JP2007231760A - Airlift pump type combined pumped-storage hydraulic power plant - Google Patents

Airlift pump type combined pumped-storage hydraulic power plant Download PDF

Info

Publication number
JP2007231760A
JP2007231760A JP2006051879A JP2006051879A JP2007231760A JP 2007231760 A JP2007231760 A JP 2007231760A JP 2006051879 A JP2006051879 A JP 2006051879A JP 2006051879 A JP2006051879 A JP 2006051879A JP 2007231760 A JP2007231760 A JP 2007231760A
Authority
JP
Japan
Prior art keywords
water
pipe
pumped
generator
pumping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006051879A
Other languages
Japanese (ja)
Inventor
Norio Hosoda
紀夫 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006051879A priority Critical patent/JP2007231760A/en
Publication of JP2007231760A publication Critical patent/JP2007231760A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Abstract

<P>PROBLEM TO BE SOLVED: To realize a hydraulic power plant using only pumped water as power source without the need for a dam or a river. <P>SOLUTION: Water is pumped up by a highly energy efficient air lift pump comprising a lifting pipe 1 and a large discharge volume air pump 15 to generate an upward flow in the lifting pipe 1. A power generator 10 is driven by a water flow ejected from a nozzle 2 at the terminal, and power obtained by an impulse water turbine 9 to generate electricity. Water is lifted from a water receiving reservoir 7 into a water lifting reservoir 3, so that a downward flow is generated in a hydraulic pipe 5. Thereby, a generator 12 is driven by the water flow ejected from the nozzle 6, and the power obtained by the impulse water turbine 11 to drive the generator 12 so as to generate electricity. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水力発電に必要な水の全てを、一度下流へ流された水を汲み上げて再び利用することでまかない、ダムや河川を必要とせず、設置場所を選ばない水力発電装置を実現するものである。   The present invention realizes a hydroelectric power generation device that does not require a dam or a river and does not require any installation location, by using all the water necessary for hydroelectric power generation by pumping the water that has been flowed downstream once and using it again. Is.

従来の水力発電は、ダムによってせき止められた河川の水の圧力や、河川の上流から水を取り込み下流へ放流する間の落差による水流を利用し発電を行う等、水力発電装置の設置場所には河川の存在が不可欠であった。   Conventional hydroelectric power generation uses the water pressure of rivers dammed by dams, or the water flow caused by the drop between the intake and discharge of water from the upstream of the river to the location where the hydroelectric generator is installed. The existence of rivers was essential.

解決しようとする問題点は、揚水を行うのに必要なエネルギーを、水力発電によって得られるエネルギーよりも小さく抑えることである。   The problem to be solved is to keep the energy required for pumping water smaller than the energy obtained by hydroelectric power generation.

本発明は、揚水を行うのに気泡ポンプを使用する。このポンプを作動させるための空気を、より小さなエネルギーで送り込めるよう設計することで、エネルギー効率の高い揚水が行えるようにし、課題を解決するものである。   The present invention uses a bubble pump to pump water. By designing the air for operating the pump with less energy, it is possible to perform pumping with high energy efficiency and solve the problem.

気泡ポンプを作動させる原動力は、管内に空気を送り込むエアーポンプである。このポンプが使用するエネルギーを抑えるには、空気を送り込む箇所、管内壁面への水の圧力を下げなければならない。   The driving force for operating the bubble pump is an air pump that sends air into the pipe. In order to reduce the energy used by this pump, it is necessary to reduce the pressure of the water to the place where air is fed and the inner wall surface of the pipe.

ベルヌーイの定理により、管内を流れる水の流速が速いほど、管内壁面への圧力は低下することが知られている。これを応用し、気泡ポンプによって揚水される水の流量が管下端より流入するとき、摩擦損失が発生しない範囲内で、できる限り管内径を小さくし、管内を流れる水の流速を高め、管内壁面への圧力を低下させることで、空気を送り込むためにエアーポンプが使用するエネルギーを最小限に抑えることができる。   From Bernoulli's theorem, it is known that the higher the flow rate of water flowing in the pipe, the lower the pressure on the inner wall of the pipe. Applying this, when the flow rate of water pumped up by the bubble pump flows from the lower end of the pipe, the pipe inner diameter is made as small as possible within the range where friction loss does not occur, the flow velocity of the water flowing in the pipe is increased, and the inner wall surface of the pipe By reducing the pressure on the air pump, the energy used by the air pump to feed air can be minimized.

そして、この管内を板で細かく仕切り、気泡によって押し上げられる水が、管内壁面と気泡の隙間から気泡の下に回り込むのを防ぐことで、揚水途中の損失を抑えることができ、これによって、エネルギー効率の高い気泡ポンプを実現することができる。   The inside of the pipe is finely partitioned with a plate, and the water pushed up by the bubbles is prevented from flowing under the bubbles from the gap between the inner wall of the pipe and the bubbles. High bubble pump can be realized.

この考えに基づき設計された、揚水管1、整流板19、高圧力型エアーポンプ13 、大吐出量型エアーポンプ15から成る気泡ポンプを揚水に使用し、その揚水管1上端のノズル2の先に衝動水車9、発電機10から成る水力発電装置を置き、揚水によって発生する水流によって発電を行う。一方、水圧管5下端のノズル6の先にも衝動水車11、発電機12から成る水力発電装置を置き、水の落差によって発生する水流によって発電を行う。
また、揚水層3、水圧管5、受水槽7は、そこに流れる水の流量に対して十分な流水断面積をとり、摩擦損失が発生しないよう設計する。
A bubble pump composed of a pumping pipe 1, a rectifying plate 19, a high pressure type air pump 13 and a large discharge type air pump 15 designed based on this idea is used for pumping, and the tip of the nozzle 2 at the upper end of the pumping pipe 1 is used. A hydroelectric power generation device composed of an impulse water turbine 9 and a generator 10 is placed in the power generation system, and power is generated by a water flow generated by pumping. On the other hand, a hydroelectric generator comprising an impulse water wheel 11 and a generator 12 is also placed at the tip of the nozzle 6 at the lower end of the water pressure pipe 5, and power is generated by a water flow generated by a water drop.
Further, the pumped water layer 3, the water pressure pipe 5, and the water receiving tank 7 are designed so as to have a sufficient flow cross-sectional area with respect to the flow rate of the water flowing there, and no friction loss occurs.

本発明の気泡ポンプを使って揚水を行う水力発電装置によって、ダムや河川を必要とせず、設置場所を選ばない水力発電装置を実現することができる。   With the hydroelectric generator that pumps water using the bubble pump of the present invention, it is possible to realize a hydroelectric generator that does not require a dam or a river and does not select an installation location.

本発明装置の水圧管側は水の落差を利用した水力発電装置である。このため気泡ポンプの性能によって揚水を行える範囲内で、できるだけ高さのある水圧管を用い、水の落差を大きくするよう本装置の設計をすることで、より大きな電力を得ることができる。   The hydraulic pipe side of the apparatus of the present invention is a hydroelectric power generation apparatus using a water drop. For this reason, it is possible to obtain larger electric power by designing the apparatus so as to increase the head of the water by using a hydraulic pipe having a height as high as possible within the range in which pumping can be performed depending on the performance of the bubble pump.

図1は、本発明装置の実施例の構造を示した側面図であり、図2は、これに使用されている揚水管の断面図である。 FIG. 1 is a side view showing the structure of an embodiment of the apparatus of the present invention, and FIG. 2 is a cross-sectional view of a pumping pipe used for this.

本装置の起動は、高圧力型エアーポンプ13によって行う。起動時、揚水管1下端側面の空気吹き込み口には、揚水槽3の水面から空気吹き込み口までの水深分の水圧がかかっており、空気を送り込むには高圧力型のエアーポンプが必要になる。   The apparatus is activated by the high pressure air pump 13. At the time of start-up, water pressure is applied to the air blowing port at the lower end side of the pumping pipe 1 from the water surface of the pumping tank 3 to the air blowing port, and a high pressure type air pump is required to feed air. .

揚水管1に空気が送り込まれ始めると、揚水が行われ揚水管1内に水流が発生することで、ベルヌーイの定理により管内壁面への圧力が低下する。また、揚水管1内には空気と水が混在する状態になるため見かけ上の水位が低下し圧力が低下する。これら二つの作用により、揚水管1下端側面の空気吹き込み口にかかる圧力が低下するため、より小さな力で空気を送り込めるようになる。ここから大吐出量型エアーポンプ15を作動させ、より多くの空気を送り込むことで、気泡ポンプの揚水効率を上げることができる。   When air begins to be fed into the pumping pipe 1, pumping is performed and a water flow is generated in the pumping pipe 1, so that the pressure on the inner wall surface of the pipe is reduced according to Bernoulli's theorem. Further, since air and water are mixed in the pumping pipe 1, the apparent water level is lowered and the pressure is lowered. By these two actions, the pressure applied to the air blowing port on the lower end side surface of the pumping pipe 1 is lowered, so that air can be sent with a smaller force. The pumping efficiency of the bubble pump can be increased by operating the large discharge type air pump 15 from here and feeding more air.

揚水された水はノズル2から噴出する。この先に衝動水車9、発電機10から成る水力発電装置を置くことで発電を行い、水は揚水槽3に溜められ、空気は排気口4から排出される。   The pumped water is ejected from the nozzle 2. Electric power is generated by placing a hydraulic power generation device including an impulse water turbine 9 and a generator 10 ahead of this, water is stored in the pumping tank 3, and air is discharged from the exhaust port 4.

受水槽7から揚水槽3へと水が汲み上げられたため、水圧管5には下降流が発生し、その水がノズル6から噴出する。この先に衝動水車11、発電機12から成る水力発電装置を置くことで発電を行い、水は受水槽7に溜められる。   Since water is pumped from the water receiving tank 7 to the pumping tank 3, a downward flow is generated in the hydraulic pipe 5, and the water is ejected from the nozzle 6. Electric power is generated by placing a hydraulic power generation device including an impulse water turbine 11 and a power generator 12 before the water is collected in the water receiving tank 7.

衝動水車11と発電機12は水没を防ぐため気密室8に設置する。気密室8から空気が漏れないよう、水圧管5はその下端を受水槽7の水面下を通る形にし、受水槽7の水位が上昇した場合に備え、高圧力型エアーポンプ17を設置する。   The impulse water turbine 11 and the generator 12 are installed in the airtight chamber 8 to prevent submergence. In order to prevent air from leaking from the airtight chamber 8, the lower end of the water pressure pipe 5 is formed below the water surface of the water receiving tank 7, and a high pressure air pump 17 is installed in case the water level of the water receiving tank 7 rises.

これは、ダムや河川を必要とせず、設置場所を限定されない水力発電装置であるために、一般家庭や工場、その他施設での自家発電装置として利用することができる。   Since this is a hydroelectric power generation device that does not require a dam or a river and is not limited in installation location, it can be used as a private power generation device in ordinary households, factories, and other facilities.

気泡ポンプ揚水式複合水力発電装置の全体構造を示した側面図である。It is the side view which showed the whole structure of the bubble pump pumping-type composite hydroelectric generator. 気泡ポンプ揚水式複合水力発電装置の揚水管内部構造を示した断面図である。It is sectional drawing which showed the pumping pipe internal structure of the bubble pump pumping-type composite hydroelectric generator.

符号の説明Explanation of symbols

1 揚水管
2 ノズル
3 揚水槽
4 排気口
5 水圧管
6 ノズル
7 受水槽
8 気密室
9 衝動水車
10 発電機
11 衝動水車
12 発電機
13 高圧力型エアーポンプ
14 逆流防止弁
15 大吐出量型エアーポンプ
16 逆流防止弁
17 高圧力型エアーポンプ
18 逆流防止弁
19 整流板
DESCRIPTION OF SYMBOLS 1 Pumping pipe 2 Nozzle 3 Pumping tank 4 Exhaust port 5 Water pressure pipe 6 Nozzle 7 Receiving tank 8 Airtight chamber 9 Impulse water wheel 10 Generator 11 Impulse water wheel 12 Generator 13 High pressure type air pump 14 Backflow prevention valve 15 Large discharge type air Pump 16 Backflow prevention valve 17 High pressure type air pump 18 Backflow prevention valve 19 Rectification plate

Claims (3)

気泡ポンプによって汲み上げられた水が揚水管から噴出する力を利用した水力発電装置と、汲み上げられた水が水圧管を落下する力を利用した水力発電装置を組み合わせた複合水力発電装置。   A combined hydroelectric generator that combines a hydroelectric generator that uses the force of water pumped up by a bubble pump from a pumping pipe and a hydroelectric generator that uses the force of the pumped water falling down a hydraulic pipe. 管内に整流板を持った構造の揚水管と、起動用高圧力型エアーポンプ 、操業用大吐出量型エアーポンプから成る気泡ポンプ装置。   A bubble pump device consisting of a pumped-up pipe with a rectifying plate in the pipe, a high-pressure air pump for startup, and a large discharge air pump for operation. エネルギー効率の高い気泡ポンプを設計するための揚水管内径の決定法。   A method for determining the inside diameter of a pumping pipe to design an energy efficient bubble pump.
JP2006051879A 2006-02-28 2006-02-28 Airlift pump type combined pumped-storage hydraulic power plant Pending JP2007231760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006051879A JP2007231760A (en) 2006-02-28 2006-02-28 Airlift pump type combined pumped-storage hydraulic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006051879A JP2007231760A (en) 2006-02-28 2006-02-28 Airlift pump type combined pumped-storage hydraulic power plant

Publications (1)

Publication Number Publication Date
JP2007231760A true JP2007231760A (en) 2007-09-13

Family

ID=38552617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006051879A Pending JP2007231760A (en) 2006-02-28 2006-02-28 Airlift pump type combined pumped-storage hydraulic power plant

Country Status (1)

Country Link
JP (1) JP2007231760A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100514A1 (en) * 2008-02-11 2009-08-20 Igor Vladimirovich Prus Pneumatic hydraulic power plant and pneumatic hydraulic radial engine
WO2013038748A1 (en) * 2011-09-12 2013-03-21 ブルーアクア・インダストリー株式会社 Air diffusing method provided with hydroelectric power generating device and air diffuser
DE102012108222A1 (en) 2012-04-09 2013-10-10 Stefan Brosig Compressed gas storage power station i.e. compressed air storage power station, operating method for generating load-sensitive electric power, involves performing temperature change of liquid/gaseous mixture for around less than value
DE102013112196A1 (en) 2013-02-18 2014-01-23 Ed. Züblin Ag Method for recovering mechanical energy from compressed gas in compressed gas reservoir, involves controlling quasi-isothermal expansion of compressed gas, to produce electrical energy from mechanical work of working machine
WO2018208048A1 (en) * 2017-05-12 2018-11-15 오의식 Pumped-storage hydroelectricity generator
KR101999999B1 (en) * 2018-08-06 2019-07-15 정상혁 Waterwheel Using RAM Pump
JP2020531748A (en) * 2017-08-28 2020-11-05 マーク ジェイ. メイナードMark J. Maynard Pneumatic generator
GB2601502A (en) * 2020-12-01 2022-06-08 Tempest Brannan Energy storage arrangement

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100514A1 (en) * 2008-02-11 2009-08-20 Igor Vladimirovich Prus Pneumatic hydraulic power plant and pneumatic hydraulic radial engine
WO2013038748A1 (en) * 2011-09-12 2013-03-21 ブルーアクア・インダストリー株式会社 Air diffusing method provided with hydroelectric power generating device and air diffuser
DE102012108222A1 (en) 2012-04-09 2013-10-10 Stefan Brosig Compressed gas storage power station i.e. compressed air storage power station, operating method for generating load-sensitive electric power, involves performing temperature change of liquid/gaseous mixture for around less than value
DE102013112196A1 (en) 2013-02-18 2014-01-23 Ed. Züblin Ag Method for recovering mechanical energy from compressed gas in compressed gas reservoir, involves controlling quasi-isothermal expansion of compressed gas, to produce electrical energy from mechanical work of working machine
WO2014124637A2 (en) 2013-02-18 2014-08-21 Ed. Züblin Ag Approximately isothermally operating compressed-gas storage power plant with possibility for partly adiabatic operation in the case of a high power demand
WO2018208048A1 (en) * 2017-05-12 2018-11-15 오의식 Pumped-storage hydroelectricity generator
JP2020531748A (en) * 2017-08-28 2020-11-05 マーク ジェイ. メイナードMark J. Maynard Pneumatic generator
JP7230005B2 (en) 2017-08-28 2023-02-28 ジェイ. メイナード マーク air driven generator
KR101999999B1 (en) * 2018-08-06 2019-07-15 정상혁 Waterwheel Using RAM Pump
GB2601502A (en) * 2020-12-01 2022-06-08 Tempest Brannan Energy storage arrangement
GB2601502B (en) * 2020-12-01 2023-03-01 Tempest Brannan Energy storage arrangement

Similar Documents

Publication Publication Date Title
JP2007231760A (en) Airlift pump type combined pumped-storage hydraulic power plant
US7656050B2 (en) Hydroelectric pumped-storage
JP3925711B2 (en) Oxygen supply device for water
CN202209281U (en) High-efficiency energy-saving combined type self-sucking pump
JP2013019405A (en) Pressure fluid energy converting device of jet pump
JP2012237301A (en) Recirculating hydraulic power generation device using free-falling of sucked and raised water
JP2009236109A (en) Decompression generator
CN211449047U (en) Peripheral pump with self-suction function
CN201687726U (en) Synchronous self-priming pump
CN107676310A (en) Anti-suck axial-flow pump
JP2014062516A (en) Floating type hydraulic power generating system
JP5978452B2 (en) Bubble rising water flow generator
JP5062792B1 (en) Settling hydropower system.
CN109744183A (en) Solar energy water energy oxygen-enriching machine in fish pond
JP5495213B2 (en) Method and apparatus for increasing dissolved oxygen amount in bottom of water
CN209244855U (en) A kind of high priming stroke self priming pump
CN211752675U (en) Oil field produced water deoiling device
RU175276U1 (en) Near-dam low-pressure siphon type hydroelectric power station
CN206592341U (en) A kind of pump housing with Discharging bent-tube
JPH0429088Y2 (en)
JP2017053246A (en) Power generating system and power generating method
CN203130630U (en) Jet device for effluent oil recovery
CN106310722A (en) Device for removing suspended gas in liquids and application thereof
US20140241870A1 (en) Pumping apparatus as well as a diffusor for a pumping apparatus
KR20130016443A (en) Operation method of power generation aberration that does not give resistance to fluid flow pipe