JP4714597B2 - Deaerator - Google Patents

Deaerator Download PDF

Info

Publication number
JP4714597B2
JP4714597B2 JP2006038437A JP2006038437A JP4714597B2 JP 4714597 B2 JP4714597 B2 JP 4714597B2 JP 2006038437 A JP2006038437 A JP 2006038437A JP 2006038437 A JP2006038437 A JP 2006038437A JP 4714597 B2 JP4714597 B2 JP 4714597B2
Authority
JP
Japan
Prior art keywords
water
reaction tank
nitrogen
tank
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006038437A
Other languages
Japanese (ja)
Other versions
JP2007216122A (en
Inventor
和成 北隅
裕之 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E'S Inc
Original Assignee
E'S Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E'S Inc filed Critical E'S Inc
Priority to JP2006038437A priority Critical patent/JP4714597B2/en
Publication of JP2007216122A publication Critical patent/JP2007216122A/en
Application granted granted Critical
Publication of JP4714597B2 publication Critical patent/JP4714597B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、脱気装置に関し、特に、水を循環利用する水循環系に付設され、水循環系統を循環する循環水に溶存する酸素を脱気させるための脱気装置に関する。   The present invention relates to a deaeration device, and more particularly to a deaeration device attached to a water circulation system that circulates and uses water to degas oxygen dissolved in circulating water that circulates in a water circulation system.

一般に、水には大気中の酸素がその分圧に応じた一定率で溶存しており、この溶存酸素は、金属配管や機器等を腐食させる原因となる。そのため、蓄熱媒体として水を循環利用する空調システム等の水循環系に脱気装置を付設し、この脱気装置に水循環系を循環する循環水を通すことにより、循環水の溶存酸素を不活性ガスである窒素に置き換え、循環水の溶存酸素を低減させている。   Generally, oxygen in the atmosphere is dissolved in water at a constant rate according to the partial pressure, and this dissolved oxygen causes corrosion of metal pipes and equipment. Therefore, a degassing device is attached to a water circulation system such as an air conditioning system that circulates and uses water as a heat storage medium, and the circulating oxygen circulating through the water circulation system is passed through this degassing device, thereby dissolving dissolved oxygen in the circulating water as an inert gas. This is replaced with nitrogen, which reduces the dissolved oxygen in the circulating water.

例えば、特許文献1では、水槽内に貯留させた水を循環利用する水循環系において、水循環系とは別に水槽内の水を窒素置換処理して戻す循環処理系を設置している。この循環処理系には、窒素注入部、循環ポンプ、及び溶解促進タンクが設けられている。   For example, in Patent Document 1, in a water circulation system that circulates and uses water stored in a water tank, a circulation processing system that returns nitrogen in the water tank by nitrogen replacement is installed separately from the water circulation system. This circulation processing system is provided with a nitrogen injection part, a circulation pump, and a dissolution promoting tank.

このような装置では、水槽内の水は循環ポンプで循環させられるとともに、循環ポンプの吸入側で窒素が注入される。窒素が注入された循環水には、溶解しきれない窒素が気泡の形で多く含まれる。この気泡状窒素は、循環ポンプで細かく攪拌された後に、溶解促進タンクへ送り込まれて溶解が促進される。   In such an apparatus, water in the water tank is circulated by a circulation pump and nitrogen is injected on the suction side of the circulation pump. Circulating water into which nitrogen has been injected contains a large amount of nitrogen that cannot be dissolved in the form of bubbles. The bubble nitrogen is finely agitated by a circulation pump and then fed into a dissolution promoting tank to promote dissolution.

この溶解促進タンクは、溶解バッファ槽(バッファタンク)としての機能を有している。窒素が水に溶解するには時間を要する。そのため、循環水をタンク内の高静圧下に長時間曝することにより窒素の溶解を促進させている。つまり、溶解バッファタンクとして使用することにより、例えば、床下に設置される平型の水槽であっても、その水槽内の水の溶存酸素を窒素置換により低減させることができる。   This dissolution accelerating tank has a function as a dissolution buffer tank (buffer tank). It takes time for nitrogen to dissolve in water. Therefore, dissolution of nitrogen is promoted by exposing the circulating water to a high static pressure in the tank for a long time. That is, by using it as a dissolution buffer tank, for example, even in a flat water tank installed under the floor, dissolved oxygen in the water tank can be reduced by nitrogen replacement.

また、特許文献2では、水槽内の水を利用系とは別の水循環経路に導いて気体窒素の注入及び攪拌と溶解による窒素置換処理を行わせる循環処理系を設置するとともに、その循環処理系のうち、少なくとも上記気体窒素の注入及び攪拌の箇所を含む範囲の循環経路全体を、上記水槽に対して所定以上の加圧状態におくように構成している。
特開2001−342583号公報 特開2005−40699号公報
Moreover, in patent document 2, while installing the circulation processing system which guides the water in a water tank to the water circulation path different from a utilization system, and performs the nitrogen substitution process by injection | pouring of gaseous nitrogen, stirring, and melt | dissolution, the circulation processing system Among them, the entire circulation path in a range including at least the location of the gaseous nitrogen injection and stirring is configured to be in a pressurized state at a predetermined level or higher with respect to the water tank.
JP 2001-342583 A JP 2005-40699 A

ところで、上記のような従来の装置のうち、特許文献1に記載の装置は、以下のような問題を有している。
すなわち、循環水に注入された窒素の溶解が促進されるのは、循環処理系内に配置した溶解促進タンク内であって、それ以外のところでの溶解はほとんど期待できない。また、循環ポンプの吸入側で注入した窒素は、その循環ポンプの回転翼で攪拌されるが、その循環ポンプの吸入側には負圧が生じる。この負圧発生部分で窒素を攪拌しても、そこで溶解が促進されることはなく、ほとんどが気泡のまま溶解促進タンクへ送り込まれる。
By the way, among the conventional devices as described above, the device described in Patent Document 1 has the following problems.
In other words, the dissolution of nitrogen injected into the circulating water is promoted in the dissolution promoting tank disposed in the circulation processing system, and almost no dissolution can be expected in other places. The nitrogen injected on the suction side of the circulation pump is agitated by the rotor blade of the circulation pump, but a negative pressure is generated on the suction side of the circulation pump. Even if nitrogen is stirred in this negative pressure generating portion, dissolution is not promoted there, and most of it is sent to the dissolution promotion tank as bubbles.

溶解促進タンクで窒素を効率良く溶解させるためには、窒素の気泡を予め十分に攪拌してできるだけ細分化することが望ましい。その気泡の攪拌を十分に行わせるためには、その攪拌を担う回転翼を高速で回転させる必要がある。しかし、その回転翼を高速させると、キャビティーション現象が生じて逆に気泡が発生してしまい、ポンプの寿命が大幅に低下してしまう。   In order to dissolve nitrogen efficiently in the dissolution accelerating tank, it is desirable to subdivide nitrogen bubbles as much as possible by sufficiently stirring them in advance. In order to sufficiently stir the bubbles, it is necessary to rotate the rotating blade responsible for the stirring at high speed. However, if the speed of the rotor blades is increased, a cavitation phenomenon occurs, and bubbles are generated on the contrary, and the life of the pump is greatly reduced.

結局、注入した窒素の溶解が行われる箇所は、実質的に上述した溶解促進タンク(溶解バッファ槽)内だけとなる。溶解促進タンク内に窒素と共に送り込まれた循環水は、そのタンク内の高静圧下に長時間曝されることにより、窒素を溶解させることができる。この溶解時間を確保するためには、溶解促進タンクを通過する循環水が、その溶解タンク内に長時間曝されるようにする。つまり、循環水が溶解促進タンク内を十分な時間をかけて通過するようにすればよい。   Eventually, the portion where the injected nitrogen is dissolved is substantially only in the above-described dissolution promotion tank (dissolution buffer tank). Circulating water fed together with nitrogen into the dissolution accelerating tank can dissolve nitrogen by being exposed to a high static pressure in the tank for a long time. In order to secure this dissolution time, the circulating water passing through the dissolution promotion tank is exposed to the dissolution tank for a long time. In other words, the circulating water may pass through the dissolution promoting tank with sufficient time.

しかし、そのためには、溶解促進タンクの容積を十分に大きくするか、あるいは循環水の流量を少なくする必要が生じる。前者の場合は、装置が大型かつ高コスト化し、後者の場合は処理能力が低下するという問題が生じる。   However, for that purpose, it is necessary to sufficiently increase the volume of the dissolution promoting tank or reduce the flow rate of the circulating water. In the former case, there is a problem that the apparatus becomes large and expensive, and in the latter case, the processing capacity is lowered.

一方、特許文献2に記載の装置は、特許文献1に記載の装置のような問題が生じるようなことはなく、窒素置換による溶存酸素低減処理を比較的小型で、かつ低コストな装置で効率よく行うことができる。   On the other hand, the apparatus described in Patent Document 2 does not cause a problem like the apparatus described in Patent Document 1, and the dissolved oxygen reduction treatment by nitrogen replacement is relatively small and efficient with a low-cost apparatus. Can be done well.

しかし、ポンプでキャビティーションが発生することを防止するためには、ポンプの一次側での窒素の供給量に限度があるため、効率良く脱気し、かつ余剰に供給された窒素を排出させる(配管系への気体の混入防止)ために、溶解槽、脱気槽の2つの槽を設ける必要があり、それらの設置に大きなスペースが必要になる。   However, in order to prevent the generation of cavitation in the pump, there is a limit to the amount of nitrogen supplied on the primary side of the pump, so that deaeration is efficiently performed and excess supplied nitrogen is discharged. In order to prevent gas from being mixed into the piping system, it is necessary to provide two tanks, a dissolution tank and a deaeration tank, and a large space is required for installing them.

また、溶解槽は0.35MPa、脱気槽は0.53MPa程度の圧力で使用されるため、溶解槽及び脱気槽を製作する際に第2種圧力容器の認定が必要になり、申請、検定等に時間と費用がかかり、装置全体としての製作に時間がかかるとともに、製作費が高くついてしまう。   In addition, since the dissolution tank is used at a pressure of about 0.35 MPa and the degassing tank at a pressure of about 0.53 MPa, it is necessary to certify the second type pressure vessel when manufacturing the dissolution tank and the deaeration tank. It takes time and money to certify, etc., and it takes time to produce the entire device, and the production cost is high.

本発明は、上記のような従来の問題に鑑みなされたものであって、水を循環利用する水循環系において、循環水に溶存している酸素を容易にかつ短時間で効率良く脱気させることができるとともに、全体を小型化、低コスト化することができ、さらに設置スペースを小さくすることができ、さらに、装置全体を短時間で、かつ低コストで製作することができる脱気装置を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and in a water circulation system that circulates and uses water, oxygen dissolved in circulating water can be easily and efficiently degassed in a short time. It is possible to reduce the overall size and cost, further reduce the installation space, and provide a deaeration device that can be manufactured in a short time and at a low cost. The purpose is to do.

本発明は、上記のような課題を解決するために、以下のような手段を採用している。
すなわち、請求項1に係る発明は、水を循環利用する水循環系に付設され、該水循環系を循環する循環水に溶存する酸素を脱気させるための脱気装置であって、内部に循環水が所定量貯留されるとともに、該循環水の上部に所定容積の空間が形成される一つの反応槽と、該反応槽の上部に接続されるとともに、前記水循環系から排出される循環水を該反応槽の上部空間に導く還水系統と、該還水系統の途中に接続されるとともに、該還水系統を流通する循環水内に窒素を加圧注入する窒素注入系統と、前記反応槽の上部に接続されるとともに、前記反応槽の上部空間内を真空引きして所定の負圧環境に維持する負圧環境維持系統と、前記反応槽から排出される循環水を前記水循環系統に導く返水系統とを備えており、前記還水系統は、前記水循環系から排出される循環水を前記反応槽に圧送する送水ポンプと、送水ポンプの二次側に設けられる定流量弁とを備え、前記送水ポンプの一次側及び前記定流量弁の二次側に前記窒素注入系統により窒素を加圧注入するように構成したことを特徴とする。
The present invention employs the following means in order to solve the above problems.
That is, the invention according to claim 1 is a deaeration device attached to a water circulation system that circulates and uses water to degas oxygen dissolved in the circulation water that circulates through the water circulation system. Is stored in a predetermined amount, a reaction tank in which a space of a predetermined volume is formed above the circulating water, and the circulating water connected to the upper part of the reaction tank and discharged from the water circulation system is A return water system that leads to the upper space of the reaction tank, a nitrogen injection system that is connected in the middle of the return water system and injects nitrogen into the circulating water that circulates through the return water system, and the reaction tank A negative pressure environment maintenance system that is connected to the upper part and evacuates the upper space of the reaction tank to maintain a predetermined negative pressure environment, and returns the circulating water discharged from the reaction tank to the water circulation system. and a water system, the Kaemizu lines, the water A water pump for pumping circulating water discharged from the ring system to the reaction tank; and a constant flow valve provided on the secondary side of the water pump, the primary side of the water pump and the secondary side of the constant flow valve Further, nitrogen is pressurized and injected by the nitrogen injection system.

本発明による脱気装置によれば、水循環系から排出される循環水は、還水系統によって反応槽の上部空間内に導かれ、この際に、還水系統の途中に接続されている窒素注入系統によって循環水に窒素が加圧注入され、循環水に窒素が泡状になって混入し、この状態で反応槽の上部空間内に供給される。
この場合、反応槽の上部空間内は、負圧環境維持系統により真空引きされて、所定の負圧環境に維持されているので、この負圧環境の空間内に循環水を供給することにより、循環水に混入している窒素及び酸素が空間内に噴出する。そして、空間内に噴出した窒素及び酸素は、負圧環境維持系統によって真空引きされて反応槽の外部に排出され、窒素及び酸素が分離された循環水が反応槽内に貯留される。そして、反応槽内に貯留された循環水は、返水系統によって水循環系に供給され、水循環系を循環した後に、再び還水系統によって反応槽内に供給される。
このようなことが連続して行われることにより、水循環系を循環する循環水から次第に酸素が脱気されることになる。
According to the deaeration device according to the present invention, the circulating water discharged from the water circulation system is led into the upper space of the reaction tank by the return water system, and at this time, the nitrogen injection connected in the middle of the return water system Nitrogen is pressurized and injected into the circulating water by the system, and nitrogen is bubbled into the circulating water and is supplied into the upper space of the reaction tank in this state.
In this case, the upper space of the reaction tank is evacuated by the negative pressure environment maintenance system and is maintained in a predetermined negative pressure environment, so by supplying circulating water into the space of this negative pressure environment, Nitrogen and oxygen mixed in the circulating water are ejected into the space. The nitrogen and oxygen spouted into the space are evacuated by the negative pressure environment maintenance system and discharged to the outside of the reaction tank, and the circulating water from which nitrogen and oxygen have been separated is stored in the reaction tank. Then, the circulating water stored in the reaction tank is supplied to the water circulation system by the water return system, circulated through the water circulation system, and then supplied again to the reaction tank by the return water system.
By continuously performing such a process, oxygen is gradually degassed from the circulating water circulating in the water circulation system.

また、還水系統の送水ポンプの一次側及び二次側に窒素注入系統により窒素が加圧注入され、還水系統を流通する循環水に窒素が泡状になって混入し、この状態で反応槽の上部空間内に供給される。
この場合、送水ポンプの一次側での窒素の注入量を少なくし、二次側での窒素の注入量を多くすることにより、送水ポンプにキャビティーションが生じるのを防止できる。
また、定流量弁の一時側には送水ポンプの圧力が作用し、二次側には反応槽の上部空間の負圧が作用しているので、定流量弁の一次側と二次側との差圧を大きくとることができ、この差圧によって定流量弁を循環水が通過した際に、循環水から窒素及び酸素が勢いよく噴出し、この噴出した窒素及び酸素と定流量弁の二次側で供給される窒素とが一緒になって反応槽の上部空間内に供給され、これらの気体が負圧環境維持系統による真空引きによって上部空間から排出され、上部空間内が次第に負圧環境の窒素雰囲気に形成され、反応槽内に貯留される循環水から次第に酸素が脱気される。
In addition, nitrogen is pressurized and injected into the primary side and secondary side of the water supply pump of the return water system by the nitrogen injection system, and nitrogen is bubbled into the circulating water flowing through the return water system. It is supplied into the upper space of the tank.
In this case, cavitation can be prevented from occurring in the water pump by reducing the amount of nitrogen injected on the primary side of the water pump and increasing the amount of nitrogen injected on the secondary side.
Moreover, since the pressure of the water pump acts on the temporary side of the constant flow valve and the negative pressure in the upper space of the reaction tank acts on the secondary side, the primary and secondary sides of the constant flow valve When the circulating water passes through the constant flow valve by this differential pressure, nitrogen and oxygen are ejected vigorously from the circulating water, and the secondary nitrogen and oxygen and the secondary flow of the constant flow valve are ejected. Together with the nitrogen supplied on the side, it is supplied into the upper space of the reaction tank, these gases are exhausted from the upper space by evacuation by the negative pressure environment maintenance system, and the upper space gradually becomes a negative pressure environment. Oxygen is gradually degassed from the circulating water formed in the nitrogen atmosphere and stored in the reaction vessel.

請求項2に係る発明は、請求項1に記載の脱気装置であって、前記負圧環境維持系統は、前記反応槽の上部に真空引き配管を介して接続される真空ポンプと、前記真空引き配管の途中に分岐配管を介して接続される真空破壊弁と、真空ポンプを循環する水を貯留させる水槽とを備えていることを特徴とする。 The invention according to claim 2 is the deaeration device according to claim 1 , wherein the negative pressure environment maintenance system includes a vacuum pump connected to an upper part of the reaction tank via a vacuum drawing pipe, and the vacuum A vacuum breaker valve connected via a branch pipe in the middle of the pulling pipe and a water tank for storing water circulating through the vacuum pump are provided.

本発明による脱気装置によれば、真空ポンプの作動により反応槽の上部空間内を真空引きすることにより、反応槽の上部空間内から酸素及び窒素が吸引されて外部に排出され、上部空間内の真空度が次第に高められていく。
そして、上部空間内の真空度が高められて真空ポンプの能力を超えようとする場合には、真空破壊弁が作動して外部から空気が取り込まれ、真空ポンプが破壊されるのが防止される。この場合、外部から取り込まれる空気は、分岐配管から真空引き配管に取り込まれ、真空引き配管から真空ポンプに取り込まれることになるので、外部からの空気が反応槽の上部空間内に流入するようなことはなく、還水系統によって反応槽内に供給される循環水に真空破壊弁からの空気が接触するのを避けることができ、反応槽内に貯留されている循環水に空気が溶解するのを防止できる。
According to the degassing apparatus of the present invention, by evacuating the upper space of the reaction tank by operating the vacuum pump, oxygen and nitrogen are sucked from the upper space of the reaction tank and discharged to the outside. The degree of vacuum gradually increases.
Then, when the degree of vacuum in the upper space is increased to exceed the capacity of the vacuum pump, the vacuum breaker valve is activated to prevent air from being taken in from the outside and the vacuum pump from being destroyed. . In this case, air taken in from the outside is taken from the branch pipe into the vacuum drawing pipe and from the vacuum drawing pipe into the vacuum pump, so that the air from the outside flows into the upper space of the reaction tank. The air from the vacuum breaker valve can be prevented from coming into contact with the circulating water supplied into the reaction tank by the return water system, and the air dissolves in the circulating water stored in the reaction tank. Can be prevented.

請求項3に係る発明は、請求項2に記載の脱気装置であって、前記負圧環境維持系統には、前記水槽内に設けられる冷却コイルと、前記水槽外に設けられる冷却ユニットと、前記冷却コイルと前記冷却コイルとの間を循環する冷媒とを備えた冷却装置が設けられていることを特徴とする。 The invention according to claim 3 is the deaeration device according to claim 2 , wherein the negative pressure environment maintenance system includes a cooling coil provided in the water tank, a cooling unit provided outside the water tank, A cooling device comprising a cooling coil and a refrigerant circulating between the cooling coils is provided.

本発明による脱気装置によれば、冷却装置の作動により、冷却コイルと冷却ユニットとの間で冷媒が循環し、水槽内の水が冷却されることになるので、真空ポンプの温度上昇による能力の低下を防止でき、真空ポンプによって反応槽の上部空間内を所定の負圧環境に維持することができる。   According to the deaeration device of the present invention, the refrigerant circulates between the cooling coil and the cooling unit and the water in the water tank is cooled by the operation of the cooling device. Can be prevented, and the upper space of the reaction vessel can be maintained in a predetermined negative pressure environment by a vacuum pump.

請求項4に係る発明は、請求項1から3の何れかに記載の脱気装置であって、前記還水系統の定流量弁には、バイパス配管が並設されるとともに、該バイパス配管の途中には該バイパス配管を開閉させるバイパス電磁弁が設けられ、該バイパス電磁弁の開閉動作を、前記反応槽内の水位を検知する検知手段からの信号によって制御するように構成したことを特徴とする。 The invention according to claim 4 is the deaeration device according to any one of claims 1 to 3 , wherein a bypass pipe is juxtaposed to the constant flow valve of the return water system, and the bypass pipe A bypass solenoid valve for opening and closing the bypass pipe is provided in the middle, and the opening and closing operation of the bypass solenoid valve is configured to be controlled by a signal from a detection means for detecting the water level in the reaction tank. To do.

本発明による脱気装置によれば、反応槽内に貯留される循環水の水位は検知手段によって検知され、この検知手段から検知信号によってバイパス電磁弁の開閉動作が制御され、バイパス電磁弁を介してバイパス配管が開閉され、反応槽内の水位が所定の範囲内に保たれる。従って、反応槽内に、常時、所定容積の空間を確保することができるので、所定の負圧環境の窒素雰囲気を維持することができ、所定の脱気性能を維持することができる。   According to the deaeration device of the present invention, the level of the circulating water stored in the reaction tank is detected by the detection means, and the opening / closing operation of the bypass solenoid valve is controlled by the detection signal from the detection means, Thus, the bypass pipe is opened and closed, and the water level in the reaction vessel is kept within a predetermined range. Therefore, since a space of a predetermined volume can be always secured in the reaction tank, a nitrogen atmosphere in a predetermined negative pressure environment can be maintained, and a predetermined deaeration performance can be maintained.

請求項5に係る発明は、請求項4に記載の脱気装置であって、前記検知手段は、少なくとも、前記反応槽内の制御許容水位の上限を検出する第1電極棒と、下限を検出する第2電極棒と、コモン用の第3電極棒とを有し、第1電極棒及び第2電極棒からの検知信号により、前記バイパス電磁弁の開閉動作が制御されることを特徴とする。 The invention according to claim 5 is the deaeration device according to claim 4 , wherein the detection means detects at least a first electrode rod that detects an upper limit of a control allowable water level in the reaction tank, and a lower limit. And a third electrode rod for common use, and the opening / closing operation of the bypass solenoid valve is controlled by a detection signal from the first electrode rod and the second electrode rod. .

本発明による脱気装置によれば、反応槽内に貯留される循環水の許容水位は、検知手段の第1電極棒によって上限が検知されるとともに、第2電極棒によって下限が検知され、この第1電極棒及び第2電極棒から検知信号によってバイパス電磁弁の開閉動作が制御され、バイパス回路を介して反応槽内に循環水が補給され、又は循環水の補給が停止され、反応槽内の循環水の水位が所定の範囲内に維持されることになる。   According to the deaeration device of the present invention, the upper limit of the allowable water level of the circulating water stored in the reaction tank is detected by the first electrode rod of the detection means, and the lower limit is detected by the second electrode rod. The opening / closing operation of the bypass solenoid valve is controlled by the detection signal from the first electrode rod and the second electrode rod, and the circulating water is replenished into the reaction tank through the bypass circuit, or the replenishment of the circulating water is stopped, and the reaction tank Therefore, the level of the circulating water is maintained within a predetermined range.

以上、説明したように、本発明の脱気装置によれば、一つの反応槽内の空間内を負圧環境維持系統によって所定の負圧環境に維持し、還水系統と窒素注入系統との協働により、反応槽の空間内に循環水内に混入している窒素及び酸素を噴出させて、それらの気体を負圧環境維持系統によって真空引きすることにより外部に排出させることにより、循環水から酸素を次第に脱気させることができ、殆ど酸素が含まれていない循環水を反応槽内に貯留させることができるので、循環水から酸素を脱気させるのに容積の大きな反応槽が不要になるとともに、循環水からの酸素の脱気を容易に短時間で効率よく行うことができる。
また、装置全体を小型化、低コスト化することができるとともに、設置スペースを小さくすることができる。さらに、反応槽の耐圧性を第2種圧力容器の基準に合わせる必要がないので、装置全体を短時間でかつ低コストで製作することができる。
As described above, according to the degassing apparatus of the present invention, the space in one reaction tank is maintained in a predetermined negative pressure environment by the negative pressure environment maintenance system, and the return water system and the nitrogen injection system are By cooperation, nitrogen and oxygen mixed in the circulating water are spouted into the space of the reaction tank, and these gases are evacuated by a negative pressure environment maintenance system to be discharged to the outside. Oxygen can be gradually degassed from the water, and circulating water containing almost no oxygen can be stored in the reaction tank, so that a large reaction tank is not required to degas oxygen from the circulating water. In addition, oxygen can be degassed from the circulating water easily and efficiently.
Further, the entire apparatus can be reduced in size and cost, and the installation space can be reduced. Furthermore, since it is not necessary to match the pressure resistance of the reaction tank to the standard of the second type pressure vessel, the entire apparatus can be manufactured in a short time and at a low cost.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1〜図5には、本発明による脱気装置の一実施の形態が示されていて、図1は全体の概略構成図、図2は還水系統及び窒素注入系統の概略構成図、図3は負圧環境維持系統の概略構成図、図4は図3の真空破壊弁の拡大図、図5は真空ポンプの冷却装置の概略構成図、図6は水位調整系統の概略構成図、図7は図6の水位検知部の説明図である
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show an embodiment of a deaeration device according to the present invention. FIG. 1 is an overall schematic diagram, FIG. 2 is a schematic diagram of a return water system and a nitrogen injection system, and FIG. 3 is a schematic configuration diagram of a negative pressure environment maintenance system, FIG. 4 is an enlarged view of the vacuum breaker valve of FIG. 3, FIG. 5 is a schematic configuration diagram of a cooling device of a vacuum pump, FIG. 6 is a schematic configuration diagram of a water level adjustment system, 7 is an explanatory diagram of the water level detection unit of FIG.

すなわち、この脱気装置1は、蓄熱媒体として水を循環利用する蓄熱式空調システム等の水循環系80に適用され、水循環系80を循環する水(以下、「循環水6」という。)に溶存する酸素を脱気させるためのものであって、一端が水循環系80の循環水6の流出口81に接続され、他端が水循環系80の循環水6の流入口82に接続される閉路を形成し、この閉路内に、1つの反応槽2と、還水系統10と、返水系統60と、窒素注入系統20と、負圧環境維持系統30と、水位調整系統70とを設けて構成したものである。   That is, this deaeration device 1 is applied to a water circulation system 80 such as a heat storage type air conditioning system that circulates and uses water as a heat storage medium, and is dissolved in water circulating through the water circulation system 80 (hereinafter referred to as “circulation water 6”). A closed circuit in which one end is connected to the outlet 81 of the circulating water 6 in the water circulation system 80 and the other end is connected to the inlet 82 of the circulating water 6 in the water circulation system 80. In this closed circuit, one reaction tank 2, a return water system 10, a return water system 60, a nitrogen injection system 20, a negative pressure environment maintenance system 30, and a water level adjustment system 70 are provided. It is a thing.

反応槽2は、図1に示すように、上下端が開口する筒状の中胴部3と、中胴部3の上端開口部に接続される上端が閉塞された筒状の上胴部4と、中胴部3の下端開口部に接続される下端が閉塞された筒状の下胴部5とからなる密閉された縦型タンクであって、この反応槽2の内部で循環水6に溶存している酸素が脱気される。   As shown in FIG. 1, the reaction tank 2 includes a cylindrical middle body portion 3 whose upper and lower ends are open, and a cylindrical upper body portion 4 whose upper end connected to the upper end opening portion of the middle body portion 3 is closed. And a sealed vertical tank consisting of a cylindrical lower body part 5 closed at the lower end connected to the lower end opening part of the middle body part 3, and circulated into the circulating water 6 inside the reaction tank 2. Dissolved oxygen is degassed.

反応槽2の上胴部4の閉塞されている上端部には後述する環水系統10及び負圧環境維持系統30が接続され、中胴部3の側部には後述する返水系統60が接続され、上胴部4の側部と下胴部5の側部との間には後述する水位調整系統70が接続され、還水系統10と返水系統60と水位調整系統70との協働により、反応槽2の内部に所定量の循環水6が貯留され、循環水6の上部に所定容積の空間7が形成される。   An annular water system 10 and a negative pressure environment maintenance system 30 which will be described later are connected to the closed upper end portion of the upper body part 4 of the reaction tank 2, and a water return system 60 which will be described later will be connected to the side of the middle body part 3. A water level adjustment system 70, which will be described later, is connected between the side of the upper body 4 and the side of the lower body 5, and cooperation between the return water system 10, the return water system 60, and the water level adjustment system 70 is established. As a result, a predetermined amount of circulating water 6 is stored in the reaction tank 2, and a space 7 having a predetermined volume is formed above the circulating water 6.

反応槽2の上部の空間7は、後述する負圧環境維持系統30によって真空度が−7〜−8mAq程度の負圧環境に設定され、この負圧環境の空間7内に後述する窒素注入系統20により窒素が充填され、この負圧環境の窒素雰囲気内で循環水6に溶存している酸素が脱気される。   The space 7 in the upper part of the reaction tank 2 is set to a negative pressure environment with a vacuum degree of about −7 to −8 mAq by a negative pressure environment maintenance system 30 described later, and a nitrogen injection system described later in the space 7 of this negative pressure environment. 20 is filled with nitrogen, and oxygen dissolved in the circulating water 6 is degassed in the nitrogen atmosphere of this negative pressure environment.

反応槽2は、上部の空間7の真空度が−7〜−8mAq程度に設定されるので、第2種圧力容器のように圧力容器としての認定を受ける必要はなく、認定を受けるための申請、検定等が不要である。従って、反応槽2を第2種圧力容器で構成した場合に比べて、反応槽2の製作に要する時間を大幅に短縮できるとともに、製作費を安く抑えることができ、装置全体としての製作に要する時間を短縮することができ、装置の製作費を安く抑えることができる。   In the reaction tank 2, the vacuum degree of the upper space 7 is set to about -7 to -8 mAq. Therefore, it is not necessary to obtain certification as a pressure vessel like the second type pressure vessel, and an application for obtaining certification. No examination is required. Therefore, as compared with the case where the reaction tank 2 is composed of the second type pressure vessel, the time required for the production of the reaction tank 2 can be greatly shortened, and the production cost can be reduced, which is required for the production of the entire apparatus. The time can be shortened and the production cost of the apparatus can be reduced.

環水系統10は、図1及び図2に示すように、水循環系80から排出される循環水6を反応槽2に導くためのものであって、一端が水循環系80の循環水6の流出口81に接続され、他端が反応槽2の上胴部4の上端中央部に接続される還水配管11と、還水配管11の途中に設けられて、水循環系80から排出される循環水6を反応槽2に圧送する送水ポンプ12と、送水ポンプ12のサクション側(一次側)に設けられる開閉弁13、流量計14、及び開閉弁15と、送水ポンプ12のデリバリ側(二次側)に設けられる逆止弁16、定流量弁17、及び開閉弁18とを備えている。   As shown in FIGS. 1 and 2, the circulating water system 10 is for guiding the circulating water 6 discharged from the water circulation system 80 to the reaction tank 2, one end of which is the flow of the circulating water 6 in the water circulation system 80. A return water pipe 11 connected to the outlet 81 and having the other end connected to the center of the upper end of the upper body 4 of the reaction tank 2 and a circulation provided in the middle of the return water pipe 11 and discharged from the water circulation system 80 A water pump 12 that pumps water 6 to the reaction tank 2, an on-off valve 13, a flow meter 14, an on-off valve 15 provided on the suction side (primary side) of the water pump 12, and a delivery side (secondary side of the water pump 12 A check valve 16, a constant flow valve 17, and an on-off valve 18.

還水系統10の送水ポンプ12の作動により、水循環系80の流出口81から還水配管11内に循環水6が排出され、還水配管11内を流通して開閉弁13、流量計14、開閉弁15、送水ポンプ12、逆止弁16、流量調整用手動弁84、定流量弁17、及び開閉弁18を介して反応槽2の上部の空間7に供給される。   By the operation of the water supply pump 12 of the return water system 10, the circulating water 6 is discharged from the outlet 81 of the water circulation system 80 into the return water pipe 11 and circulates in the return water pipe 11, and the on-off valve 13, the flow meter 14, The gas is supplied to the space 7 above the reaction tank 2 through the on-off valve 15, the water pump 12, the check valve 16, the manual valve 84 for adjusting the flow rate, the constant flow valve 17, and the on-off valve 18.

この場合、還水系統10の定流量弁17の二次側(下流側)の還水配管11内は、後述する負圧環境維持系統30によって反応槽2の上部の空間7と同様の負圧環境となるので、水循環系80から還水配管11内に排出される循環水6は、送水ポンプ12による圧力と反応槽2の空間7の負圧との協働によって反応槽2の空間7内に供給されることになる。   In this case, the inside of the return water pipe 11 on the secondary side (downstream side) of the constant flow valve 17 of the return water system 10 is negative pressure similar to the space 7 above the reaction tank 2 by the negative pressure environment maintenance system 30 described later. Since it becomes an environment, the circulating water 6 discharged from the water circulation system 80 into the return water pipe 11 is in the space 7 of the reaction tank 2 by the cooperation of the pressure by the water pump 12 and the negative pressure of the space 7 of the reaction tank 2. Will be supplied.

また、定流量弁17の一次側(上流側)は送水ポンプ12による高圧が作用し、二次側(下流側)は反応槽2の空間7の負圧が作用しているので、定流量弁17の一次側(上流側)と二次側(下流側)との差圧を大きくとすることができる。従って、定流量弁17を循環水6が通過した瞬間に、ビールや炭酸飲料の栓を抜いたときのように、後述する窒素注入系統20によって送水ポンプ12のサクション側で循環水6に注入された窒素、及び循環水6に溶存している酸素が泡状になって還水配管11内に勢いよく噴き出し、この噴き出した窒素及び酸素と、後述する窒素注入系統20によって定流量弁17の二次側(下流側)に注入された窒素と、定流量弁17を通過した循環水6とが一緒になって反応槽2の空間7内に供給される。   Moreover, since the high pressure by the water supply pump 12 acts on the primary side (upstream side) of the constant flow valve 17 and the negative pressure of the space 7 of the reaction tank 2 acts on the secondary side (downstream side), the constant flow valve The differential pressure between the primary side (upstream side) and the secondary side (downstream side) of 17 can be increased. Therefore, at the moment when the circulating water 6 passes through the constant flow valve 17, it is injected into the circulating water 6 on the suction side of the water supply pump 12 by the nitrogen injection system 20 to be described later, as when a beer or carbonated beverage is unplugged. Nitrogen and oxygen dissolved in the circulating water 6 are foamed and spouted into the return water pipe 11, and the constant flow valve 17 is connected to the constant flow valve 17 by the spouted nitrogen and oxygen and a nitrogen injection system 20 described later. Nitrogen injected into the next side (downstream side) and the circulating water 6 that has passed through the constant flow valve 17 are supplied together into the space 7 of the reaction tank 2.

窒素注入系統20は、図1及び図2に示すように、窒素発生装置21と、一端が窒素発生装置21に接続されるとともに、他端が還水配管11に接続される窒素注入配管22、23と、窒素注入配管22、23の途中に設けられる窒素注入量調整装置24、25とから構成されている。   As shown in FIGS. 1 and 2, the nitrogen injection system 20 includes a nitrogen generator 21 and a nitrogen injection pipe 22 having one end connected to the nitrogen generator 21 and the other end connected to the return water pipe 11. 23 and nitrogen injection amount adjusting devices 24, 25 provided in the middle of the nitrogen injection pipes 22, 23.

窒素注入配管22、23は、途中から2本に分岐されて一方の第1窒素注入配管22が送水ポンプ12のサクション側(流量計14と開閉弁15との間)に接続され、他方の第2窒素注入配管23が送水ポンプ12のデリバリ側(定流量弁17と開閉弁18との間)に接続され、第1窒素注入配管22の途中に第1窒素注入量調整装置24が設けられ、第2窒素注入配管23の途中に第2窒素注入量調整装置25がそれぞれ設けられている。
なお、窒素発生装置21としては、窒素を供給できるものであれば特に制限はなく、大気から窒素を分離して供給する窒素発生装置、窒素ボンベ等を使用することができる。
The nitrogen injection pipes 22 and 23 are branched into two from the middle, and one of the first nitrogen injection pipes 22 is connected to the suction side (between the flow meter 14 and the on-off valve 15) of the water pump 12, and the other first 2 The nitrogen injection pipe 23 is connected to the delivery side of the water pump 12 (between the constant flow valve 17 and the on-off valve 18), and a first nitrogen injection amount adjusting device 24 is provided in the middle of the first nitrogen injection pipe 22. A second nitrogen injection amount adjusting device 25 is provided in the middle of the second nitrogen injection pipe 23.
The nitrogen generator 21 is not particularly limited as long as it can supply nitrogen, and a nitrogen generator, a nitrogen cylinder, and the like that supply nitrogen separately from the atmosphere can be used.

窒素発生装置21から第1窒素注入配管22及び第2窒素注入配管23に分岐された窒素は、第1窒素注入量調整装置24を介して送水ポンプ12のサクション側(開閉弁15の一次側)に注入され、第2窒素注入量調整装置25を介して送水ポンプ12のデリバリ側(定流量弁17の二次側)に注入される。この場合、送水ポンプ12のサクション側に注入される窒素は、送水ポンプ12にキャビティーションが発生しない程度の量に第1窒素注入量調整装置24によって調整される。   The nitrogen branched from the nitrogen generator 21 to the first nitrogen injection pipe 22 and the second nitrogen injection pipe 23 passes through the first nitrogen injection amount adjusting device 24 and is on the suction side of the water pump 12 (primary side of the on-off valve 15). And is injected into the delivery side of the water pump 12 (secondary side of the constant flow valve 17) via the second nitrogen injection amount adjusting device 25. In this case, the nitrogen injected into the suction side of the water pump 12 is adjusted by the first nitrogen injection amount adjusting device 24 so that the cavity is not generated in the water pump 12.

送水ポンプ12のサクション側で還水配管11内の循環水6に注入された窒素、及び循環水6に溶存している酸素は、定流量弁17の一次側に送水ポンプ12の圧力が作用し、二次側に反応槽2の空間7の負圧が作用し、定流量弁17の一次側と二次側との間に大きな差圧が生じていることから、定流量弁17を通過した瞬間に負圧環境の還水配管11内に勢いよく噴き出る。そして、この還水配管11内に噴き出した窒素及び酸素と、送水ポンプ12のデリバリ側の還水配管11内に注入された窒素と、定流量弁17を通過した循環水とが一緒になり、開閉弁18を介して反応槽2の空間7内に霧状又はシャワー状となって供給され、反応槽2の空間7の全体に拡散される。   The nitrogen injected into the circulating water 6 in the return water pipe 11 on the suction side of the water pump 12 and the oxygen dissolved in the circulating water 6 are such that the pressure of the water pump 12 acts on the primary side of the constant flow valve 17. Since the negative pressure of the space 7 of the reaction tank 2 acts on the secondary side and a large differential pressure is generated between the primary side and the secondary side of the constant flow valve 17, it passed through the constant flow valve 17. Instantly spouts into the return water piping 11 in a negative pressure environment. Then, the nitrogen and oxygen spouted into the return water pipe 11, the nitrogen injected into the return water pipe 11 on the delivery side of the water pump 12, and the circulating water passing through the constant flow valve 17 are combined. It is supplied in the form of a mist or shower into the space 7 of the reaction tank 2 via the on-off valve 18 and diffused throughout the space 7 of the reaction tank 2.

負圧環境維持系統30は、図1、図3、図4及び図5に示すように、一端が反応槽2の上胴部4の上端部に接続される真空引き配管31と、真空引き配管31の他端に接続される真空ポンプ32と、真空ポンプ32を循環する水を貯留させる水槽36と、水槽36内に水を補給する補給水配管37と、補給水配管37を開閉させる開閉弁38と、開閉弁38を作動させる水槽36の水面上に浮かべられたボールタップ39と、水槽36内の水を冷却する冷却装置45と、真空引き配管31の途中に分岐配管55を介して接続される真空破壊弁56とから構成されている。   As shown in FIGS. 1, 3, 4, and 5, the negative pressure environment maintaining system 30 includes a vacuuming pipe 31 having one end connected to the upper end of the upper body 4 of the reaction tank 2, and a vacuuming pipe. A vacuum pump 32 connected to the other end of water 31, a water tank 36 for storing water circulating through the vacuum pump 32, a makeup water pipe 37 for replenishing water in the water tank 36, and an on-off valve for opening and closing the makeup water pipe 37. 38, a ball tap 39 floated on the water surface of the water tank 36 that operates the on-off valve 38, a cooling device 45 that cools the water in the water tank 36, and a branch pipe 55 in the middle of the evacuation pipe 31. And a vacuum breaker valve 56.

真空ポンプ32は、水封式真空ポンプであって、ケーシング33内に回転自在に設けられている羽根車34をモータ35の作動によって回転させて、水槽36とケーシング33との間で水を循環させることによりケーシング33の内周面に環状の水膜を形成し、この水膜と羽根車34との間に形成される空間の容積を羽根車34の回転に追従して拡大、縮小させることにより、真空引き配管31を介して反応槽2の空間7内から窒素及び酸素を吸い込み、空間7内を所定の負圧環境に形成するものである。   The vacuum pump 32 is a water ring vacuum pump and circulates water between the water tank 36 and the casing 33 by rotating an impeller 34 rotatably provided in the casing 33 by the operation of the motor 35. By forming the annular water film on the inner peripheral surface of the casing 33, the volume of the space formed between the water film and the impeller 34 is expanded and reduced following the rotation of the impeller 34. Thus, nitrogen and oxygen are sucked from the space 7 of the reaction tank 2 through the vacuum piping 31 to form the space 7 in a predetermined negative pressure environment.

この場合、水槽36内の水は、給水配管42を介して真空ポンプ32のケーシング33内に吸い込まれるとともに、ケーシング33内を循環した後に排水配管43を介して水槽36内に排出され、この際に、真空ポンプ32内に吸い込んだ反応槽2内の窒素及び酸素が水と一緒に水槽36内に排出される。排水配管43の水槽36内の排出口にはサイレンサー44が取り付けられ、このサイレンサー44によって排水配管43から水槽36内に窒素及び酸素を排出させる際に水面が暴れるのを防止し、水面上に浮かべられているボールタップ39が誤動作するのを防止し、ボールタップ39に連動する補給水配管37の開閉弁38が誤動作するのを防止している。   In this case, the water in the water tank 36 is sucked into the casing 33 of the vacuum pump 32 through the water supply pipe 42 and circulated in the casing 33 and then discharged into the water tank 36 through the drain pipe 43. In addition, nitrogen and oxygen in the reaction tank 2 sucked into the vacuum pump 32 are discharged into the water tank 36 together with water. A silencer 44 is attached to the outlet of the drainage pipe 43 in the water tank 36, and the silencer 44 prevents the water surface from being exposed when nitrogen and oxygen are discharged from the drainage pipe 43 into the water tank 36, and floats on the water surface. The ball tap 39 is prevented from malfunctioning, and the on-off valve 38 of the makeup water pipe 37 linked to the ball tap 39 is prevented from malfunctioning.

冷却装置45は、図5に示すように、水槽36内に配置される冷却コイル46と、水槽36外に配置される冷却ユニット47と、冷却ユニット47と冷却コイル46とを接続する冷媒配管48とから構成され、冷却コイル46と冷却ユニット47との間で冷媒配管48を介して冷媒を循環させることにより、水槽36内に貯留される水が冷却されて所定の温度(例えば、40℃以下)に保たれる。   As shown in FIG. 5, the cooling device 45 includes a cooling coil 46 disposed in the water tank 36, a cooling unit 47 disposed outside the water tank 36, and a refrigerant pipe 48 that connects the cooling unit 47 and the cooling coil 46. By circulating the refrigerant between the cooling coil 46 and the cooling unit 47 via the refrigerant pipe 48, the water stored in the water tank 36 is cooled to a predetermined temperature (for example, 40 ° C. or less). ).

この場合、水槽36内の所定の位置(例えば、真空ポンプ32の給水配管42の吸込口近傍)には、温度センサ50が設けられ、この温度センサ50からの検知信号によって冷却ユニット47のON−OFFが制御され、水槽36内の水の温度が所定の範囲内に保たれる。   In this case, a temperature sensor 50 is provided at a predetermined position in the water tank 36 (for example, in the vicinity of the suction port of the water supply pipe 42 of the vacuum pump 32), and the cooling unit 47 is turned on by the detection signal from the temperature sensor 50. OFF is controlled, and the temperature of the water in the water tank 36 is kept within a predetermined range.

冷却装置45により、水槽36内の水の温度を所定の範囲内に保つことにより、真空ポンプ32を循環する水の温度上昇によって真空ポンプ32の能力が低下するのを防止でき、所定の真空度を維持し続けることができる。   By keeping the temperature of the water in the water tank 36 within a predetermined range by the cooling device 45, it is possible to prevent the capacity of the vacuum pump 32 from being lowered due to the temperature rise of the water circulating in the vacuum pump 32, and a predetermined degree of vacuum. Can continue to maintain.

また、水槽36内の所定の位置(例えば、真空ポンプ32の給水配管42の吸込口近傍)には、前述した温度センサ50とは別の温度センサ51が設けられ、この温度センサ51からの検知信号によって水槽36の底部に設けられている排水配管40の開閉弁41の作動が制御される。   Further, a temperature sensor 51 different from the above-described temperature sensor 50 is provided at a predetermined position in the water tank 36 (for example, in the vicinity of the suction port of the water supply pipe 42 of the vacuum pump 32), and detection from the temperature sensor 51 is performed. The operation of the on-off valve 41 of the drain pipe 40 provided at the bottom of the water tank 36 is controlled by the signal.

すなわち、温度センサ51からの検知信号によって開閉弁41が開くことにより、開閉弁41に接続されている排水配管40を介して水槽36内の水が排出され、水槽36内の水位の低下に追従してボールタップ39に連動する補給水配管37の開閉弁38が開き、補給水配管37から開閉弁38を介して水槽36内に水が補給される。   That is, when the opening / closing valve 41 is opened by the detection signal from the temperature sensor 51, the water in the water tank 36 is discharged via the drain pipe 40 connected to the opening / closing valve 41, and follows the lowering of the water level in the water tank 36. Then, the open / close valve 38 of the make-up water pipe 37 interlocked with the ball tap 39 is opened, and water is supplied into the water tank 36 from the make-up water pipe 37 through the open / close valve 38.

この場合、補給水配管37は、開閉弁38を介して水循環系80の流出口81に接続され、開閉弁38の作動によって補給水配管37内に水循環系80から循環水6が取り込まれる。排水配管40を介して水槽36内の水を排出させ、補給水配管37を介して水槽36内に循環水6を補給することにより、水槽36内の水の温度上昇が防止される。従って、冷却装置45の故障等の緊急時に、排水配管40を介して水槽36内から水を排出させ、補給水配管37を介して水槽36内に循環水6を補給することにより、水槽36内の水が温度上昇するのを防止でき、真空ポンプ32による所定の真空度を維持し続けることができる。なお、補給水配管37を水道等の水源に接続し、水道等の水源から補給水配管37を介して水槽36内に補給水を補給してもよい。   In this case, the makeup water pipe 37 is connected to the outlet 81 of the water circulation system 80 via the opening / closing valve 38, and the circulating water 6 is taken into the makeup water pipe 37 from the water circulation system 80 by the operation of the opening / closing valve 38. By discharging the water in the water tank 36 through the drain pipe 40 and supplying the circulating water 6 into the water tank 36 through the makeup water pipe 37, the temperature of the water in the water tank 36 is prevented from rising. Therefore, in an emergency such as a failure of the cooling device 45, the water is discharged from the water tank 36 through the drain pipe 40 and the circulating water 6 is supplied into the water tank 36 through the makeup water pipe 37. The water can be prevented from rising in temperature, and a predetermined degree of vacuum by the vacuum pump 32 can be maintained. Alternatively, the makeup water pipe 37 may be connected to a water source such as a water supply so that the water tank 36 is replenished with the makeup water from the water source such as the water supply via the makeup water piping 37.

一般に、水封式真空ポンプは、排水配管の開閉弁を所定の開度に保ち、排水配管を介して水槽内から水を排出し続け、排出量に応じた補給水を補給水配管を介して水槽内に補給し続けるような使い方がなされている。例えば、2.2Kwの真空ポンプを用いた場合には、水槽内の水を40℃以下に保つためには、5℃程度の補給水を約0.7〜1.2m/日程度(25℃の水では約1.6〜2.8m/日程度)補給する必要がある。これに対して、本実施の形態においては、冷却装置45の故障等の緊急時以外には、水槽36内に補給水を補給する必要がないので、その分だけ水の消費を抑えることができ、経済的に有利である。 Generally, a water-sealed vacuum pump keeps a drain pipe open / close valve at a predetermined opening, continues to drain water from the water tank via the drain pipe, and supplies makeup water according to the discharge amount via the makeup water pipe. It is used in a way that keeps replenishing the tank. For example, when a 2.2 Kw vacuum pump is used, in order to keep the water in the water tank at 40 ° C. or lower, make-up water of about 5 ° C. is supplied at about 0.7 to 1.2 m 3 / day (25 (About 1.6 to 2.8 m 3 / day for water at 0 ° C.)). On the other hand, in the present embodiment, it is not necessary to replenish makeup water in the water tank 36 except in an emergency such as a failure of the cooling device 45, so that the consumption of water can be suppressed accordingly. Economically advantageous.

真空破壊弁56は、図3及び図4に示すように、反応槽2の空間7の負圧が真空ポンプ32の最大使用圧力よりも高くならないように調整するためのものであって、真空破壊弁56の作動によって分岐配管55を介して外部から真空ポンプ32に空気を取り込むことにより、真空ポンプ32がそれ自身の能力によって破壊されるのを防止している。つまり、真空ポンプ32によって反応槽2の空間7の負圧を高めていくと、それに追従して真空度が次第に低くなり真空ポンプ32の能力分だけ低くなる。しかし、真空ポンプ32が最大の負圧能力を発揮すると、真空ポンプ32がそれ自身の能力によって破壊してしまうことがあるので、真空破壊弁56を設けて真空ポンプ32を保護している。なお、図3及び図4中、57はサイレンサー、58は負圧度調整用弁である。   As shown in FIGS. 3 and 4, the vacuum breaker valve 56 is for adjusting the negative pressure in the space 7 of the reaction tank 2 so as not to be higher than the maximum working pressure of the vacuum pump 32. By taking air into the vacuum pump 32 from the outside through the branch pipe 55 by the operation of the valve 56, the vacuum pump 32 is prevented from being destroyed by its own ability. That is, when the negative pressure in the space 7 of the reaction tank 2 is increased by the vacuum pump 32, the degree of vacuum gradually decreases accordingly, and the vacuum pump 32 is reduced by the capacity of the vacuum pump 32. However, if the vacuum pump 32 exhibits the maximum negative pressure capability, the vacuum pump 32 may be destroyed by its own capability, so the vacuum pump 32 is protected by providing the vacuum break valve 56. 3 and 4, 57 is a silencer, and 58 is a negative pressure adjusting valve.

本実施の形態においては、真空引き配管31から分岐させた分岐配管55の先端部に真空破壊弁56を取り付けているので、真空破壊弁56の作動によって分岐配管55内に外部から空気を取り込んだ場合に、その空気は反応槽2の空間7内には流入せずに真空引き配管31を介して真空ポンプ32に直接に吸い込まれることになる。従って、反応槽の上部に配管を介して直接に真空破壊弁を接続したもののように、反応槽2の空間7内に空気が流入することがないので、空間7を窒素だけが通過する負圧環境に保つことができ、反応槽2内に貯留されている循環水6に空気が接触するのを防止できる。   In the present embodiment, since the vacuum breaker valve 56 is attached to the tip of the branch pipe 55 branched from the vacuum pulling pipe 31, air is taken into the branch pipe 55 from the outside by the operation of the vacuum breaker valve 56. In this case, the air does not flow into the space 7 of the reaction tank 2 but is directly sucked into the vacuum pump 32 via the vacuum drawing pipe 31. Therefore, unlike the case where a vacuum break valve is directly connected to the upper part of the reaction tank via a pipe, air does not flow into the space 7 of the reaction tank 2, so a negative pressure through which only nitrogen passes through the space 7. The environment can be maintained, and air can be prevented from contacting the circulating water 6 stored in the reaction tank 2.

返水系統60は、図1及び図6に示すように、一端が反応槽2の中胴部3の側部に接続され、他端が水循環系80の流入口82に接続される返水配管61と、返水配管61の途中に設けられる返水ポンプ62と、返水ポンプ62の一次側に設けられる開閉弁63と、返水ポンプ62の二次側に設けられる開閉弁64及び定流量弁65とを備えており、返水ポンプ62の作動により、反応槽2から排出される循環水6が開閉弁63、返水ポンプ62、開閉弁64、及び定流量弁65を介して水循環系80の流入口82に導かれる。   As shown in FIGS. 1 and 6, the water return system 60 has one end connected to the side of the middle body portion 3 of the reaction tank 2 and the other end connected to the inlet 82 of the water circulation system 80. 61, a return pump 62 provided in the middle of the return pipe 61, an open / close valve 63 provided on the primary side of the return pump 62, an open / close valve 64 provided on the secondary side of the return pump 62, and a constant flow rate. The circulating water 6 discharged from the reaction tank 2 by the operation of the water return pump 62 is supplied to the water circulation system via the on-off valve 63, the water return pump 62, the on-off valve 64, and the constant flow valve 65. It is led to 80 inflow ports 82.

水位調整系統70は、図1〜図3、図6及び図7に示すように、反応槽2に隣接して並設されるとともに、上端部が反応槽2の上胴部4の側部に接続され、下端部が下胴部5の側部に接続される水位検知部71と、水位検知部71内に設けられる複数本の電極棒72〜76と、還水系統10の定流量弁17に並列に設けられるバイパス配管77と、バイパス配管77の途中に設けられるバイパス電磁弁78とを備えている。   As shown in FIGS. 1 to 3, 6, and 7, the water level adjusting system 70 is arranged adjacent to the reaction tank 2, and the upper end portion is located on the side of the upper body 4 of the reaction tank 2. A water level detector 71 connected at the lower end to the side of the lower body 5, a plurality of electrode rods 72 to 76 provided in the water level detector 71, and the constant flow valve 17 of the return water system 10. And a bypass solenoid valve 78 provided in the middle of the bypass pipe 77.

水位検知部71に設けられる複数本の電極棒72〜76は、図7に示すように、先端が反応槽2の上胴部4の高さ方向の中間部に相当する位置に位置する第1電極棒72と、先端が反応槽2の上胴部4の第1電極棒72の先端よりも下方に相当する位置に位置する第2電極棒73と、先端が反応槽2の中胴部3の高さ方向の上端部に相当する位置に位置する第3電極棒74と、下端が反応槽2の中胴部3の第3電極棒74の下端よりも下方に相当する位置に位置する第4電極棒75と、下端が反応槽2の下胴部5の下端部に相当する位置に位置する第5電極棒76とを備えている。   As shown in FIG. 7, the plurality of electrode rods 72 to 76 provided in the water level detection unit 71 has a first end positioned at a position corresponding to an intermediate portion in the height direction of the upper body 4 of the reaction tank 2. An electrode rod 72, a second electrode rod 73 whose tip is located below the tip of the first electrode rod 72 of the upper barrel 4 of the reaction vessel 2, and a tip of the middle barrel 3 of the reaction vessel 2 A third electrode rod 74 located at a position corresponding to the upper end portion in the height direction, and a lower end located at a position corresponding to a position lower than the lower end of the third electrode rod 74 of the middle barrel portion 3 of the reaction tank 2. A four-electrode rod 75 and a fifth electrode rod 76 having a lower end located at a position corresponding to a lower end portion of the lower trunk portion 5 of the reaction tank 2 are provided.

この場合、第1電極棒72は、循環水6の水位の上限を検知する電極棒として機能し、第2電極棒73及び第3電極棒74は、循環水6の設定水位の上限及び下限を検知する電極棒として機能し、第4電極棒75は、循環水6の水位の下限を検知する電極棒として機能し、第5電極棒76は、コモン(アース)用として機能している。   In this case, the first electrode rod 72 functions as an electrode rod for detecting the upper limit of the water level of the circulating water 6, and the second electrode rod 73 and the third electrode rod 74 set the upper limit and the lower limit of the set water level of the circulating water 6. The fourth electrode rod 75 functions as an electrode rod for detecting the lower limit of the water level of the circulating water 6, and the fifth electrode rod 76 functions as a common (earth).

つまり、第1電極棒72の先端が循環水6に接触することにより、第1電極棒72と第5電極棒76との間に電流が流れて送水ポンプ12が停止され、第2電極棒73の先端が循環水6に接触することにより、第2電極棒73と第5電極棒76との間に電流が流れてバイパス電磁弁78が閉じ、第3電極棒74の先端が循環水6から離れることにより、第3電極棒74と第5電極棒76との間の電流が流れなくなったことを受けて、バイパス電磁弁78が開き、第4電極棒75の先端が循環水6から離れることにより、第4電極棒75と第6電極棒76との間の電流がなくなり、返水ポンプ62が停止される。   That is, when the tip of the first electrode rod 72 comes into contact with the circulating water 6, a current flows between the first electrode rod 72 and the fifth electrode rod 76, the water feed pump 12 is stopped, and the second electrode rod 73. When the tip of the electrode contacts the circulating water 6, a current flows between the second electrode rod 73 and the fifth electrode rod 76, the bypass solenoid valve 78 is closed, and the tip of the third electrode rod 74 extends from the circulating water 6. In response to the fact that the current between the third electrode rod 74 and the fifth electrode rod 76 does not flow due to the separation, the bypass electromagnetic valve 78 is opened and the tip of the fourth electrode rod 75 is separated from the circulating water 6. As a result, there is no current between the fourth electrode rod 75 and the sixth electrode rod 76, and the water return pump 62 is stopped.

なお、水位検知部71内に設ける電極棒72〜76は、少なくともバイパス電磁弁78を閉じるための第2電極棒73と、バイパス電磁弁78を開くための第3電極棒74と、コモン用の第5電極棒76の3本の電極棒があればよい。   The electrode rods 72 to 76 provided in the water level detection unit 71 include at least a second electrode rod 73 for closing the bypass electromagnetic valve 78, a third electrode rod 74 for opening the bypass electromagnetic valve 78, and a common electrode. There may be three electrode rods of the fifth electrode rod 76.

一般に、定流量弁は、流量を一定に保つ弁であるが、圧力損失が大きい(水が流れにくい)欠点がある。反応槽2の一次側の還水系統10に設けられた定流量弁17と、二次側の返水系統60に設けられた定流量弁65とは、二次側の定流量弁65が一次側の定流量弁17よりも流量が大きく(二次側定の流量弁65>一次側の定流量弁17)なるように調整されている。つまり、反応槽2内の循環水6の水位が徐々に低下するように調整されている。このため、反応槽2内の水位が徐々に低下して設定範囲の下限に達した場合には、その水位を電極棒74により検知し、バイパス電磁弁78を開くことにより、反応槽2内にバイパス配管77を介して循環水6を補給している。このとき、一次側の定流量弁17+バイパス電磁弁78の流量>二次側の定流量弁65の流量となる。これにより、反応槽2内の循環水6の水位が回復し、水位が上昇する方向に移行する。逆に、反応槽2内の水位が設定範囲の上限に達した場合には、その水位を電極棒73が検知し、バイパス電磁弁78を閉じて、再度、水位は徐々に減る方向に移行する。   In general, the constant flow valve is a valve that keeps the flow rate constant, but has a drawback that the pressure loss is large (water does not easily flow). The constant flow valve 17 provided in the primary return water system 10 of the reaction tank 2 and the constant flow valve 65 provided in the secondary return system 60 are the same as the primary constant flow valve 65. The flow rate is adjusted to be larger than that of the constant flow valve 17 on the side (secondary constant flow valve 65> primary constant flow valve 17). That is, the water level of the circulating water 6 in the reaction tank 2 is adjusted so as to gradually decrease. For this reason, when the water level in the reaction tank 2 gradually decreases and reaches the lower limit of the set range, the water level is detected by the electrode rod 74 and the bypass electromagnetic valve 78 is opened to enter the reaction tank 2. Circulating water 6 is replenished via the bypass pipe 77. At this time, the flow rate of the primary-side constant flow valve 17 + the bypass solenoid valve 78> the flow rate of the secondary-side constant flow valve 65. Thereby, the water level of the circulating water 6 in the reaction tank 2 is recovered, and the water level is shifted in the increasing direction. On the other hand, when the water level in the reaction tank 2 reaches the upper limit of the set range, the electrode level is detected by the electrode rod 73, the bypass solenoid valve 78 is closed, and the water level is gradually shifted again. .

バイパス電磁弁78が開いて、水位が回復する速度は、バイパス電磁弁78の二次側に設けられたバイパス配管流量調整用手動弁83の開閉度の調整によって調整できる。何らかの原因によって水位が設定範囲の上限又は下限を超え、上限よりも上昇又は下限よりも下降した場合には、第1電極棒72又は第4電極棒75で検知し、送水ポンプ12又は返水ポンプ62を強制的に停止し、真空ポンプ32が液体を吸引するのを阻止し又は返水ポンプ62が空転するのを阻止している。   The speed at which the bypass solenoid valve 78 is opened and the water level is restored can be adjusted by adjusting the opening / closing degree of the bypass pipe flow rate adjusting manual valve 83 provided on the secondary side of the bypass solenoid valve 78. When the water level exceeds the upper limit or lower limit of the set range for some reason and rises above or falls below the upper limit, it is detected by the first electrode rod 72 or the fourth electrode rod 75, and the water supply pump 12 or the water return pump 62 is forcibly stopped to prevent the vacuum pump 32 from sucking liquid or to prevent the water return pump 62 from idling.

そして、上記のように構成した本実施の形態による脱気装置1を作動させ、水循環系80から排出される循環水6を還水系統10の送水ポンプ12によって反応槽2の方向に圧送する。この際、送水ポンプ12のサクション側及びデリバリ側において、還水配管11を流通する循環水6に窒素を加圧注入する。循環水6が送水ポンプ12の二次側の定流量弁17を通過する際に、循環水6に溶存している酸素及び窒素の一部が定流量弁17の二次側の還水配管11内に噴出し、この噴出した酸素及び窒素と送水ポンプ12のデリバリ側で供給された窒素と定流量弁17を通過した循環水6とが一緒になって反応槽2の上部空間7内に霧状になって噴出され、窒素及び酸素は上部空間7内に貯留され、循環水6は反応槽2の下部に貯留されていく。   And the deaeration apparatus 1 by this Embodiment comprised as mentioned above is operated, and the circulating water 6 discharged | emitted from the water circulation system 80 is pumped in the direction of the reaction tank 2 with the water supply pump 12 of the return water system 10. FIG. At this time, nitrogen is pressurized and injected into the circulating water 6 flowing through the return water pipe 11 on the suction side and delivery side of the water pump 12. When the circulating water 6 passes through the constant flow valve 17 on the secondary side of the water pump 12, a part of oxygen and nitrogen dissolved in the circulating water 6 is returned to the secondary return water pipe 11 of the constant flow valve 17. The oxygen and nitrogen thus blown out, the nitrogen supplied on the delivery side of the water pump 12 and the circulating water 6 passing through the constant flow valve 17 are combined into a mist in the upper space 7 of the reaction tank 2. The nitrogen and oxygen are stored in the upper space 7 and the circulating water 6 is stored in the lower part of the reaction tank 2.

この場合、反応槽2の上部空間7内は、負圧環境維持系統30の真空ポンプ32によって真空引きされて所定の負圧環境に維持されているとともに、還水系統10から連続的に供給されてくる窒素によって窒素雰囲気に形成されており、この負圧環境の窒素雰囲気内に還水系統10から窒素、酸素及び循環水6が霧状になって噴出されることにより、循環水6に溶存している窒素及び酸素が更に析出され、上部の空間7内に充満している酸素及び窒素が真空ポンプ32によって真空引きされて反応槽2外に排出され、循環水6の溶存酸素が低減されていく。   In this case, the inside of the upper space 7 of the reaction tank 2 is evacuated by the vacuum pump 32 of the negative pressure environment maintaining system 30 and maintained in a predetermined negative pressure environment, and is continuously supplied from the return water system 10. Nitrogen atmosphere is formed by the nitrogen coming, and nitrogen, oxygen, and circulating water 6 are ejected in a mist form from the return water system 10 into the nitrogen atmosphere in this negative pressure environment, and dissolved in the circulating water 6 Nitrogen and oxygen are further deposited, and oxygen and nitrogen filled in the upper space 7 are evacuated by the vacuum pump 32 and discharged out of the reaction tank 2, and dissolved oxygen in the circulating water 6 is reduced. To go.

ここで、窒素、酸素及び循環水6を霧状にして反応槽2内に噴出させているのは、循環水6を水滴化して表面積を増やし、循環水6に溶存している酸素及び窒素を排出しやすくするためである。また、送水ポンプ12のサクション側で循環水6に窒素を注入しているのは、循環水6の含有気体量を高め、負圧環境下で酸素を含む気体を排出する効率を高めるためである。   Here, nitrogen, oxygen, and circulating water 6 are atomized and ejected into the reaction tank 2 to reduce the surface area of the circulating water 6 by increasing the surface area of the circulating water 6 and to dissolve oxygen and nitrogen dissolved in the circulating water 6. This is to facilitate discharge. The reason why nitrogen is injected into the circulating water 6 on the suction side of the water pump 12 is to increase the amount of gas contained in the circulating water 6 and increase the efficiency of exhausting gas containing oxygen under a negative pressure environment. .

そして、反応槽2内に貯留された循環水6は、返水系統60の返水ポンプ62の作動によって返水配管61を介して水循環系80の流入口82に導かれ、水循環系80を循環した後に流出口81から排出され、再び、還水系統10、反応槽2、返水系統60を経て水循環系80に供給され、このようなことを繰り返し行うことにより、循環水6の溶存酸素が次第に低減され、殆ど溶存酸素の含まれていない循環水6にすることができる。   Then, the circulating water 6 stored in the reaction tank 2 is guided to the inlet 82 of the water circulation system 80 through the water return pipe 61 by the operation of the water return pump 62 of the water return system 60 and circulates in the water circulation system 80. After that, the water is discharged from the outlet 81 and is supplied again to the water circulation system 80 through the return water system 10, the reaction tank 2, and the return water system 60. By repeating this, dissolved oxygen in the circulating water 6 is dissolved. The circulating water 6 which is gradually reduced and hardly contains dissolved oxygen can be obtained.

上記のように構成した本実施の形態による脱気装置1にあっては、反応槽2の内部に所定量の循環水6を貯留させ、その上部に所定容積の空間7を形成し、この空間7を負圧環境維持系統30によって所定の負圧環境に維持し、この負圧環境の空間7内を還水系統10から連続的に供給される窒素によって窒素雰囲気に形成し、この負圧環境の窒素雰囲気内に還水系統10から循環水6を霧状にして噴出させることにより、循環水6に溶存している酸素を脱気させ、脱気させた酸素を窒素と共に真空引きによって外部に排出させるようにしたので、循環水6に溶存している酸素を容易に短時間で効率良く脱気させることができる。   In the deaeration device 1 according to the present embodiment configured as described above, a predetermined amount of circulating water 6 is stored inside the reaction tank 2, and a space 7 having a predetermined volume is formed above the space. 7 is maintained in a predetermined negative pressure environment by the negative pressure environment maintenance system 30, and the space 7 of this negative pressure environment is formed in a nitrogen atmosphere by nitrogen continuously supplied from the return water system 10. The circulating water 6 is sprayed from the return water system 10 in the form of a mist into the nitrogen atmosphere, thereby degassing the oxygen dissolved in the circulating water 6 and evacuating the degassed oxygen together with nitrogen to the outside. Since it was made to discharge | emit, oxygen dissolved in the circulating water 6 can be easily deaerated easily in a short time.

また、反応槽2の上部空間7は、真空度が−7.0〜−8.0mAq程度に維持されているので、反応槽2を製作する場合に、第2種圧力容器のような圧力容器としての認定が不要になり、製作に要する時間を短縮することができ、製作コストを低減させることができる。   Further, since the upper space 7 of the reaction tank 2 is maintained at a vacuum degree of about −7.0 to −8.0 mAq, when the reaction tank 2 is manufactured, a pressure vessel such as a second type pressure vessel is used. As a result, the time required for production can be shortened, and the production cost can be reduced.

さらに、水循環系80に付設した閉路に1つの反応槽2を設ければよいので、反応槽2を設置する場所に大きなスペースを必要とすることはなく、省スペース化を図ることができる。   Furthermore, since one reaction tank 2 may be provided in a closed circuit attached to the water circulation system 80, a large space is not required in the place where the reaction tank 2 is installed, and space saving can be achieved.

さらに、真空ポンプ32を保護する真空破壊弁56を真空引き配管31の途中に分岐配管55を介して接続しているので、真空破壊弁56を介して外部から空気を取り込む場合に、外部からの空気が反応槽2の上部空間7内に流入するようなことはなく、分岐配管55から真空引き配管31を介して真空ポンプ32に直接に取り込まれることになる。従って、外部からの空気が反応槽2内の循環水6に溶解するようなことはなく、反応槽2内で循環水6から溶存酸素を効率良く脱気させることができる。なお、真空破壊弁56を反応槽2に配管を介して直接に取り付けた場合には、循環水6の脱気低減限界は0.3mg/リットル程度となるが、本実施の形態においては、0.1mg/リットル未満となり、非常に優れた脱気能力を有していることが分かる。   Furthermore, since the vacuum breaker valve 56 that protects the vacuum pump 32 is connected to the evacuation pipe 31 through the branch pipe 55, when air is taken in from the outside via the vacuum breaker valve 56, Air does not flow into the upper space 7 of the reaction tank 2 and is directly taken into the vacuum pump 32 from the branch pipe 55 via the vacuum drawing pipe 31. Therefore, air from the outside does not dissolve in the circulating water 6 in the reaction tank 2, and dissolved oxygen can be efficiently degassed from the circulating water 6 in the reaction tank 2. In addition, when the vacuum breaker valve 56 is directly attached to the reaction tank 2 via a pipe, the degassing reduction limit of the circulating water 6 is about 0.3 mg / liter. It can be seen that it is less than 1 mg / liter and has a very good degassing capacity.

さらに、真空ポンプ32に供給する水を貯留させておく水槽36に冷却装置45を設け、この冷却装置45によって水槽36内の水を所定の温度に保っているので、真空ポンプ32の能力が水槽36内の水の温度上昇によって低下するようなことはなく、反応槽2内の上部空間7を所定の負圧環境に維持し続けることができる。   Further, a cooling device 45 is provided in the water tank 36 for storing water to be supplied to the vacuum pump 32, and the water in the water tank 36 is maintained at a predetermined temperature by the cooling device 45. The temperature of the water in 36 does not decrease, and the upper space 7 in the reaction tank 2 can be maintained in a predetermined negative pressure environment.

さらに、反応槽2内に貯留されている循環水6の水位を所定の範囲内に保つのに複雑な制御を必要とすることなく、電極棒74、75により水位の上限及び下限を検知して、電極棒74、75からの検知信号によりバイパス配管77のバイパス電磁弁78の開閉を制御しているので、安価な制御で反応槽2内の水位を所定の範囲内に保つことができる。   Further, the upper and lower limits of the water level are detected by the electrode rods 74 and 75 without requiring complicated control to keep the level of the circulating water 6 stored in the reaction tank 2 within a predetermined range. Since the opening and closing of the bypass electromagnetic valve 78 of the bypass pipe 77 is controlled by the detection signals from the electrode rods 74 and 75, the water level in the reaction tank 2 can be kept within a predetermined range by inexpensive control.

本発明による脱気装置の一実施の形態の全体を示す概略構成図である。It is a schematic structure figure showing the whole one embodiment of a deaeration device by the present invention. 還水系統及び窒素注入系統の概略構成図である。It is a schematic block diagram of a return water system and a nitrogen injection system. 負圧環境維持系統の概略構成図である。It is a schematic block diagram of a negative pressure environment maintenance system | strain. 図3の真空破壊弁の拡大図である。It is an enlarged view of the vacuum breaker valve of FIG. 真空ポンプの冷却装置の概略構成図である。It is a schematic block diagram of the cooling device of a vacuum pump. 水位調整系統の概略構成図である。It is a schematic block diagram of a water level adjustment system. 図6の水位検知部の説明図である。It is explanatory drawing of the water level detection part of FIG.

符号の説明Explanation of symbols

1 脱気装置、2 反応槽、3 中胴部、4 上胴部、5 下胴部、6 循環水、
7 上部空間、10 還水系統、11 還水配管、12 送水ポンプ、
13 開閉弁(一次側)、14 流量計、15 開閉弁(一次側)、
16 逆止弁(二次側)、17 定流量弁(二次側)、18 開閉弁(二次側)、
20 窒素注入系統、21 窒素発生装置、22 第1窒素注入配管、
23 第2窒素注入配管、24 第1窒素注入量調整装置、
25 第2窒素注入量調整装置、30 負圧環境維持系統、31 真空引き配管、
32 真空ポンプ、33 ケーシング、34 羽根車、35 モータ、36 水槽、
37 補給水配管、38 開閉弁、39 ボールタップ、40 排水配管、
41 開閉弁、42 給水配管、43 排水配管、44 サイレンサー、
45 冷却装置、46 冷却コイル、47 冷却ユニット、48 冷媒配管、
50 温度センサ、51 温度センサ、55 分岐配管、56 真空破壊弁、
57 サイレンサー、58 負圧度調整用弁、60 返水系統、61 返水配管、
62 返水ポンプ、63 開閉弁(一次側)、64 開閉弁(二次側)、
65 定流量弁、70 水位調整系統、71 水位検知部、72 第1電極棒、
73 第2電極棒、74 第3電極棒、75 第4電極棒、76 第5電極棒、
77 バイパス配管、78 バイパス電磁弁、80 水循環系、81 流出口、
82 流入口、83 バイパス配管流量調整用手動弁、
84 流量調整用手動弁(還水系統)、85 流量調整用手動弁(返水系統)
1 deaerator, 2 reaction tank, 3 middle torso, 4 upper torso, 5 lower torso, 6 circulating water,
7 Upper space, 10 Return water system, 11 Return water piping, 12 Water pump,
13 On-off valve (primary side), 14 Flow meter, 15 On-off valve (primary side),
16 Check valve (secondary side), 17 Constant flow valve (secondary side), 18 On-off valve (secondary side),
20 nitrogen injection system, 21 nitrogen generator, 22 first nitrogen injection pipe,
23 second nitrogen injection pipe, 24 first nitrogen injection amount adjusting device,
25 Second nitrogen injection amount adjustment device, 30 negative pressure environment maintenance system, 31 vacuuming pipe,
32 vacuum pump, 33 casing, 34 impeller, 35 motor, 36 water tank,
37 makeup water piping, 38 on-off valve, 39 ball tap, 40 drainage piping,
41 On-off valve, 42 Water supply piping, 43 Drainage piping, 44 Silencer,
45 Cooling device, 46 Cooling coil, 47 Cooling unit, 48 Refrigerant piping,
50 Temperature sensor, 51 Temperature sensor, 55 Branch piping, 56 Vacuum break valve,
57 Silencer, 58 Negative pressure adjustment valve, 60 Return system, 61 Return pipe,
62 water return pump, 63 on-off valve (primary side), 64 on-off valve (secondary side),
65 constant flow valve, 70 water level adjustment system, 71 water level detector, 72 first electrode rod,
73 second electrode rod, 74 third electrode rod, 75 fourth electrode rod, 76 fifth electrode rod,
77 Bypass piping, 78 Bypass solenoid valve, 80 Water circulation system, 81 Outlet,
82 Inlet port, 83 Manual valve for bypass pipe flow rate adjustment,
84 Manual valve for flow rate adjustment (return water system), 85 Manual valve for flow rate adjustment (return water system)

Claims (5)

水を循環利用する水循環系に付設され、該水循環系を循環する循環水に溶存する酸素を脱気させるための脱気装置であって、
内部に循環水が所定量貯留されるとともに、該循環水の上部に所定容積の空間が形成される一つの反応槽と、
該反応槽の上部に接続されるとともに、前記水循環系から排出される循環水を該反応槽の上部空間に導く還水系統と、
該還水系統の途中に接続されるとともに、該還水系統を流通する循環水内に窒素を加圧注入する窒素注入系統と、
前記反応槽の上部に接続されるとともに、前記反応槽の上部空間内を真空引きして所定の負圧環境に維持する負圧環境維持系統と、
前記反応槽から排出される循環水を前記水循環系統に導く返水系統とを備えており、
前記還水系統は、前記水循環系から排出される循環水を前記反応槽に圧送する送水ポンプと、送水ポンプの二次側に設けられる定流量弁とを備え、
前記送水ポンプの一次側及び前記定流量弁の二次側に前記窒素注入系統により窒素を加圧注入するように構成したことを特徴とする脱気装置。
A degassing device attached to a water circulation system that circulates and uses water to degas oxygen dissolved in the circulating water that circulates through the water circulation system,
A reaction tank in which a predetermined amount of circulating water is stored and a space of a predetermined volume is formed above the circulating water;
A return water system connected to the upper part of the reaction tank and leading the circulating water discharged from the water circulation system to the upper space of the reaction tank;
A nitrogen injection system that is connected in the middle of the return water system and pressurizes and injects nitrogen into the circulating water flowing through the return water system;
A negative pressure environment maintaining system connected to the upper part of the reaction tank and evacuating the upper space of the reaction tank to maintain a predetermined negative pressure environment;
A return water system that guides the circulating water discharged from the reaction tank to the water circulation system ,
The return water system includes a water pump that pumps circulating water discharged from the water circulation system to the reaction tank, and a constant flow valve provided on the secondary side of the water pump,
A degassing apparatus, wherein nitrogen is pressurized and injected into the primary side of the water pump and the secondary side of the constant flow valve by the nitrogen injection system.
前記負圧環境維持系統は、前記反応槽の上部に真空引き配管を介して接続される真空ポンプと、前記真空引き配管の途中に分岐配管を介して接続される真空破壊弁と、真空ポンプを循環する水を貯留させる水槽とを備えていることを特徴とする請求項1に記載の脱気装置。 The negative pressure environment maintenance system includes a vacuum pump connected to the upper part of the reaction tank via a vacuum pipe, a vacuum breaker valve connected via a branch pipe in the middle of the vacuum pipe, and a vacuum pump The deaerator according to claim 1 , further comprising a water tank for storing circulating water. 前記負圧環境維持系統には、前記水槽内に設けられる冷却コイルと、前記水槽外に設けられる冷却ユニットと、前記冷却コイルと前記冷却ユニットとの間を循環する冷媒とを備えた冷却装置が設けられていることを特徴とする請求項2に記載の脱気装置。 The negative pressure environment maintenance system includes a cooling device including a cooling coil provided in the water tank, a cooling unit provided outside the water tank, and a refrigerant circulating between the cooling coil and the cooling unit. The deaeration device according to claim 2 , wherein the deaeration device is provided. 前記還水系統の定流量弁には、バイパス配管が並設されるとともに、該バイパス配管の途中には該バイパス配管を開閉させるバイパス電磁弁が設けられ、該バイパス電磁弁の開閉動作を、前記反応槽内の水位を検知する検知手段からの信号によって制御するように構成したことを特徴とする請求項1から3の何れかに記載の脱気装置。 The constant flow valve of the return water system is provided with a bypass pipe, and a bypass solenoid valve for opening and closing the bypass pipe is provided in the middle of the bypass pipe. The deaeration device according to any one of claims 1 to 3 , wherein the deaeration device is configured to be controlled by a signal from a detection means for detecting a water level in the reaction tank. 前記検知手段は、少なくとも、前記反応槽内の制御許容水位の上限を検出する第1電極棒と、下限を検出する第2電極棒と、コモン用の第3電極棒とを有し、第1電極棒及び第2電極棒からの検知信号により、前記バイパス電磁弁の開閉動作が制御されることを特徴とする請求項4に記載の脱気装置。 The detection means includes at least a first electrode bar for detecting an upper limit of a control allowable water level in the reaction tank, a second electrode bar for detecting a lower limit, and a third electrode bar for common, The deaerator according to claim 4 , wherein the opening / closing operation of the bypass solenoid valve is controlled by detection signals from the electrode rod and the second electrode rod.
JP2006038437A 2006-02-15 2006-02-15 Deaerator Expired - Fee Related JP4714597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006038437A JP4714597B2 (en) 2006-02-15 2006-02-15 Deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006038437A JP4714597B2 (en) 2006-02-15 2006-02-15 Deaerator

Publications (2)

Publication Number Publication Date
JP2007216122A JP2007216122A (en) 2007-08-30
JP4714597B2 true JP4714597B2 (en) 2011-06-29

Family

ID=38493938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006038437A Expired - Fee Related JP4714597B2 (en) 2006-02-15 2006-02-15 Deaerator

Country Status (1)

Country Link
JP (1) JP4714597B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709095B2 (en) * 2009-05-25 2015-04-30 イマテック株式会社 Method for removing dissolved oxygen in liquid and apparatus for removing dissolved oxygen in liquid
CN108801721A (en) * 2017-04-27 2018-11-13 中国科学院寒区旱区环境与工程研究所 Stable carbon isotope apparatus for pre-analysis treatment in the carbonate dissolved in a kind of water body
CN110185676A (en) * 2019-06-05 2019-08-30 深圳市粤永能源环保科技有限公司 A kind of pure water hydraulics system
CN110255652A (en) * 2019-06-12 2019-09-20 国网湖南省电力有限公司 A kind of ultra-high voltage converter station valve cooling system inner cold water nitrogen deoxidation method and device
CN113321258B (en) * 2021-06-03 2022-11-22 中国船舶科学研究中心 Large-tonnage is quick degassing system of nuclear with water seeding in circulation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185068A (en) * 1991-10-30 1993-07-27 Miura Kenkyusho:Kk Vacuum type deaerator
JPH06170357A (en) * 1992-12-01 1994-06-21 Miura Co Ltd Method for stabilizing dissolved oxygen concentration in deaerator
JPH08108005A (en) * 1994-10-14 1996-04-30 Chiyoda Denki Kogyo Kk Deaeration device
JP2001129304A (en) * 1999-11-09 2001-05-15 Kurita Water Ind Ltd Deoxidation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185068A (en) * 1991-10-30 1993-07-27 Miura Kenkyusho:Kk Vacuum type deaerator
JPH06170357A (en) * 1992-12-01 1994-06-21 Miura Co Ltd Method for stabilizing dissolved oxygen concentration in deaerator
JPH08108005A (en) * 1994-10-14 1996-04-30 Chiyoda Denki Kogyo Kk Deaeration device
JP2001129304A (en) * 1999-11-09 2001-05-15 Kurita Water Ind Ltd Deoxidation apparatus

Also Published As

Publication number Publication date
JP2007216122A (en) 2007-08-30

Similar Documents

Publication Publication Date Title
JP4714597B2 (en) Deaerator
JP2010532823A (en) High pressure electrolyzer and treatment for deactivating such an apparatus
JP6859573B2 (en) Water supply pumpless hydrogen water production equipment and hydrogen water production method
WO2019049265A1 (en) Electrolytic device
JP2014122712A (en) Underground heat exchanger
CN105165705A (en) Efficient oxygen increasing tank
JP2004188263A (en) Device for supplying oxygen into water
JP2007231760A (en) Airlift pump type combined pumped-storage hydraulic power plant
JP4998037B2 (en) Deoxygenated water supply system
JP2011245472A (en) Device and method for nitrogen substitution type deoxygenation
JP2011078858A (en) Method for generating microbubble and microbubble generator
JP3652532B2 (en) Sodium hypochlorite generating apparatus and sodium hypochlorite generating method
JP2005000882A (en) Apparatus for generating micro bubble
JP2015533723A (en) Ship ballast water treatment system
EP1887196B1 (en) Method for the degassing of fluid in heating and cooling systems, and an arrangement
KR20140095589A (en) Submarine with an installation for bringing gas out of a submarine
CN102458976B (en) Tank arrangement adapted for submersible pump
JP4009566B2 (en) Dissolved oxygen reduction device
JP2005116262A (en) Water supply device for fuel cell
KR20180019811A (en) Metallic fuel provider for hydrogen generation using metallic fuel
JP6078287B2 (en) Gas-liquid contact method and water deoxygenation method using the same
JP2007069063A (en) Gas dissolved water supply system
KR20170096714A (en) Firewater Providing Apparatus for Vessel
JP2003220396A (en) Deep-layer aerator
JP2005224677A (en) Apparatus for feeding oxygen into water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

LAPS Cancellation because of no payment of annual fees