JPS5862378A - Hydraulic power generating system in multistage dam - Google Patents

Hydraulic power generating system in multistage dam

Info

Publication number
JPS5862378A
JPS5862378A JP56160333A JP16033381A JPS5862378A JP S5862378 A JPS5862378 A JP S5862378A JP 56160333 A JP56160333 A JP 56160333A JP 16033381 A JP16033381 A JP 16033381A JP S5862378 A JPS5862378 A JP S5862378A
Authority
JP
Japan
Prior art keywords
power generation
water
dam
pumping
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56160333A
Other languages
Japanese (ja)
Inventor
Masanori Shirakawa
白川 応則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON KAGAKU SHINKO ZAIDAN
Original Assignee
NIPPON KAGAKU SHINKO ZAIDAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON KAGAKU SHINKO ZAIDAN filed Critical NIPPON KAGAKU SHINKO ZAIDAN
Priority to JP56160333A priority Critical patent/JPS5862378A/en
Publication of JPS5862378A publication Critical patent/JPS5862378A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/06Stations or aggregates of water-storage type, e.g. comprising a turbine and a pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

PURPOSE:To permit the amount of power generation in each dam always to be maintained at the amount of power generation in case of the max. flow rate by permitting the water pumping-up function to be provided between dams and permitting the repetive utilization of the flowing water through pumping-up. CONSTITUTION:Hydraulic conduits 7 and 8, power plants 10 and 11, surge chambers 13 and 14, and flood control channels 15 and 16 are constructed respectively between reservoirs 1 and 2 and between reservoirs 2 and 3. As the electric motor for pumping-up water from the reservoir 2 or 3 to the reservoir 1 or 2 through the flood control channel and the hydraulic conduit and the water wheel-power generator for power generation are installed in each power plant 10, 11, the flowing water can be utilized repetively through pumping-up water, and the amount of power generation in each dam can be maintained at the amount of power generation in case of the max. flow rate.

Description

【発明の詳細な説明】 この発明は水力発電方式、特に、多段式ダムに揚水機能
を付与したことを特徴とする発電方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydroelectric power generation system, and particularly to a power generation system characterized by a multi-stage dam provided with a pumping function.

従来Qダム弐発電方式は河川を横断して築造したダムに
より貯水池の水位を高めて落差を得るものであり、貯水
池への自然流入水tυ変動により発1tiltがKmす
る■を避けることが出来ず、設備の稼動率の低下を招い
ている。第1図は降雨後の流水量変化を模式的に示すも
Oで、降水量(もよるが、一般に、最大発電量に対応す
る水量2以上の流入水は発電に利用されることなく、そ
のまま捨てられる。常時出力は定常FllRに対♂する
亀のだけとなるが、鰻大発電賞に対応する水量Fを利用
しうるのは降雨後1週間ないし10日Ij)s度であり
、常時はF−R7)差(相幽する発電設備は休止せざる
を得ないの−が実情である。むだに捨てられている2以
上の流入水を発電に利用しようとして蝦大発電量を増し
、F′■水量にまで対応出来る発電設備を設置すれば、
常時出力との差が大とカリ、徒に投資効率を低下させる
だけの結果に、終る。
The conventional Q Dam 2 power generation system uses a dam built across a river to raise the water level in the reservoir to obtain a head difference, and it is unavoidable that one tilt of the generation increases by Km due to fluctuations in the natural inflow of water into the reservoir. , leading to a decline in equipment operating rates. Figure 1 schematically shows the change in flow rate after rainfall. Although it depends on the amount of rainfall, in general, inflow water with a volume of 2 or more corresponding to the maximum power generation amount is not used for power generation and is left as it is. The constant output is only for the female turtle, which corresponds to the steady FllR, but the amount of water F corresponding to the Unagi University Power Generation Award can be used for 1 week to 10 days after rain. F-R7) The reality is that power generation facilities that are in conflict with each other have to be shut down.In an attempt to use two or more wasteful inflows for power generation, the amount of power generated is increased, and F-R7) ′■If you install power generation equipment that can handle the amount of water,
If the difference between the output and the regular output is large, the result will only be a wasteful reduction in investment efficiency.

従って、もし、何らかの手段によって常に峡大発電量に
対応しうるだけの水量を確保出来れば、発電設備の稼動
率を上けうるだけでなく、最大発電量を水量F′に対応
するまでに引上げて降雨υ利用率を上げることも可能と
力ることとなるC一方、電力需*0日週期、年週期等の
変動に対応し、夜間等の余剰電力を利用する揚水発電p
frO41!!股が望まれているが、こ0ためには一般
には上池と下池02つつ貯水池を必要と121.大容1
fの揚水発電を可能にする建設適地を見出すことが困難
になってきている。しかも一方では、ν「鋭火力や原子
発電等、負荷変動を嫌う大容量蛇市所°つ建設、つ(在
むに従い、大容量の(至)水発電・1)必要性がますま
す高まっている。
Therefore, if by some means we could always secure enough water to handle the massive amount of power generated, it would not only be possible to increase the operating rate of the power generation equipment, but also increase the maximum amount of power generation to correspond to the amount of water F'. On the other hand, it is possible to increase the utilization rate of rainfall υ by increasing the rainfall υ utilization rate.C On the other hand, pumped storage power generation, which responds to fluctuations in electricity demand* such as 0-day weekly periods and yearly periods, and utilizes surplus power at night, etc.
frO41! ! Although crotch is desired, generally speaking, an upper pond, a lower pond, and a reservoir are required for this purpose. Large capacity 1
It is becoming difficult to find suitable construction sites that will make pumped storage power generation possible. On the other hand, the need for large-capacity water power generation (1) is increasing as the construction of large-capacity power plants that are sensitive to load fluctuations, such as thermal power and nuclear power generation, is increasing. There is.

この発明は、包賦水力を十分に利゛用するため・1゛河
川に沿って作られた多段式ダムVCおいては、上ダムに
設けられた発電所の放水路と下υダムイ)イ゛両水時の
水■と0間に殆んど標高差がないことを利用し、1〕下
のダム間に揚水管および揚水ポンプを設置(−で揚水発
電所り機能を持たせ、各ダムに常に最大発璽敏に対応す
る流装置を確1呆して、発電効率を飛躍的に向上させる
と同時y(%建設の雌し7くなった揚水発電を(至)め
て小額0投資によって既存Oダムを利用し、多くυ地点
で行うことが出来るようにしようとするものである。
This invention was developed in order to make full use of the embedded hydraulic power.1) In a multi-stage dam VC built along a river, the power plant's tailrace provided in the upper dam and the lower υ dam Taking advantage of the fact that there is almost no difference in elevation between ゛water at both times■ and 0, 1) installation of pumping pipes and pumps between the lower dams (with a - mark to have the function of a pumped storage power plant, By making sure that the dam is equipped with a flow device that always responds to the maximum flow rate, we can dramatically improve power generation efficiency and at the same time reduce the cost of pumped storage power generation, which has become 7% more expensive. The aim is to make use of the existing O dam through investment and enable it to be used at many υ points.

次に、こ′7)発明を図に基づいて説明する。mものを
示已、ダム4.5.及び6を築造することにより河川の
上fL側から貯水池1.2、及3を形成している。貯水
池lと貯水池2との間、及び貯水池2と貯水池3.との
間には、それぞれ水圧管路7及び8、発電所1()及び
11、サージチェンバ13及び14、放水路トンネル1
5及び16が築造されている0各発電所10、及び11
には貯水池11又Vi2へ貯水池2又け3から放水路ト
ンネル及び水圧管路を経て揚水するためのポンプ電+l
k!7mと発電υためυ水車発電機が設置されている。
Next, the invention (7) will be explained based on the drawings. Demonstration of m things, dam 4.5. By constructing reservoirs 1, 2, and 6, reservoirs 1, 2, and 3 are formed from the upper fL side of the river. Between reservoir 1 and reservoir 2, and between reservoir 2 and reservoir 3. In between, there are penstocks 7 and 8, power plants 1 () and 11, surge chambers 13 and 14, and tailrace tunnel 1, respectively.
0 each power plant 10 and 11 where 5 and 16 are being built
In addition, there is a pump electric +l for pumping water from the reservoir 2 and 3 to the reservoir 11 and Vi2 via the tailrace tunnel and the penstock.
k! 7m and a υ water turbine generator is installed for power generation υ.

また般近の通常の揚水発電所のように、ポンプと水車O
両方の作用を持つポンプ水軍を発電機に直結したものを
用いてもよい。揚水用のポンプ電動機を別に設置する方
式は、既設り発電所を改造して揚水能力を持たせる場合
に:#Q−のよい方式である。なお、揚水’n**に、
水圧管路7.8によるのではなく、別に揚水管を設けて
もよい。
Also, like a normal pumped storage power plant in the area, the pump and water wheel O
A pump having both functions may be directly connected to a generator. Installing a separate pump motor for pumping water is a good method when modifying an existing power plant to provide pumping capacity: #Q-. In addition, for pumped water 'n**,
Instead of using the hydraulic line 7.8, a separate lift pipe may be provided.

第3図に、日間の負荷曲線を模式的に示す。FIG. 3 schematically shows the daily load curve.

需要変動は日夜のみでなく、昼体与の1時間程[iにも
顕著であり、このような短時間の余剰電力で効果的な揚
水を行うには大容量の揚水ポンプを用いる必要が生じる
。そυためには、ボンソ嵐勧機は発電機とは別体に17
、場合によって&i揚水管まで分別に設けるものOはう
が望ましl/)c 最下流暢11の貯水池3に設けられた発電所12Vこは
揚水機能を持たない水車発を機が設置される。この場合
、最下流のダムは発電による放水ふ・よび揚水にユつて
水位が変動し、一定υ出力を倚ることは小米ガいが、鰻
上流のダムに流入する定常流分V発電iltは得られる
ので、従来(比1.て特に琢−率が低下することはない
0また地形が許せば、発電所12D放水路似に下池を作
ることによって、最下流側の貯水池3も常に満水状態で
利用出来ることとなる。
Demand fluctuations are noticeable not only during the day and night, but also during the hour during the day, and in order to pump water effectively with surplus electricity for such a short period of time, it is necessary to use a large-capacity water pump. . In order to do this, the Bonso Arashikanki must be installed separately from the generator.
In some cases, it is preferable to separately install up to the pumping pipe (l/)c. A 12V power plant installed in the reservoir 3 at the lowest stream 11. In this case, a water turbine generator without a pumping function is installed. . In this case, the water level of the most downstream dam fluctuates due to water discharge and pumping due to power generation, and it is difficult to maintain a constant υ output, but the steady flow flowing into the dam upstream of the eel, Vilt, is Therefore, there is no particular decrease in the yield compared to the conventional method (1. It will be available for use.

そして、これらの発を新群vvh水1発電り切り換えは
、各ダムの発wIL皺、ダムの水位、電力裔要によって
自動的に制御することが可能であるO 以上説明したように、この発明は、多段式ダムによる水
力開発に当り、各ダム間に揚水機能を持たせることによ
り、流下水を揚水することによって繰返し利用し、各ダ
ムの発電tを奮に最大流量時の発電量に維持することに
よって発電設置Iv投資効率を飛躍的に向上させ、揚水
発電技術の応用範囲をピーク電力供給減のみならず、常
時電力の供給源にまで拡げることを可能とするものであ
る。その上、簡略な改造によって既設ダムに応用するこ
とが可能なので、増設が強く望まれている揚水発電に代
り、4!設費の80チを占めるダム建設をすることなく
、夾質的に湯水発を所を多数建設したOと同!!の幼果
をあげることが出来る等、従来υ発電方式には見られな
い画期的な発送方式を提供するものである。
The switching of these generators to new group vvh water 1 power generation can be automatically controlled based on the generation wIL wrinkle of each dam, the water level of the dam, and the power supply requirement.As explained above, this invention When developing hydropower using multi-stage dams, by providing a pumping function between each dam, the sewage water is pumped up and used repeatedly, and the power generation amount of each dam is maintained at the maximum flow rate. By doing so, it will be possible to dramatically improve the investment efficiency of power generation installations and expand the scope of application of pumped storage power generation technology not only to reduce peak power supply but also to a constant source of power. Moreover, it can be applied to existing dams with simple modification, so it can be used instead of pumped storage power generation, which is strongly desired to be expanded. It's the same as O, which built a large number of hot water sources without constructing dams, which accounted for 80 cents of construction costs! ! It provides an innovative shipping method that has not been found in conventional υ power generation systems, such as being able to produce young fruits.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流水it変化合示す模式図、第2図はこD発明
Q発電方式の1実施例を示す峨念図、第3図は電力痛安
の日間変化を示す模式図である0 1.2及び3:貯水池 4,5、及び6:ダム 7.8
、及び9:水圧管路 10.11及び12:発fL所 
13、及び14:サージテエンバ−15、及び16:放
水路トンネル17.18、及び19:導水路トンネル2
0.21.及び22:サージ吸収用タンク特許出庫式 
材団洗人 日本科学振興財団出願人代理人 弁理士 佐
 藤 文 男(ほか1名) 第3図 −一一−ラ時間
Figure 1 is a schematic diagram showing changes in running water, Figure 2 is a diagram showing an example of the invention Q power generation system, and Figure 3 is a schematic diagram showing daily changes in electric power. .2 and 3: Reservoirs 4, 5, and 6: Dams 7.8
, and 9: Penstock line 10.11 and 12: Departure fL station
13 and 14: Surgical Ember 15 and 16: Spillway Tunnel 17.18 and 19: Headrace Tunnel 2
0.21. and 22: Surge absorption tank patent release ceremony
Timber Washer Japan Science Foundation Applicant Agent Patent Attorney Fumi Sato (and 1 other person) Figure 3-11-A Time

Claims (1)

【特許請求の範囲】 1)河川に沿って順次設けられた複数のダム式発電所に
おいて、下側貯水池から上側貯水池へり揚水機能を持た
せたことを特徴とする多段式ダムにおける水力発電方式 2)既設の多段式ダム発電設備に対して、揚水ポンプあ
るいtri揚水管等の揚水設備を附設した多段式ダムに
おける水力発電方式
[Claims] 1) Hydroelectric power generation system 2 in a multi-stage dam characterized by having a function of pumping water from a lower reservoir to an upper reservoir in a plurality of dam-type power plants sequentially installed along a river. ) A hydroelectric power generation method using a multistage dam that is equipped with pumping equipment such as a pump or TRI pump in addition to the existing multistage dam power generation equipment.
JP56160333A 1981-10-09 1981-10-09 Hydraulic power generating system in multistage dam Pending JPS5862378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56160333A JPS5862378A (en) 1981-10-09 1981-10-09 Hydraulic power generating system in multistage dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56160333A JPS5862378A (en) 1981-10-09 1981-10-09 Hydraulic power generating system in multistage dam

Publications (1)

Publication Number Publication Date
JPS5862378A true JPS5862378A (en) 1983-04-13

Family

ID=15712696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56160333A Pending JPS5862378A (en) 1981-10-09 1981-10-09 Hydraulic power generating system in multistage dam

Country Status (1)

Country Link
JP (1) JPS5862378A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727040A (en) * 1992-11-26 1995-01-27 Noboru Nishimori Power generation method by utilizing rainwater
US6034751A (en) * 1996-04-23 2000-03-07 Nec Corporation Elastically deformed retaining members within retaining structure of LCD panel for electronic equipment
GB2376270A (en) * 2001-06-06 2002-12-11 Shiang-Huei Wu Hydraulic power generating device
KR100807404B1 (en) 2007-06-13 2008-03-03 한상관 Method to generate power continuously and to purify folluted water by means of constructing reservoir water space having big capacity higher than bank of river
WO2012053988A3 (en) * 2010-10-19 2012-06-14 Mitja Koprivsek Device for producing and accumulating electricity
JP5062791B1 (en) * 2012-01-24 2012-10-31 株式会社オージーエイ Multiple hydroelectric power generation system.
JP5147030B1 (en) * 2012-07-17 2013-02-20 株式会社オージーエイ Multiple dam or multiple reservoir water power generation system
JP2014132147A (en) * 2013-01-03 2014-07-17 Nihon Kankyo Denso:Kk Storage type power generation breakwater adaptable to global warming and earthquake tsunami/typhoon high tide
WO2017036088A1 (en) * 2015-08-28 2017-03-09 张彤玮 Water recycling and reuse hydraulic electric power generation apparatus
CN107476928A (en) * 2017-08-25 2017-12-15 中国电建集团中南勘测设计研究院有限公司 A kind of method of Pumped Storage Power Stations and energy storage power generation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829083A (en) * 1971-08-17 1973-04-17
JPS5084828A (en) * 1973-11-30 1975-07-09
JPS54140036A (en) * 1978-04-24 1979-10-30 Toshiba Corp Method of operating pumping-up power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829083A (en) * 1971-08-17 1973-04-17
JPS5084828A (en) * 1973-11-30 1975-07-09
JPS54140036A (en) * 1978-04-24 1979-10-30 Toshiba Corp Method of operating pumping-up power plant

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727040A (en) * 1992-11-26 1995-01-27 Noboru Nishimori Power generation method by utilizing rainwater
US6034751A (en) * 1996-04-23 2000-03-07 Nec Corporation Elastically deformed retaining members within retaining structure of LCD panel for electronic equipment
GB2376270A (en) * 2001-06-06 2002-12-11 Shiang-Huei Wu Hydraulic power generating device
KR100807404B1 (en) 2007-06-13 2008-03-03 한상관 Method to generate power continuously and to purify folluted water by means of constructing reservoir water space having big capacity higher than bank of river
WO2012053988A3 (en) * 2010-10-19 2012-06-14 Mitja Koprivsek Device for producing and accumulating electricity
JP5062791B1 (en) * 2012-01-24 2012-10-31 株式会社オージーエイ Multiple hydroelectric power generation system.
JP5147030B1 (en) * 2012-07-17 2013-02-20 株式会社オージーエイ Multiple dam or multiple reservoir water power generation system
JP2014132147A (en) * 2013-01-03 2014-07-17 Nihon Kankyo Denso:Kk Storage type power generation breakwater adaptable to global warming and earthquake tsunami/typhoon high tide
WO2017036088A1 (en) * 2015-08-28 2017-03-09 张彤玮 Water recycling and reuse hydraulic electric power generation apparatus
CN107476928A (en) * 2017-08-25 2017-12-15 中国电建集团中南勘测设计研究院有限公司 A kind of method of Pumped Storage Power Stations and energy storage power generation

Similar Documents

Publication Publication Date Title
US2962599A (en) Apparatus for developing and accumulating hydroelectric energy
US4279539A (en) Dam with transformable hydroenergetic arrangement
US20110140435A1 (en) System and method for controlling water flow between multiple reservoirs of a renewable water and energy system
US8231327B2 (en) River high pressure energy conversion machine
JPH09177654A (en) Multistage hydraulic power plant
JPS5862378A (en) Hydraulic power generating system in multistage dam
JPH10299636A (en) Same water multistage hydro-electric power generation
Majewski The development of hydro power in Poland. The most important hydro engineering facilities
CN109944301A (en) A kind of clear water reserviors absorbing well, absorption well system and application method
KR20200002084A (en) The non-power eletric pumping water and small hydropower system
Zhdanovich et al. Investigations on possible places for installation of small hydro plants at municipal industrial wastewaters
Tunde Small hydro schemes-taking Nigeria's energy generation to the next level
Kubiak-Wójcicka et al. Exploitation of Rivers in Poland for Electricity Production–Current Condition and Perspectives for Development
Ramos et al. Small hydro as one of the oldest renewable energy sources
CN205349605U (en) Emergency water power generation facility that does all can
JPS61106980A (en) Forced water feeding hydroelectric power generation system
JPS59136579A (en) Irrigation canal installing type hydraulic power plant
CN219011141U (en) Dual-power tunnel hydroelectric generation structure in water-rich area
CN217267331U (en) Pumped storage power station arrangement structure
Murakami Water for peace master plan of the Jordan river system
JPH02115573A (en) Simply constituted pumping-up type hydraulic power generation
RU101461U1 (en) HYDRAULIC POWER PLANT
WO2020235842A1 (en) Building-type pumped storage power generation system
Linzell Hydropower: Inflation-Proof Energy From Water Supply Dams
JPH0518347A (en) Electric power generation method