JP2017053246A - Power generating system and power generating method - Google Patents

Power generating system and power generating method Download PDF

Info

Publication number
JP2017053246A
JP2017053246A JP2015176188A JP2015176188A JP2017053246A JP 2017053246 A JP2017053246 A JP 2017053246A JP 2015176188 A JP2015176188 A JP 2015176188A JP 2015176188 A JP2015176188 A JP 2015176188A JP 2017053246 A JP2017053246 A JP 2017053246A
Authority
JP
Japan
Prior art keywords
liquid
water
power generation
compressed air
water conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015176188A
Other languages
Japanese (ja)
Inventor
照治 横須賀
Teruji Yokosuka
照治 横須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2015176188A priority Critical patent/JP2017053246A/en
Publication of JP2017053246A publication Critical patent/JP2017053246A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings

Abstract

PROBLEM TO BE SOLVED: To provide a power generating system and a power generating method utilizing hydraulic pressure, compressed air and atmospheric pressure.SOLUTION: This invention provides a power generation method enabling compressed air to be utilized again and utilizing hydraulic pressure/compressed air and atmospheric pressure and provide a power generator based on the power generation method comprising a water tank 100 always filled with water; a withdrawal house of airtight structure 200 with its base part extending below a water surface in the water tank 100 and its upper surface showing a height from the water surface of about 7 m (meter) to 8 m, for example; a lower water flowing passage 260 connected below by a prescribed distance from the upper-most part of the withdrawal house 200 and extending in a substantial horizontal direction; a gate 300 capable of controlling to decide weather or not the withdrawn water at an inlet port (base part) of the lower flowing passage 260 is flowed to the lower flowing passage 260; a water flowing passage 350 for injecting compressed air into the lower flowing passage 260, coinciding the compressed air injecting direction with a water flowing direction to perform a more efficient supply of air into an atmospheric pressure chamber 400 and extending down from the bottom part of the atmospheric pressure chamber 400 to a part below the water surface in the water tank 100; and a power generating water turbine 700 of a water turbine type power generator arranged near below the water surface in the water tank 100 below the water flowing passage 350.SELECTED DRAWING: Figure 1

Description

本発明は水圧・圧縮空気及び大気圧を利用した発電システム及び発電方法に関するものである。   The present invention relates to a power generation system and a power generation method using water pressure / compressed air and atmospheric pressure.

従来の水力発電は、水車を用いたものが一般的である。この水車を用いた水力発電の原理は、管水路の途中に水車を設けて水の移動エネルギーを水車の回転エネルギーに変換し、更に水車の回転エネルギーを発電機による電気エネルギーに変える方法である。   Conventional hydroelectric power generation generally uses a water wheel. The principle of hydroelectric power generation using this water wheel is a method in which a water wheel is provided in the middle of a conduit to convert the moving energy of water into the rotational energy of the water wheel, and further convert the rotational energy of the water wheel into electrical energy generated by the generator.

特許文献1に記載の発明は、本願発明者が開発し開示したものであって、その具体的な発電方法は図4に示すとおりである。この従来方法は、水路管4底部の圧縮空気の吹出口から上向に移動する圧縮空気の作用により水路管4内の大気圧の重さを低下させ、かつ水路2側から水路管4内への流入水の比重を小さくし、該水路側に作用する大気圧の重さと水圧とをエネルギーとして作用させ水路管4内の水を高い位置まで押し上ることによって、貯水管1に海水又は河川水の水を常時流入部から流水しかつ水量調整部3を介して水路の水量を調節しながら、上部の傾斜水路管へ流入させかつ同時に水路直結の圧縮空気貯蔵部6から圧縮空気を水路管4へ注入し、更に前記水路管4に流れている水を押し上げて再度水車直結型の発電機Aに流水する水圧・圧縮空気及び大気圧を利用した地下水流発電方法である。   The invention described in Patent Document 1 was developed and disclosed by the inventors of the present application, and a specific power generation method is as shown in FIG. This conventional method reduces the weight of atmospheric pressure in the water channel pipe 4 by the action of the compressed air moving upward from the compressed air outlet at the bottom of the water channel tube 4, and enters the water channel tube 4 from the water channel 2 side. By reducing the specific gravity of the inflow water of the water and making the energy of the atmospheric pressure acting on the water channel side and the water pressure act as energy to push up the water in the water channel pipe 4 to a high position, While always flowing water from the inflow portion and adjusting the water amount of the water channel through the water amount adjusting unit 3, the water is introduced into the upper inclined water channel tube and at the same time compressed air is supplied from the compressed air storage unit 6 directly connected to the water channel to the water channel tube 4 This is a groundwater flow power generation method that uses water pressure / compressed air and atmospheric pressure to push the water flowing into the water pipe 4 and flow again into the turbine A generator A.

管上部の圧縮空気はブロアーBで吸い上げて再圧縮し、再度水路管4底部の圧縮空気の吹出口に送るように構成している。   The compressed air at the top of the pipe is sucked up by the blower B, recompressed, and sent again to the compressed air outlet at the bottom of the water pipe 4.

又、特許文献2に記載の発明も本願発明者が開発し、開示したものであって、図5に示すように、揚水路200内に水を充填させ、上部を気密構造として圧縮空気を貯蔵部320に貯蔵しておき、圧縮空気を圧縮空気噴出装置350に送って該揚水路200内に噴出し、上向に移動する圧縮空気の作用により大気圧の重さを低下させて揚水路200内の水の比重を小さくし、該揚水路200内に流入する水に作用する大気圧の重さと水圧とをエネルギーとして作用させ揚水路200内の水を高い位置まで押し上げ、溢れ出た水を落下口270から落下させ、落下させた水の落下エネルギーを利用して水車直結型の発電機500を駆動すると共に、揚水路200内を上部に上昇した圧縮空気はブロアーで吸い出すと共に圧縮空気貯蔵部に送って再利用していた。   The invention described in Patent Document 2 was also developed and disclosed by the inventor of the present application, and as shown in FIG. 5, the pumping channel 200 is filled with water, and the upper part is an airtight structure to store compressed air. The compressed air is stored in the unit 320, the compressed air is sent to the compressed air ejecting device 350, ejected into the pumped water channel 200, and the weight of the atmospheric pressure is reduced by the action of the compressed air moving upward, and the pumped water channel 200. The specific gravity of the water is reduced, the weight of the atmospheric pressure and the water pressure acting on the water flowing into the pumping channel 200 are used as energy to push the water in the pumping channel 200 to a high position, and the overflowing water The generator 500 directly connected to the water turbine is driven by using the falling energy of the dropped water from the dropping port 270, and the compressed air rising upward in the pumping path 200 is sucked out by the blower and the compressed air storage unit Send to It had used.

特開2006−77719号公報JP 2006-77719 A 特開2014−31786号公報JP, 2014-31786, A

しかしながら、特許文献1記載の発明は、管の底部に圧縮空気等を送り、底部に送られた空気が気泡となって管内を上昇するエネルギー(圧力差エネルギーを含む。)を利用し、管内を移動する水の移動エネルギーを利用して水車又はタービンを回動させており、エネルギー効率に不満があった。また、圧縮空気噴出手段の構成も大がかりであった。   However, in the invention described in Patent Document 1, compressed air or the like is sent to the bottom of the pipe, and the air sent to the bottom becomes bubbles to use energy (including pressure difference energy) that rises in the pipe. The water turbine or turbine was rotated using the kinetic energy of the moving water, and the energy efficiency was unsatisfactory. Moreover, the structure of the compressed air ejection means was also large.

特許文献2記載の発明も、同様に揚水路200内に圧縮空気を噴出し(射出し)、上向に移動する圧縮空気の作用により大気圧の重さを低下させて揚水路200内の水の比重を小さくし、揚水した水を落下させて発電していた。このため、特許文献1と同様の解決すべき課題を有していた。エネルギー効率を上げるために圧縮空気を蓄積する圧縮空気貯蔵部を備えていたが、構成が複雑であり、発電効率も満足のいくものではなかった。   Similarly, the invention described in Patent Document 2 also ejects (injects) compressed air into the pumping channel 200 and reduces the weight of the atmospheric pressure by the action of the compressed air that moves upward, thereby reducing the water in the pumping channel 200. The specific gravity was reduced, and the pumped water was dropped to generate electricity. For this reason, it had the same problem to be solved as in Patent Document 1. In order to increase energy efficiency, a compressed air storage unit for storing compressed air was provided, but the configuration was complicated and the power generation efficiency was not satisfactory.

更に発電効率が良く、且つ構成も簡略化された発電システム及び発電方法が求められていた。   Furthermore, there has been a demand for a power generation system and a power generation method with high power generation efficiency and a simplified configuration.

本発明は上記の如き課題を解決するためになされたもので、より発電効率が良く、発電量も大きくできる水圧・圧縮空気及び大気圧を利用した発電システム及び発電方法を提供する
係る課題を解決する一手段として例えば以下の構成を備える。
The present invention has been made to solve the above-described problems, and provides a power generation system and a power generation method using water pressure / compressed air and atmospheric pressure that can improve power generation efficiency and increase power generation. For example, the following configuration is provided as one means to do this.

即ち、少なくとも下部が液体で満たされた貯液部と、前記貯液部の液面下部に沈み、上部が液面上部に出る様に設置され、上端部近傍の前記液面より所定の高さ位置に液取り出し口が設けられた揚水路と、一定量の圧縮気体を貯蔵する圧縮気体貯蔵手段と、前記液取り出し口から揚水された液体を一定距離下方に導出する上部導水路と、前記上部導水路の下降端部に連結し前記液体を水平に送り出す入口に開閉式のゲートが配設された水平導水路と、水平導水路に連通し上部が気体圧縮機に連結し、下部は発電水車に前記液体を供給する導水路に連結し、少なくとも前記水平導水路連結部下方に前記液体を集液可能な集液部と、前記気体圧縮機で圧縮された気体を貯蔵する圧縮気体貯蔵タンクと、前記圧縮気体貯蔵タンクからの圧縮気体を前記水平導水路入口から前記集液部方向に射出する圧縮気体供給路と、前記集液部底部から前記発電機に集液した液体を供給するほぼ垂直に配設された導水路と、前記導水路下部に設けられ、前記導水路より落下する液体の落下エネルギーで発電する発電手段とを備えることを特徴とする発電システムとする。   That is, at least a lower part of the liquid storage part filled with a liquid and a liquid storage part that sinks to the lower part of the liquid level of the liquid storage part and is arranged so that the upper part protrudes to the upper part of the liquid level. A pumping path provided with a liquid outlet at a position, compressed gas storage means for storing a certain amount of compressed gas, an upper water conduit for leading the liquid pumped from the liquid outlet to a certain distance downward, and the upper part Connected to the descending end of the water conduit and a horizontal water conduit having an open / close gate at the inlet for horizontally sending out the liquid, the upper portion connected to the horizontal water conduit and connected to the gas compressor, and the lower portion to the power turbine A liquid collecting part that is connected to a water conduit that supplies the liquid to the liquid, and that can collect the liquid at least below the horizontal water conduit connecting part, and a compressed gas storage tank that stores a gas compressed by the gas compressor; The compressed gas from the compressed gas storage tank A compressed gas supply path that injects in the direction of the liquid collection part from a horizontal water supply path inlet; a substantially vertical water supply path that supplies liquid collected from the bottom of the liquid collection part to the generator; and the water supply path A power generation system is provided that includes a power generation unit that is provided in a lower portion and generates power with the falling energy of the liquid falling from the water conduit.

そして例えば、前記圧縮気体供給路端部は前記水平導水路内に配設された上下2段の圧縮空気射出口を備えることを特徴とする。或いは又例えば、前記集液部は前記水平導水路より圧縮空気と共に送り込まれる前記液体を下方に集液すると共に、前記水平導水路から所定間隔位置に前記水平導水路から出射される圧縮空気を上方に送るための仕切り板を備え、前記仕切り板は下方端部が集液した液体水面下まで延出し、上方端部が前記気体圧縮機への連結部近傍まで延出していることを特徴とする。   And, for example, the compressed gas supply path end is provided with two stages of upper and lower compressed air injection ports disposed in the horizontal water conduit. Alternatively, for example, the liquid collection unit collects the liquid fed together with the compressed air from the horizontal water conduit, and also upwards the compressed air emitted from the horizontal water conduit at a predetermined interval position from the horizontal water conduit. The partition plate has a lower end that extends to a level below the collected liquid water surface, and an upper end that extends to the vicinity of the connecting portion to the gas compressor. .

更に例えば、前記貯液部の液面上部を気密状態に維持する気密部と、該気密部内を加圧して大気圧以上の高圧状態に維持する高圧維持部とを備え、前記湯水路の高さを上げることが可能に構成することを特徴とする。
また例えば、前記気体圧縮手段は、高圧圧縮吸引ファンで前記集液部上部の空気を圧縮吸引することを特徴とする。
Further, for example, an airtight portion for maintaining the liquid level upper portion of the liquid storage portion in an airtight state, and a high pressure maintaining portion for pressurizing the inside of the airtight portion to maintain a high pressure state at or above atmospheric pressure, the height of the hot water channel It is characterized by being able to raise.
Further, for example, the gas compressing means compresses and sucks the air in the upper part of the liquid collecting part with a high-pressure compression suction fan.

または、少なくとも下部が液体で満たされた貯液部と、前記貯液部の液面下部に沈み、上部が液面上部に出る様に設置され、上端部近傍の前記液面より所定の高さ位置に液取り出し口が設けられた揚水路と、一定量の圧縮気体を貯蔵する圧縮気体貯蔵手段と、前記液取り出し口から揚水された液体を一定距離下方に導出する上部導水路と、前記上部導水路の下降端部に連結し前記液体を水平に送り出す入口に開閉式のゲートが配設された水平導水路と、水平導水路に連通し上部が気体圧縮機に連結し、下部は発電水車に前記液体を供給する導水路に連結し、少なくとも前記水平導水路連結部下方に前記液体を集液可能な集液部と、前記気体圧縮機で圧縮された気体を貯蔵する圧縮気体貯蔵タンクと、前記圧縮気体貯蔵タンクよりの圧縮気体を前記水平導水路入口から前記集液部方向に出射する圧縮気体供給路と、前記集液部底部から前記発電機に集液した液体を供給するほぼ垂直に配設された導水路と、前記導水路下部に設けられ、前記導水路より落下する液体の落下エネルギーで発電する発電手段とを備える発電システムの発電方法であって、発電開始前に堰圧縮気体貯蔵手段に圧縮空気を貯蔵すると共に、前記開閉式ゲートを閉めて前記揚水路内に前記液体を充填しておき、発電時に前記ゲートを開けて揚水されている液体と前記圧縮気体貯蔵手段に貯蔵されている気体を前記水平導水路から前記集液部に供給すると共に前記集液部上部から前記気体を前記気体圧縮機供給して圧縮することを特徴とする発電方法とする。   Or at least a lower part of the liquid storage part filled with liquid and a liquid storage part that sinks in the lower part of the liquid level of the liquid storage part and that the upper part comes out of the upper part of the liquid level and has a predetermined height above the liquid level near the upper end part. A pumping path provided with a liquid outlet at a position, compressed gas storage means for storing a certain amount of compressed gas, an upper water conduit for leading the liquid pumped from the liquid outlet to a certain distance downward, and the upper part Connected to the descending end of the water conduit and a horizontal water conduit having an open / close gate at the inlet for horizontally sending out the liquid, the upper portion connected to the horizontal water conduit and connected to the gas compressor, and the lower portion to the power turbine A liquid collecting part that is connected to a water conduit that supplies the liquid to the liquid, and that can collect the liquid at least below the horizontal water conduit connecting part, and a compressed gas storage tank that stores a gas compressed by the gas compressor; Compressed gas from the compressed gas storage tank A compressed gas supply path that exits in the direction of the liquid collection section from the horizontal water path entrance; a substantially vertical water supply path that supplies liquid collected from the bottom of the liquid collection section to the generator; and A power generation method of a power generation system provided at a lower part of a water channel and including a power generation unit that generates power with the falling energy of liquid falling from the water conduit, and stores compressed air in a weir compressed gas storage unit before starting power generation, The openable gate is closed to fill the pumping channel with the liquid, and the liquid pumped by opening the gate during power generation and the gas stored in the compressed gas storage means from the horizontal channel The power generation method is characterized in that the gas is supplied to the liquid collecting part and the gas is supplied from the upper part of the liquid collecting part to be compressed by the gas compressor.

本発明によれば、大気圧の有効利用により揚水した液体を水平導水路に導き
方向のどうす路の導き、圧縮気体の射出力を互いに同方向に移動する液体に作用させることは出来、効率よく導水路内の液体を発電水車に供給できる。
According to the present invention, the liquid pumped up by the effective use of atmospheric pressure is guided to the horizontal channel, the direction of the direction of the direction can be guided, and the jet power of the compressed gas can be applied to the liquid moving in the same direction. The liquid in the waterway can often be supplied to the power generation turbine.

また、使用した圧縮気体を再利用可能としたことにより圧縮電力を抑えることができ効率の良い発電が可能となる。   Further, since the compressed gas used can be reused, the compressed power can be suppressed and efficient power generation can be achieved.

本発明に係る一発明の実施の形態例の発電システムの基本構成を説明するための図である。It is a figure for demonstrating the basic composition of the electric power generation system of the example of one embodiment which concerns on this invention. 本実施の形態例の発電システムの圧縮空気噴射機構を説明するための図である。It is a figure for demonstrating the compressed air injection mechanism of the electric power generation system of this Example.

本発明に係る第2の実施の形態例の発電システムの構成を説明するための図である。It is a figure for demonstrating the structure of the electric power generation system of the 2nd Embodiment based on this invention. 従来の地下水流発電システムを示した概要図である。It is the schematic which showed the conventional underground water flow power generation system.

従来の地下水流発電システムの他の例を示した概要図である。It is the schematic which showed the other example of the conventional underground water flow power generation system.

以下、図面も参照して本発明に係る一発明の実施の形態例を詳細に説明する。
本発明に係る一発明の実施の形態例による発電方法は、発電に用いる液体の供給路内における水圧と、大気圧力と、圧縮気体エネルギーと、を有効利用した流水発電方法であり、液体の押上げ及び押し上げた液体の移動に勢いを付与するために使用する圧縮気体と、使用した圧縮気体とが余剰電力によりエネルギーとして事前貯蔵を可能にし、かつ大気圧を隔離した圧縮気体の循環システムによりエネルギーの再使用を可能にして効率の良い発電を可能としている。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
A power generation method according to an embodiment of the present invention is a flowing water power generation method that effectively uses water pressure, atmospheric pressure, and compressed gas energy in a liquid supply path used for power generation. The compressed gas used to give momentum to the movement of the lifted and pushed up liquid and the compressed gas used can be pre-stored as energy by surplus power, and energy is provided by a compressed gas circulation system that isolates atmospheric pressure. This makes it possible to reuse power and efficiently generate power.

即ち、少なくとも下部が液体、例えば水や海水、汽水、不凍液その他の液体で満たされた貯液部(水槽)と、貯液部の液面下部に沈み、上部が液面上部に出る様に設置され、上端部近傍の前記液面より所定の高さ位置に液取り出し口が設けられた気密構造の揚水路(揚水棟)と、一定量の圧縮気体、例えば大気、安定した特性の窒素等の気体を貯蔵する圧縮気体貯蔵タンクと、液取り出し口から揚水された液体を一定距離下方に導出する上部導水路と、上部導水路の下降端部に連結し液体を水平に送り出す入口に開閉式のゲートが配設された水平導水路と、水平導水路に連通し上部が気体圧縮機に連結し、下部は発電水車に液体を供給する導水路に連結し、少なくとも水平導水路連結部下方に液体を集液可能な集液部(大気圧室)と、気体圧縮機で圧縮された気体を貯蔵する圧縮気体貯蔵タンクと、圧縮気体貯蔵タンクよりの圧縮気体を水平導水路の入口(ゲート下流)から集液部方向に射出する気体出射口を備える圧縮気体供給路と、集液部底部から発電機に集液した液体を供給するほぼ垂直に配設された導水路と、導水路下部に設けられ、導水路より落下する液体の落下エネルギーで発電する発電機とを備えることを特徴とする発電システムとする。   That is, at least the lower part is set up so that the liquid part (water tank) filled with liquid, for example, water, seawater, brackish water, antifreeze or other liquid, sinks to the lower part of the liquid level of the liquid part, and the upper part comes out above the liquid level. An airtight pumping channel (pumping ridge) provided with a liquid outlet at a predetermined height position from the liquid level near the upper end, and a certain amount of compressed gas, for example, atmospheric air, nitrogen with stable characteristics, etc. A compressed gas storage tank that stores gas, an upper water conduit that leads the liquid pumped from the liquid outlet to a certain distance downward, and an open / close-type inlet that is connected to the descending end of the upper water conduit and feeds the liquid horizontally A horizontal waterway with a gate, an upper part connected to the horizontal waterway, connected to a gas compressor, a lower part connected to a waterway that supplies liquid to the water turbine, and at least liquid below the horizontal waterway connection part Liquid collecting part (atmospheric pressure chamber) that can collect liquid and gas compression A compressed gas storage tank for storing the gas compressed in step (b), a compressed gas supply path having a gas outlet for injecting the compressed gas from the compressed gas storage tank from the inlet (downstream of the gate) of the horizontal conduit to the liquid collection part; A substantially vertical water conduit that supplies liquid collected from the bottom of the liquid collector to the generator, and a generator that is provided at the bottom of the water conduit and that generates electricity using the falling energy of the liquid falling from the water conduit. It is set as the electric power generation system characterized by providing.

そして例えば、圧縮気体供給路端部は水平導水路内に配設された上下2段の圧縮空気射出口を備えることを特徴とする。或いは又例えば、集液部は水平導水路より圧縮空気と共に送り込まれる液体を下方に集液すると共に、前記水平導水路から所定間隔位置に水平導水路から出射される圧縮空気を上方に送るための仕切り板を備え、前記仕切り板は下方端部が集液した液体水面下まで延出し、上方端部が前記気体圧縮機への連結部近傍まで延出していることを特徴とする。   And, for example, the compressed gas supply path end is provided with two upper and lower compressed air injection ports arranged in the horizontal water conduit. Alternatively, for example, the liquid collection unit collects the liquid fed together with the compressed air from the horizontal water conduit, and sends the compressed air emitted from the horizontal water conduit to the predetermined interval position from the horizontal water conduit upward. A partition plate is provided, wherein the partition plate has a lower end portion extending below the liquid water surface where the liquid has been collected, and an upper end portion extending to the vicinity of the connecting portion to the gas compressor.

更に例えば、貯液部の液面上部を気密状態に維持する気密部と、該気密部内を加圧して大気圧以上の高圧状態に維持する高圧維持部とを備え、湯水路の高さを上げることが可能に構成することを特徴とする。
また例えば、気体圧縮手段は、高圧圧縮吸引ファンで前記集液部上部の空気を圧縮吸引することを特徴とする。
Furthermore, for example, an airtight part that maintains the liquid level upper part of the liquid storage part in an airtight state and a high pressure maintenance part that pressurizes the inside of the airtight part and maintains the high pressure state at or above atmospheric pressure to increase the height of the hot water channel. It is possible to configure.
Further, for example, the gas compressing means compresses and sucks the air in the upper part of the liquid collecting part with a high-pressure compression suction fan.

そして、以上の構成を備え、発電開始前に堰圧縮気体貯蔵手段に圧縮空気を貯蔵すると共に、前記開閉式ゲートを閉めて前記揚水路内に前記液体を充填しておき、発電時に前記ゲートを開けて揚水されている液体と前記圧縮気体貯蔵手段に貯蔵されている気体を前記水平導水路から前記集液部に供給すると共に前記集液部上部から前記気体を前記気体圧縮機供給して圧縮することを特徴とする発電方法とする。   And it is provided with the above composition, and before starting the power generation, the compressed air is stored in the dam compressed gas storage means, the openable gate is closed, the liquid is filled in the pumping channel, and the gate is opened during power generation. The liquid that is opened and pumped and the gas that is stored in the compressed gas storage means are supplied from the horizontal water conduit to the liquid collecting part, and the gas is supplied from the upper part of the liquid collecting part to the gas compressor for compression. It is set as the electric power generation method characterized by doing.

〔本実施の形態例の地下流水発電の概要〕
現在の水力発電はダム等に水を溜め、山間部で発電することが一般的であるが、本実施の形態例では、ある程度の要領の水槽や池があれば大気圧・圧縮空気・水圧を利用して揚水し、水・圧縮空気の循環再使用により、市街地等の平坦地においても水力発電を行うことができる。
[Outline of groundwater hydropower generation in this embodiment]
Current hydropower is generally stored in dams and power generation in mountainous areas, but in this embodiment, if there are a certain amount of water tanks or ponds, atmospheric pressure, compressed air, and water pressure can be generated. Water is pumped up and hydroelectric power can be generated even on flat land such as urban areas by circulating and reusing water and compressed air.

原理的には、大気圧0の環境では大気圧作用により水であれば約10mの高さとなる。そこで、大気圧を利用し真空域として水面上10.0m程度まで揚水し、揚水した水を圧縮空気を使用して大気圧域へ放出し、その際の落下エネルギーを利用して発電を行なう。   In principle, in an environment of zero atmospheric pressure, the height is about 10 m for water due to atmospheric pressure action. Therefore, the atmospheric pressure is used to pump up to about 10.0 m above the surface of the water as a vacuum region, and the pumped water is discharged to the atmospheric region using compressed air, and power is generated using the fall energy at that time.

大気圧域への放出に使用した圧縮空気は、例えばブロアー(送風機)で回収し再圧縮再使用可能に構成されている。ただし、最初の1台目の発電機を駆動するための起動用圧縮空気の製造は外部電力を使用しなければならない。   The compressed air used for discharge to the atmospheric pressure range is configured to be recovered by, for example, a blower (blower) and recompressed and reused. However, the manufacture of the compressed air for starting to drive the first first generator must use external power.

本実施の形態例では、ブロアーの動力源は当該力発電で発生した電力の18%〜30%程度を使用するのみで足りる。このことから、実利用可能発電電力は、本実施の形態例が発電する発電電力の80%〜70%程度になる(実際の発電システムでは発電機2台を設置し、ブロアーへは、たすきがけで電力供給を行うことにより、例え一方が停止しても、もう一方の発電機の電力でブロアーへの電力供給が確保される。)。   In the present embodiment, it is sufficient to use about 18% to 30% of the power generated by the power generation as the power source of the blower. Therefore, the actual usable power generation is about 80% to 70% of the power generated by the present embodiment (in the actual power generation system, two generators are installed, and the blower is struck. By supplying electric power at (1), even if one of them stops, the electric power supply to the blower is secured by the electric power of the other generator).

なお、本実施の形態例発電システムでは、圧縮空気製造に必要な電力については使用圧力値が150KPa〜110KPaの低圧力であれば圧縮空気の製造に大量の電力を必要としないが、水力発電の夜間電力の一部を使用して製造貯蔵することにより電力消費事情に合わせた発電電力が得られる。   In the power generation system of the present embodiment, a large amount of power is not required for the production of compressed air if the operating pressure value is a low pressure of 150 KPa to 110 KPa for the power necessary for the production of compressed air. By producing and storing a part of the nighttime electric power, the generated electric power according to the power consumption situation can be obtained.

本実施の形態例の具体的な発電原理をまとめると以下の通りである。
(1)大気圧を利用すると真空域において水は10m程度まで揚水可能である。
(2)圧縮空気を利用する際に、通常の大気圧から圧縮するのではなく、圧縮された空気を再利用すると、回収再加圧に必要とする電力は大気圧(空気)からの圧縮に比べて約1/10の電力となる。
The specific power generation principle of this embodiment is summarized as follows.
(1) When atmospheric pressure is used, water can be pumped up to about 10 m in a vacuum region.
(2) When using compressed air, instead of compressing from the normal atmospheric pressure, if the compressed air is reused, the power required for recovery and re-pressurization is compressed from the atmospheric pressure (air). Compared to about 1/10 of the power.

以上を踏まえて、エネルギー源として、(1)大気圧は、水銀柱760mmHg(トリチェリの実験)程度である。事前に空気を圧縮し、圧縮した圧縮空気(150KPa〜100kp)を圧縮空気貯蔵タンクに貯蔵(主たる使用目的のほか、水の蒸発及び凍結防止作用も期待できる。)する。   Based on the above, as an energy source, (1) atmospheric pressure is about 760 mmHg of mercury (Tritricelli experiment). Air is compressed in advance, and compressed compressed air (150 KPa to 100 kp) is stored in a compressed air storage tank (in addition to its main purpose of use, water evaporation and antifreezing can also be expected).

(2)予め揚水棟に必要な高さまで揚水(発電機起動時は外部電力により事前に必要な高さまで揚水)しておく。
(3)高圧圧縮機又はブロアーで大気を圧縮する際には電力を消費する。本実施の形態例では、2台の発電機を備えることを基本とし、本実施の形態例では1台目の発電開始時には外部電力を用いて圧縮し、2台目の発電以降は一方の暼電気で発電した電力の30%程度を圧縮のために消費(2台目以降の発電では先発の発電電力を使用)。
(2) Pump up to the required height in the pumping wing in advance (pumping to the required height in advance by external power when the generator is started).
(3) Electric power is consumed when the atmosphere is compressed by a high-pressure compressor or blower. In this embodiment, it is basically provided with two generators. In this embodiment, compression is performed using external power at the start of power generation of the first unit, and one of the power generators is used after the second power generation. About 30% of electricity generated by electricity is consumed for compression (the first and subsequent generations use the generated power).

(4)水については循環再使用する。
(5)圧縮空気については上記したように回収再加圧使用し、効率化を図ることにより発電電力の20%〜30%程度の消費電力て圧縮している。
(6)発電機1台の発電容量は100kw〜10000kwとすることができる。本例では水中設置型の水車発電機を使用し、水車一基で100kwを発電する仕様とし、10000kwであれば導水路を10本施設する。実利用可能電力は発電電力の50%〜70%を想定している。
(4) Recycle and reuse water.
(5) As described above, compressed air is compressed with a power consumption of about 20% to 30% of the generated power by using recovery and re-pressurization and improving efficiency.
(6) The power generation capacity of one generator can be set to 100 kW to 10000 kW. In this example, an underwater installation type turbine generator is used, and a specification is made to generate 100 kW with one turbine, and if it is 10000 kW, ten conduits are installed. The actual available power is assumed to be 50% to 70% of the generated power.

(7)発電単価は1kwh当り約6円〜8円とする(減価償却30年金利2%で計算した。)
(8)発電所建設用地は、発電機一基あたり200m2〜1000m2であり、例えば都市部における発電専用ビルの活用も考えられる。そのほかに例えば、都市空間の利用として学校、公園、スポーツ施設、ビルや駐車場の地下空間の利用、農地(耕作放棄地)の利用、湾港内の会場発電所、湖沼の上発電所等場所に限定されず自由に設置できる。
(7) The unit price of power generation is approximately 6-8 yen per 1 kWh (calculated with a depreciation 30-year interest rate of 2%).
(8) power plant site is the generator one group per 200 meters 2 to 1000 m 2, is also conceivable use example of the power generation only buildings in urban areas. In addition, for example, use of urban spaces such as schools, parks, sports facilities, underground spaces in buildings and parking lots, use of farmland (abandoned farmland), venue power plants in bay harbors, lakeside power plants, etc. It is not limited and can be installed freely.

以上の仕様に基づく本実施の形態例の発電システムによって、(1)化石燃料の使用削減による地球温暖化防止効果、(2)都市部であっても発電できるため、発電電力の利用による水素の製造とエコカーの普及推進(水素製造基地内への発電所建設)が実現できる。   According to the power generation system of the present embodiment based on the above specifications, (1) the effect of preventing global warming by reducing the use of fossil fuels, and (2) power generation even in urban areas, Production and promotion of eco-cars (construction of a power plant in a hydrogen production base) can be realized.

更に、構造も簡便であるため発電所の件セル費用も低く抑えることが可能である。   Furthermore, since the structure is simple, the cell cost of the power plant can be kept low.

〔本実施の形態例の発電機の基本構造例〕
以上を踏まえた本実施の形態例の発電システムの具体的な構成例を図1を参照して説明する。図1は本実施の形態例の発電システムの基本構成例を示す図である。
[Example of basic structure of generator of this embodiment]
Based on the above, a specific configuration example of the power generation system of the present embodiment will be described with reference to FIG. FIG. 1 is a diagram illustrating a basic configuration example of a power generation system according to the present embodiment.

図1に示す様に本実施の形態例では、常時液体である水が張られた水槽100と、基部が水槽100の水面下に延出し上面が水面より例えば7m(メートル)〜8mの高さの気密構造の揚水棟200と、揚水棟の最上部よりほぼ水平に延出する上部導水路210と上部導水路の端部より僅かに下側に延出する下方導水路250と、下方導水路250下部から再び水平方向に延出する下部導水路260と下部導水路250入り口(基部)に設けられた揚水された水を下部導水路260に流すか否かを制御可能なゲート300とを備える。下方導水路250は、圧縮空気が揚水棟100に逆流することがないようにする作用を兼ね備えている。下部導水路260は、水平方向に延出するのが原則であるが僅かに上方に傾斜させることにより、圧縮空気はほぼ必ず大気圧室400に送り出すことができる。   As shown in FIG. 1, in the present embodiment, a water tank 100 in which water which is always liquid is stretched, and a base portion extends below the water surface of the water tank 100 and the upper surface is, for example, a height of 7 m (meters) to 8 m above the water surface. The airtight structure of the pumping ridge 200, the upper water conduit 210 extending substantially horizontally from the top of the water pumping ridge, the lower water conduit 250 extending slightly below the end of the upper water conduit, and the lower water conduit 250 includes a lower water conduit 260 extending horizontally from the lower portion again, and a gate 300 that can control whether or not the pumped water provided at the entrance (base) of the lower water conduit 250 flows to the lower water conduit 260. . The lower water guide channel 250 has a function of preventing the compressed air from flowing back to the pumping tower 100. In principle, the lower water guide channel 260 extends in the horizontal direction, but the compressed air can almost always be sent to the atmospheric pressure chamber 400 by inclining slightly upward.

更に、下部導水路260先端部に連通する下部が下方導水路260より所定距離下面となるように配設された下部に揚水された水を保持可能な上部が気密に構成され、大気圧室400と、大気圧室400底部から水槽100の水面下まで延出する導水路350と、導水路350下部内の水槽100の水面下付近に配設された水車式発電機の発電水車700と、圧縮空気貯蔵タンク600と、大気圧室400上部から圧縮空気貯蔵タンク600間を連通する圧縮空気通路650と、圧縮空気通路650途中に配設された空気を圧縮可能な空気圧縮機500と、圧縮空気貯蔵タンク600に貯蔵されている圧縮空気を下部導水路260内に噴出するための圧縮空気導出管670とを含む。   Further, the upper part capable of holding the pumped water is hermetically configured, and the atmospheric pressure chamber 400 is configured such that the lower part communicating with the front end part of the lower water guide path 260 is disposed below the lower water guide path 260 by a predetermined distance. A water conduit 350 extending from the bottom of the atmospheric pressure chamber 400 to the bottom of the water tank 100, a water turbine 700 of a water turbine generator disposed near the water surface of the water tank 100 in the lower part of the water conduit 350, and a compression An air storage tank 600, a compressed air passage 650 communicating between the compressed air storage tank 600 from the upper part of the atmospheric pressure chamber 400, an air compressor 500 capable of compressing air disposed in the middle of the compressed air passage 650, and compressed air And a compressed air outlet pipe 670 for ejecting the compressed air stored in the storage tank 600 into the lower water conduit 260.

以上の構成において、本実施の形態例では、揚水棟100を水面よりほぼ7m〜8mの高さとし大気圧(100KPa)環境下で揚水棟100内を真空状態とすると、大気圧の作用で理論上は約10m(メートル)の高さまで実現できる計算であるが、確実に揚水できる範囲ということで7m〜8mの高さとしている。実際には本システムの起動前に不図示の揚水ポンプで水槽の水を揚水棟100の中全てを満たす様に揚水して揚水棟内を真空域にしている。   In the above configuration, in the present embodiment, when the pumping ridge 100 is set to a height of about 7 to 8 m from the water surface and the inside of the pumping ridge 100 is in a vacuum state under an atmospheric pressure (100 KPa) environment, the effect of atmospheric pressure is theoretical. Is a calculation that can be realized up to a height of about 10 m (meters), but it is a range of 7 m to 8 m because it is a range that can reliably pump water. Actually, before starting this system, the water in the water tank is pumped up by a pump (not shown) so as to fill all of the pumping tower 100, and the inside of the pumping tower is made a vacuum.

下方導水路250の断面積に比例して揚水棟100から大気圧室400への放流量上限が決まる。或いはゲート300の開口率により放流量上限が決まる。更に、本実施の形態例では、水・圧縮空気の射出方向のベクトルを同方向とし、水・圧縮空気の放出力が合体する方式を採用しているため、大気圧室400の圧力値の1.3倍から1.5倍程度(圧縮空気110KPa〜130KPa+水圧20KPa)の水圧流水で流水している。又、大気圧室300の水面は下部導水路260の下部より低く保つことにより、圧縮空気の揚水棟100側への逆流を防いでいる。   The upper limit of the discharge rate from the pumping ridge 100 to the atmospheric pressure chamber 400 is determined in proportion to the cross-sectional area of the lower water guide channel 250. Alternatively, the upper limit of the discharge flow rate is determined by the opening ratio of the gate 300. Furthermore, in this embodiment, since the vector of the injection direction of water / compressed air is set to the same direction and the discharge output of water / compressed air is combined, 1 of the pressure value of the atmospheric pressure chamber 400 is adopted. .3 times to 1.5 times (compressed air 110 KPa to 130 KPa + water pressure 20 KPa). Further, the water surface of the atmospheric pressure chamber 300 is kept lower than the lower part of the lower water conduit 260 to prevent the backflow of compressed air to the pumping ridge 100 side.

又、図1の例では、空気圧縮機をコンプレッサではなく、ブロアーを用い、例えば入口圧力120KPa、出口圧力130KPaとしている。これは、上部を気密構造とした大気圧室400からの回収空気を再利用しているためであり、低電力での空気圧縮を実現している。   In the example of FIG. 1, the air compressor is not a compressor but a blower, for example, an inlet pressure of 120 KPa and an outlet pressure of 130 KPa. This is because the air recovered from the atmospheric pressure chamber 400 having an airtight structure at the top is reused, and air compression with low power is realized.

以上の発電システムの具体的な構成例としては、揚水棟200を内径1.0mの円筒形に形成し、下部開口端を水槽100の底面より1.5mの台上に固定し、水面より上辺までの高さを5.0m〜9.0mとする。上部導水路210は高さ0.5m、幅1.0mの断面矩形で長さ1.5mとする。   As a specific configuration example of the above power generation system, the pumping ridge 200 is formed in a cylindrical shape having an inner diameter of 1.0 m, the lower opening end is fixed on a table 1.5 m from the bottom of the water tank 100, and the upper side from the water surface. The height up to 5.0 m to 9.0 m. The upper water conduit 210 has a rectangular cross section with a height of 0.5 m and a width of 1.0 m and a length of 1.5 m.

下方導水路250を高さ0.5m、幅1.0mの断面矩形で長さ2.0mとする。ゲート300と大気圧室400間の下方導水路250は高さ0.3m、幅1.0mの断面矩形で長さ0.3mとする。ゲート300は上下動するゲート板を下部に配置したときは閉接状態で、上部に配置したときは開放状態としている。   The lower water guide channel 250 is a cross-sectional rectangle having a height of 0.5 m and a width of 1.0 m, and a length of 2.0 m. The lower water guide channel 250 between the gate 300 and the atmospheric pressure chamber 400 is a cross-sectional rectangle having a height of 0.3 m and a width of 1.0 m and a length of 0.3 m. The gate 300 is in a closed state when a vertically moving gate plate is disposed at the lower portion, and is opened when it is disposed at the upper portion.

大気圧室400は、長さ3.0m、幅2.0mの断面矩形で、底部の先端(下方導水路開口部の対向位置)中央から内径0.5mの導水路350が水面下まで延出している。圧縮空気を噴出するための圧縮空気導出管670の先端部は、下方導水路250の入口近傍底部近傍と入口近傍上部近傍にそれぞれ横方向の配設された所定幅の棒状噴出管構造で、大気圧室400側に所定間隔で孔が配設されており、ここから圧縮空気を大気圧室方向に噴出する構造となっている。この構造を図2に示す。図2において、鎖線で示す横方向に圧縮空気出射管を配置し、矢印方向に圧縮空気を射出する射出穴を複数備えている。   The atmospheric pressure chamber 400 is a rectangular rectangle having a length of 3.0 m and a width of 2.0 m, and a water conduit 350 having an inner diameter of 0.5 m extends from the center of the bottom end (opposite position of the lower water conduit opening) to the bottom of the water surface. ing. The distal end portion of the compressed air outlet tube 670 for ejecting compressed air has a rod-like ejection tube structure with a predetermined width arranged in the lateral direction near the bottom near the inlet and near the top near the inlet of the lower water conduit 250. Holes are provided at a predetermined interval on the pressure chamber 400 side, and the compressed air is ejected from the holes toward the atmospheric pressure chamber. This structure is shown in FIG. In FIG. 2, a compressed air emission pipe is arranged in the horizontal direction indicated by a chain line, and a plurality of injection holes for injecting compressed air in the arrow direction are provided.

本実施の形態例では、水平方向に流れる水流に対して水の流れる方向に噴射するため、効率よく水流を強めることが出来、圧縮空気の噴射力を効率よく水に与えることができる。更に、この圧縮空気は大気圧室400に放出されるが、大気圧室400上部から空気圧縮機(ブロア)500に送られる。   In the present embodiment, the water flow is injected in the direction of water flow with respect to the water flow flowing in the horizontal direction, so that the water flow can be strengthened efficiently and the injection force of the compressed air can be efficiently given to the water. Further, this compressed air is discharged to the atmospheric pressure chamber 400, but is sent to the air compressor (blower) 500 from the upper portion of the atmospheric pressure chamber 400.

このため、圧縮された空気を再利用でき、空気圧縮機500で空気を圧縮する際に大気圧下の空気を圧縮するのに比べ少ない電力で所望の圧縮空気を得ることができる。圧縮空気圧は、例えば大気圧の10%〜30%増しの110KPa〜130KPaとすることが望ましい。これにより、ごく僅かに圧縮するのみで希望する圧縮空気を得ることができる。なお、本実施の形態例では、空気圧縮機として、大晃機械工業(株)の高性能ブロアーを採用している。   For this reason, the compressed air can be reused, and desired compressed air can be obtained with less power compared to compressing air under atmospheric pressure when the air is compressed by the air compressor 500. The compressed air pressure is desirably set to 110 KPa to 130 KPa, which is 10% to 30% higher than the atmospheric pressure, for example. As a result, the desired compressed air can be obtained with very little compression. In this embodiment, a high-performance blower manufactured by Otsuchi Machine Industry Co., Ltd. is used as the air compressor.

以上の方式で発電システムを構築すると、例えば、発電容量500KWの発電システムとする場合、後述するように圧縮空気を毎秒1.0m3程度下部揚水路内に上述した構成で噴出すると、毎秒0.7〜1.0m3の水を送り出すことができる。この水を導水路より下方に落下させると約58.3KWの発電が可能となる。 When the power generation system is constructed by the above method, for example, in the case of a power generation system having a power generation capacity of 500 KW, when compressed air is jetted into the lower pumping path in the lower pumping path at about 1.0 m 3 per second as described later, the power generation system is set to 0. 7 to 1.0 m 3 of water can be sent out. When this water is dropped below the water conduit, power generation of about 58.3 KW becomes possible.

大気圧室400で回収したの圧縮空気を再加圧するための高圧圧縮機を駆動するためには、発電した電力から13.0〜14.5KWの電力供給が必要である。このため、発電される電力のうち、実利用可能な電力は
58.3KW−12.7KW=45.6KW
となる。
In order to drive the high-pressure compressor for repressurizing the compressed air collected in the atmospheric pressure chamber 400, it is necessary to supply 13.0 to 14.5 KW of electric power from the generated electric power. Therefore, of the generated power, the actual usable power is 58.3 KW-12.7 KW = 45.6 KW.
It becomes.

以下、具体的に図面を参照して本実施の形態例の発電原理を説明する。図1は本発明に係る一発明の実施の形態例の発電システムの発電原理を説明するための図である。   Hereinafter, the principle of power generation according to this embodiment will be described with reference to the drawings. FIG. 1 is a diagram for explaining the power generation principle of a power generation system according to an embodiment of the present invention.

本実施の形態例の発電システムは、例えば、発電に必要な水を大気圧と圧縮空気の作用で貯水池の水面より約9メートル上まで押上げるほぼ円筒状の揚水路200と、揚水路200上部に気密状態を維持するように配設された圧縮空気回収・貯蔵機構300、揚水路200の落下口270下部の例えば水中に設けられた発電機に連結された水車(タービン)500等から構成され、落下口270からの水の落下エネルギーにより水車500を回転させて発電を行う。   The power generation system of the present embodiment includes, for example, a substantially cylindrical pumping channel 200 that pushes up water required for power generation to about 9 meters above the surface of the reservoir by the action of atmospheric pressure and compressed air, and an upper portion of the pumping channel 200. Compressed air recovery / storage mechanism 300 disposed so as to maintain an airtight state, a turbine (turbine) 500 connected to, for example, a generator provided under water at the lower part of drop port 270 of pumping channel 200, and the like. Then, the water turbine 500 is rotated by the falling energy of water from the dropping port 270 to generate power.

以上に説明した本実施の形態例における発電システムは、水槽100に設置された揚水路200の底辺位置の水圧と大気圧力と圧縮空気エネルギーとを利用した発電方法である。   The power generation system in the present embodiment described above is a power generation method that uses the water pressure, the atmospheric pressure, and the compressed air energy at the bottom position of the pumping channel 200 installed in the water tank 100.

揚水棟の揚水を大気圧室に送り出す際に圧縮空気の射出方向と水の流れる方向を完全に一致させることが出来、水を勢いよく送り出すことが出来、圧縮空気タンクへの圧縮空気の貯蔵は、余剰電力によるエネルギーとしての事前貯蔵に該当し、発電中においても、大気圧を隔離した圧縮空気の循環システムによりエネルギーの再使用を可能にした水圧・圧縮空気及び大気圧を利用した発電方法である。   When pumping the pumped water from the pumping tower to the atmospheric pressure chamber, the injection direction of the compressed air and the flow direction of the water can be completely matched, the water can be sent out vigorously, and the storage of the compressed air in the compressed air tank is This is a power generation method using water pressure / compressed air and atmospheric pressure that corresponds to pre-storage as energy by surplus power and enables energy reuse by a compressed air circulation system that isolates atmospheric pressure even during power generation. is there.

また大気圧室400内に射出される圧縮空気を外部に放出させることなく再利用可能としたことにより、発電の前に圧縮空気を充填させておくだけで、少ない電力で発電中の圧縮空気生成を可能とした、水圧・圧縮空気及び大気圧を利用した発電機構であるから、無尽蔵・無公害・低価格の天然エネルギーを最大限利用した発電システムを提供するものである。   In addition, since compressed air injected into the atmospheric pressure chamber 400 can be reused without being released to the outside, it is possible to generate compressed air during power generation with a small amount of power just by filling the compressed air before power generation. This is a power generation mechanism that uses water pressure, compressed air, and atmospheric pressure, and therefore provides a power generation system that uses inexhaustible, non-polluting, and low-cost natural energy to the fullest.

第2の実施の形態例
本発明に係る第2の実施の形態例では、大気圧室400に内に噴射される圧縮空気の再利用にあたりより効率的に圧縮空気を回収可能な構成を備える。第2の実施の形態例では、第1の実施の形態例の大気室400の構造に加え、以下の構造を備えることにより効率の良い圧縮空気の回収が期待できる。
Second Embodiment In the second embodiment according to the present invention, a configuration is provided in which compressed air can be recovered more efficiently when the compressed air injected into the atmospheric pressure chamber 400 is reused. In the second embodiment, efficient compressed air recovery can be expected by providing the following structure in addition to the structure of the atmospheric chamber 400 of the first embodiment.

第2の実施の形態例では、大気室400上部の下部導水路260の出口の上部に空気圧縮機500に回収空気を送る通路を配置する。   In the second embodiment, a passage for sending recovered air to the air compressor 500 is disposed above the outlet of the lower water conduit 260 above the atmosphere chamber 400.

そして、下部導水路260から大気室400内に流れ落ちる水表面410の下部まで延出し、上部が空気圧縮機500への回収空気通路近傍まで圧縮空気区分隔離板450を設けている。これにより、下部導水路260から水と共に圧縮空気が噴出されるが、水は圧縮空気区分隔離板450に当たることはあってもそのまま下方に落下し、圧縮空気は圧縮空気区分隔離板450で隔離された空間を上に向かって上昇するため、効率よく回収空気通路に来ることができる。   Then, a compressed air section separator 450 is provided extending from the lower water conduit 260 to the lower portion of the water surface 410 that flows down into the atmospheric chamber 400, and the upper portion to the vicinity of the recovery air passage to the air compressor 500. As a result, compressed air is ejected from the lower water conduit 260 together with water. However, even if the water hits the compressed air section separator 450, it falls down as it is, and the compressed air is isolated by the compressed air section separator 450. Therefore, it is possible to efficiently come to the recovery air passage.

第3の実施の形態例
以上の実施の形態例の説明では、水槽100表面の気圧は大気圧であり、大気圧室400についても特別の加圧処理などは施していなかった。しかしながら、例えば水槽100の表面全体を気密構造とし、表面の気圧を例えば大気圧の1.2倍あるいは1.5倍に加圧する。
Third Embodiment In the description of the above embodiment, the atmospheric pressure on the surface of the water tank 100 is atmospheric pressure, and the atmospheric pressure chamber 400 is not subjected to special pressurizing treatment. However, for example, the entire surface of the water tank 100 has an airtight structure, and the air pressure on the surface is increased to, for example, 1.2 times or 1.5 times the atmospheric pressure.

このように水槽100表面の圧力を上げることにより、揚水棟の揚水可能高さをより高くすることが出来る。水槽100表面の圧力1.2倍では揚水棟上面の水面よりの高さを8m〜10mと上げることができ、より高発電電力が得られる。この場合の空気を圧縮するブロアの仕様は入力圧力140KPa、出口圧力150KPaと出来る。   Thus, by raising the pressure on the surface of the water tank 100, the pumpable height of the pumping tower can be further increased. When the pressure on the surface of the water tank 100 is 1.2 times, the height of the upper surface of the pumping tower from the water surface can be raised to 8 to 10 m, and higher power generation can be obtained. In this case, the specification of the blower for compressing air can be an input pressure of 140 KPa and an outlet pressure of 150 KPa.

水槽100表面の圧力1.5倍では揚水棟上面の水面よりの高さを8m〜12mと上げることができ、さらに高発電電力が得られる。この場合の空気を圧縮するブロアの仕様は入力圧力170KPa、出口圧力180KPaと出来る。   When the pressure on the surface of the water tank 100 is 1.5 times, the height of the upper surface of the pumping ridge from the water surface can be raised to 8 to 12 m, and further high power generation can be obtained. In this case, the specification of the blower for compressing air can be set to an input pressure of 170 KPa and an outlet pressure of 180 KPa.

他の実施の形態例
水槽100内の水を発電に用いる例について説明した。しかし、発電機の水車を回転させる液体として水に限るものではなく、海水でも良い。あるいは、汽水であっても良く、不凍液であっても良い。揚水路が十分な容量の液体貯蔵部に設置されていれば使用する液体種別に制限はない。
Other Embodiments An example in which water in the water tank 100 is used for power generation has been described. However, the liquid for rotating the water turbine of the generator is not limited to water, but may be seawater. Alternatively, brackish water or antifreeze may be used. There is no restriction on the type of liquid used as long as the pumping path is installed in a liquid storage unit with a sufficient capacity.

更に、圧縮空気は気密に構成されていることから、空気以外の気体、例えば、窒素などを充填したものであっても良い。   Furthermore, since compressed air is airtight, it may be filled with a gas other than air, such as nitrogen.

Claims (6)

少なくとも下部が液体で満たされた貯液部と、
前記貯液部の液面下部に沈み、上部が液面上部に出る様に設置され、上端部近傍の前記液面より所定の高さ位置に液取り出し口が設けられた揚水路と、
一定量の圧縮気体を貯蔵する圧縮気体貯蔵手段と、
前記液取り出し口から揚水された液体を一定距離下方に導出する上部導水路と、
前記上部導水路の下降端部に連結し前記液体を水平に送り出す入口に開閉式のゲートが配設された水平導水路と、
水平導水路に連通し上部が気体圧縮機に連結し、下部は発電水車に前記液体を供給する導水路に連結し、少なくとも前記水平導水路連結部下方に前記液体を集液可能な集液部と、
前記気体圧縮機で圧縮された気体を貯蔵する圧縮気体貯蔵タンクと、
前記圧縮気体貯蔵タンクよりの圧縮気体を前記水平導水路入口から前記集液部方向に出射する圧縮気体供給路と、
前記集液部底部から前記発電機に集液した液体を供給するほぼ垂直に配設された導水路と、
前記導水路下部に設けられ、前記導水路より落下する液体の落下エネルギーで発電する発電手段とを備えることを特徴とする発電システム。
A liquid reservoir at least at the bottom filled with liquid;
A pumping path that sinks in the lower part of the liquid level of the liquid storage part, is installed so that the upper part comes out above the liquid level, and is provided with a liquid outlet at a predetermined height position from the liquid level near the upper end part;
Compressed gas storage means for storing a certain amount of compressed gas;
An upper water conduit for leading the liquid pumped from the liquid outlet to a certain distance downward;
A horizontal waterway that is connected to a descending end of the upper waterway and is provided with an openable / closable gate at an inlet for horizontally feeding the liquid;
The upper part is connected to a gas compressor, the upper part is connected to a gas compressor, the lower part is connected to a water supply path for supplying the liquid to the power generation turbine, and the liquid collecting part can collect the liquid at least below the horizontal water conduit connection part When,
A compressed gas storage tank for storing gas compressed by the gas compressor;
A compressed gas supply path for emitting compressed gas from the compressed gas storage tank from the horizontal water conduit inlet toward the liquid collection part; and
A substantially vertical water conduit that supplies the collected liquid from the bottom of the liquid collection part to the generator;
A power generation system comprising: a power generation unit provided at a lower portion of the water conduit and configured to generate power with the falling energy of the liquid falling from the water conduit.
前記圧縮気体供給路端部は前記水平導水路内に配設された上下2段の圧縮空気射出口を備えることを特徴とする請求項1記載の発電システム。 2. The power generation system according to claim 1, wherein the end portion of the compressed gas supply path includes upper and lower two-stage compressed air injection ports disposed in the horizontal water conduit. 前記集液部は前記水平導水路から圧縮空気と共に送り込まれる前記液体を下方に集液すると共に、前記水平導水路から所定間隔位置に前記水平導水路から射出される圧縮空気を上方に送るための仕切り板を備え、
前記仕切り板は下方端部が集液した液体水面下まで延出し、上方端部が前記気体圧縮機への連結部近傍まで延出していることを特徴とする請求項1または請求項2記載の発電システム。
The liquid collecting section collects the liquid fed together with the compressed air from the horizontal water conduit, and also sends the compressed air ejected from the horizontal water conduit upward from the horizontal water conduit to a predetermined interval position. With a partition plate,
3. The partition plate according to claim 1, wherein a lower end of the partition plate extends to a position below the liquid water surface where the liquid is collected, and an upper end of the partition plate extends to the vicinity of a connection portion to the gas compressor. Power generation system.
前記貯液部の液面上部を気密状態に維持する気密部と、
該気密部内を加圧して大気圧以上の高圧状態に維持する高圧維持部とを備え、前記湯水路の高さを上げることが可能に構成することを特徴とする請求項1乃至請求項3のいずれかに記載の発電システム。
An airtight part for maintaining the liquid surface upper part of the liquid storage part in an airtight state;
The high pressure maintenance part which pressurizes the inside of this airtight part and maintains it in the high pressure state more than atmospheric pressure is comprised, The structure of the said hot water channel can be raised, The structure of Claim 1 thru | or 3 characterized by the above-mentioned. The power generation system according to any one of the above.
前記気体圧縮手段は、高圧圧縮吸引ファンで前記集液部上部の空気を圧縮吸引することを特徴とする請求項1乃至請求項4のいずれかに記載の発電システム。 5. The power generation system according to claim 1, wherein the gas compressing unit compresses and sucks air in the upper portion of the liquid collection unit with a high-pressure compression suction fan. 少なくとも下部が液体で満たされた貯液部と、前記貯液部の液面下部に沈み、上部が液面上部に出る様に設置され、上端部近傍の前記液面より所定の高さ位置に液取り出し口が設けられた揚水路と、一定量の圧縮気体を貯蔵する圧縮気体貯蔵手段と、前記液取り出し口から揚水された液体を一定距離下方に導出する上部導水路と、前記上部導水路の下降端部に連結し前記液体を水平に送り出す入口に開閉式のゲートが配設された水平導水路と、水平導水路に連通し上部が気体圧縮機に連結し、下部は発電水車に前記液体を供給する導水路に連結し、少なくとも前記水平導水路連結部下方に前記液体を集液可能な集液部と、前記気体圧縮機で圧縮された気体を貯蔵する圧縮気体貯蔵タンクと、前記圧縮気体貯蔵タンクよりの圧縮気体を前記水平導水路入口から前記集液部方向に出射する圧縮気体供給路と、前記集液部底部から前記発電機に集液した液体を供給するほぼ垂直に配設された導水路と、前記導水路下部に設けられ、前記導水路より落下する液体の落下エネルギーで発電する発電手段とを備える発電システムの発電方法であって、
発電開始前に堰圧縮気体貯蔵手段に圧縮空気を貯蔵すると共に、前記開閉式ゲートを閉めて前記揚水路内に前記液体を充填しておき、発電時に前記ゲートを開けて揚水されている液体と前記圧縮気体貯蔵手段に貯蔵されている気体を前記水平導水路から前記集液部に供給すると共に前記集液部上部から前記気体を前記気体圧縮機供給して圧縮することを特徴とする発電方法。
At least the lower part is filled with liquid, and the liquid storage part is placed so that it sinks to the lower part of the liquid level and the upper part comes out of the upper part of the liquid level. A pumping path provided with a liquid outlet, a compressed gas storage means for storing a certain amount of compressed gas, an upper water channel for leading the liquid pumped from the liquid outlet to a certain distance downward, and the upper water path A horizontal water conduit having an openable / closable gate disposed at an inlet for horizontally feeding the liquid connected to a descending end of the liquid, an upper portion communicating with the horizontal water conduit and connected to a gas compressor, and a lower portion connected to the power turbine. Connected to a water conduit for supplying a liquid, at least a liquid collecting portion capable of collecting the liquid below the horizontal water conduit connecting portion, a compressed gas storage tank for storing a gas compressed by the gas compressor, and The compressed gas from the compressed gas storage tank A compressed gas supply path that exits from the inlet of the water channel in the direction of the liquid collection part, a substantially vertical water supply path that supplies liquid collected from the bottom of the liquid collection part to the generator, and a lower part of the water supply path A power generation method for a power generation system, comprising: a power generation means for generating power with the falling energy of liquid falling from the water conduit,
Store compressed air in the dam compressed gas storage means before starting power generation, close the openable gate to fill the pumping channel with the liquid, open the gate during power generation, and the liquid pumped Supplying the gas stored in the compressed gas storage means from the horizontal water conduit to the liquid collecting part, and supplying the gas from the upper part of the liquid collecting part to compress the gas by compressing it. .
JP2015176188A 2015-09-07 2015-09-07 Power generating system and power generating method Pending JP2017053246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015176188A JP2017053246A (en) 2015-09-07 2015-09-07 Power generating system and power generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176188A JP2017053246A (en) 2015-09-07 2015-09-07 Power generating system and power generating method

Publications (1)

Publication Number Publication Date
JP2017053246A true JP2017053246A (en) 2017-03-16

Family

ID=58317550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176188A Pending JP2017053246A (en) 2015-09-07 2015-09-07 Power generating system and power generating method

Country Status (1)

Country Link
JP (1) JP2017053246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148119A (en) * 2020-03-16 2021-09-27 豊 巽 Circulation type hydraulic power generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021148119A (en) * 2020-03-16 2021-09-27 豊 巽 Circulation type hydraulic power generation

Similar Documents

Publication Publication Date Title
US7377492B2 (en) Hydraulic liquid pumping system
US7656050B2 (en) Hydroelectric pumped-storage
US7911073B2 (en) System and method for a hydro-hydraulic gravitational generator
US20100170236A1 (en) Atmospheric pressure hydropower plant
TW201413112A (en) Buoyancy power generating system in deep ocean
US9163606B2 (en) Hydro-electric tube generation
US20100117364A1 (en) Buoyancy hydro power generator and method
JP2016517923A (en) Submersible hydroelectric generator device and method for draining water from such device
US10205323B2 (en) Hydroelectricity and compressed-air power converter system
CN104121139A (en) Multi-stage hydraulic ram electricity-generating device
JP2017053246A (en) Power generating system and power generating method
KR20120003791A (en) Pumping-up power generation system
CN114251215A (en) Composite power generation system based on water pumping and energy storage
CN111156126A (en) Tidal current energy power generation device and using method
CN102748196A (en) Reflux water pumping hydroelectric generation device
JP2017078354A (en) Power generation system
WO2020239131A1 (en) Integrated energy storage pool and tower foundation of vertical-axis wind turbine
CN206592243U (en) A kind of wind-driven water pumping energy accumulation electricity generator
US20160146178A1 (en) Hydroelectricity and Compressed-air Power Plant System
CN217556858U (en) Reservoir reciprocating circulation hydroelectric generation system
JP2013174126A (en) Siphon-type high efficiency hydraulic power generation system
KR20130047227A (en) The power system for improving energy efficiency
JP3214471U (en) Reservoir type hydroelectric generator
CN202031762U (en) Pipe and reservoir type hydropower station
JP2006077719A (en) Underground stream power generating method using water pressure, compressed air and atmospheric pressure and its power generating mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200319

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200929

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200929

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201116

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201117

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201228

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210106

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210120

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210413

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

C126 Written invitation by the chief administrative judge to file intermediate amendments

Free format text: JAPANESE INTERMEDIATE CODE: C126

Effective date: 20210720

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211007

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211109

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211109