JPS59150814A - Power generation by combined use of estuary dam and high-tide water pumping type power plant - Google Patents

Power generation by combined use of estuary dam and high-tide water pumping type power plant

Info

Publication number
JPS59150814A
JPS59150814A JP58023403A JP2340383A JPS59150814A JP S59150814 A JPS59150814 A JP S59150814A JP 58023403 A JP58023403 A JP 58023403A JP 2340383 A JP2340383 A JP 2340383A JP S59150814 A JPS59150814 A JP S59150814A
Authority
JP
Japan
Prior art keywords
water
dam
river
power generation
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58023403A
Other languages
Japanese (ja)
Inventor
Otokichi Ishizuka
石塚 音吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58023403A priority Critical patent/JPS59150814A/en
Publication of JPS59150814A publication Critical patent/JPS59150814A/en
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B9/00Water-power plants; Layout, construction or equipment, methods of, or apparatus for, making same
    • E02B9/08Tide or wave power plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To enable to supply electric power by a method in which soil and sand in the downstream basin of river are horizontally removed out toward the upstream side, and in an adequate place in the downstream basin, a dam and a water pumping type power plant are provided. CONSTITUTION:Where the sea is shallow to a distance and a proper head is obtained near the river mouth, a dam 2 and a water pumping type power station 3 are provided in the river 1 and a lever 4 is provided in the shallow portion of the sea area. The water 1'' in the down stage coming up during the high tide is pumped up to the sam 2 in the upper stage by a water pumping equipment 3 powered from a transmission line and joined with water coming from the upstream. A great amount of water is stored in the dam 2 and dropped by utilizing a deeply dug head to generate electric power hydraulically which is fed to the transmission line.

Description

【発明の詳細な説明】 イ’pl用の下流地帯の比較的平坦な地帯は水量も多く
貯水池としての河[1]も広いが、此の地帯は何i1も
耕地計りでなり、゛住宅や工場が多〈従来式の河川を堰
き止めて水位を高く保ちこの水を元の河床に落す過程で
水力発電に利用する方法では洪水時堤防決壊の恐れが有
り実現は不可能に近い。然し全国的に見る時、此の地帯
の河川の持つエネルギーの総量は膨大な量であり、資源
小国日本としては何としてもこれが有効利用を計らねば
な2ちない公害防止の面からも。
[Detailed Description of the Invention] The relatively flat downstream area for I'PL has a large amount of water and a wide river [1] that acts as a reservoir, but this area is mostly cultivated land and is not used for housing or other purposes. There are many factories.The conventional method of damming rivers to keep the water level high and then allowing this water to fall back into the river bed for use in hydroelectric power generation is nearly impossible due to the risk of levees breaking during floods. However, when looking at the country as a whole, the total amount of energy held by the rivers in this region is enormous, and as a resource-poor country, Japan must make effective use of this at all costs, both from the perspective of pollution prevention.

従来技術として潮の満干を利用して電力を得るために海
面の一部を堰隔して貯水池を設けたもの(特許第170
156)とか、可逆式水力機械を電動発電機に連結して
落差の異なる貯水池に水を押送させ乃至は発電する思想
(特公昭41−6126号)のものはある−万、本願は
上述の技術釣思惣?使用するものではあるが、単にこれ
らの思想のみならず河口の末端から上流に向けて旧河床
を適宜掘り下げしめ、そこに可能な限り適宜間隔を設け
しめて、揚水式発電設備を設けしめた堰堤を設けしめ満
潮時の水の押上作ハ]による淡水面の上昇(2〜3 I
II力至5−6nsに及ぶ)を揚水設備をして上段のタ
トに更にこれを」L段のダムにと揚水し得べくなし、干
潮時」1流より流入する河水と合せて低落差ではあるが
大量の水を利用し、各堰堤の発電膜fli(“1をして
商業用″電力を発生させ送電線又i配電線を通じて至近
距隨1の需要家に配電すべくなし、以て河用並に海の満
干によるエネルギーを高度に利用せしめ、併せて送配電
線の力率の向上、公害防止等々をも図ったこと全特徴と
するものである。
The conventional technology is to create a reservoir by damming a part of the sea surface to obtain electricity using the ebb and flow of the tide (Patent No. 170).
156), there is an idea (Japanese Patent Publication No. 41-6126) in which a reversible hydraulic machine is connected to a motor generator to push water to reservoirs with different heads or to generate electricity. Fishing restaurant? However, in addition to these ideas, it is also possible to dig down the old river bed from the end of the river mouth upstream, and to install dams with pumped storage power generation equipment at appropriate intervals as much as possible. Rise in the freshwater level (2-3 I
It is possible to pump water (up to 5-6 ns) from the upper stage to the L stage dam, and at low tide, combined with the river water flowing in from the first stream, it is possible to pump up the water to the upper level dam and the L level dam. However, a large amount of water is used to generate electricity from each dam for commercial use, which is then distributed to customers within close range through transmission lines or distribution lines. It is characterized by its ability to make advanced use of energy from the ebb and flow of the sea as well as from rivers, as well as improving the power factor of power transmission and distribution lines and preventing pollution.

一般に水力発電は山間僻地において発電し、長距1^1
1ヲ経て平野河川流域の都市や工場地帯に送電されるが
、長距離送電のため力率の低下は免かれず進相設備等の
多額の費用を投じて居る一万、都市や工場地帯に近くで
発電すればこの問題が解決される。従来とも水力発電を
増強する火力発電設備がこの問題解決をかねて居るがコ
スト高に加えて公害間開に悩まされて居る現状である。
Generally, hydroelectric power generation is generated in remote mountainous areas, and over long distances 1^1.
The power is then transmitted to cities and industrial areas in the plain river basin, but due to the long distance power transmission, a drop in power factor is unavoidable and a large amount of money is invested in equipment such as phase advance equipment. Producing electricity nearby would solve this problem. Traditionally, thermal power generation facilities that augment hydroelectric power generation have been used to solve this problem, but they are currently plagued by high costs and increased pollution.

この発明は、四海、海に囲まれ列島の中央を走る山脈全
分水嶺として海にそそぐ豊富な河川を擁し、電力の供給
先たる都市や工場地帯が河川流域及び河10付近に集中
して居る我国の特殊」情を考慮して特に電力の需要先地
帯となる河口付近に旧河床線金掘り下げしめて複数のダ
ムを建設し、満潮を利用して上段のダムに揚水し、上流
よりの河川の水と卵重ってダム水量を豊富にし低落差の
発電設備を以て発電し、全国に網羅される送配電線に適
宜給電乃至受電して発電揚水を行い地域ブロックで揚水
時の電力消費のマイナヌを潮の満干による自然エネルギ
ーと河川の水流の利用及び送電力率の改善により且つ連
繋した各ダムの揚水及び発電の組合せを適当に行って全
体として有用な発電を実施しようとするものである。
This invention was developed in Japan, which is surrounded by the sea and has abundant rivers flowing into the sea as a mountain range running through the center of the archipelago, and where cities and industrial areas that supply electricity are concentrated in river basins and around 10 rivers. Taking into consideration the special circumstances of the area, we constructed multiple dams by digging up the old riverbed line near the river mouth, which is a high demand area for electricity, and used high tide to pump up water to the upper dam, thereby reducing the flow of river water from upstream. This will increase the amount of water in the dam, generate electricity using low-head power generation equipment, supply or receive power to and from power transmission and distribution lines throughout the country, and pump up water for power generation, reducing the amount of electricity consumed during pumping in regional blocks. The aim is to generate useful power as a whole by utilizing natural energy generated by the ebbs and flows of the river and by improving the power transmission rate, and by appropriately combining the pumping and power generation of each connected dam.

以下図の実施例に基いてこの発明の詳細な説明する。The present invention will be described in detail below based on the embodiments shown in the figures.

先づ地域の地型は雑多でアシ其の具体的な利用方法も種
々有シ得る。例えば海が遠浅である場合海域2に鋼矢板
等を打込んで簡単な堰4を設け、該増白及び旧河床1及
び1′並に1′の河床は適当に掘9下げしめて、それぞ
れ揚水式発電設備C及びc’2設けしめた堰堤A及びA
′ヲ設〈。満潮時海水は2辺及び1′辺の淡水を押上げ
、即ち堰堤A′の下1’2 (1111の水位は和尚」
二ケjする。この時点で送配電設置1ii°1をM+し
て受電し、揚水設イ11°ff C’をして押し上った
l:JL、水を1・0段のタム1′に揚水する複数の堰
堤A及びCが自る場合堰堤Aの揚水設備Cをしてタム1
に]↓21水し適当の時、特に干潮時にこれら発電設備
をして11゛6業用電力を発生せしめ、地域の送配電網
を通じて一般需要家に力率の高い電力全供給せしめる。
The topography of the area is diverse, and there are various specific ways to use the reeds. For example, if the sea is shallow, a simple weir 4 is built by driving steel sheet piles etc. into the sea area 2, and the whitening and old riverbeds 1 and 1' and the riverbed 1' are appropriately dug 9 and the water pumped up. Weirs A and A with type power generation facilities C and c'2 installed
′ヲsetting〈. At high tide, seawater pushes up the fresh water on sides 2 and 1', i.e. 1'2 below dam A' (the water level at 1111 is Osho).
I'll do two. At this point, the power transmission and distribution installation 1ii°1 was set to M+ to receive power, and the water pumping equipment was set to 11°ff C' and pushed up. If dams A and C exist, use pumping equipment C for dam A and pump dam 1.
] ↓ 21 At appropriate times, especially at low tide, these power generation facilities will be used to generate 11゛6 industrial power and supply all high power factor electricity to general consumers through the local power transmission and distribution network.

尚、πlb潮時にC′の設備により上段のダム1′に揚
水するため2の塩水域は急速にA′の堰堤下に向けて進
む、この塩水を上段のダム1′に揚水せしめぬため別の
出願によってこれを防止せしめる。
In addition, at the time of πlb tide, the salt water at 2 rapidly moves below the dam A' in order to pump water to the upper dam 1' by the equipment C'.In order to prevent this salt water from being pumped to the upper dam 1' This can be prevented by filing an application.

即ち、塩水と淡水とは電気的抵抗の差がある。That is, there is a difference in electrical resistance between salt water and fresh water.

この原理を応用して弱電で下流河川の塩水域を信号灯で
表示せしめ上流限界近くでブザーで警報せしめ最後には
継電器をして揚水設備を停止せしめ以て塩水の汲み揚げ
を防止せしめる。
Applying this principle, weak electric current is used to indicate saltwater areas in downstream rivers with signal lights, alarms with buzzers near the upstream limit, and finally a relay is used to shut down the pumping equipment and prevent salt water from being pumped up.

第一図中の揚水式発電所Cを設けた堰堤Aは可能の限り
」1流にも次々と設置せしめ、居間総力をあげて発電及
び送配電し、深夜又は連体日には総力をあげて揚水せし
めあすの電力供給に備えしむ図中5は陸地を示す。
As much as possible, weir A with pumped storage power plant C installed in Figure 1 will be installed one after another in the first stream, and all efforts will be made to generate, transmit and distribute electricity, and all efforts will be made late at night or on connected days. 5 in the figure indicates land that is ready for power supply tomorrow after pumping water.

尚、堤防の末端にゲート2′ヲ設ければ満潮から干潮に
移る直前に該ゲートヲ閉じて貯水池内2及び1の満潮状
態を長引かせ揚水量の増大を図る平が可能となる。
Furthermore, if a gate 2' is provided at the end of the embankment, it becomes possible to close the gate just before the transition from high tide to low tide, prolonging the high tide state in the reservoirs 2 and 1, and increasing the amount of water pumped.

以上河川を利用しての電力増産には河川の末端に大型の
淡水池を併設せしめる」が大切である。
In order to increase electricity production using rivers, it is important to install large freshwater ponds at the ends of rivers.

更に河口1が外海7に面して深く荒海の地域等では第三
図に例示する様に河川1の河床を上流に向けて掘り下げ
60部分を海の入江状となしその上域に揚水式発電設備
8を設けしめた堰堤2を設く、図中7は外海、8は波返
し壁を示す。
Furthermore, in areas where the estuary 1 faces the open sea 7 and is deep and has rough seas, the bed of the river 1 is dug upstream and 60 sections are made into a sea inlet, as illustrated in Figure 3, and pumped storage power generation is installed in the upper area. A dam 2 with equipment 8 is installed. In the figure, 7 indicates the open sea and 8 indicates the wave return wall.

又、河川や湖又は入江等と満潮水とを連酵させて揚水式
発電に利用する場合、例えば第四図に於ては、外海7の
水位9と湖10内の水位9′とは殆んど同じであり僅か
の時差だけ従って河川lと湖10とを点線11当りで結
び其の流域を掘り下げしめて其適当の箇所に揚水式発電
設備を設けしめた堰堤を設けしむれば短距離で落差も大
きく大量の発電がriJrjピとなる。
In addition, when a river, lake, inlet, etc. and high tide water are used for continuous fermentation and used for pumped storage power generation, for example, in Figure 4, the water level 9 in the open sea 7 and the water level 9' in the lake 10 are almost the same. They are all the same, with only a slight time difference, so if you connect river 1 and lake 10 at dotted line 11, dig down their basin, and install a dam with pumped storage power generation equipment at the appropriate location, the distance will be shortened. The head difference is also large, and a large amount of power generation is required.

次に河に1イテ1近の利用方法についての縦断面を第n
図により示す。図例は何れも揚水式発電設備を設けしめ
た」二段の」41.l堤A、下段の堰堤A′、6は何れ
も旧河床線、6′は何れも河床の掘り下は部分、7は−
1一段タムの水面、7′は下段のダムの水面、8は下段
の満潮時の水面、9は干l朝時の水m1.10は其の半
相水位で堰堤A′のかなり下流までは常時淡水域、11
は海域である。
Next, we will look at the vertical cross-section of how to use 1 part of the river.
Illustrated in the figure. All of the examples shown are "two-stage" 41. equipped with pumped storage power generation equipment. Levee A, lower dam A', and 6 are all old riverbed lines, 6' is a part of the riverbed dug, and 7 is -
1 is the water surface of the first dam, 7' is the water level of the lower dam, 8 is the water surface of the lower dam at high tide, 9 is the water level at low tide in the morning, m1.10 is its half-phase water level, and up to quite downstream of dam A' Permanent freshwater area, 11
is an ocean area.

高潮時海水の押」二げ作用で堰堤A′の下流の淡水面は
8に示す方向に上昇を始める、この適当の時点をとらえ
堰堤に設けしめた揚水設備をして上段のダム7′に史に
堰堤Aに設けしめた揚水設備により−に段のダム7に更
にfiJ能な限シ上段の掘り下げダムにと揚水せしめ必
要時に各下段のダムに放流せしめる過程に於て各々発電
し送配電設備を通じて商業用電力を供給せしめ以て比較
的平坦地帯の未利用であった膨大な河川のエネルギーを
高度に利用せしめ、資源小国日本の繁栄に大きく寄与せ
しめんとするにあり。
During high tide, the freshwater level downstream of dam A' begins to rise in the direction shown in 8 due to the pushing action of seawater during high tide. This appropriate point is captured and the water pumping equipment installed on the dam is connected to the upper dam 7'. Historically, the water pumping equipment installed on dam A was used to pump water to the lower level dam 7 to the maximum capacity of the upper dug-out dam, and to discharge the water to the lower dams when necessary. In the process, electricity was generated, transmitted, and distributed. By supplying commercial power through the facility, we will be able to make advanced use of the energy of the vast unused rivers in relatively flat areas, and will greatly contribute to the prosperity of Japan, a resource-poor country.

尚、この計画(でよるメリノトヲ示す。In addition, this plan is shown below.

1、 大王パラが続いても都市用水の心配なし1 洪水
による堤防決壊の恐れなし J 養魚池として活用し得る 1、 住民のレジャー基地として活用出来る等々
1. Even if Daio Para continues, there is no need to worry about urban water supply. 1. There is no risk of the embankment breaking due to flooding. 1. It can be used as a fish pond. 1. It can be used as a leisure base for residents, etc.

【図面の簡単な説明】[Brief explanation of drawings]

図はこの発明方法の実施例を示すもので第一図は河口近
くで適当な落差が得られる場合の説明図 第二図は地域が比較的平坦の場合の説明図第三図(C河
口が外海に面して深い荒海の地域の場合の説明図 第四図は河川や湖又は入江等と満潮水等を連繋させ且つ
河床全掘シ下げしめて揚水発電に利用せしめる場合の説
明図 第五図は本発明全河口付近に笑施せしめた縦断面の略図
にして、6・・が旧河床 A・・A′は共に揚水式発電
設備?設けしめた上段と下段の堰堤 6′・・は夫々掘
シ下げしめた新河床 7・・7′は夫々上下ダムの水面
 ′8・・は満潮時の堰堤下の水面9・・は干潮時の堰
堤A′の下流水位 11・・は海域の部分 ノ 1 趙 メ − ♂ 律 三 因 自発補正 手  続  補  正  書 昭和58年5月28日 特許庁長官         殿 1、事件の表示  昭58年特許願第28408号Z発
明の名称 河口堰と満潮揚水式の併用による発電方法8、補正をす
る者 事件との関係  特許出願人 住所  憂茹眞条み鼠二酢瀾¥笑采 5、補正の内容 明      細      書 1、発明の名称 河口堰と満M1’A水式の併用による発電方法2、特許
請求の範囲 河川のもつエネルギーを高度に利用し営業用電力を発生
せしむべく河川の下流流域の土砂を上流に向けて水平に
取除き、其の適尚の箇所に堰堤及び揚水式発電設備を設
けしめ、満潮時に押上げられて来る淡水を堰堤の上段ダ
ムに揚水しおき、干潮時ダムに押上げた水と上流より流
下する水とを利用し、即ち上段のダムの水面と下段の堀
9下げ部分の水面との落差の増大時全利用して営業用電
力を発生せしめ、送電せしむべくせる河口堰と満1朝揚
水式の併用による発電方法 3、発明の詳細な説明 この発明は我国に豊富な河川又は海に開口する湖沼等と
、人口周密部分及び工場地帯はその河川の流域特に河口
附近に集中している現象に着目して、河口付近に低落差
豊水量の堰(ダム)(以下ダムという)を作り、上流よ
りダムに流入する水量と、満潮時押上げられて来る河水
を上段のダムに揚水せしめた水量の両者を利用して干潮
時に発?[ヱする方法に関−する。 従来技術として、潮の満干を利用して電力を得るために
海内の一部を堰隔して貯水池を設けたもの(特許第17
0156号)とか可逆式水力機械を電動発電機に連結し
て落差の異る貯水池に水を゛押送させ及至(は発電する
思想(特公昭41−6126号)のものはある。一方、
本願は上述の技術的思せ全使用するものではあるが、単
にこれらの思想のみならず、河口付近のダム金可能の限
り数箇所設けてそれぞれに揚水式発電設備を設備し、他
の河川のダムの発電設備と送電線を介して有機的に連繋
し、且、ダム下流の箇所を堀9下げて落差全増大させ満
潮時の水の押上げ作用を利用す゛る外に河川の自然流水
も併用し、河口域近傍の低落差ではあるが大容量の水を
゛貯水して、電力供給先へ至近距離で送電し、以て送電
力率の向上と公害防止、省エネルギーその他を図ったこ
とを特徴とするものである。 一般に水力発電は山間僻地において発電し、長距離を経
て平野、河川流域の都市や工場地帯へ送電されるが、長
距離送電のため力率の低下は免かれず、進相設備等の多
額の費用を投じている。一方、都市や工場地帯に近く発
電すればこの問題が解決され、従来とも水力発電を増強
する火力発電設備がこの問題解決も兼ねているが、石油
ショック以来公害問題とコヌト高に悩まされている現状
である。 この発明は、四面海に囲まれ、列島の中央を走る山脈を
分水嶺として海にそそぐ豊富な河川を擁し、電力の供給
先たる都市や工場地帯が河川流域及び河口付近に集中し
ている我国の特殊事情を考慮して、特に電力の需要先地
帯となる河口付近に複数のダムを建設し、満潮を利用し
て上段ダムに揚水し、流下する河川の水と1目まってダ
ム水ftk豊富にし、低落差の発電設備で以て発電し、
全国に網羅される送配電線に適宜給電乃至受電して発電
、揚水を行ない、地域ブロックで、揚水時の電力消費の
マイナスを潮の満干による自然エネルギーと河川の水流
の利用及び送電力率の改善にょ9且つ連繋した各ダムの
揚水及び発電の組合せを適当にイイなって、全体として
有用な発電を実施しようとするものである。 以下図の¥:施例に基いてこの発明の詳細な説明する。 先ず、地域の地形は雑多であるため、その具体的な利用
方法も種々あり得る。例えば海が遠浅であり、且つ河口
近くで適当な落差が得られる場合は第1図に示すように
河川lにダム2と揚水式発電設備3(水力タービン乃至
ポンプと連結された可逆式電動発電設備、又は発電機及
び電動ポンプを独立したケミ設備、揚水設備)を設け、
海域の遠浅の部分に堤防4を設けて、発電設備の下流及
び堤防4内は干潮時においても一定水深をもつようにし
、且、淡水油状になるようにする。満7MJ+侍に押し
上げられてきた下段の水1′ヲ上段のダム2に揚水設備
3を通じて送電線より受電して、揚水し上流より流入し
てくる水と合体してダム2に豊富な水ffc、に貯水さ
せ、更には適時さらにその上段′のダムへ揚水設備を通
じて揚水し、・〆’$ K 応じて次次とその更に上段
のダムへと揚水し、適宜貯水した水を堀り下げ落差を利
用して落下させて水力発電し、送電線へ′#電する。そ
して、これらの電力の需給全複数の河川の揚水式発電設
備と送電線で連結し、相互に適宜揚水乃至発電し、部会
地等の需要者へ給電するようにする。図中5は陸地を示
す。 尚、堤防の末端はゲート2′を設ければ満潮から干潮に
移る直前に該ゲ=トに閉じて貯水池内の満潮状態を長引
かせ揚水量の増大を図ることが可能となる。 次に地域が比較的平坦の場合は第2図に例示するように
1.満潮水が上流遠く点線13に示す位置まで及ぶ場合
は、その少し下流から上流の土&)ヲ堀り下げてダL2
と揚水式発電設備3を設ける。 発電所の下流流域が長く海域の堤防4の必要が少ない場
合でもこのようにダムを設けるこ゛とにより上流への塩
分の防止は図れる。尚、塩水の吸上げを防止するた“め
別に特許願呈出中、即ち淡水と塩水とでは′1程気的に
抵抗の差が有り2、この点を利用せしめて塩水の上流域
への移行により次々と信号ランプを点灯させ上流限界近
くでブザー士警報せしめ、更にはリレーの動作により自
動的に揚水を停止せしめる。 更に河口1が外#7に面して深い荒海の地域等でd:第
3図に例示する。ように河川1を上流に向けて掘り下げ
部分6の位置のように海の入江状となし、その上域にダ
ム2及び揚水式発電設備3を設ける。図中7は外海8は
波返し壁を示す。 又、河川や湖又は入江等と満潮水とを連繋させて揚水式
発電に利用する場合例えば第4図においては、外海7の
水位9と湖10内の上域水位9′とは殆んど同じであり
、僅かの時差だけ従って河川1と湖10とを点線11辺
りで結び、その適当な箇所にダム及び揚水式発電設備全
役くれば、落差も大きく大量の電力を発電できる。 次に河口堰付近の縦断面図全第5図に示す。図中1は海
域の平均水位、Eは満潮水位、Fは干潮水位、Aは旧河
床線を示す。 図例は堰堤を河口側2に、更にその上域に堰堤2′を設
けしめた略図にはダムの上水面を示す。河川により更に
上流域に堀り下げダムと揚水式発電設備を設けしめて、
他の河川の揚水式発電設備と連繋して適宜揚水し又は発
電するようにするものである。 この発明は上記のような発電設備を以て発電するので以
下のような効果がある。 (1)  この方式を各河川に設け、これら各ダムの揚
水式発電設備を送電線を介して有機的に結合すれば、送
電線から一部のダムの揚水設備が受電する一方、他の多
くのダムが発電して地域的な潮の干満の時間差とか、夜
間の余剰電力の利用等と相まって総体的に常時発電が可
能となり、既設め水力及び火力発電と相まって電力の需
給は円滑に行なわれ、その利用価値(は高いものがちる
。 (2)  A1の満干と河川の水流の利用は自然界のエ
ネルギニラそのまま利用できるので、現在の火力発電の
比率が高い発電方式で問題となっている公害と高価とな
った石油消費によるコスト高に対して公害防Iヒと省エ
ネルギーの果す効果は大きい。 (3)  河川の下流域に発′直所を′設ければ、河川
の流域や河1」に一般に都市や工業地帯が集中している
ため、?fi力消費地の近くに発電設備を設けることに
なり、従来の山奥で発電して遠方から遥々と消費地へ′
1F力輸送するために生ずる力率の低下を大幅減少防止
できる。 (4)河川の流域及び河口にダムを複数設け、それぞれ
の低位のダムから高位のダムへ揚水する際に消費する7
E力は、潮位の満干の差による自然エネルギーの活用及
び河川の自然水流の利用による発電の生産性と、山間僻
地で発電して遠方の電力消費地へ送電することによる力
率の低下による電力損失ヲ遥かに償って余りある。 (5)河口、でのダムは落差は小さいが、それを上回っ
て水槍、貯水面積が大きく、低落差水力発電機を使用す
ることによp発°電量は相当大きく、十分実用できる。 (6)  ダム下流部分を堀り下げることにより、貯水
量は増太し、一方落差も犬となって発電量の増大に寄与
できる。 (7)河口付近に淡水乃至準淡水の貯水池ができるため
漁る漁業から養う漁業として、又観光地として都市用水
の基地として活用できる。 4、図面の簡単な説明 図はこの発明方法の実施例を示すもので、第1図は河口
近くで適白な落差が得られる場合の平面説明図、第2図
は地域が比較的平坦の場合の平面説明図、第3図は河口
が外海に面して深い荒海の地域の場合の説明図、第4図
は河川や湖又は入江等と満潮水とを連繋させて揚水式発
電に利用する場合の平面説明図、第5図は河口堰付近の
縦断面説明図である。 A[旧河床  2は堰堤  Bは堀9下げ部−分Fは干
潮時の水面  Eは満潮時の水面  Kはダムの水面 
 Gは海域を示す 特許出願人 石 塚 音 宣 λ −図 ス  = 園 夕 f=−園 にり聞
The figures show an example of the method of this invention. Figure 1 is an explanatory diagram when an appropriate head can be obtained near the river mouth. Figure 2 is an explanatory diagram when the area is relatively flat. Figure 3 is an explanatory diagram when the area is relatively flat. Figure 4 is an explanatory diagram for an area facing the open sea with deep rough seas. Figure 5 is an explanatory diagram for connecting rivers, lakes, coves, etc. with high tide water, and the entire riverbed is dug down for use in pumped storage power generation. 6 is a schematic diagram of a vertical cross-section of the entire river mouth area of the present invention, where 6... is the old river bed, A... A' are both pumped storage power generation facilities, and the upper and lower dams 6'... are respectively. New riverbed that has been lowered. 7...7' are the water levels of the upper and lower dams, '8... are the water levels under the dam at high tide, 9... are the water levels downstream of dam A' at low tide, and 11... are the ocean area.ノ 1 Zhao Me - ♂ Law Three-cause voluntary amendment procedure Amendment Written by the Commissioner of the Patent Office on May 28, 1982 1. Indication of the case Patent Application No. 28408 of 1983 Name of Z Invention Estuary Weir and High Tide Pumping System 8. Relation to the case of the person making the amendment Patent applicant's address Uenma Shinjo Mizujisuran ¥ Laughter 5, Details of the amendment 1, Name of the invention Kawaguchi Weir and Man M1' A power generation method using water type 2, Claims In order to utilize the energy of rivers to a high degree and generate electricity for commercial use, earth and sand in the downstream basin of a river is removed horizontally toward the upstream, and its appropriate A dam and pumped-storage power generation equipment will be installed at this location, and the fresh water that is pushed up at high tide will be pumped up to the upper dam of the dam, and the water pushed up to the dam at low tide and the water flowing down from upstream will be used. In other words, when the head difference between the water level of the upper dam and the water level of the lower part of the moat 9 increases, it is fully utilized to generate electricity for commercial use, and the electricity is transmitted through a combination of the estuary weir and the pumped storage system. Method 3: Detailed Description of the Invention This invention focuses on the fact that Japan has abundant rivers or lakes that open into the sea, and the phenomenon that densely populated areas and industrial areas are concentrated in the river basins, especially near the river mouths. A weir (dam) with a low head and high water flow (hereinafter referred to as a dam) is constructed near the river mouth, and both the amount of water flowing into the dam from upstream and the amount of water pumped up by the river water pushed up at high tide to the upper dam are used. Related to a method for generating electricity at low tide. As a conventional technology, a reservoir is installed by weiring a part of the ocean to obtain electricity by utilizing the ebb and flow of the tide (Patent No. 17).
0156) and the idea of connecting a reversible hydraulic machine to a motor generator to push water to reservoirs with different heads (or generating electricity (Japanese Patent Publication No. 41-6126)).On the other hand,
Although this application makes full use of the above-mentioned technical ideas, it is not limited to just these ideas; it is also necessary to establish as many dams as possible near the mouth of the river and install pumped storage power generation equipment in each of them. Organically linked to the dam's power generation equipment via power transmission lines, the area downstream of the dam is lowered by a moat 9 to increase the total head, making use of the uplifting effect of water at high tide, as well as using natural flowing water from the river. The system is characterized by storing a large amount of water near the estuary, albeit at a low head, and transmitting it over close distances to the power supply destination, thereby improving the power transmission rate, preventing pollution, and saving energy. That is. In general, hydroelectric power generation is generated in remote areas in the mountains and transmitted over long distances to cities and industrial areas in the plains and river basins. is spending money. On the other hand, this problem can be solved by generating electricity close to cities and industrial areas, and conventional thermal power generation facilities that augment hydropower generation also solve this problem, but since the oil crisis, they have been plagued by pollution problems and high Conut prices. This is the current situation. This invention was developed in Japan, which is surrounded by the sea on all sides, has a mountain range running through the center of the archipelago as its watershed, and has an abundance of rivers flowing into the sea. Taking special circumstances into consideration, we built multiple dams near the river mouth, which is a high demand area for electricity, and used high tide to pump water to the upper dam, creating an abundance of ftk of dam water in line with the flowing river water. and generate electricity using low-head power generation equipment.
Power is generated and pumped by appropriately supplying or receiving electricity to power transmission and distribution lines that cover the entire country, and in regional blocks, the negative power consumption during pumping is reduced by using natural energy and river water flow due to the ebb and flow of the tide, and reducing the power transmission rate. The aim is to appropriately combine the pumping and power generation of each connected dam to achieve useful power generation as a whole. ¥ in the following figure: This invention will be described in detail based on examples. First of all, since the topography of the region is varied, there are various possible ways to utilize it. For example, if the sea is shallow and an appropriate head can be obtained near the river mouth, as shown in Figure 1, a dam 2 and a pumped storage power generation facility 3 (a reversible electric power generator connected to a hydraulic turbine or pump) are installed on the river L. equipment, or a generator and electric pump (independent chemical equipment, pumping equipment),
A levee 4 is provided in a shallow part of the sea area, so that the water depth downstream of the power generation equipment and inside the levee 4 is constant even at low tide, and the water is in the form of fresh water and oil. The water in the lower tier that has been pushed up by 7 MJ + 1' is received from the power transmission line through the pumping equipment 3 to the dam 2 in the upper tier, is pumped up, and combines with the water flowing in from upstream to create abundant water in the dam 2.ffc The water is stored in the dam, and then pumped at the appropriate time to the upper dam through the pumping equipment. Hydroelectric power is generated by dropping the water onto the power transmission line. The supply and demand of these electric powers will be connected through power transmission lines to pumped storage power generation facilities on multiple rivers, so that they can pump water or generate electricity as needed, and supply power to users such as sub-districts. 5 in the figure indicates land. If a gate 2' is provided at the end of the embankment, it will be possible to close the gate just before the transition from high tide to low tide, prolonging the high tide state in the reservoir and increasing the amount of water pumped. Next, if the area is relatively flat, 1. If the high tide water extends far upstream to the position shown in dotted line 13, dig up the soil slightly downstream and upstream.
and pumped storage power generation equipment 3. Even if the downstream basin of the power plant is long and there is little need for sea embankments 4, by providing a dam in this way, it is possible to prevent salt from flowing upstream. In addition, a patent application has been filed for the purpose of preventing the upstream of salt water. As a result of the transition, signal lamps are lit one after another, a buzzer is activated near the upstream limit, and pumping is automatically stopped by the operation of a relay. : As shown in Figure 3, the river 1 is turned upstream to form a sea inlet at the location of the dug-out part 6, and the dam 2 and pumped storage power generation facility 3 are installed above it.7 in the figure. The open sea 8 indicates a wave return wall. Also, when high tide water is connected to a river, lake, inlet, etc. and used for pumped storage power generation, for example, in Fig. 4, the water level 9 of the open sea 7 and the water level of the lake 10 are It is almost the same as the upper water level 9', and if river 1 and lake 10 are connected around dotted line 11 with a slight time difference, and all dams and pumped storage power generation equipment are used at appropriate locations, the head will be reduced. A large amount of electricity can be generated.Next, a vertical cross-sectional view of the vicinity of the river mouth weir is shown in Figure 5.In the figure, 1 shows the average water level of the sea area, E shows the high tide water level, F shows the low tide water level, and A shows the old river bed line. The diagram shows the water surface of the dam, with the dam installed on the river mouth side 2 and the dam 2' above it. Tighten it,
It is designed to be linked with pumped storage power generation facilities on other rivers to pump water or generate electricity as appropriate. Since this invention generates electricity using the power generation equipment as described above, it has the following effects. (1) If this system is installed on each river and the pumped storage power generation facilities of these dams are organically connected via power transmission lines, while the pumped storage facilities of some dams will receive power from the power transmission lines, many other dams will receive power from the power transmission lines. The dam generates power, and when combined with regional tidal time differences and the use of surplus power at night, it becomes possible to generate electricity at all times, and when combined with existing hydropower and thermal power generation, the supply and demand of electricity is smoothly maintained. (2) Since the use of A1's ebb and flow and river water flow can be used as energy in the natural world, it eliminates the pollution that is a problem with current power generation methods that have a high proportion of thermal power generation. Pollution prevention and energy conservation have a significant effect on the rising cost of oil consumption, which has become expensive. (3) If a power station is established in the downstream area of a river, it will reduce Generally speaking, cities and industrial areas are concentrated, so it is necessary to install power generation facilities near power consumption areas, unlike the conventional method of generating power deep in the mountains and distributing it from far away to consumption areas.
It is possible to significantly prevent a decrease in the power factor that occurs due to 1F force transport. (4) Multiple dams are installed in river basins and estuaries, and water is consumed when pumping water from each lower dam to a higher dam.
E-power is generated by the productivity of power generation by utilizing natural energy due to the difference in tidal level and by using the natural water flow of rivers, and by reducing the power factor by generating electricity in remote mountainous areas and transmitting it to distant power consumption areas. The loss is far more than worth it. (5) The dam at the river mouth has a small head, but the water storage area is larger than that, and by using a low-head hydroelectric generator, the amount of power generated is quite large, making it fully practical. (6) By digging down the downstream part of the dam, the amount of water stored will increase, and the head will also increase, contributing to an increase in power generation. (7) Freshwater to semi-freshwater reservoirs can be created near the river mouths, which can be used as a source of fishery for sustenance, as well as as tourist spots and urban water bases. 4. The simple explanatory diagrams in the drawings show examples of the method of this invention. Figure 1 is a plan view when a suitable white head can be obtained near the mouth of the river, and Figure 2 is an explanatory diagram when the area is relatively flat. Figure 3 is an explanatory diagram of an area where the estuary faces the open sea and has deep rough seas. Figure 4 is a diagram showing the case where high tide water is connected to a river, lake, inlet, etc. and used for pumped storage power generation. FIG. 5 is a longitudinal cross-sectional view of the vicinity of the river mouth weir. A [Old riverbed 2 is the dam B is the lower part of the moat 9 - F is the water surface at low tide E is the water surface at high tide K is the water surface of the dam
G indicates sea area Patent applicant Oto Ishizuka

Claims (1)

【特許請求の範囲】[Claims] 河川の流域に沿って河口1から−に流に向けて河床全適
宜掘り下げしめて可能な限り順次1−流へと複数個の堰
堤を設は該堰堤には何れも揚水式発電設置1ffi を
設けしめ、下流末端の」し堤下で満潮時に押し上げられ
て来る淡水面は和尚上昇する。此の時堰堤に設けしめた
揚水設備をして末端のダムに揚水せしめ、更に必要の場
合は其の上段のダムへと順次揚水し得べくなし、干潮時
末端ダムと其の下段との落差が増大した時点で揚水せし
めた水と」1流よりの水とを利用し、各発電設備をして
商業用電力を発生せしめ、地域の配電線又は送電線に電
力全供給し得べぐ韻る河に1堰と満潮揚水式の併用によ
る発電方法。
Along the basin of the river, from the mouth of the river to the estuary, the entire river bed will be dug down as appropriate, and multiple dams will be constructed in sequence as far as possible, and each dam will be equipped with a pumped storage power generation installation. The freshwater level, which is pushed up at high tide under the embankment at the downstream end, rises. At this time, the water pumping equipment installed on the dam is used to pump water to the terminal dam, and if necessary, it is possible to pump water sequentially to the upper dam, and the head difference between the terminal dam and the lower dam at low tide. When the amount of water increases, the pumped water and the water from the first stream can be used to generate commercial power using each power generation facility, and the system can supply all the power to local distribution lines or transmission lines. A power generation method that uses a single weir on the river and a high tide pumping system.
JP58023403A 1983-02-15 1983-02-15 Power generation by combined use of estuary dam and high-tide water pumping type power plant Pending JPS59150814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023403A JPS59150814A (en) 1983-02-15 1983-02-15 Power generation by combined use of estuary dam and high-tide water pumping type power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023403A JPS59150814A (en) 1983-02-15 1983-02-15 Power generation by combined use of estuary dam and high-tide water pumping type power plant

Publications (1)

Publication Number Publication Date
JPS59150814A true JPS59150814A (en) 1984-08-29

Family

ID=12109536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023403A Pending JPS59150814A (en) 1983-02-15 1983-02-15 Power generation by combined use of estuary dam and high-tide water pumping type power plant

Country Status (1)

Country Link
JP (1) JPS59150814A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213325A (en) * 1986-03-13 1987-09-19 Yaesu Musen Co Ltd Radio communication equipment
GB2417759A (en) * 2004-11-18 2006-03-08 Jwo-Hwu Yi Combined tidal and river power generation system
JP5062791B1 (en) * 2012-01-24 2012-10-31 株式会社オージーエイ Multiple hydroelectric power generation system.
WO2022239523A1 (en) * 2021-05-14 2022-11-17 株式会社島村技建コンサルタント Tidal power generation device and tidal power generation system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923123A (en) * 1972-06-26 1974-03-01
JPS4944205A (en) * 1972-07-03 1974-04-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4923123A (en) * 1972-06-26 1974-03-01
JPS4944205A (en) * 1972-07-03 1974-04-25

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62213325A (en) * 1986-03-13 1987-09-19 Yaesu Musen Co Ltd Radio communication equipment
GB2417759A (en) * 2004-11-18 2006-03-08 Jwo-Hwu Yi Combined tidal and river power generation system
GB2417759B (en) * 2004-11-18 2006-08-23 Jwo-Hwu Yi Tidal power generation method and system using water from rivers
ES2323100A1 (en) * 2004-11-18 2009-07-06 Kun Shan Universty Combined tidal and river power generation system
JP5062791B1 (en) * 2012-01-24 2012-10-31 株式会社オージーエイ Multiple hydroelectric power generation system.
WO2022239523A1 (en) * 2021-05-14 2022-11-17 株式会社島村技建コンサルタント Tidal power generation device and tidal power generation system

Similar Documents

Publication Publication Date Title
Baker Tidal power
CN101649813B (en) Integrated system for generating electricity by current, sea wave as well as tide kinetic energy and wind and solar energy
KR101416761B1 (en) Structure for tidal power generation
CN206477949U (en) A kind of seawater Pumped Storage Power Stations
JPS59150814A (en) Power generation by combined use of estuary dam and high-tide water pumping type power plant
EP1010811A4 (en) System for protecting coastal land from rise of surface of the sea
CN109797706B (en) Greenhouse gas emission reduction method for improving greenhouse effect of operating reservoir
Tunde Small hydro schemes-taking Nigeria's energy generation to the next level
JPS59134216A (en) Power generation by combined use of river mouth dam and water pumped storage system at high tide
CN105089913A (en) Cycle hydro electric generating set
Lata et al. Impact analysis of run-off–the river type hydroelectric power plants in Himachal Pradesh, India
Nombré et al. Complementarities and synergies with intermittent renewable energy, related issues-Burkina Faso cases studies
CN220622064U (en) Power generation system
Murakami Water for peace master plan of the Jordan river system
CN101942821A (en) The method of power station energy storage power generation
JPH1129921A (en) Method and device for building multiple tidal pumped storage power generating system, for developing maximum energy at tidal power generating site
RICHARDS TIDAL POWER: ITS DEVELOPMENT AND UTILIZATION.
Fentzloff The Tidal Power Plant “San Jose”—Argentine
JPH09150140A (en) Desalting device served also as hydraulic power generation utilizing sea water and lake water
Lemperière The key role of PSPs in the future of sunny countries
KR200204762Y1 (en) The contained tidal plant
CN201649049U (en) Water storing and power generating system of artificial underground river
JPS5825589A (en) Pumped storage power plant using range of tide
Draganova-Zlateva et al. Hydro Energy Use Of The Water Potential Of The Danube River
Angus et al. The Geography of Power: Its Sources and Transmission