JP3555557B2 - Aeration device - Google Patents

Aeration device Download PDF

Info

Publication number
JP3555557B2
JP3555557B2 JP2000185944A JP2000185944A JP3555557B2 JP 3555557 B2 JP3555557 B2 JP 3555557B2 JP 2000185944 A JP2000185944 A JP 2000185944A JP 2000185944 A JP2000185944 A JP 2000185944A JP 3555557 B2 JP3555557 B2 JP 3555557B2
Authority
JP
Japan
Prior art keywords
liquid
gas
ejector
flow
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000185944A
Other languages
Japanese (ja)
Other versions
JP2002001386A (en
Inventor
倫明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2000185944A priority Critical patent/JP3555557B2/en
Publication of JP2002001386A publication Critical patent/JP2002001386A/en
Application granted granted Critical
Publication of JP3555557B2 publication Critical patent/JP3555557B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は水処理装置等に使用される曝気装置、特に大量のガスを溶解するのに適した曝気装置に関するものである。
【0002】
【従来の技術】
有機性排液の好気性処理では生物の作用により有機物を分解するために曝気が行われる。このような処理に用いられる曝気装置では、大量の酸素を効率よく溶解することが要求される。特に高負荷で好気性処理を行う場合、あるいは高濃度の有機性排液を処理する場合には、大量の酸素を短時間に効率よく溶解することが必要になる。
【0003】
従来、液体に効率よく酸素含有ガスを溶解する手段として、エゼクタ等のガス吸引手段を用い、気液混相流を反応槽内に噴射する方式が各種提案されている。特に、反応槽内に両端を開口した反応室を設け、気液混相流の運動エネルギーを利用して反応槽内の被処理液を反応室内に吸引し、気液混相流と被処理液を混合させて酸素の分散、溶解を促進する方法は効率が高いとされている。
しかし従来の反応室形状では、高ガス吸入率で大量のガスを吸入した気液混相流を導入すると、反応室内で気泡の合一が起って相分離し易いため、低ガス吸入率または高溶解効率を指向せざるを得なかった。低ガス吸入率で大量の酸素を溶解するためには高酸素濃度ガスを用いる必要があるが、コスト高になる。また空気を用いて高溶解効率を得るための手段には通常10〜15m以上の大水深を必要とし、建設コストの増加を招く問題があった。
【0004】
高酸素濃度のガスを利用することを想定し、気液混相流内の溶解と反応室内の溶解の双方の効果を引き出そうとしたものとして、ベンチュリー管でガスを吸引した気液混相流を、長い流路を移動させて両端が開放した反応室にノズルから噴射し、酸素を溶解する装置が提案されている(特開昭58−128194号)。この装置では気液混相流の移動中に気体が相分離するのを防止するために、高流速で移送するか、あるいは高酸素濃度ガスを用いることにより吸入するガスの容積を小さくすることが好ましいとされている。しかし高酸素濃度ガスは高価であり、また安価な通常濃度の空気を使用する場合には、吸入するガスの容量が大きくなって相分離するのを防止するために気液混相流を高流速で移送すると、移動経路における圧力損失が大きくなりやすく、またノズルから噴射する段階でも圧力損失があり、ポンプ必要揚程の増加を招く。
【0005】
要するにこの装置ではガスを吸入して気流混相流を形成する工程と、この気液混相流中のガスを反応室内の液と混合して溶解する工程を別の工程としてとらえており、ガスの吸入により生成する混相液を長い経路を通して反応室に導くため、この間に圧力損失によって混相流の勢いが小さくなり、反応室におけるガス溶解効率が低下する。これを防止するためには高揚程のポンプを使用する必要があり、装置コストが増加するという問題点がある。
【0006】
【発明が解決しようとする課題】
本発明の課題は、低水深で低揚程のポンプを用いて大容量のガスを吸入して気液混相流を形成すると同時に、気液混相流の勢いをそのまま利用して大量の液を吸入して混合することができ、これにより大量のガスを大量の液中に効率よく溶解することができ、空気を用いる場合でも少ないエネルギー消費で効率よく大量の酸素を液中に溶解することができる曝気装置を得ることである。
【0007】
【課題を解決するための手段】
本発明は次の曝気装置である。
(1) 溢流壁により区画された曝気部と液取出部とを備え、上部が蓋で覆われて実質的に密閉状態になっている水槽と、
液取出部の下部から液を取り出して曝気部に圧送するポンプを有する循環路と、
循環路の吐出端にガスを吸入して気液混相流を形成するように設けられ、かつスロート端部を水槽内の液中に突入させて気液混相流を液中に噴射するように設けられた液−気エゼクタと、
液−気エゼクタから吐出される気液混相流を利用して水槽内上部の液を吸入し、気液混相流と混合するように水没して設けられた液−液エゼクタと、
液−液エゼクタの吐出端に連結されて水槽の底部に向って延び、かつ混合流を下向流で通過させる筒状の下向管と
溢流壁を溢流する曝気部上面の気泡を曝気処理液とともに排出するように液取出部内に設けられた流出口とを備える曝気装置。
【0008】
本発明では低揚程ポンプを用い、低水深で、空気のようなガスを大容量で吸引して大量のガスを大容量の液に溶解するために、循環路の吐出端に液−気エゼクタを設けて大容量のガスを吸入する。そして液−気エゼクタと液−液エゼクタを直結して液−気エゼクタのスロートをそのまま液−液エゼクタのノズルとして用い、液−気エゼクタで生成する気液混相流を直接液−液エゼクタに送り込む。これにより気液混相流の勢いを利用して大容量の水槽上部の液を吸入して混合し、混合流を下向管に下向流で通過させて大量のガスを液に溶解する。
【0009】
ガスとして空気を用い酸素を大量に液中に溶解するためには、まず可能なかぎり大容量のガスを循環流に吸入して気液混相流を生成し、次に可能なかぎり大容量の液を取り込んで気液混相流と混合することにより、混相流の大容量のガスが液中に溶解する。このようなガスおよび液の混入を低エネルギー消費率で行うためには、循環流の勢いを利用して大量のガスを吸入し、そして生成する気液混相流の勢いを低下させることなく、混相流生成直後の勢いをそのまま利用して液を吸入することが重要である。
【0010】
このため本発明では循環路の吐出端に液−気エゼクタを設けて大量のガスを吸入して液中に微細気泡として分散させるとともに、この液−気エゼクタのスロートを液−液エゼクタのノズルとして用いることによりスロートから吐出される気液混相流の勢いを利用して大量の水槽上部の液を吸入して混合する。循環流中に液−気エゼクタを用いて空気を吸入すると、循環流の勢いと吸入された空気の勢いが合わさって強大な勢いの気液混相流が形成されるので、その混相流を液−気エゼクタのスロートから、これに直結した液−液エゼクタに直接噴出させると、生成直後の気液混相流の勢いをそのまま利用して液の吸入を行うことができる。これに対して生成した気液混相流を長い管路を通して移送すると気液相分離により勢いは減少し、しかも管路抵抗のため圧力損失が大きくなる。
【0011】
本発明では気液混相流の勢いを利用して液を吸入することにより大量の液を吸入できるとともに、吸入される液の勢いを利用して気泡をさらに細分化することができる。このように気泡を細分化した状態でも緩やかな攪拌下におくと気泡が合一しやすいが、筒状の下向管を下向流で通過させると、気液の上昇力に反する方向に液が流れるため気泡が激しく攪拌され、合一を防ぐとともに酸素の溶解性が高くなる。
【0012】
本発明の曝気装置では水槽から液をポンプにより取り出して、循環路を通して圧送するように構成するのが好ましい。水槽は上記の曝気を行えるように形成されるが、溢流壁により曝気部と液取出部とに区画し、循環路は液取出部から曝気部へ液を循環するように構成する。この混合液取出部には曝気部との水頭差で液を流出させるように、溢流壁より低い位置に流出口を設けると、曝気部上面の気泡を処理液とともに排出できるので好ましい。また曝気部および液取出部を含む水槽の上面を、液−気エゼクタを含めて蓋で覆って実質的に密閉構造にすると、吸入された空気の圧力を利用して気泡を排出できる。
【0013】
液−気エゼクタは循環路の末端であって、水槽の特に曝気部の液面より上部に、スロートの端部が液面下に突入するように設けられる。液−気エゼクタは循環路の末端に設けられるノズルと、このノズルを囲むように設けられる吸入室と、吸入室に開口する吸気口と、吸気室の先端に液面に突入するように形成されるスロートとから構成することができる。
液−液エゼクタは液−気エゼクタのスロートをノズルとし、このノズルに対向するように液中に設けられるスロートと、ノズルおよびスロート間に形成される吸液口とから構成することができる。
【0014】
液−気エゼクタは液を噴射することにより気体を吸入するエゼクタであり、液−液エゼクタは液を噴射することにより液を吸入するエゼクタである。液−気エゼクタのノズルはそのスロートに対向するように上下方向の直線上に設けると、循環流の勢いを減殺しないので好ましい。液−気エゼクタのスロートすなわち液−液エゼクタのノズルも液−液エゼクタのスロートに対向するように、上下方向の直線上に設けると気液混相流の勢いを減殺しないので好ましい。液−気エゼクタのスロートは先端を絞らないで管状の状態で開口させると、気液混相流の勢いを減殺しないので好ましい。液−液エゼクタのスロートは中間部を絞り、吸入側および吐出側を拡管したものが好ましい。吐出側には拡管した口径の下向管が水槽底部に開口するように接続される。
【0015】
液−気エゼクタのノズルの口径をD1、液−気エゼクタのスロート(液−液エゼクタのノズル)の口径をD2、液−液エゼクタのスロート(最狭部)の口径をD3とするとき、D1/D2=0.5〜0.8、D2/D3=0.4〜0.7とするとそれぞれのガスおよび液の吸入量が大きくなり好ましい。液−気エゼクタのスロートの長さは直径の4〜10倍にすると、気液混相流の勢いを保持してガスおよび液の吸入量を大きくできるので好ましい。また液−液エゼクタのスロート部(最狭部)の長さはその直径の5〜15倍にすると、圧損を小さくして気泡を微細化できるため好ましい。
【0016】
上記の曝気装置ではポンプを駆動して水槽の液を、好ましくは液取出部から取り出し、循環路を通して水槽の好ましくは曝気部に循環すると、循環流は液−気エゼクタのノズルから吸入室を通してスロートに噴射され、この時の吸引力によりガスが吸気口から吸入されて気液混相流が生成し、スロートから吐出される。このとき気液混相流は液−液エゼクタのスロートに向けて噴射することより、その勢いを利用して吸液口から水槽上部の液を吸入し、気液混相流と混合して気泡を細分化し酸素を溶解させる。液−液エゼクタのスロートから吐出される混合流はさらに下向管を下向流で通過することにより、気泡の上昇力を利用して気泡を細分化した状態で水槽内に放出する。気泡は水槽内を上昇する間にも液中に溶解し、液面から泡として液取出部に入り、処理液とともに流出部から流出する。泡を含む処理液は次段の低負荷活性汚泥装置における曝気槽の液面上に落下させるか、またはその液面下の浅い位置に送液管を開口し、水槽内の排ガスの排出を妨げないようにする。
【0017】
上記の曝気装置では循環路の末端に液−気エゼクタを設けて気液混相流を生成させ、その吐出流を直接液−液エゼクタに噴射して水槽上部の液を吸入して混合するため、圧力損失が少なく、気液混相流の勢いを利用して液を大量に吸入して混合して酸素を溶解することができる。これによりエネルギー消費率が低く、効率よくガスを液中に溶解することができる。
【0018】
本発明において曝気を行う被処理液としてはガスを溶解するものであれば制限はないが、有機性排液などの酸素を溶解して処理を行うものが好ましい。このような被処理液の曝気は活性汚泥法のような好気性生物処理に利用されるものが典形的であり、BOD除去、窒素除去等の水処理に利用される。好気性処理としては特に高BOD負荷で曝気を行う装置に適しており、BOD槽負荷が2〜40kg−BOD/kg−VSS/dで処理を行う場合に大量の酸素を効率よく溶解して処理を行うことができる。
【0019】
【発明の効果】
本発明によれば、循環路の吐出端に液−気エゼクタ、液−液エゼクタおよび下向管を直結するように設けたので、低水深で低揚程のポンプを用いて大容量のガスを吸入して気液混相流を形成すると同時に、気液混相流の勢いをそのまま利用して大量の液を吸入して混合することができ、これにより大量のガスを大量の液中に効率よく溶解することができ、空気を用いる場合でも少ないエネルギー消費で効率よく大量の酸素を液中に溶解することができる。また水槽を溢流壁により曝気部と液取出部とに区画し、上部を蓋で覆って実質的に密閉状態にし、液取出部の下部から液を取り出して曝気部に圧送し、溢流壁を溢流する曝気部上面の気泡を曝気処理液とともに流出口から排出するようにしたため、泡の排出を促進することができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
図1は実施形態の曝気装置の垂直断面図である。
図1において、1は水槽であって、溢流壁4により曝気部2と液取出部3に区画されており、ポンプPを有する循環路5が液取出部3の下部から曝気部2の上部に連絡している。循環路5の吐出端に液−気エゼクタ6、液−液エゼクタ7および筒状の下向管8が垂直方向下向に直結するように設けられている。
【0021】
液−気エゼクタ6は循環路5の末端であって、水槽1の曝気部2の液面より上方に、スロート11の先端部が液面下に突入するように設けられる。液−気エゼクタ6は循環路5の末端に設けられるノズル12と、このノズル12を囲むように設けられる吸入室13と、吸入室13に開口する吸気口14と、吸気室の先端に液面に突出するように形成されるスロート11とから構成され、吸気口14には吸気路15が連絡している。
液−液エゼクタ7は液−気エゼクタ6のスロート11をノズルとし、このノズルに対向するように液中に設けられるスロート16と、ノズルおよびスロート間に形成される吸液口17とから構成されている。
【0022】
液−気エゼクタ6は循環流を噴射することにより気体を吸入するように構成され、液−液エゼクタ7は気液混相流を噴射することにより水槽1上部の液を吸入するように構成されている。液−気エゼクタ6のノズル12はスロート11に対向するように上下方向の直線上に設けられ、循環流の勢いを減殺しないようにされている。液−気エゼクタ6にスロート(すなわち液−液エゼクタ7のノズル)11もスロート16に対向するように、上下方向の直線上に設けられ、気液混相流の勢いを減殺しないようにされている。液−気エゼクタ6のスロート11は先端を絞らないで管状の状態で開口させ、気液混相流の勢を減殺しないようにされている。液−液エゼクタ7のスロート16は中間部に最狭部16a、吸入側および吐出側に拡管部16b、16cが形成されている。拡管部16cの吐出側には拡管した口径の下向管8が水槽1の底部に開口するように接続される。
【0023】
液−気エゼクタ6のノズル12の口径をD1、液−気エゼクタ6のスロート(液−液エゼクタ7のノズル)11の口径をD2、液−液エゼクタ7のスロート16の最狭部16aの口径をD3とするとき、D1/D2=0.5〜0.8、D2/D3=0.4〜0.7とされており、それぞれのガスおよび液の吸入量が大きくされている。液−気エゼクタ6のスロート11の長さは直径の4〜10倍とされ、気液混相流の勢いを保持してガスおよび液の吸入量を大きくされている。
また液−液エゼクタ7のスロート16の最狭部16aの長さはその直径の5〜15倍とされ、圧損を小さくして気液を微細化できるようにされている。
【0024】
液取出部3の下部には被処理水路21が連絡し、また上部には溢流壁4の上端より若干低い位置に開口する流出口22が設けられ処理水路23に連絡している。水槽1は上部に液−気エゼクタ6を含めて覆う蓋24が設けられて実質的に密閉構造となっている。V1、V2は弁である。
【0025】
上記の曝気装置ではポンプPを駆動して水槽1の液を液取出部3から取り出し、循環路5を通して水槽1の曝気部2に循環すると、循環流は液−気エゼクタ6のノズル12から吸入室13を通してスロート11に噴射され、この時の吸引力によりガスが吸入路15から吸入口14を通して吸入されて気液混相流が生成しスロート11から吐出される。このとき気液混相流は液−液エゼクタ7のスロート16に向けて噴射することにより、その勢いを利用して吸液口17から水槽上部の液を吸入し、気液混相流と混合して気泡を細分化して酸素を溶解させる。液液エゼクタ7のスロート16から吐出される混合流はさらに下向管17を下向流で通過することにより気泡の上昇力を利用して気泡を強く攪拌し、気泡の細分化状態で水槽1内に放出する。気泡は水槽1内を上昇する間にも液中に溶解し液面から泡として液とともに溢流壁4を越えて液取出部3に流れる。液取出部3では液面付近の処理水が泡とともに流出部22から処理水路23を通って流出する。処理水路23は、その出口において、液封部を持たないか、または液封部深さが、水槽1内のガス(泡)の排出を妨げない範囲に制限されていることが好ましい。この場合水槽1全体の上部が蓋24で覆われて実質的に密閉状態になっているので、吸込まれるガスにより加圧状態となり、泡の排出が促進される。被処理水は被処理水路21から液取出部3に導入され、ポンプPにより循環路5から曝気部2に送られ、吸入されるガスにより曝気を受け有機物等の被酸化成分が酸化される。
【0026】
上記の曝気装置では循環路5の末端に液−気エゼクタ6を設けて気液混相流を生成させ、その吐出流を直接液−液エゼクタ7に噴射して水槽上部の液を吸入して混合するため、圧力損失が少なく、気液混相流の勢いを利用して液を大量に吸入して混合できる。さらに混合流は下向管8で気泡の上昇力に反する方向に流れるため気泡は強く攪拌され、さらに酸素を溶解することができる。下向管8を出た混合流は大量の微細な気泡を含んで上昇する間にガスが液中に溶解する。これによりエネルギー消費率が低くて効率よくガスを液中に溶解することができる。下向管8の下向流は500〜2500mm/sが微細気泡からの酸素溶解促進に良好であった。水槽1として水深3.0mのものを用いポンプPの吐出圧を10m−HOで循環を行ったところ、吸入空気の38容量%の溶解効率が可能であった。
【図面の簡単な説明】
【図1】実施形態の曝気装置の垂直断面図である。
【符号の説明】
1 水槽
2 曝気部
3 液取出部
溢流壁
5 循環路
6 液−気エゼクタ
7 液−液エゼクタ
8 下向管
11、16 スロート
12 ノズル
13 吸入室
14 吸気口
15 吸気路
17 吸液口
21 被処理水路
22 流出口
23 処理水路
24 蓋
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an aeration device used for a water treatment device and the like, and more particularly to an aeration device suitable for dissolving a large amount of gas.
[0002]
[Prior art]
In the aerobic treatment of organic effluent, aeration is performed to decompose organic substances by the action of living organisms. The aeration device used for such a process is required to efficiently dissolve a large amount of oxygen. In particular, when performing aerobic treatment under a high load, or when treating a high-concentration organic effluent, it is necessary to efficiently dissolve a large amount of oxygen in a short time.
[0003]
Conventionally, as a means for efficiently dissolving an oxygen-containing gas in a liquid, various systems have been proposed in which a gas-liquid multiphase flow is injected into a reaction tank using a gas suction means such as an ejector. In particular, a reaction chamber with both ends opened in the reaction tank is provided, and the liquid to be treated in the reaction tank is sucked into the reaction chamber using the kinetic energy of the gas-liquid mixed phase flow, and the gas-liquid mixed phase flow and the liquid to be treated are mixed. It is said that the method of promoting the dispersion and dissolution of oxygen is highly efficient.
However, in the conventional reaction chamber configuration, when a gas-liquid multiphase flow in which a large amount of gas is sucked in at a high gas suction rate is introduced, bubbles are easily coalesced in the reaction chamber and phase separation is likely to occur. The dissolution efficiency had to be oriented. In order to dissolve a large amount of oxygen at a low gas inhalation rate, it is necessary to use a high oxygen concentration gas, but this increases the cost. Means for obtaining high dissolving efficiency using air usually requires a large water depth of 10 to 15 m or more, which has a problem of increasing construction costs.
[0004]
Assuming that a gas with a high oxygen concentration is used, assuming that both the dissolution in the gas-liquid multiphase flow and the dissolution in the reaction chamber are to be extracted, the gas-liquid A device for dissolving oxygen by injecting a nozzle into a reaction chamber having both ends opened by moving a flow path has been proposed (JP-A-58-128194). In this apparatus, it is preferable to reduce the volume of the gas to be sucked in by transferring at a high flow rate or using a high oxygen concentration gas in order to prevent the gas from separating during the movement of the gas-liquid multiphase flow. It has been. However, high oxygen concentration gas is expensive, and when using inexpensive air of normal concentration, the gas-liquid multiphase flow is flowed at a high flow rate in order to prevent the volume of the gas to be inhaled from becoming large and phase separation. When the transfer is performed, the pressure loss in the moving path is likely to be large, and there is also a pressure loss at the stage of injection from the nozzle, which causes an increase in the required pump head.
[0005]
In short, in this apparatus, the process of forming a gaseous multiphase flow by inhaling gas and the process of mixing and dissolving the gas in the gas-liquid multiphase flow with the liquid in the reaction chamber are considered as separate processes. Is introduced into the reaction chamber through a long path, and during this time, the force of the multiphase flow decreases due to the pressure loss, and the gas dissolving efficiency in the reaction chamber decreases. In order to prevent this, it is necessary to use a pump with a high head, and there is a problem that the cost of the apparatus increases.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to form a gas-liquid multi-phase flow by sucking a large volume of gas using a low water depth and low head pump, and at the same time to suck a large amount of liquid using the momentum of the gas-liquid multi-phase flow as it is. Aeration that can efficiently dissolve a large amount of gas in a large amount of liquid, and can efficiently dissolve a large amount of oxygen in the liquid with little energy consumption even when using air. Is to get the equipment.
[0007]
[Means for Solving the Problems]
The present invention is the following aerator.
(1) a water tank provided with an aeration unit and a liquid extraction unit defined by an overflow wall, and a top part of which is covered with a lid and is substantially sealed;
A circulation path having a pump that takes out the liquid from the lower part of the liquid take-out part and pumps the liquid to the aeration part ;
A gas-liquid mixed-phase flow is formed by sucking gas at the discharge end of the circulation path, and a throat end is provided so as to protrude into the liquid in the water tank to jet the gas-liquid mixed-phase flow into the liquid. A liquid-gas ejector,
A liquid-liquid ejector provided by submerging the liquid in the upper part of the water tank using a gas-liquid mixed phase flow discharged from the liquid-gas ejector and mixing with the gas-liquid mixed phase flow;
A cylindrical downward pipe connected to the discharge end of the liquid-liquid ejector, extending toward the bottom of the water tank, and passing the mixed flow in a downward flow ;
An aeration apparatus provided with an outlet provided in a liquid extraction unit so as to discharge bubbles on the upper surface of an aeration unit overflowing an overflow wall together with an aeration treatment liquid .
[0008]
In the present invention, a liquid-gas ejector is provided at the discharge end of the circulation path in order to use a low head pump, draw a gas such as air at a large depth, and dissolve a large amount of gas into a large volume of liquid at a low water depth. To inhale a large volume of gas. The liquid-gas ejector is directly connected to the liquid-liquid ejector, and the throat of the liquid-gas ejector is directly used as a nozzle of the liquid-liquid ejector, and the gas-liquid multiphase flow generated by the liquid-gas ejector is directly sent to the liquid-liquid ejector. . By using the force of the gas-liquid multi-phase flow, the liquid in the upper part of the large-volume water tank is sucked and mixed, and the mixed flow is passed through the downward pipe in the downward flow to dissolve a large amount of gas into the liquid.
[0009]
In order to dissolve a large amount of oxygen in a liquid using air as a gas, first, a large-capacity gas is sucked into the circulation flow to generate a gas-liquid multiphase flow, and then a large-capacity liquid Is taken in and mixed with the gas-liquid multiphase flow, whereby a large volume of gas in the multiphase flow is dissolved in the liquid. In order to mix such gases and liquids at a low energy consumption rate, a large amount of gas is sucked by using the force of the circulating flow, and the mixed phase is not reduced without reducing the force of the generated gas-liquid mixed phase flow. It is important to use the momentum immediately after the flow is generated to suck the liquid.
[0010]
For this reason, in the present invention, a liquid-gas ejector is provided at the discharge end of the circulation path, a large amount of gas is sucked and dispersed as fine bubbles in the liquid, and the throat of the liquid-gas ejector is used as a nozzle of the liquid-liquid ejector. By using this, a large amount of liquid in the upper part of the water tank is sucked and mixed using the momentum of the gas-liquid mixed phase flow discharged from the throat. When air is sucked into the circulating flow by using a liquid-gas ejector, the strength of the circulating flow is combined with the strength of the sucked air to form a strong gas-liquid multiphase flow. When the throat of the gas ejector is directly ejected to the liquid-liquid ejector directly connected to the throat, the liquid can be sucked in using the momentum of the gas-liquid multiphase flow immediately after generation. On the other hand, when the generated gas-liquid multiphase flow is transferred through a long pipe, the momentum is reduced due to gas-liquid phase separation, and the pressure loss is increased due to the pipe resistance.
[0011]
In the present invention, a large amount of liquid can be sucked by sucking the liquid by using the force of the gas-liquid multiphase flow, and bubbles can be further subdivided by using the force of the sucked liquid. Even if the bubbles are subdivided in this way, the bubbles can easily coalesce under gentle stirring.However, when the bubbles are passed through the cylindrical downward tube in a downward flow, the liquid flows in a direction opposite to the upward force of the gas-liquid. As a result, the bubbles are violently stirred, preventing coalescence and increasing the solubility of oxygen.
[0012]
In the aeration apparatus of the present invention, it is preferable that the liquid is taken out of the water tank by a pump and is pumped through a circulation path. Water tank are formed to allow the aeration of the above is divided into the aeration unit and the liquid removal section by overflow wall, the circulation path you configured to circulate liquid from the liquid take-out portion to the aeration unit. It is preferable to provide an outlet at a position lower than the overflow wall so as to allow the liquid to flow out due to the head difference from the aeration unit in the mixed solution take-out unit, because bubbles on the upper surface of the aeration unit can be discharged together with the processing liquid. Also the upper surface of the tank containing the aeration unit and a liquid take-out portion, the liquid - when including the gas ejector is substantially sealed structure covered with a lid, Ru can discharge the air bubbles by utilizing the pressure of sucked air.
[0013]
The liquid-gas ejector is provided at the end of the circulation path, particularly above the liquid level of the aquarium, so that the end of the throat protrudes below the liquid level. The liquid-gas ejector is formed at a nozzle provided at the end of the circulation path, a suction chamber provided to surround the nozzle, an air inlet opening to the suction chamber, and a tip of the air suction chamber protruding into the liquid surface. And a throat.
The liquid-liquid ejector has a throat of the liquid-gas ejector as a nozzle, and can be constituted by a throat provided in the liquid so as to face the nozzle, and a liquid suction port formed between the nozzle and the throat.
[0014]
The liquid-gas ejector is an ejector that inhales gas by ejecting liquid, and the liquid-liquid ejector is an ejector that inhales liquid by ejecting liquid. It is preferable that the nozzle of the liquid-gas ejector is provided on a straight line in the vertical direction so as to face the throat, because the momentum of the circulation flow is not reduced. It is preferable that the throat of the liquid-gas ejector, that is, the nozzle of the liquid-liquid ejector is also provided on a vertical straight line so as to face the throat of the liquid-liquid ejector, since the force of the gas-liquid multiphase flow is not reduced. It is preferable to open the throat of the liquid-gas ejector in a tubular state without squeezing the tip because the force of the gas-liquid multiphase flow is not reduced. It is preferable that the throat of the liquid-liquid ejector is one in which the middle part is restricted and the suction side and the discharge side are expanded. The discharge side is connected to a downwardly extending pipe having an expanded diameter so as to open to the bottom of the water tank.
[0015]
When the diameter of the nozzle of the liquid-gas ejector is D1, the diameter of the throat of the liquid-gas ejector (the nozzle of the liquid-liquid ejector) is D2, and the diameter of the throat (the narrowest portion) of the liquid-liquid ejector is D3, D1 It is preferable that /D2=0.5 to 0.8 and D2 / D3 = 0.4 to 0.7, since the suction amounts of the respective gases and liquids are large. It is preferable to set the length of the throat of the liquid-gas ejector to be 4 to 10 times the diameter, since it is possible to maintain the momentum of the gas-liquid multiphase flow and increase the suction amount of gas and liquid. Further, it is preferable that the length of the throat portion (the narrowest portion) of the liquid-liquid ejector is 5 to 15 times its diameter, because pressure loss can be reduced and bubbles can be made finer.
[0016]
In the above-described aerator, the pump is driven to take out the liquid in the water tank, preferably from the liquid take-out part, and circulates through the circulation path to the preferably aeration part of the water tank, whereby the circulating flow is throated from the nozzle of the liquid-gas ejector through the suction chamber. The gas is sucked from the intake port by the suction force at this time, a gas-liquid multiphase flow is generated, and the gas is discharged from the throat. At this time, the gas-liquid multi-phase flow is injected toward the throat of the liquid-liquid ejector, so that the liquid in the upper part of the water tank is sucked from the liquid suction port using the momentum and mixed with the gas-liquid multi-phase flow to subdivide bubbles. To dissolve oxygen. The mixed flow discharged from the throat of the liquid-liquid ejector further passes through the downward pipe in a downward flow, and releases the bubbles into the water tank in a state where the bubbles are fragmented by using the rising force of the bubbles. The bubbles dissolve in the liquid while ascending in the water tank, enter the liquid take-out section as bubbles from the liquid surface, and flow out of the outflow section together with the processing liquid. The treatment liquid containing bubbles is dropped on the liquid surface of the aeration tank in the next low-load activated sludge system, or a liquid supply pipe is opened at a shallow position below the liquid surface to prevent discharge of exhaust gas from the water tank. Not to be.
[0017]
In the above aeration device, a liquid-gas ejector is provided at the end of the circulation path to generate a gas-liquid multiphase flow, and the discharge flow is directly injected into the liquid-liquid ejector to suck and mix the liquid in the upper part of the water tank. The pressure loss is small, and the oxygen can be dissolved by sucking and mixing a large amount of the liquid by using the force of the gas-liquid multiphase flow. Thereby, the energy consumption rate is low, and the gas can be efficiently dissolved in the liquid.
[0018]
In the present invention, the liquid to be aerated is not limited as long as it can dissolve the gas, but is preferably a liquid which dissolves oxygen such as an organic effluent and performs the treatment. Such aeration of the liquid to be treated is typically used for aerobic biological treatment such as the activated sludge method, and is used for water treatment such as BOD removal and nitrogen removal. The aerobic treatment is particularly suitable for an apparatus for performing aeration at a high BOD load. When the BOD tank load is 2 to 40 kg-BOD / kg-VSS / d, a large amount of oxygen is efficiently dissolved and treated. It can be performed.
[0019]
【The invention's effect】
According to the present invention, since the liquid-gas ejector, the liquid-liquid ejector, and the downward pipe are provided directly at the discharge end of the circulation path, a large volume of gas is sucked using a low water depth, low head pump. At the same time as forming a gas-liquid multi-phase flow, and using the momentum of the gas-liquid multi-phase flow as it is, it is possible to suck and mix a large amount of liquid, thereby dissolving a large amount of gas efficiently in a large amount of liquid. Thus, even when air is used, a large amount of oxygen can be efficiently dissolved in the liquid with low energy consumption. In addition, the water tank is divided into an aeration section and a liquid extraction section by an overflow wall, the upper part is covered with a lid to make it substantially sealed, and the liquid is taken out from a lower part of the liquid extraction section, and is fed to the aeration section under pressure, and the overflow wall is formed. The bubbles on the upper surface of the aeration unit overflowing with the aeration treatment liquid are discharged from the outlet together with the aeration treatment liquid, so that the discharge of the bubbles can be promoted.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
FIG. 1 is a vertical sectional view of the aeration apparatus of the embodiment.
In FIG. 1, reference numeral 1 denotes a water tank, which is divided into an aeration unit 2 and a liquid extraction unit 3 by an overflow wall 4, and a circulation path 5 having a pump P extends from a lower part of the liquid extraction unit 3 to an upper part of the aeration unit 2. Contact A liquid-gas ejector 6, a liquid-liquid ejector 7, and a cylindrical downward pipe 8 are provided at the discharge end of the circulation path 5 so as to be directly connected to the vertical downward direction.
[0021]
The liquid-gas ejector 6 is provided at the end of the circulation path 5 above the liquid level of the aeration unit 2 of the water tank 1 so that the tip of the throat 11 protrudes below the liquid level. The liquid-gas ejector 6 includes a nozzle 12 provided at an end of the circulation path 5, a suction chamber 13 provided to surround the nozzle 12, a suction port 14 opening to the suction chamber 13, and a liquid level at a tip of the suction chamber. And a throat 11 formed so as to protrude from the intake port 14, and an intake path 15 communicates with the intake port 14.
The liquid-liquid ejector 7 uses the throat 11 of the liquid-gas ejector 6 as a nozzle, and includes a throat 16 provided in the liquid so as to face the nozzle, and a liquid suction port 17 formed between the nozzle and the throat. ing.
[0022]
The liquid-gas ejector 6 is configured to inhale gas by injecting a circulating flow, and the liquid-liquid ejector 7 is configured to inhale liquid in the upper part of the water tank 1 by injecting a gas-liquid multiphase flow. I have. The nozzle 12 of the liquid-gas ejector 6 is provided on a vertical straight line so as to face the throat 11 so as not to reduce the force of the circulating flow. The throat (that is, the nozzle of the liquid-liquid ejector 7) 11 of the liquid-gas ejector 6 is also provided on a vertical straight line so as to face the throat 16, so as not to reduce the force of the gas-liquid multiphase flow. . The throat 11 of the liquid-gas ejector 6 is opened in a tubular state without narrowing its tip so that the force of the gas-liquid multiphase flow is not diminished. The throat 16 of the liquid-liquid ejector 7 has a narrowest portion 16a at an intermediate portion, and expanded portions 16b and 16c formed at a suction side and a discharge side. A downward pipe 8 having an expanded diameter is connected to the discharge side of the expansion section 16 c so as to open to the bottom of the water tank 1.
[0023]
The diameter of the nozzle 12 of the liquid-gas ejector 6 is D1, the diameter of the throat 11 of the liquid-gas ejector 6 (nozzle of the liquid-liquid ejector 7) is D2, and the diameter of the narrowest portion 16a of the throat 16 of the liquid-liquid ejector 7. Is D3, D1 / D2 = 0.5 to 0.8 and D2 / D3 = 0.4 to 0.7, and the suction amounts of the respective gases and liquids are increased. The length of the throat 11 of the liquid-gas ejector 6 is set to 4 to 10 times the diameter, and the suction amount of gas and liquid is increased while maintaining the momentum of the gas-liquid multiphase flow.
In addition, the length of the narrowest portion 16a of the throat 16 of the liquid-liquid ejector 7 is set to be 5 to 15 times the diameter of the throat 16, so that the pressure loss can be reduced and gas-liquid can be miniaturized.
[0024]
A water passage 21 to be treated is connected to a lower portion of the liquid take-out portion 3, and an outlet 22 which is opened at a position slightly lower than the upper end of the overflow wall 4 is provided at an upper portion to communicate with a treatment water passage 23. The water tank 1 is provided with a lid 24 covering the liquid-gas ejector 6 on the upper part thereof, and has a substantially sealed structure. V1 and V2 are valves.
[0025]
In the above-described aerator, the pump P is driven to take out the liquid in the water tank 1 from the liquid outlet 3 and circulate through the circulation path 5 to the aerator 2 in the water tank 1, and the circulating flow is sucked in from the nozzle 12 of the liquid-gas ejector 6. The gas is injected into the throat 11 through the chamber 13, and the suction force at this time causes the gas to be sucked from the suction passage 15 through the suction port 14 to generate a gas-liquid multiphase flow, which is discharged from the throat 11. At this time, the gas-liquid mixed-phase flow is injected toward the throat 16 of the liquid-liquid ejector 7, so that the liquid at the upper part of the water tank is sucked from the liquid suction port 17 by utilizing the momentum and mixed with the gas-liquid mixed-phase flow. The bubbles are subdivided to dissolve the oxygen. The mixed flow discharged from the throat 16 of the liquid-liquid ejector 7 further passes through the downward pipe 17 in a downward flow, so that the bubbles are strongly agitated by utilizing the rising force of the bubbles, and the water tank 1 is fragmented in a state where the bubbles are fragmented. Release into. The bubbles dissolve in the liquid while rising in the water tank 1 and flow from the liquid surface as bubbles to the liquid take-out section 3 together with the liquid through the overflow wall 4. In the liquid take-out part 3, the treated water near the liquid surface flows out of the outflow part 22 through the treated water passage 23 together with the bubbles. It is preferable that the treatment water channel 23 has no liquid seal portion at its outlet, or the liquid seal portion depth is limited to a range that does not prevent the discharge of gas (bubbles) in the water tank 1. In this case, since the upper portion of the entire water tank 1 is covered with the lid 24 and is in a substantially sealed state, the gas is drawn into the pressurized state and the discharge of bubbles is promoted. The water to be treated is introduced from the treated water passage 21 into the liquid extraction unit 3 and sent from the circulation passage 5 to the aeration unit 2 by the pump P, where the gas to be aerated is aerated and the oxidizable components such as organic substances are oxidized.
[0026]
In the above-described aeration apparatus, a liquid-gas ejector 6 is provided at the end of the circulation path 5 to generate a gas-liquid mixed-phase flow, and the discharge flow is directly injected into the liquid-liquid ejector 7 to suck and mix the liquid in the upper part of the water tank. Therefore, the pressure loss is small, and a large amount of liquid can be sucked and mixed using the force of the gas-liquid multiphase flow. Further, since the mixed flow flows in the downward pipe 8 in a direction opposite to the upward force of the bubbles, the bubbles are strongly stirred and oxygen can be further dissolved. As the mixed stream exiting the downcomer 8 rises containing a large amount of fine bubbles, the gas dissolves in the liquid. Thereby, the gas can be efficiently dissolved in the liquid with a low energy consumption rate. The downward flow of the downward pipe 8 was 500 to 2500 mm / s, which was favorable for promoting the dissolution of oxygen from fine bubbles. When the discharge pressure of the pump P used as the water depth 3.0m as water tank 1 was circulated at 10m-H 2 O, it was possible 38% by volume of the dissolution efficiency of the intake air.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view of an aeration apparatus according to an embodiment.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 water tank 2 aeration unit 3 liquid extraction unit 4 overflow wall 5 circulation path 6 liquid-gas ejector 7 liquid-liquid ejector 8 downward pipe 11, 16 throat 12 nozzle 13 suction chamber 14 suction port 15 suction path 17 suction port 21 Water channel to be treated 22 Outlet port 23 Water channel for treatment 24 Lid

Claims (1)

溢流壁により区画された曝気部と液取出部とを備え、上部が蓋で覆われて実質的に密閉状態になっている水槽と、
液取出部の下部から液を取り出して曝気部に圧送するポンプを有する循環路と、
循環路の吐出端にガスを吸入して気液混相流を形成するように設けられ、かつスロート端部を水槽内の液中に突入させて気液混相流を液中に噴射するように設けられた液−気エゼクタと、
液−気エゼクタから吐出される気液混相流を利用して水槽内上部の液を吸入し、気液混相流と混合するように水没して設けられた液−液エゼクタと、
液−液エゼクタの吐出端に連結されて水槽の底部に向って延び、かつ混合流を下向流で通過させる筒状の下向管と
溢流壁を溢流する曝気部上面の気泡を曝気処理液とともに排出するように液取出部内に設けられた流出口とを備える曝気装置。
A water tank comprising an aeration unit and a liquid extraction unit partitioned by an overflow wall, and an upper part covered with a lid and in a substantially sealed state,
A circulation path having a pump that takes out the liquid from the lower part of the liquid take-out part and pumps the liquid to the aeration part ;
A gas-liquid mixed-phase flow is formed by sucking gas at the discharge end of the circulation path, and a throat end is provided so as to protrude into the liquid in the water tank to jet the gas-liquid mixed-phase flow into the liquid. A liquid-gas ejector,
A liquid-liquid ejector provided by submerging the liquid in the upper part of the water tank using a gas-liquid mixed phase flow discharged from the liquid-gas ejector and mixing with the gas-liquid mixed phase flow;
A cylindrical downward pipe connected to the discharge end of the liquid-liquid ejector, extending toward the bottom of the water tank, and passing the mixed flow in a downward flow ;
An aeration apparatus provided with an outlet provided in a liquid extraction unit so as to discharge bubbles on the upper surface of an aeration unit overflowing an overflow wall together with an aeration treatment liquid .
JP2000185944A 2000-06-16 2000-06-16 Aeration device Expired - Fee Related JP3555557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000185944A JP3555557B2 (en) 2000-06-16 2000-06-16 Aeration device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000185944A JP3555557B2 (en) 2000-06-16 2000-06-16 Aeration device

Publications (2)

Publication Number Publication Date
JP2002001386A JP2002001386A (en) 2002-01-08
JP3555557B2 true JP3555557B2 (en) 2004-08-18

Family

ID=18686189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000185944A Expired - Fee Related JP3555557B2 (en) 2000-06-16 2000-06-16 Aeration device

Country Status (1)

Country Link
JP (1) JP3555557B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712419A (en) * 2016-04-15 2016-06-29 无锡天力生态修复技术开发有限公司 Jet aeration sewage treatment device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040004770A (en) * 2002-07-05 2004-01-16 벽산엔지니어링주식회사 Method for processing organic matter, nitrogen, in waste water using high-performance compact reactor
PT103366A (en) * 2005-10-10 2007-04-30 Tecnia Processos E Equipamento JET CIRCUIT EFFLUENT TREATMENT SYSTEM
JP2011020043A (en) * 2009-07-15 2011-02-03 Tokyo Denki Univ Aeration method and water drop pipe
KR101096676B1 (en) 2011-03-02 2011-12-22 전병근 Apparatus for biologicaly treating waste water with highly concentrated organic material having improved power efficiency
SG11201401219WA (en) * 2011-10-08 2014-07-30 Christoph Herkle Etching device for the electrolytic etching of copper
JP5912393B2 (en) * 2011-10-12 2016-04-27 Jfeエンジニアリング株式会社 Spray nozzle and method of mixing gas and liquid
JP6078287B2 (en) * 2012-10-04 2017-02-08 株式会社関口 Gas-liquid contact method and water deoxygenation method using the same
CN106118883B (en) * 2016-06-29 2020-04-21 广西壮族自治区林业科学研究院 Camphor tree essential oil leaching device and application
CN109607749A (en) * 2019-01-04 2019-04-12 青岛国林环保科技股份有限公司 A kind of Ozone Water flow mixing device
JP7381370B2 (en) * 2020-03-05 2023-11-15 キオクシア株式会社 Semiconductor manufacturing equipment and semiconductor device manufacturing method
CN111233529B (en) * 2020-03-31 2024-05-10 上海巷西环境科技有限公司 Horizontal type kitchen waste treatment equipment capable of eliminating kitchen waste
CN115784167B (en) * 2022-12-20 2024-05-07 江苏嘉宏新材料有限公司 Oxidation extraction process for preparing hydrogen peroxide by anthraquinone method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105712419A (en) * 2016-04-15 2016-06-29 无锡天力生态修复技术开发有限公司 Jet aeration sewage treatment device

Also Published As

Publication number Publication date
JP2002001386A (en) 2002-01-08

Similar Documents

Publication Publication Date Title
KR200418245Y1 (en) Pure Oxygen Aeration Devices for Wastewater Treatment
KR100812668B1 (en) Pure Oxygen Aeration Device for Wastewater Treatment
JP3555557B2 (en) Aeration device
JP2003181260A (en) Process and device for aerating liquid with gas
CA2095887C (en) Bubbling system
JP2004313905A (en) Structure of gas-liquid dissolving tank
JP4929874B2 (en) Microbubble generator
JP3744428B2 (en) Apparatus and method for aerobic digestion treatment of sludge
CN101842322A (en) Method and apparatus for aeration
CN108892320A (en) A kind of industrial oily waste water processing system
JP2004298840A (en) Vessel for adjusting amount of gas to be dissolved
US20070040288A1 (en) Method and apparatus for mixing of two fluids.
JP2005218955A (en) Gas/liquid contactor
JP4265015B2 (en) Fine bubble generator and bathtub system
JP2008093607A (en) Organic waste water treatment device and organic waste water treatment method
JP4172287B2 (en) Method and apparatus for aerobic digestion treatment of sludge
KR100420097B1 (en) A gas soiution apparatus
JP2005161174A (en) Gas dissolving method and gas dissolving device
JP2003126884A (en) Apparatus and method of water treatment
WO2017124128A1 (en) Jet aeration and mixing nozzle
JP4449328B2 (en) Method for improving treatment performance of biological treatment apparatus and method for configuring high-load biological treatment apparatus
JPS5839840Y2 (en) Aeration device
JPH08950A (en) Gas blowing device
JPS592880Y2 (en) Microbial reactor
JP4165289B2 (en) Method and apparatus for aerobic treatment of organic waste liquid

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3555557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees