧状態が生じるようになっている。一次圧力調整弁29を通過した循環水は上記水槽10に戻される。
上記エア抜き弁25a,28a,33aから排気された余剰窒素は排気管に導かれて回収され、上記水槽10内に送り込まれる。
【0027】
図4は、上述した循環処理系内の圧力分布状態を示す。上述した循環処理系では、水中ポンプ22の吐出側から一次圧力調整弁29に至るまでの循環経路21全体が一次圧力調整弁29により所定以上の加圧状態に保たれるようになっている。さらに、その循環経路21内の圧力はラインポンプ24と自給式ポンプ27により、循環方向に向けて段階的に増大させられている。
【0028】
同図に示す具体例では、常圧水槽10に大気圧(0.0kg/cm)下で蓄えられている水(蓄熱媒体)11が、水中ポンプ22の吐出側で2.0kg/cm位まで加圧される。この加圧部分で第1の窒素注入が行われる。この後、循環水はラインポンプ24で4.0kg/cm付近まで加圧されて溶解バッファ槽25に送り込まれる。溶解バッファ槽25内で循環水は、気泡の存在や配管摩擦抵抗などにより圧力が若干漸減する。しかし、溶解バッファ槽25の通過後に、自給式ポンプ27にて5〜6kg/cm付近まで加圧されて脱気槽28に送り込まれる。脱気槽28から一次圧力調整弁(背圧弁)29までの間で配管摩擦抵抗により若干の圧力漸減が生じるが、一次圧力調整弁29により5kg/cm以上の圧力(背圧)が保たれるようになっている。このように、水槽10から汲み上げられた水11は、少なくとも2kg/cm以上の加圧状態に保たれた状態で循環経路21を回って水槽10に戻される。
【0029】
上述したように、この実施例の溶存酸素低減装置20は、水槽10内の水を窒素注入部、回転翼式の気泡攪拌部、溶解バッファ槽、脱気槽に順次通して上記水槽10内に戻す循環処理系を有するとともに、この循環処理系内全体を上記水槽10内に対して所定以上の加圧状態に置く圧力保持手段を備えていることにより、窒素の溶解促進が、溶解バッファ槽25内だけではなく、循環処理系のほぼ全体で行われるようになっている。
【0030】
ここで仮に、溶解バッファ槽25内だけで溶解促進を行わせようとした場合、窒素溶解に必要な時間をその溶解バッファ槽内の通過時間だけで確保しなければならなくなるため、その溶解バッファ槽のタンク容積を十分に大きくするか、あるいは循環水の流量を少なくしなければならず、前者の場合は装置が大型かつ高コスト化し、後者の場合は処理能力が低下してしまう。
【0031】
これに対し、上記実施例では、窒素の溶解促進が循環処理系のほぼ全体で行われるため、溶解バッファ槽25での溶解時間が必ずしも十分でなくても、循環処理系全体で十分な溶解時間を確保することができる。これにより、窒素置換による溶存酸素低減の処理を比較的小型かつ低コストな構成で高効率に行わせることができる。
【0032】
本発明者が知得したところによると、循環水中への窒素溶解は所定時間の経過でほぼ飽和状態に近づく。したがって、窒素の溶解促進時間は上記所定時間以上確保すればよいことが判明した。この溶解促進時間は、気体窒素を溶解するのに充分な時間であり、イニシャルコスト、ランニングコスト等を考慮して決定することが好ましい。例えば、JIS耐圧試験にて要求される耐圧基準を7kg/cm未満とすることにより、耐圧基準を7kg/cm以上とした場合と比較して、配管、フランジ、継手等の厚さ、駆動力等をワンランク低いものとすることができコストダウンを図ることができるが、この場合、溶解促進時間を2分〜6分、好ましくは4分程度とすることにより、コストダウンを図ることができながら気体窒素を充分溶解することができた。溶解促進時間を2分より短くすると溶解が不充分であり、6分より長くすると保有水量を多くしなければならない。
【0033】
なお、この溶解促進時間を溶解バッファ槽だけで確保しようとすると、上述したように、装置の大型化および高コスト化または処理能力の低下を招くが、その溶解促進時間を溶解バッファ槽25と脱気槽28で分担させるようにすれば(例えば2分間ずつ)、上述したように、装置の小型化および低コスト化と処理能力向上を共に達成することができる。
【0034】
また、上記実施例では、溶解バッファ槽25と脱気槽28間の管路に回転翼式ポンプ27を設けて脱気槽28側を増圧させるとともに、そのポンプ27の吸入側に第2の窒素注入部26を設けることにより、そのポンプ27の回転翼による気泡攪拌と、そのポンプ27以降の循環経路にてそれぞれ窒素溶解促進を行わせるようにしている。これにより、循環水は溶解バッファ槽25の通過後、さらに多くの窒素が溶解させられて、その分、溶存酸素が低減させられる。
【0035】
循環水に注入された窒素気泡は、その溶解を促進するために、ポンプ24,27の回転翼で攪拌・細分化されるが、上記実施例では、その攪拌が加圧条件下で行われるため、回転翼の回転によるキャビテーション現象が生じにくくなっている。これにより、回転翼の回転を高速化させて、気泡の攪拌による溶解促進効果を高めることができる。
【0036】
図5は上記溶解バッファ槽25の詳細な構成例を示す。溶解バッファ槽25は縦型円筒状タンクを用いて構成され、そのタンクの底面中央に循環水の流入口25bが配設されるとともに、側面下部に流出口25dが配設されている。流入口25bは、タンク中央で底から垂直に立ち上がっている内挿管25cに通じている。流入口25bから導入された循環水は、内挿管25cの内側からタンク上部に導かれた後、その内挿管25cの外側に回り込んで流出口25dに導かれる。このような迂回経路により、循環水全体に溶解促進に必要な時間が均等に与えられるようになっている。なお、25eは圧力計の取付管、25fは自動エア抜き弁の取付管をそれぞれ示す。
【0037】
以上、本発明をその代表的な実施例に基づいて説明したが、本発明は上述した以外にも種々の態様が可能である。たとえば、第1,第2の窒素注入部23,26はそれぞれ、図2または図3のどちらの構成であってもよい。
【0038】
【発明の効果】
本発明によれば、常圧水槽内の水を循環利用する水循環利用システムにおいて、腐食防止のための窒素置換処理を比較的小型かつ低コストな構成で高効率に行うことができ、これにより、小型かつ低コストで高効率な溶存酸素低減装置が実現する。
【図面の簡単な説明】
【図1】 図1は本発明の一実施例による溶存酸素低減装置の概略構成を示す配管系統図である。
【図2】 第1の窒素注入部の要部構成例を示す断面図である。
【図3】 第2の窒素注入部の要部構成例を示す断面図である。
【図4】 図1示した循環処理系内の圧力分布状態と循環経路の関係を示す模式図である。
【図5】 溶解バッファ槽の要部における詳細な構成例を示す側面部分断面図である。
【符号の説明】
10 水槽
11 水(蓄熱媒体)
20 溶存酸素低減装置
21 水循環経路
22 水中ポンプ
23 第1の窒素注入部
23a 直管部
23b 分岐管部
23c 流量計
24 ラインポンプ
25 溶解バッファ槽
25a 自動エア抜き弁
25b 流入口
25c 内挿管
25d 流出口
25e 圧力計取付管
25f 自動エア抜き弁取付管
26 第2の窒素注入部
26a 流量計
27 自給式ポンプ
28 脱気槽
28a 自動エア抜き弁
29 一次圧力調整弁
31,32 指示流量計
33 管路
33a 自動エア抜き弁
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a dissolved oxygen reduction device used to prevent corrosion of metal pipes and equipment in a water circulation system that circulates and uses water in a normal pressure water tank, and in particular, heat storage that circulates and uses water as a heat storage medium. The present invention relates to a technology effective when applied to an air conditioning system.
[0002]
[Prior art]
Usually, oxygen in the atmosphere is dissolved in water at a constant rate according to its partial pressure. This dissolved oxygen causes corrosion of metal pipes and equipment. Therefore, in an air conditioning system or the like that circulates and uses water as a heat storage medium, for example, as disclosed in Patent Document 1, in order to prevent corrosion of the water circulation and use system, the dissolved oxygen in the circulating water is replaced with nitrogen, which is an inert gas, and reduced. Processing is performed.
[0003]
In patent document 1, in the water circulation utilization system which supplies the water in a water tank to the utilization side, and circulates to a water tank again, the circulation process which returns the water in the said water tank by carrying out a nitrogen substitution process separately from the water utilization circulation system. Set up the system. This circulation processing system is provided with a nitrogen injection part, a circulation pump, and a dissolution promoting tank.
[0004]
Water in the water tank is circulated by a pump, and nitrogen (nitrogen gas, hereinafter the same) is injected on the suction side of the pump. Circulating water into which nitrogen has been injected contains a large amount of nitrogen that cannot be dissolved in the form of bubbles. The bubble nitrogen is finely agitated by a circulation pump and then fed into a dissolution promoting tank to promote dissolution.
[0005]
The technique of Patent Document 1 is characterized by the installation of a dissolution accelerating tank. This dissolution accelerating tank has a function as a dissolution buffer tank (buffer tank). It takes time for nitrogen to dissolve in water. Therefore, dissolution of nitrogen is promoted by exposing the circulating water to a high static pressure in the tank for a long time. That is, it is used as a dissolution buffer tank. Thereby, even if it is a flat type water tank installed under the floor, for example, the dissolved oxygen of the water in the water tank can be reduced by nitrogen substitution.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-342583
[Problems to be solved by the invention]
The conventional apparatus described above has been found to cause the following problems.
That is, as described above, the nitrogen injected into the circulating water is accelerated in the dissolution promoting tank disposed in the circulation processing system, and almost no dissolution can be expected in other places. The nitrogen injected on the suction side of the circulation pump is agitated by the rotor blade of the circulation pump, but a negative pressure is generated on the suction side of the circulation pump. Even if nitrogen is stirred in this negative pressure generating portion, dissolution is not promoted there, and most of it is sent to the dissolution promotion tank in the form of bubbles.
[0008]
In order to efficiently dissolve nitrogen in the dissolution accelerating tank, it is desirable to subdivide nitrogen bubbles as much as possible by sufficiently stirring them beforehand. In order to sufficiently stir the bubbles, it is necessary to rotate the rotating blade responsible for the stirring at high speed. However, when the rotor blades are rotated at a high speed, a cavitation phenomenon occurs, and a contradiction occurs that bubbles are generated.
[0009]
Eventually, the portion where the injected nitrogen is dissolved is substantially only in the above-described dissolution promoting tank (dissolution buffer tank). Circulating water fed together with nitrogen into the dissolution accelerating tank can dissolve nitrogen by being exposed to a high static pressure in the tank for a long time. In order to secure this dissolution time, the circulating water passing through the dissolution promotion tank is exposed to the dissolution tank for a long time. In other words, the circulating water may pass through the dissolution promoting tank with sufficient time.
[0010]
However, for that purpose, it is necessary to sufficiently increase the volume of the dissolution promoting tank or reduce the flow rate of the circulating water. In the former case, the apparatus becomes large and expensive, and in the latter case, there arises a problem that the processing capacity is lowered.
[0011]
The present invention has been made in view of the above problems, and an object of the present invention is to perform a nitrogen replacement treatment for preventing corrosion in a water circulation system that circulates and uses water in an atmospheric water tank. An object of the present invention is to provide a dissolved oxygen reducing device that can be made highly efficient with a low cost configuration.
[0012]
[Means for Solving the Problems]
The means of the present invention is attached to a water circulation utilization system that circulates and uses the water in the atmospheric water tank. In order to prevent corrosion of the water circulation utilization system, the amount of dissolved oxygen in the water tank is reduced by nitrogen replacement treatment. A dissolved oxygen reduction device, which is provided with a circulation treatment system for introducing water in the water tank to a water circulation path different from the utilization system and performing nitrogen replacement treatment by injection and stirring and dissolution of gaseous nitrogen, and Among the circulation processing system, the entire circulation path including at least the location of injection and stirring of the gaseous nitrogen is placed in a pressurized state at a predetermined level or higher with respect to the inside of the water tank. A circulation processing system for performing the nitrogen replacement treatment by sequentially passing through a nitrogen injecting section, a rotary blade type bubble stirring section, a dissolution buffer tank, and a degassing tank, and the entire inside of the circulation processing system The above water Pressure holding means for placing the pressure in a predetermined pressure or higher with respect to the inside, and providing a rotary vane pump in the conduit between the dissolution buffer tank and the degassing tank to increase the pressure on the degassing tank side, By providing a second nitrogen injecting portion on the suction side of the pump, bubble stirring is performed by the rotor blade of the pump, and nitrogen dissolution is promoted in the circulation path after the pump.
[0013]
By the above means, in the water circulation utilization system that circulates and uses the water in the atmospheric water tank, the nitrogen replacement treatment for preventing corrosion can be performed with high efficiency with a relatively small and low-cost configuration.
[0014]
In addition, it has a circulation processing system for performing the nitrogen replacement treatment by sequentially passing the water in the water tank through a nitrogen injection section, a rotary blade type bubble stirring section, a dissolution buffer tank, and a degassing tank and returning it to the water tank. Since the pressure holding means for placing the entire inside of the circulation processing system in a pressurized state higher than a predetermined level with respect to the inside of the water tank is provided , it is possible to promote nitrogen dissolution in both the dissolution buffer tank and the deaeration tank.
Also, by providing a rotary blade pump in the pipeline between the dissolution buffer tank and the degassing tank to increase the pressure on the degassing tank side, and by providing a second nitrogen injection part on the suction side of the pump, Air bubbles are agitated by the rotor blades of the pump and nitrogen dissolution is promoted by a circulation path after the pump. Thereby, a nitrogen substitution process can be efficiently performed in the whole circulation path.
[0015]
A pump device that pressurizes and feeds the water in the water tank of the means to the circulation processing system and a pressure-operated valve interposed at the end of the circulation processing system, the entire inside of the circulation processing system with respect to the water tank. And put it in a pressurized state higher than the specified pressure. Thereby, it is possible to place the entire circulation processing system in a predetermined pressure state with a simple and reliable configuration.
[0016]
The bubble agitation unit can be constituted by a rotary blade pump that pumps circulating water through a conduit of a circulation processing system .
[0018]
The deaeration tank is composed of a vertical cylindrical tank. By circulating the circulating water introduced from the lower side of the tank along the inner circumference of the tank, the bubbles gathered by being centrifuged near the tank axis. Is exhausted from the top. Thereby, excess gas can be efficiently separated and removed.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a schematic configuration of a dissolved oxygen reducing apparatus according to an embodiment of the present invention. The apparatus 20 shown in the figure is used by being attached to a regenerative air conditioning system that circulates and uses the water 11 of a flat normal pressure water tank 10 installed under the floor as a heat storage medium. The dissolved oxygen reducing device 20 is configured by using a second closed water circulation path 21 independent of the air conditioning system. The water circulation path 21 includes a submersible pump 22, a first nitrogen injection unit 23, a line pump 24, a dissolution buffer tank 25, a second nitrogen injection unit 26, a self-contained pump 27, a deaeration tank 28, and a primary pressure adjustment valve. 29 and the like are sequentially connected. Thereby, the circulation processing system which substitutes nitrogen, circulating the water 11 in the water tank 10 is comprised. Indicated flow meters 31 and 32 are disposed on the discharge side of the submersible pump 22 and the inflow side of the primary pressure regulating valve 29, respectively, so that the amount of circulating water (treated water) in the circulation processing system can be monitored. Yes.
[0020]
In FIG. 1, the water 11 in the water tank 10 is pumped up and pressurized by a submersible pump 22 installed in the water tank 10, and sent to the first nitrogen injecting unit 23. As shown in FIG. 2, the first nitrogen injection part 23 is configured by using a T-joint in which a thin branch pipe part 23b is connected to a straight pipe part 23a forming a flow path of circulating water at a right angle. Nitrogen is injected under pressure from the end of the portion 23b. The branch pipe portion 23b is connected to a nitrogen generation source (not shown) via a pressure-resistant connector and a pressure-resistant tube. As the nitrogen generation source, a nitrogen generation apparatus that supplies nitrogen gas separately from the atmosphere is preferably used, but a nitrogen cylinder may be used.
[0021]
The injected nitrogen is bubbled and mixed into the circulating water. The nitrogen bubbles are pressurized and agitated by the rotary blades (rotary blades) of the line pump 24 and subdivided, and then fed into the dissolution buffer tank 25 together with the circulating water further pressurized by the pump 24. The pump 24 is of a rotary blade type (rotary blade type), and the rotary blade is originally for carrying and driving (pumping) water, but here also serves as a bubble stirring unit.
[0022]
The dissolution buffer tank 25 is configured using a vertical tank. The inside of the tank can store only circulating water in a substantially full state by an automatic air vent valve 25a provided in the upper part of the tank. The circulating water into which nitrogen has been injected is introduced into the dissolution buffer tank 25 so as to stay once, and then passes through a predetermined dissolution acceleration time.
[0023]
The circulating water that has passed through the dissolution buffer tank 25 is re-injected with nitrogen by the second nitrogen injecting section 26 and then fed into the deaeration tank 28 by the self-contained pump 27. The second nitrogen injecting section 26 is installed on the suction side of the self-contained pump 27 as shown in FIG. Nitrogen is pressurized and injected into the suction side of the pump 27 through the flow meter 26a. The injected nitrogen is bubbled and mixed into the circulating water. The nitrogen gas newly mixed here is pressurized and agitated by the rotary blades of the self-contained pump 27 and then subdivided, and then fed into the deaeration tank 28 together with the circulating water. Also in this case, the pump 27 is a rotary blade type (rotary blade type), and the rotary blade also serves as a bubble stirring unit.
[0024]
As with the buffer tank 25, the deaeration tank 28 is configured using a vertical cylindrical tank. Circulating water is introduced in the circumferential direction from below the tank. By circulating the circulating water introduced into the tank along the inner circumference of the tank, bubbles are collected by being centrifuged near the central axis of the tank. The bubbles separated here are surplus gas left by dissolution saturation, and this surplus gas is exhausted from the automatic air vent valve 28a at the upper part of the tank.
[0025]
In the tank, in order to generate the swirling flow, the circulating water is introduced so as to flow along the inner peripheral surface of the tank. Circulating water from which bubbles are separated and removed gathers near the inner peripheral surface of the tank. The degassed circulating water reaches the primary pressure regulating valve 29 through the pipe line 33 and the indicator flow meter 32.
[0026]
An automatic air vent valve 33a is installed at the top of the pipe line 33, where final air venting is performed. The primary pressure regulating valve 29 is a pressure operating valve that holds a predetermined pressure, and is also called a back pressure valve. The primary pressure regulating valve (back pressure valve) 29 allows the circulating water to pass through in a state where the pressure on the inflow side is maintained at a predetermined pressure. As a result, a predetermined pressure state is generated in the entire circulation processing system. The circulating water that has passed through the primary pressure regulating valve 29 is returned to the water tank 10.
Excess nitrogen exhausted from the air vent valves 25 a, 28 a, 33 a is led to an exhaust pipe and collected, and sent into the water tank 10.
[0027]
FIG. 4 shows a pressure distribution state in the circulation processing system described above. In the above-described circulation processing system, the entire circulation path 21 from the discharge side of the submersible pump 22 to the primary pressure adjustment valve 29 is maintained in a pressurized state of a predetermined level or more by the primary pressure adjustment valve 29. Further, the pressure in the circulation path 21 is increased stepwise by the line pump 24 and the self-contained pump 27 in the circulation direction.
[0028]
In the specific example shown in the figure, the water (heat storage medium) 11 stored in the atmospheric water tank 10 under atmospheric pressure (0.0 kg / cm 2 ) is 2.0 kg / cm 2 on the discharge side of the submersible pump 22. It is pressurized to the position. A first nitrogen injection is performed at this pressure portion. Thereafter, the circulating water is pressurized to around 4.0 kg / cm 2 by the line pump 24 and fed into the dissolution buffer tank 25. The circulating water in the dissolution buffer tank 25 gradually decreases in pressure due to the presence of bubbles and piping frictional resistance. However, after passing through the dissolution buffer tank 25, it is pressurized to about 5-6 kg / cm 2 by the self-contained pump 27 and fed into the deaeration tank 28. Some pressure gradually decreases due to piping frictional resistance between the deaeration tank 28 and the primary pressure regulating valve (back pressure valve) 29, but the primary pressure regulating valve 29 maintained a pressure (back pressure) of 5 kg / cm 2 or more. It is supposed to be. Thus, the water 11 drawn up from the water tank 10 is returned to the water tank 10 through the circulation path 21 in a state where the water 11 is kept in a pressurized state of at least 2 kg / cm 2 or more.
[0029]
As described above, the dissolved oxygen reducing device 20 of this embodiment passes the water in the water tank 10 through the nitrogen injection part, the rotary blade type bubble agitation part, the dissolution buffer tank, and the deaeration tank in order into the water tank 10. In addition to having a circulating treatment system to be returned, and equipped with pressure holding means for placing the entire inside of the circulating treatment system in a pressurized state at a predetermined level or higher with respect to the water tank 10, the dissolution of nitrogen is promoted by the dissolution buffer tank 25. It is performed not only in the inside but in almost the entire circulation processing system.
[0030]
Here, if it is attempted to accelerate dissolution only in the dissolution buffer tank 25, the time required for nitrogen dissolution must be secured only by the passage time in the dissolution buffer tank. It is necessary to sufficiently increase the tank volume or reduce the flow rate of the circulating water. In the former case, the apparatus becomes large and expensive, and in the latter case, the processing capacity decreases.
[0031]
On the other hand, in the above embodiment, since the dissolution of nitrogen is promoted almost entirely in the circulation processing system, even if the dissolution time in the dissolution buffer tank 25 is not necessarily sufficient, a sufficient dissolution time in the entire circulation processing system. Can be secured. Thereby, the process of reducing dissolved oxygen by nitrogen substitution can be performed with high efficiency by a relatively small and low-cost configuration.
[0032]
According to the knowledge of the present inventor, the dissolution of nitrogen in the circulating water approaches the saturation state after a predetermined time. Therefore, it was found that the nitrogen dissolution promotion time should be secured for the predetermined time or more. This dissolution accelerating time is a time sufficient to dissolve gaseous nitrogen, and is preferably determined in consideration of the initial cost, running cost, and the like. For example, by the breakdown voltage standards required by JIS withstand voltage test and less than 7 kg / cm 2, as compared with the case where the withstand voltage reference was 7 kg / cm 2 or more, piping, flanges, joints, etc. The thickness, the driving The power can be reduced by one rank and the cost can be reduced. In this case, the cost can be reduced by setting the dissolution promotion time to 2 to 6 minutes, preferably about 4 minutes. However, it was possible to sufficiently dissolve gaseous nitrogen. If the dissolution accelerating time is shorter than 2 minutes, the dissolution is insufficient, and if it is longer than 6 minutes, the amount of retained water must be increased.
[0033]
Note that, if it is attempted to secure this dissolution acceleration time only with the dissolution buffer tank, as described above, the apparatus is increased in size and cost, or the processing capacity is lowered. If it is made to share with the air tank 28 (for example, every 2 minutes), as above-mentioned, size reduction of an apparatus, cost reduction, and a processing capability improvement can be achieved.
[0034]
In the above embodiment, the rotary blade pump 27 is provided in the conduit between the dissolution buffer tank 25 and the deaeration tank 28 to increase the pressure on the deaeration tank 28 side, and the second side is connected to the suction side of the pump 27. By providing the nitrogen injecting section 26, the bubble agitation by the rotor blades of the pump 27 and the nitrogen dissolution promotion are performed in the circulation path after the pump 27, respectively. Thereby, after the circulating water passes through the dissolution buffer tank 25, more nitrogen is dissolved, and dissolved oxygen is reduced accordingly.
[0035]
Nitrogen bubbles injected into the circulating water are stirred and subdivided by the rotor blades of the pumps 24 and 27 in order to promote their dissolution, but in the above embodiment, the stirring is performed under pressurized conditions. The cavitation phenomenon due to the rotation of the rotor blade is less likely to occur. Thereby, rotation of a rotary blade can be sped up and the melt | dissolution promotion effect by stirring of a bubble can be heightened.
[0036]
FIG. 5 shows a detailed configuration example of the dissolution buffer tank 25. The dissolution buffer tank 25 is configured by using a vertical cylindrical tank, and an inlet 25b for circulating water is provided at the center of the bottom surface of the tank, and an outlet 25d is provided at the lower part of the side surface. The inflow port 25b communicates with an intubation tube 25c that rises vertically from the bottom at the center of the tank. The circulating water introduced from the inflow port 25b is guided to the tank upper part from the inner side of the inner intubation tube 25c, and then circulates to the outer side of the inner intubation tube 25c and is guided to the outlet port 25d. By such a detour route, the time required for dissolution promotion is uniformly given to the whole circulating water. Reference numeral 25e denotes a pressure gauge mounting pipe, and 25f denotes an automatic air vent valve mounting pipe.
[0037]
As mentioned above, although this invention was demonstrated based on the typical Example, this invention can have various aspects other than having mentioned above. For example, the first and second nitrogen injecting portions 23 and 26 may have either the configuration shown in FIG. 2 or FIG.
[0038]
【The invention's effect】
According to the present invention, in a water circulation utilization system that circulates and uses water in an atmospheric water tank, nitrogen replacement treatment for corrosion prevention can be performed with a relatively small and low cost configuration with high efficiency. A small, low-cost, high-efficiency dissolved oxygen reduction device is realized.
[Brief description of the drawings]
FIG. 1 is a piping system diagram showing a schematic configuration of a dissolved oxygen reducing apparatus according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a configuration example of a main part of a first nitrogen implantation part.
FIG. 3 is a cross-sectional view showing a configuration example of a main part of a second nitrogen implantation part.
4 is a schematic diagram showing a relationship between a pressure distribution state and a circulation path in the circulation processing system shown in FIG. 1. FIG.
FIG. 5 is a side sectional view showing a detailed configuration example of a main part of a dissolution buffer tank.
[Explanation of symbols]
10 Water tank 11 Water (heat storage medium)
20 Dissolved oxygen reduction device 21 Water circulation path 22 Submersible pump 23 First nitrogen injection part 23a Straight pipe part 23b Branch pipe part 23c Flow meter 24 Line pump 25 Dissolution buffer tank 25a Automatic air vent valve 25b Inlet 25c Inner pipe 25d Outlet 25e Pressure gauge mounting pipe 25f Automatic air vent valve mounting pipe 26 Second nitrogen injection part 26a Flow meter 27 Self-contained pump 28 Deaeration tank 28a Automatic air vent valve 29 Primary pressure regulating valve 31, 32 Indicating flow meter 33 Pipe line 33a Automatic air vent valve

Claims (4)

常圧水槽内の水を循環利用する水循環利用系に付設され、この水循環利用系の腐食防止のために、上記水槽内の水の溶存酸素量を窒素置換処理により低減させる溶存酸素低減装置であって、
上記水槽内の水を上記利用系とは別の水循環経路に導いて気体窒素の注入および攪拌と溶解による窒素置換処理を行わせる循環処理系を設置するとともに、その循環処理系のうち、少なくとも上記気体窒素の注入および攪拌の個所を含む範囲の循環経路全体を、上記水槽内に対して所定以上の加圧状態に置くようにしており、
上記水槽内の水を窒素注入部、回転翼式の気泡攪拌部、溶解バッファ槽、脱気槽に順次通して上記水槽内に戻すことにより上記窒素置換処理を行う循環処理系を有するとともに、この循環処理系内全体を上記水槽内に対して所定以上の加圧状態に置く圧力保持手段を備え、
上記溶解バッファ槽と上記脱気槽間の管路に回転翼式ポンプを設けて脱気槽側を増圧させるとともに、そのポンプの吸入側に第2の窒素注入部を設けることにより、そのポンプの回転翼による気泡攪拌と、そのポンプ以降の循環経路にて窒素溶解促進を行わせるようにしたことを特徴とする溶存酸素低減装置。
This is a dissolved oxygen reduction device attached to a water circulation system that circulates and uses the water in the atmospheric tank, and reduces the amount of dissolved oxygen in the water tank by nitrogen replacement treatment to prevent corrosion of this water circulation system. And
In addition to installing a circulation processing system for guiding the water in the water tank to a water circulation path different from the utilization system and performing nitrogen replacement treatment by injection and stirring and dissolution of gaseous nitrogen, at least the above-mentioned circulation treatment system The entire circulation path including the place of injection and stirring of gaseous nitrogen is placed in a pressurized state above a predetermined level with respect to the inside of the water tank ,
The water in the water tank has a circulation treatment system for performing the nitrogen replacement treatment by sequentially passing the water in the water tank through a nitrogen injecting section, a rotating blade type bubble stirring section, a dissolution buffer tank, and a degassing tank and returning the water into the water tank. Pressure holding means for placing the entire circulation processing system in a pressurized state above a predetermined level relative to the inside of the water tank,
A rotary blade pump is provided in a pipe line between the dissolution buffer tank and the deaeration tank to increase the pressure on the deaeration tank side, and a second nitrogen injecting portion is provided on the suction side of the pump. The dissolved oxygen reduction device is characterized in that air bubbles are stirred by the rotor blades and nitrogen dissolution is promoted in the circulation path after the pump.
請求項1において、上記水槽内の水を上記循環処理系に加圧して送り込むポンプ装置と、上記循環処理系の末端部に介在する圧力作動弁とによって、上記循環処理系内全体を上記水槽内に対して所定以上の加圧状態に置くようにしたことを特徴とする溶存酸素低減装置。2. The entire inside of the circulation processing system according to claim 1, wherein the entire inside of the circulation processing system is contained in the water tank by a pump device that pressurizes and feeds water in the water tank to the circulation processing system, and a pressure operating valve that is interposed at a terminal portion of the circulation processing system. The dissolved oxygen reducing device is characterized in that it is placed in a pressurized state at a predetermined level or higher. 請求項1または2において、上記気泡攪拌部は、循環処理系の管路にて循環水を圧送する回転翼式のポンプによって構成されていることを特徴とする溶存酸素低減装置。3. The dissolved oxygen reducing apparatus according to claim 1, wherein the bubble agitating unit is constituted by a rotary blade pump that pumps circulating water through a conduit of a circulation processing system. 請求項1〜3のいずれかにおいて、上記脱気槽は縦型円筒状タンクにより構成され、そのタンクの下側から導入した循環水をタンク内周に沿って旋回流させることにより、そのタンク軸心付近に遠心分離されて集まった気泡を上部から排気させるようにしたことを特徴とする溶存酸素低減装置。  The deaeration tank according to any one of claims 1 to 3, wherein the deaeration tank is constituted by a vertical cylindrical tank, and the tank shaft is formed by swirling the circulating water introduced from the lower side of the tank along the inner periphery of the tank. Dissolved oxygen reduction device characterized in that bubbles collected by centrifugation near the heart are exhausted from above.
JP2003202483A 2003-07-28 2003-07-28 Dissolved oxygen reduction device Expired - Fee Related JP4009566B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003202483A JP4009566B2 (en) 2003-07-28 2003-07-28 Dissolved oxygen reduction device
KR1020040046455A KR20050013489A (en) 2003-07-28 2004-06-22 Apparatus for reducing dissolved oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003202483A JP4009566B2 (en) 2003-07-28 2003-07-28 Dissolved oxygen reduction device

Publications (2)

Publication Number Publication Date
JP2005040699A JP2005040699A (en) 2005-02-17
JP4009566B2 true JP4009566B2 (en) 2007-11-14

Family

ID=34262190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003202483A Expired - Fee Related JP4009566B2 (en) 2003-07-28 2003-07-28 Dissolved oxygen reduction device

Country Status (2)

Country Link
JP (1) JP4009566B2 (en)
KR (1) KR20050013489A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850873B1 (en) 2011-03-15 2018-04-23 엠케이에스 인스트루먼츠, 인코포레이티드 System to remove dissolved gases selectively from liquids

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4820774B2 (en) * 2007-04-20 2011-11-24 山陽電子工業株式会社 Dissolved oxygen remover
JP2010017692A (en) * 2008-07-14 2010-01-28 Panasonic Electric Works Co Ltd Portable bubble generator
KR100906092B1 (en) * 2009-05-08 2009-07-06 (주)엔탑스 Apparatus of ozone water treatment applied with method for preventing corrosion
JP5709095B2 (en) * 2009-05-25 2015-04-30 イマテック株式会社 Method for removing dissolved oxygen in liquid and apparatus for removing dissolved oxygen in liquid
CN115178118B (en) * 2022-06-30 2024-06-07 中科生命(福建)科技发展有限公司 Control method and device for high-oxygen low-deuterium water centralized water supply device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737702Y2 (en) * 1989-02-22 1995-08-30 鶴雄 中河 Micro bubble generator
JPH0556203U (en) * 1992-01-09 1993-07-27 石川島播磨重工業株式会社 Air bubble removal device in fluid
JPH0648825U (en) * 1992-06-01 1994-07-05 昇 阪野 Low-pressure decomposable gas absorption method
JP2766604B2 (en) * 1993-07-30 1998-06-18 三菱石油株式会社 Bubble separation device
JP3555787B2 (en) * 1995-06-23 2004-08-18 株式会社アイ・エイチ・アイ・エアロスペース Gas-liquid separation device
JP3800489B2 (en) * 2000-06-01 2006-07-26 清水建設株式会社 Corrosion prevention device for water circulation system
JP2003053168A (en) * 2001-08-21 2003-02-25 Yokogawa Electric Corp Gas dissolving equipment and oxygen dissolving system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101850873B1 (en) 2011-03-15 2018-04-23 엠케이에스 인스트루먼츠, 인코포레이티드 System to remove dissolved gases selectively from liquids

Also Published As

Publication number Publication date
KR20050013489A (en) 2005-02-04
JP2005040699A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4009566B2 (en) Dissolved oxygen reduction device
JP2009279529A (en) Agitation apparatus
JP4714597B2 (en) Deaerator
JP4059346B2 (en) Water purification system and water flow generating stirring mixer
ES2524728T3 (en) Wastewater treatment system
KR20120045571A (en) System to decrease residual ozone gas and to increase dissolved ozone in the water
CN102458976B (en) Tank arrangement adapted for submersible pump
JPH05126085A (en) Sand pump with double wing vacuum pump and vacuum pump unit
JP2005186051A (en) Water cleaning system
CN212003693U (en) Centrifugal pump degassing unit and paper pulp conveying system
JP3081983B2 (en) Fine bubble generator
JP2004000897A (en) Apparatus for generating minute bubble
JP3645423B2 (en) Underwater stirring and aeration equipment
CN211202332U (en) Central non-stop full-adjustment core-pulling type mixed-flow pump
CN209178077U (en) It can be used for the submersible aerator of MBBR floating stuffing
JPH075844Y2 (en) Sealed water cooling system for deoxidizer
SU1165443A1 (en) Apparatus for aeration of liquid
JPS61120697A (en) Method for preventing spoilage and performing deodorizing in drain tank or storage tank for building
JP3124447U (en) Axial flow pump for water treatment
JP3842743B2 (en) Aerobic treatment tank
JPH06269793A (en) Aeration treatment method for sewage and device therefor
JPS60156994A (en) Pump device
CN111589321A (en) Mixing device
JP2000227085A (en) Liquefied gas depositing device
JP2811539B2 (en) Air retention prevention device for sewage aeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140907

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees