JP2013174126A - Siphon-type high efficiency hydraulic power generation system - Google Patents

Siphon-type high efficiency hydraulic power generation system Download PDF

Info

Publication number
JP2013174126A
JP2013174126A JP2012023800A JP2012023800A JP2013174126A JP 2013174126 A JP2013174126 A JP 2013174126A JP 2012023800 A JP2012023800 A JP 2012023800A JP 2012023800 A JP2012023800 A JP 2012023800A JP 2013174126 A JP2013174126 A JP 2013174126A
Authority
JP
Japan
Prior art keywords
water
water tank
tank
supply pipe
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012023800A
Other languages
Japanese (ja)
Other versions
JP5028655B1 (en
Inventor
Ikuo Oga
大賀偉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OGA KK
Original Assignee
OGA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OGA KK filed Critical OGA KK
Priority to JP2012023800A priority Critical patent/JP5028655B1/en
Application granted granted Critical
Publication of JP5028655B1 publication Critical patent/JP5028655B1/en
Publication of JP2013174126A publication Critical patent/JP2013174126A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/50Hydropower in dwellings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for hydraulic power generation utilizing the principle of siphon to use the same water many times with high efficiency and little use energy.SOLUTION: Water tanks are arranged stepwise, wherein piping from the first water tank to the second water tank is installed in a siphon state, and a generator is mounted to an outlet. Piping from the second water tank to the third water tank is then installed in a siphon state, and a generator is mounted to an outlet. Subsequent water tanks after the third tank are arranged in the same manner with a difference in water levels. Water is supplied from the first water tank to the second water tank to generate power, and the same water is supplied from the second water tank to the third water tank to generate power. The same water is supplied one after another to continue power generation. Since the principle of siphon is used all this time, power is generated using no energy. Water is returned to the first water tank from the last water tank by a pump, and power generation is repeated again from the beginning.

Description

近年、原子力発電の神話が揺らぎ、電力不足に陥り、節電の重要性と、
必然性が叫ばれています。最近は、企業のみならず、一般家庭でも、
節電への協力、努力が、不可欠と成って来ています。太陽光発電や照明
のLED化等、いろんな形で節電が実施されています。
In recent years, the myth of nuclear power generation has fluctuated and power has fallen short of the importance of power saving.
The necessity is screamed. Recently, not only companies, but also general households,
Cooperation and efforts to save electricity have become indispensable. There are various ways to save electricity, such as solar power generation and LED lighting.

電力不足を補う為に、休止中の火力発電所を再稼働させたりしていま
すが、燃料代が高い為に、電気料金値上げなどの声も上がって来ていま
す。
In order to make up for the power shortage, the thermal power stations that are not in operation are restarted. However, due to the high fuel costs, there are calls for higher electricity prices.

燃料費が安く、効率のよい発電が切に求められています。     Fuel costs are low and efficient power generation is urgently needed.

特開2004-52632号公開が、サイフォン管を利用した水力発電
システムが、述べられています。
Japanese Unexamined Patent Publication No. 2004-52632 describes a hydroelectric power generation system using a siphon tube.

特開2003-232273号公開が、サイフォン型水力発電機が述べられて
います。
Japanese Laid-Open Patent Publication No. 2003-232273 describes a siphon type hydroelectric generator.

特開2004-239163号公開が、サイフォン原理を使った水車設備が
述べられています。
Japanese Laid-Open Patent Publication No. 2004-239163 describes water turbine equipment using the siphon principle.

特開第2002-161845号公開は、サイフォン水力発電装置が、述べられています。サイフォン管に多数の水車と発電機を取り付けています。       Japanese Laid-Open Patent Publication No. 2002-161845 describes a siphon hydroelectric generator. A large number of turbines and generators are attached to the siphon tube.

特開2004-52632号公開Published Japanese Patent Application Laid-Open No. 2004-52632 特開2003-232273号公開JP 2003-232273 published 特開2004-239163号公開JP 2004-239163 published 特開2002-161845号公開JP 2002-161845 published

サイフォンの原理、即ち、水を入れた水槽を2個準備し、2個の水槽
をサイフォン状に配管で繋ぎ、配管の中を水で一杯にし、どちらかの
水面が高い時は、水面の高い水槽から、水面の低い水槽へ、水が、外部
からのエネルギーの供給を受けなくても、配管の中を移動し始め、2個
の水槽の水面が、同じに成ると止まります。
サイフォン状の配管の高さは、理論上は、10M迄、管内抵抗など考慮し
実際上は、8Mの高さまであっても、配管の中を水が移動します。
高い方の水槽から、8Mの高さまで、水が、サイフォン現象で、配管の中
を登って行き、8Mの高さから低い方の水槽に、落ちて行きます。
The principle of siphon, that is, prepare two water tanks with water, connect the two water tanks in a siphon shape, fill the pipe with water, and when either water surface is high, the water level is high Even if water does not receive external energy supply from the aquarium to the low aquarium, it starts to move in the pipe and stops when the water level of the two aquariums is the same.
The height of the siphon-like pipe is theoretically up to 10M. Considering the resistance in the pipe, water moves through the pipe even if it is actually 8M high.
From the higher tank, the water rises up to 8M in the pipe by the siphon phenomenon and falls from the height of 8M to the lower tank.

水槽に貯めた水をサイフォンの原理を利用し、動力源を極力少なくし、
水槽とサイフォン管を利用し、8M近くの高い落差を発生させ、更に、水
を使い捨てるのではなく、循環させて、何度も発電に使い、効率よく
発電する事を課題とします。
Using the siphon principle, the water stored in the tank is reduced as much as possible,
Using water tanks and siphon pipes, a high head of nearly 8M is generated, and water is not thrown away, but is circulated and used repeatedly for power generation.

水槽から送水配管をサイフォン状に配管し、前記水槽から前記送水
配管を使い、水を送水し、配管の先端部放流側に取り付けた水力発電機
を駆動させ発電し、前記発電に使用した、前記水を放流せず、繰り返し
発電に使用する事を特徴とします。
Piping a water supply pipe from a water tank, using the water supply pipe from the water tank, supplying water, driving a hydroelectric generator attached to the discharge end of the pipe, generating electricity, and used for the power generation, It is characterized by being used repeatedly for power generation without discharging water.

水槽は、固定で、他の水槽は、前記他の水槽を上下させる上下装置に
セットされ、前記他の水槽が前記水槽より低い位置にある時は、前記水槽
から前記他の水槽へ前記送水配管を使い送水し、前記他の水槽の水位が
高くなると、前記送水を止め、前記上下装置は、前記他の水槽を上の位置
に上昇させ、前記他の水槽は、前記水槽より高い位置に成り、前記他の
水槽から前記水槽に逆送水配管を使い、逆送水を始め、前記他の水槽の
水位が下がり、前記水槽の水位が増えて高く成ったら、前記逆送水を止め、
前記上下装置は、前記他の水槽を下の位置に下降させ、前記他の水槽が
前記水槽より低い位置に成り、前記水槽から前記他の水槽へ前記送水配管
を使い、前記送水を始め、前記他の水槽を上下させ、前記送水と前記
逆送水を繰り返す事を特徴とします。
The water tank is fixed, and the other water tank is set in an up-and-down device that raises and lowers the other water tank, and when the other water tank is lower than the water tank, the water supply pipe from the water tank to the other water tank When the water level of the other water tank becomes high, the water supply is stopped, and the up-and-down device raises the other water tank to the upper position, and the other water tank becomes higher than the water tank. , Using a reverse water supply pipe from the other water tank to the water tank, starting reverse water supply, when the water level of the other water tank is lowered and the water level of the water tank is increased and increased, the reverse water supply is stopped,
The elevating device lowers the other water tank to a lower position, the other water tank is at a lower position than the water tank, uses the water supply pipe from the water tank to the other water tank, starts the water supply, It is characterized by repeating the above water supply and the above reverse water supply by raising and lowering other water tanks.

水槽の中に、加減圧式水筒を浸け、前記加減圧式水筒は、上面が閉鎖
され、前記加減圧式水筒上面に加減圧水筒用加減圧ポンプを取り付けし、
前記加減圧式水筒上面に前記送水配管をサイフォン状に配管し、前記
加減圧式水筒下面は、解放で、前記下面に下から上にのみ水を通す逆止弁
を取り付ける事を特徴とします。
In the water tank, immerse the pressure-intensification type water bottle, the top surface of the pressure-intensification type water cylinder is closed, and a pressure-intensification pump for pressure-intensification water cylinder is attached to the top surface in the pressure-intensification type water cylinder,
The water supply pipe is siphoned on the top of the pressure-reducing water bottle, and the bottom surface of the pressure-reducing water bottle is open, and a check valve that allows water to flow only from the bottom up is attached to the bottom surface.

水槽の中に、水筒を浸け、前記水筒は、上面が閉鎖され、前記水筒上面
に空気抜きポンプを取り付けし、前記水筒上面に前記送水配管を
サイフォン状に配管し、前記水筒下面に下から上にのみ水を通す逆止弁を
取り付ける事を特徴とします。
A water bottle is immersed in a water tank. It is characterized by installing a check valve that allows only water to pass through.

密閉水槽の上部に補給水口を持ち、前記密閉水槽と他の密閉水槽の上部
から前記送水配管と前記逆送水配管をサイフォン状に配管し、前記密閉
水槽を減圧し、前記他の密閉水槽を加圧する加減圧ポンプと、前記密閉
水槽を加圧し、前記他の密閉水槽を減圧する加減圧ポンプを
持つ事を特徴とします。
The top of the closed water tank has a replenishing water inlet, and the water supply pipe and the reverse water supply pipe are siphoned from the top of the closed water tank and the other closed water tank, the pressure of the closed water tank is reduced, and the other closed water tank is It has a pressure increase / decrease pump that pressurizes and a pressure increase / decrease pump that pressurizes the sealed water tank and depressurizes the other sealed water tanks.

水槽数個を階段状に、段差を付けて配置し、各前記水槽間を前記送水
配管で繋ぎ、高い位置にある前記水槽から低い位置にある前記水槽へ順次
送水し、発電を繰り返す事を特徴とします。
Several water tanks are arranged in steps, with steps, connected between the water tanks by the water supply pipe, and sequentially fed from the water tank at a high position to the water tank at a low position, and repeats power generation. will do.

前記送水配管は、前記水槽の底部近くから、鉛直に立ち上がり、前記
水槽上部で水平に成り、其の侭、前記他の水槽に向かい、前記他の水槽
の上、任意の地点で鉛直に下り、前記他の水槽の中ほどまで配管し、前記
逆送水配管は、前記他の水槽の底部近くから、鉛直に立ち上がり、前記
他の水槽の上部で水平に成り、其の侭、前記水槽に向かい、前記水槽の上、
任意の地点で鉛直に下り、前記水槽の中ほどまで配管し、前記送水配管と
前記逆送水配管の吸込側に逆止弁と吐出側に仕切弁、減圧ポンプ、前記
逆止弁と前記水力発電機を取り付けし発電する事を特徴とします。
The water supply pipe rises vertically from near the bottom of the aquarium, becomes horizontal at the upper part of the aquarium, and goes to the other aquarium, on the other aquarium, vertically at an arbitrary point, Piping up to the middle of the other water tank, the reverse water supply pipe rises vertically from near the bottom of the other water tank, becomes horizontal at the upper part of the other water tank, and toward that water tank, Above the aquarium,
It descends vertically at an arbitrary point, pipes up to the middle of the water tank, a check valve on the suction side of the water supply pipe and the reverse water supply pipe, a gate valve on the discharge side, a decompression pump, the check valve and the hydroelectric power generation It is characterized by installing a machine and generating electricity.

水槽間をサイフォンの原理を利用して、8M近くの上下配管で繋ぎ、水を
送る側の水槽から送られてきた水を8M近く上昇させ、そこから次の水槽
に8Mの落差で落とし、配管途中の水力発電機で発電し、最終的には、水
を送る側の水槽に戻っていき、少ないエネルギーを使って、水の移動を
繰り返し配管の先端に取り付けた発電機を稼働させる事で、非常に安価な
エネルギーが得られる。
Using the principle of siphon between the tanks, connect the upper and lower pipes near 8M, raise the water sent from the water tank on the side that sends water, and drop it to the next tank with a drop of 8M. By generating electricity with a hydroelectric generator on the way, finally returning to the water tank on the side of sending water, using a small amount of energy, repeating the movement of water and operating the generator attached to the tip of the pipe, Very inexpensive energy can be obtained.

水槽2個に送水配管2本を配置したイメージ図 水槽1個は下の位置(上下装置付き)Image of arranging two water supply pipes in two tanks One tank is in the lower position (with up / down device) 水槽2個に送水配管2本を配置したイメージ図 水槽1個は上の位置(上下装置付き)Image of two water pipes arranged in two water tanks One water tank is in the upper position (with upper and lower devices) 水槽に加減圧式水筒を浸け、送水配管1本を配置したイメージ図Image of placing a water supply pipe by immersing a pressurized water tank in a water tank 水槽に水筒を浸け、送水配管1本を配置したイメージ図(水筒上下装置付き、空気抜きポンプ付き)An image of a water tank immersed in a water tank and a single water supply pipe placed (with water bottle lifting device and air vent pump) 密閉水槽2個に送水配管2本を配置したイメージ図Image of two water pipes arranged in two sealed water tanks 水槽数個に送水配管数本を配置したイメージ図 (階段状に水槽と送水配管を配置)Image of arranging several water supply pipes in several tanks (arranged water tank and water supply pipe in a staircase shape)

1 逆止弁
2 減圧ポンプ
3 水力発電機
4 仕切弁
5 送水配管 水槽Aから水槽B
6 逆送水配管 水槽Bから水槽A
7 水槽上下装置
8 送水配管 水筒Dから水槽C
9 加減圧式水筒用加減圧ポンプ
11 送水配管 水筒Fから水槽E
12 水筒用空気抜きポンプ
14 送水配管 密閉水槽Gから密閉水槽H
15 逆送水配管 密閉水槽Hから密閉水槽G
17 加減圧ポンプ(密閉水槽H減圧、密閉水槽G加圧)
18 加減圧ポンプ(密閉水槽G減圧、密閉水槽H加圧)
DESCRIPTION OF SYMBOLS 1 Check valve 2 Pressure reduction pump 3 Hydroelectric generator 4 Gate valve 5 Water supply piping Water tank A to water tank B
6 Reverse water supply piping Tank B to Tank A
7 Water tank lifting device
8 Water supply pipe Water bottle D to water tank C
9 Pressure increase / decrease pump for pressure increase / decrease type water bottle 11 Water supply pipe Water tank F to water tank E
12 Air pump for water bottle 14 Water supply pipe Sealed water tank G to sealed water tank H
15 Reverse water supply pipe Sealed water tank H to sealed water tank G
17 Pressurization / decompression pump (sealed water tank H decompression, sealed water tank G pressurization)
18 Pressurization / decompression pump (sealed water tank G decompression, sealed water tank H pressurization)

以下、本発明の実施の形態を図に基づいて説明します。
図1の図面は、水槽Aと水槽Bを送水配管5と逆送水配管6で
繋いだ図面です。
水槽Aは、固定側で、水槽Bは、水槽を上下させる上下装置にセット
されています。
水槽Aは、水が満杯状態で、水槽Bは、水が渇水状態で水槽Aより低い
位置にセットされています。送水管5を使い、水槽Aの水を水槽Bに移す方法を述べます。送水配管5の減圧ポンプ2を運転します。減圧ポンプ2を運転すると、水槽Aの水は、送水配管5を通り、吸い上げられ、仕切弁4を通り、発電機3に到達します。送水配管5の水は、水槽Bに放流が始まり、
減圧ポンプ2の電源を切っても、サイフォンの原理で、水槽Bに放流が継続され、水槽Bの水位が高く成り、水の移動が止まります。上下装置7で水槽Bは、水槽Aより高い位置に移動します。
Embodiments of the present invention will be described below with reference to the drawings.
The drawing of FIG. 1 is a drawing in which water tank A and water tank B are connected by water supply pipe 5 and reverse water supply pipe 6.
Aquarium A is on the fixed side, and Aquarium B is set on a vertical device that moves the aquarium up and down.
Aquarium A is full of water, and aquarium B is set at a lower position than aquarium A when the water is drought. We will describe how to transfer water from tank A to tank B using water pipe 5. The decompression pump 2 of the water supply pipe 5 is operated. When the decompression pump 2 is operated, the water in the tank A is sucked up through the water supply pipe 5, passes through the gate valve 4, and reaches the generator 3. The water in the water supply pipe 5 starts to be discharged into the tank B.
Even if the power of the decompression pump 2 is turned off, due to the principle of siphon, the discharge continues to the tank B, the water level of the tank B becomes high, and the water movement stops. The tank B moves to a position higher than the tank A with the lifting device 7.

図2の図面は、水槽Aは、固定側で、水槽Bは、水槽を上下させる
上下装置7で、高い位置にセットされています。水槽Bと水槽Aを
逆送水配管6で繋いだ図面です。水槽Bは、水が満杯状態で、水槽Aは、
水が渇水状態で水槽Bより低い位置に有ります。逆送水配管6を使い、
水槽Bの水を水槽Aに移す方法を述べます。逆送水配管6の減圧ポンプ
2を運転します。減圧ポンプ2を運転すると、水槽Bの水は、逆送水
配管6を通り、吸い上げられ、仕切弁4を通り、発電機3に到達します。
逆送水配管6の水は、水槽Aに放流が始まり、減圧ポンプ2の電源を切
っても、サイフォンの原理で、水槽Aに放流が継続され、水槽Aの水位
が高く成り、放流が止まります。上下装置が水槽Bを下におろし、最初
に戻り水槽Aから水槽Bに送水が始まり、送水を繰り返します。
In the drawing of Fig. 2, aquarium A is set on the fixed side, and aquarium B is set up at a high position by an elevating device 7 that raises and lowers the aquarium. It is a drawing where tank B and tank A are connected by a reverse water pipe 6. Aquarium B is full of water, Aquarium A is
The water is in a drought condition and is lower than the tank B. Using the reverse water supply pipe 6,
The following describes how to transfer water from tank B to tank A. The decompression pump 2 of the reverse water supply pipe 6 is operated. When the decompression pump 2 is operated, the water in the tank B is sucked up through the reverse water supply pipe 6, passes through the gate valve 4, and reaches the generator 3.
The water in the reverse water supply pipe 6 starts to be discharged into the tank A, and even if the decompression pump 2 is turned off, the discharge continues to the tank A due to the siphon principle, the water level in the tank A becomes high, and the discharge stops. . The elevating device lowers tank B, returns to the beginning, and starts water transfer from tank A to tank B, and repeats the water supply.

図3の図面は、水槽Cに加減圧式水筒Dを浸けた状態です。
水槽Cは、加減圧式水筒Dに比べて大きく、加減圧式水筒Dは、
上部が密閉で、加減圧式水筒用加減圧ポンプ9を取り付けし、送水配管
8を配管し、下部は、解放ですけど逆止弁1を取り付けし、下から上に
のみ水が流れるようにします。水槽Cに少し浸けて、加減圧式水筒用
加減圧ポンプ9を運転し、加減圧式水筒内の空気を抜きます。空気を
抜き始めると、加減圧式水筒の槽内の圧力が下がり、圧力のバランスを
とる為に、水槽Cの水が、加減圧式水筒内に入って来て、加減圧式水筒
内の水位が、上がり、圧力のバランスが、取れた所で止まります。
加減圧式水筒内の水が満杯状態に成ったら加減圧式水筒用加減圧ポンプ
9の運転を停止します。加減圧式水筒内の水位は、底面の逆止弁1で
下がることなく保持されます。送水配管8を使い、加減圧式水筒内の水
を水槽Cに移す方法を述べます。送水配管8の減圧ポンプ2を運転
します。減圧ポンプ2を運転すると、加減圧式水筒の水は、送水管8を
通り、吸い上げられ、仕切弁4を通り、発電機3に到達します。送水
配管8の水は、水槽Cに放流が始まり、減圧ポンプ2の電源を切っても、
サイフォンの原理で、水槽Cに放流が継続され、発電し続け、加減圧式
水筒内の水が、減ったら加減圧式水筒用加減圧ポンプ9の運転をして、
再度圧力を抜き、水槽C内部の水面を押し上げ、バランスが取れた所で
安定して止まりますので、加減圧式水筒内の水位は、下がらず、放水を
継続し、発電し続けます。
The drawing in FIG. 3 shows a state in which the pressure-reducing water bottle D is immersed in the water tank C.
The water tank C is larger than the pressure-reducing water bottle D, and the pressure-reducing water bottle D is
The upper part is hermetically sealed, the booster / depressurization pump 9 is installed, the water supply pipe 8 is installed, and the lower part is open but the check valve 1 is installed so that water flows only from the bottom to the top. Immerse in water tank C a little and operate the pressure increase / decrease pump 9 for pressure increase / decrease type water bottle to vent the air in the pressure increase / decrease type water bottle. When the air starts to be evacuated, the pressure in the tank of the pressurization / reduction type water bottle decreases, and in order to balance the pressure, the water in the water tank C enters the pressure / reduction type water bottle, and the water level in the pressure / reduction type water bottle rises. The pressure balance stops when it is balanced.
When the water in the pressure-intensification type water bottle becomes full, the operation of the pressure-intensification type water bottle pressure-intensification pump 9 is stopped. The water level in the pressurized / reducing water bottle is maintained without being lowered by the check valve 1 on the bottom. This section describes how to transfer the water in the pressurized / reducing water bottle to the tank C using the water supply pipe 8. The decompression pump 2 of the water supply pipe 8 is operated. When the pressure reducing pump 2 is operated, the water in the pressure-reducing type water bottle passes through the water pipe 8 and is sucked up, passes through the gate valve 4 and reaches the generator 3. The water in the water supply pipe 8 begins to be discharged into the water tank C, and even if the decompression pump 2 is turned off,
By the principle of siphon, the discharge to water tank C is continued, power generation is continued, and when the water in the pressure-increasing / reducing water bottle decreases, the pressure-increasing / reducing water tank pressure-increasing pump 9 is operated,
Relieve the pressure, push up the water surface inside the tank C, and stop stably at a well-balanced place, so the water level in the pressure-intensifying water bottle will not drop, continue to discharge and continue to generate electricity.

図4の図面は、水槽Eは、水筒Fに比べて大きく、水筒Fは、上部が
密閉で、水筒用空気抜きポンプ12を取り付けし、送水配管11を配管
し、下部は、解放ですけど逆止弁1を取り付けし、下から上にのみ水が
流れるようにします。水槽Eに完全に浸けて、水筒用空気抜きポンプ
12を運転し、水筒内の空気を抜きます。空気を抜き始めると、水筒内
の圧力が下がり、圧力のバランスをとる為に、水槽Eの水が、水筒内に
入って来て、水筒内の水位が、上がり、圧力のバランスが、取れた所で
止まります。
水筒内の水が満杯状態に成ったら水筒用空気抜きポンプ12の運転を
停止します。水筒内の水位は、底面の逆止弁1で下がることなく保持さ
れます。送水配管11を使い、水筒内の水を水槽Eに移す方法を述べ
ます。送水配管11の減圧ポンプ2を運転します。減圧ポンプ2を運転
すると、水筒内の水は、送水管11を通り、吸い上げられ、仕切弁4を
通り、発電機3に到達します。送水配管11の水は、水槽Eに放流が始
まり、減圧ポンプ2の電源を切っても、サイフォンの原理で、水槽Eに
放流が継続され、水筒内の水が、減ったら水筒用空気抜きポンプ12の
運転をして、再度圧力を抜き、水槽E内部の水面を押し上げ、バランス
が取れた所で安定して止まりますので、減圧式水槽の水位は、下がらず、
放水を継続し、発電し続けます。
In the drawing of FIG. 4, the water tank E is larger than the water bottle F. The water bottle F is sealed at the upper part, the air vent pump 12 for the water bottle is attached, the water supply pipe 11 is piped, and the lower part is released but is not checked. Install valve 1 so that water flows only from bottom to top. Immerse in water tank E completely and operate the water bottle air vent pump 12 to release air from the water bottle. When we started to evacuate the air, the pressure in the water bottle decreased, and the water in the tank E entered the water bottle to balance the pressure, the water level in the water bottle rose, and the pressure was balanced. It stops at the place.
When the water in the water bottle becomes full, the operation of the air pump 12 for water bottle is stopped. The water level in the water bottle is maintained by the check valve 1 on the bottom without being lowered. This section describes how to transfer the water in the water bottle to the tank E using the water supply pipe 11. The decompression pump 2 of the water supply pipe 11 is operated. When the decompression pump 2 is operated, water in the water bottle passes through the water pipe 11 and is sucked up, passes through the gate valve 4 and reaches the generator 3. The water in the water supply pipe 11 starts to be discharged into the water tank E, and even if the power of the decompression pump 2 is turned off, the water discharge is continued to the water tank E according to the principle of siphon. , Release the pressure again, push up the water surface inside the tank E, and stop stably when balanced, so the water level in the decompression tank does not drop,
Continue to discharge water and continue to generate electricity.

図5の図面は、密閉水槽Gと密閉水槽Hを送水配管14と逆送水配管
15で繋いだ状態です。補給水口と加減圧ポンプ17と加減圧ポンプ
18も配置されます。
密閉水槽Gに補給水口から水が補給され、満水に近い所まで貯めます。
加減圧ポンプ17を運転し、密閉水槽Hを減圧し、密閉水槽Gを加圧
します。この状態で、送水配管14の減圧ポンプ2を運転すると送水
配管14内を水が移動し、送水を開始します。
密閉水槽Hに水が移動し、満杯に成ったら、加減圧ポンプ18を運転し、
密閉水槽Gを減圧し、密閉水槽Hを加圧します。この状態で、逆送水
配管15の減圧ポンプ2を運転すると逆送水配管15内を水が移動し、
送水を開始します。密閉水槽Gと密閉水槽Hの加圧と減圧を繰り返す
事で、送水と逆送水を繰り返し、発電し続けます。
The drawing of FIG. 5 shows a state where the sealed water tank G and the sealed water tank H are connected by the water supply pipe 14 and the reverse water supply pipe 15. A water replenishment port, a pressure increasing / decreasing pump 17 and a pressure increasing / decreasing pump 18 are also arranged.
Water is supplied to the closed water tank G from the replenishing water outlet, and it is stored up to a place near full water.
Pressurize and depressurize pump 17, depressurize sealed water tank H, and pressurize sealed water tank G. If the decompression pump 2 of the water supply pipe 14 is operated in this state, the water moves in the water supply pipe 14 and starts water supply.
When water moves to the sealed water tank H and becomes full, the pressurizing and depressurizing pump 18 is operated,
Depressurize closed water tank G and pressurize closed water tank H. In this state, when the decompression pump 2 of the reverse water supply pipe 15 is operated, water moves in the reverse water supply pipe 15,
Start water supply. Repeated pressurization and depressurization of the closed water tank G and the closed water tank H repeats water supply and reverse water supply and continues to generate electricity.

図6の図面は、水槽を階段状に配置した物で、1台目の水槽から、2
台目の水槽に対してサイフォン状に配管し、放流口に発電機を取り付け
し、2台目の水槽から、3台目の水槽に対してサイフォン状に配管し、
放流口に発電機を取り付けし、3台目以降も同じように、水位の差を
付けて水槽を配置します。1台目の水槽から2台目の水槽に、水を送り
発電し、同じ水を2台目の水槽から3台目の水槽に、水を送り発電し、
同じ水を次々に送り発電し続けます。この間、全て、サイフォンの原理
のみですので、なんらのエネルギーも使わずに発電します。最後の水槽
から最初の水槽に、ポンプで水を戻し、最初から、発電を繰り返します。
The drawing of FIG. 6 is a thing in which the aquarium is arranged in a staircase shape.
Piping in a siphon to the third tank, attaching a generator to the outlet, piping from the second tank to the third tank, siphoned,
Attach a generator to the outlet and place the water tank with the difference in water level in the same way for the third and subsequent units. Water is sent from the first tank to the second tank to generate electricity, and the same water is sent from the second tank to the third tank to generate electricity.
Continue to generate electricity by sending the same water one after another. During this time, everything is only the principle of siphon, so it generates electricity without using any energy. Water is pumped back from the last tank to the first tank, and power generation is repeated from the beginning.

送水配管は、水槽の底部近くから、鉛直に立ち上がり、水槽上部で
水平に成り、其の侭、水槽に向かい、他の水槽の上、任意の地点で鉛直
に下り、他の水槽の中ほどまで配管し、逆送水配管は、他の水槽の底部
近くから、鉛直に立ち上がり、他の水槽の上部で水平に成り、其の侭、
水槽に向かい、前記水槽の上、任意の地点で鉛直に下り、水槽の中ほど
迄配管します。配管の高さは、高いほど、水の落差が大きく成り、発電
機に対して効果がありますが、サイフォン効果を利用する場合、8M
近くが限界と思われます。
The water supply pipe rises vertically from near the bottom of the aquarium, becomes horizontal at the top of the aquarium, goes to the aquarium, goes to the other aquarium, descends vertically at any point, to the middle of the other aquarium Piping, reverse water supply piping rises vertically near the bottom of the other tank, becomes horizontal at the top of the other tank,
Go to the aquarium, go down vertically at any point above the aquarium, and pipe to the middle of the aquarium. The higher the height of the pipe, the greater the drop of water, which is more effective for the generator. However, when using the siphon effect, 8M
The vicinity seems to be the limit.

Claims (7)

水槽から送水配管をサイフォン状に配管し、前記水槽から前記送水配管
を使い、水を送水し、配管の先端部放流側に取り付けた水力発電機を駆動
させ発電し、前記発電に使用した、前記水を放流せず、繰り返し発電に
使用する事を特徴とする
サイフォン式高効率水力発電システム。
Piping a water supply pipe from a water tank, using the water supply pipe from the water tank, supplying water, driving a hydroelectric generator attached to the discharge end of the pipe, generating electricity, and used for the power generation, Siphon-type high-efficiency hydroelectric power generation system characterized by being used repeatedly for power generation without discharging water.
水槽は、固定で、他の水槽は、前記他の水槽を上下させる上下装置に
セットされ、前記他の水槽が前記水槽より低い位置にある時は、前記水槽
から前記他の水槽へ前記送水配管を使い送水し、前記他の水槽の水位が高く
なると、前記送水を止め、前記上下装置は、前記他の水槽を上の位置に上昇
させ、前記他の水槽は、前記水槽より高い位置に成り、前記他の水槽から
前記水槽に逆送水配管を使い、逆送水を始め、前記他の水槽の水位が下がり、
前記水槽の水位が増えて高く成ったら、前記逆送水を止め、前記上下装置は、
前記他の水槽を下の位置に下降させ、前記他の水槽が前記水槽より低い位置
に成り、前記水槽から前記他の水槽へ前記送水配管を使い、前記送水を始め、
前記他の水槽を上下させ、前記送水と前記逆送水を
繰り返す事を特徴とする請求項1に記載の
サイフォン式高効率水力発電システム。
The water tank is fixed, and the other water tank is set in an up-and-down device that raises and lowers the other water tank, and when the other water tank is lower than the water tank, the water supply pipe from the water tank to the other water tank When the water level of the other water tank becomes high, the water supply is stopped, and the up-and-down device raises the other water tank to the upper position, and the other water tank becomes higher than the water tank. , Using a reverse water supply pipe from the other water tank to the water tank, starting reverse water supply, the water level of the other water tank is lowered,
When the water level in the water tank increases and becomes high, the reverse water supply is stopped,
Lowering the other water tank to a lower position, the other water tank is in a position lower than the water tank, using the water supply pipe from the water tank to the other water tank, starting the water supply,
The siphon type high-efficiency hydroelectric power generation system according to claim 1, wherein the other water tank is moved up and down to repeat the water supply and the reverse water supply.
水槽の中に、加減圧式水筒を浸け、前記加減圧式水筒は、上面が閉鎖
され、前記加減圧式水筒上面に加減圧水筒用加減圧ポンプを取り付けし、
前記加減圧式水筒上面に前記送水配管をサイフォン状に配管し、前記
加減圧式水筒下面は、解放で、前記下面に下から上にのみ水を通す逆止弁
を取り付ける事を特徴とする請求項1に記載の
サイフォン式高効率水力発電システム。
In the water tank, immerse the pressure-intensification type water bottle, the top surface of the pressure-intensification type water cylinder is closed, and a pressure-intensification pump for pressure-intensification water cylinder is attached to the top surface in the pressure-intensification type water cylinder,
2. The water supply pipe is siphon-shaped on the top surface of the pressure-reducing and pressure-reducing water bottle, and the bottom surface of the pressure-reducing and pressure-reducing water cylinder is open, and a check valve that allows water to pass only from the bottom to the bottom is attached to the bottom surface. Siphon-type high-efficiency hydroelectric power generation system described in 1.
水槽の中に、水筒を浸け、前記水筒は、上面が閉鎖され、前記水筒上面
に空気抜きポンプを取り付けし、前記水筒上面に前記送水配管を
サイフォン状に配管し、前記水筒下面に下から上にのみ水を通す逆止弁を
取り付ける事を特徴とする請求項1に記載の
サイフォン式高効率水力発電システム。
A water bottle is immersed in a water tank, the upper surface of the water bottle is closed, an air vent pump is attached to the upper surface of the water bottle, the water supply pipe is siphoned on the upper surface of the water bottle, and the lower surface of the water bottle is placed from below to above. A siphon-type high-efficiency hydroelectric power generation system according to claim 1, wherein a check valve that allows only water to pass through is attached.
密閉水槽の上部に補給水口を持ち、前記密閉水槽と他の密閉水槽の上部
から前記送水配管と前記逆送水配管をサイフォン状に配管し、前記密閉
水槽を減圧し、前記他の密閉水槽を加圧する加減圧ポンプと、前記密閉
水槽を加圧し、前記他の密閉水槽を減圧する加減圧ポンプを
持つ事を特徴とする請求項1に記載の
サイフォン式高効率水力発電システム。
The top of the closed water tank has a replenishing water inlet, and the water supply pipe and the reverse water supply pipe are siphoned from the top of the closed water tank and the other closed water tank, the pressure of the closed water tank is reduced, and the other closed water tank is added. The siphon type high-efficiency hydroelectric power generation system according to claim 1, further comprising: a pressurizing / depressurizing pump that pressurizes and a pressurizing / depressurizing pump that pressurizes the sealed water tank and decompresses the other sealed water tank.
水槽数個を階段状に、段差を付けて配置し、各前記水槽間を前記送水
配管で繋ぎ、高い位置にある前記水槽から低い位置にある前記水槽へ順次
送水し、発電を繰り返す事を特徴とする請求項1に記載の
サイフォン式高効率水力発電システム。
Several water tanks are arranged in steps, with steps, connected between the water tanks by the water supply pipe, and sequentially fed from the water tank at a high position to the water tank at a low position, and repeats power generation. The siphon type high-efficiency hydroelectric power generation system according to claim 1.
前記送水配管は、前記水槽の底部近くから、鉛直に立ち上がり、前記
水槽上部で水平に成り、其の侭、前記他の水槽に向かい、前記他の水槽
の上、任意の地点で鉛直に下り、前記他の水槽の中ほどまで配管し、前記
逆送水配管は、前記他の水槽の底部近くから、鉛直に立ち上がり、前記
他の水槽の上部で水平に成り、其の侭、前記水槽に向かい、前記水槽の上、
任意の地点で鉛直に下り、前記水槽の中ほどまで配管し、前記送水配管と
前記逆送水配管の吸込側に逆止弁と吐出側に仕切弁、減圧ポンプ、前記
逆止弁と前記水力発電機を取り付けし発電する事を
特徴とする請求項1〜6の何れか1項に
記載のサイフォン式高効率水力発電システム。
The water supply pipe rises vertically from near the bottom of the aquarium, becomes horizontal at the upper part of the aquarium, and goes to the other aquarium, on the other aquarium, vertically at an arbitrary point, Piping up to the middle of the other water tank, the reverse water supply pipe rises vertically from near the bottom of the other water tank, becomes horizontal at the upper part of the other water tank, and toward that water tank, Above the aquarium,
It descends vertically at an arbitrary point, pipes up to the middle of the water tank, a check valve on the suction side of the water supply pipe and the reverse water supply pipe, a gate valve on the discharge side, a decompression pump, the check valve and the hydroelectric power generation A siphon-type high-efficiency hydroelectric power generation system according to any one of claims 1 to 6, wherein a power generator is attached to generate electric power.
JP2012023800A 2012-01-24 2012-02-07 Siphon type high efficiency hydroelectric power generation system. Expired - Fee Related JP5028655B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023800A JP5028655B1 (en) 2012-01-24 2012-02-07 Siphon type high efficiency hydroelectric power generation system.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012012486 2012-01-24
JP2012012486 2012-01-24
JP2012023800A JP5028655B1 (en) 2012-01-24 2012-02-07 Siphon type high efficiency hydroelectric power generation system.

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP2012105612A Division JP5062790B1 (en) 2012-01-24 2012-05-07 Pressurized hydroelectric power generation system.
JP2012105616A Division JP5062791B1 (en) 2012-01-24 2012-05-07 Multiple hydroelectric power generation system.
JP2012106456A Division JP5062792B1 (en) 2012-01-24 2012-05-08 Settling hydropower system.
JP2012136469A Division JP5079160B1 (en) 2012-01-24 2012-06-17 Sealed pressurized / reducing hydroelectric power generation system.

Publications (2)

Publication Number Publication Date
JP5028655B1 JP5028655B1 (en) 2012-09-19
JP2013174126A true JP2013174126A (en) 2013-09-05

Family

ID=47016574

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2012023800A Expired - Fee Related JP5028655B1 (en) 2012-01-24 2012-02-07 Siphon type high efficiency hydroelectric power generation system.
JP2012105616A Expired - Fee Related JP5062791B1 (en) 2012-01-24 2012-05-07 Multiple hydroelectric power generation system.
JP2012105612A Expired - Fee Related JP5062790B1 (en) 2012-01-24 2012-05-07 Pressurized hydroelectric power generation system.
JP2012106456A Expired - Fee Related JP5062792B1 (en) 2012-01-24 2012-05-08 Settling hydropower system.
JP2012136469A Expired - Fee Related JP5079160B1 (en) 2012-01-24 2012-06-17 Sealed pressurized / reducing hydroelectric power generation system.

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2012105616A Expired - Fee Related JP5062791B1 (en) 2012-01-24 2012-05-07 Multiple hydroelectric power generation system.
JP2012105612A Expired - Fee Related JP5062790B1 (en) 2012-01-24 2012-05-07 Pressurized hydroelectric power generation system.
JP2012106456A Expired - Fee Related JP5062792B1 (en) 2012-01-24 2012-05-08 Settling hydropower system.
JP2012136469A Expired - Fee Related JP5079160B1 (en) 2012-01-24 2012-06-17 Sealed pressurized / reducing hydroelectric power generation system.

Country Status (1)

Country Link
JP (5) JP5028655B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014739A (en) * 2019-07-16 2021-02-12 隆道 中島 Rotary hydraulic power generating system
WO2023239291A1 (en) * 2022-06-08 2023-12-14 Kosuke Bato A hydro-energy capture system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4944205B1 (en) * 1969-08-07 1974-11-27
JPS5496643A (en) * 1978-01-13 1979-07-31 Fuji Electric Co Ltd Hydroelectric power plant
FR2473121A1 (en) * 1980-01-02 1981-07-10 Haimovici Simon Hydraulic pressure electricity generator - uses closed loop system employing asymmetrical siphon and two reservoirs to drive turbine
JPS5862378A (en) * 1981-10-09 1983-04-13 Nippon Kagaku Shinko Zaidan Hydraulic power generating system in multistage dam
JPS59150814A (en) * 1983-02-15 1984-08-29 Otokichi Ishizuka Power generation by combined use of estuary dam and high-tide water pumping type power plant
JPS61215463A (en) * 1985-03-22 1986-09-25 Hideyoshi Morita Circulation hydraulic power generation plant utilizing pascal tube
JPS62214273A (en) * 1986-03-13 1987-09-21 Otokichi Ishizuka Method of generating power by river bed parallel digging dam
JPH082468Y2 (en) * 1987-07-15 1996-01-29 株式会社明電舎 Siphon turbine
JPH08284802A (en) * 1995-04-17 1996-10-29 Kiyotatsu Fukai Perpetual mobile of the first kind
JP2002089428A (en) * 2000-09-11 2002-03-27 Akashi Kenkyusho:Kk Hydraulic power generating system
JP2002303245A (en) * 2001-04-06 2002-10-18 Yoshihiro Kimura Hydraulic power circulation generation system
US6546723B1 (en) * 2001-10-09 2003-04-15 The United States Of America As Represented By The Secretary Of The Navy Hydropower conversion system
JP2003232273A (en) * 2002-02-08 2003-08-22 Ebara Corp Siphon type hydraulic power generation facility
JP2004052632A (en) * 2002-07-18 2004-02-19 Yoshiro Yamamoto Hydraulic power generation system using siphon tube
JP3092704U (en) * 2002-09-10 2003-03-28 有限会社西電機 Private hydroelectric generator
JP4621286B2 (en) * 2008-03-06 2011-01-26 学 秋成 Vacuum generator
JP4758515B1 (en) * 2010-07-20 2011-08-31 株式会社オージーエイ Power recovery hydropower system

Also Published As

Publication number Publication date
JP2013174233A (en) 2013-09-05
JP5062791B1 (en) 2012-10-31
JP5028655B1 (en) 2012-09-19
JP5079160B1 (en) 2012-11-21
JP2013174232A (en) 2013-09-05
JP2013174234A (en) 2013-09-05
JP5062792B1 (en) 2012-10-31
JP2013174235A (en) 2013-09-05
JP5062790B1 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP2007536455A (en) Underwater power plant
US20100170236A1 (en) Atmospheric pressure hydropower plant
KR20130074001A (en) Apparatus for wave power generation
JP5028655B1 (en) Siphon type high efficiency hydroelectric power generation system.
JP4621286B2 (en) Vacuum generator
JP2007231760A (en) Airlift pump type combined pumped-storage hydraulic power plant
US20170074230A1 (en) Hydroelectricity and Compressed-air Power Converter System
CN1800629A (en) Electricity generating device by using ocean wave energy
CN201650575U (en) Surge generation device
CN101825054B (en) Surge generating device
CN114251215A (en) Composite power generation system based on water pumping and energy storage
JP2016075256A (en) Circulation type micro water power generation system
EP3376023B1 (en) Plant to exploit the energy of a water wave motion
WO2016016668A1 (en) Conversion from gravitational force to electrical power
CN102140997A (en) Power generation device
JP2009024689A (en) Liquid lifting device
KR20130109568A (en) Urban type pumped storage power plant
WO2014081403A1 (en) Multifunctional submersible hydroelectric power station using renewable energy sources
CN201546260U (en) Negative pressure free pipe network pressure folding water supply device
JP2012137080A (en) Liquid lifting device
JP2009150374A (en) Liquid lifting device
KR20130016443A (en) Operation method of power generation aberration that does not give resistance to fluid flow pipe
TW202108876A (en) Unpowered water lift power generation device capable of using water hammer effect to deliver water to higher level water storage device and using the water level difference to generate electricity
CN102042157A (en) Sea wave-powered reciprocating plunger pump and high-level water storage generating system
CN104775972A (en) Series type multi-funnel water-gas circulation self-generating equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150706

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees