JPH08950A - Gas blowing device - Google Patents

Gas blowing device

Info

Publication number
JPH08950A
JPH08950A JP6137249A JP13724994A JPH08950A JP H08950 A JPH08950 A JP H08950A JP 6137249 A JP6137249 A JP 6137249A JP 13724994 A JP13724994 A JP 13724994A JP H08950 A JPH08950 A JP H08950A
Authority
JP
Japan
Prior art keywords
liquid
gas
air
flow
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6137249A
Other languages
Japanese (ja)
Inventor
Tadayoshi Tamaru
忠義 田丸
Tetsuya Watanabe
哲也 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6137249A priority Critical patent/JPH08950A/en
Publication of JPH08950A publication Critical patent/JPH08950A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To blow in even a large volume of gas in a form of fine foams by forming a turbulence on the way of a liquid circulating flow path, blowing gas into a turbulent zone to form a mixed phase flow of foams and liquid. CONSTITUTION:A circulating pipe 12 as a circulating flow path with an extraction pump 11 for extracting a part of absorbing solution in a liquid storage tank 4 is connected with a lower section of the tank 4. A turbulence is formed in the pipe 12 on the downstream side of the extraction pump 11 of the circulating pipe 12, and gas is blown into the turbulent zone, and a mixing section 13 forming a mixed phase flow of foams and liquid is formed. As gas is blown into a section where liquid is moving and turbulence is formed, foams are entrapped into the turbulence to turn the foams into fine forms. As the mixed phase flow mixed with the foams is returned to the liquid, cavitation are not formed even when gas is generated in a large amount.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体に気体を吹き込む気
体吹込装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas blowing device for blowing a gas into a liquid.

【0002】[0002]

【従来の技術】気体吹込装置は、液体中に気体を吹き込
ませるもので、例えば燃焼機器からの排ガスを脱硫処理
する湿式の排煙脱硫装置に備えられている。
2. Description of the Related Art A gas blowing device blows gas into a liquid and is provided in, for example, a wet flue gas desulfurization device for desulfurizing exhaust gas from a combustion device.

【0003】湿式の排煙脱硫装置は、吸収塔内で排ガス
と吸収剤例えば炭酸カルシウムを含むスラリ状の吸収液
とを接触させ、ガス中の硫黄酸化物を吸収剤に吸収させ
て排ガスの脱硫処理を行うものであり、その硫黄酸化物
を吸収した吸収剤を石こうとして回収するために脱硫処
理後の吸収液を酸化処理する場合に気体吹込装置が用い
られている。この気体吹込装置は、脱硫処理後の吸収液
が貯槽される塔全面(吸収液中)に空気の吹込管を複数
配設して、その吹込管の吹込口から空気を吸収液中に吹
き込ませるパイプ吹込式のものと、脱硫処理後の吸収液
を撹拌する側面式撹拌機の翼の吸込側に空気を噴出させ
る撹拌機吸込側空気吹込式のもの(特公平 4-69089号公
報等)とがあり、これにより吸収液と空気中の酸素とが
反応して石こうが析出する。
In a wet flue gas desulfurization apparatus, exhaust gas is desulfurized by bringing the exhaust gas and an absorbent such as a slurry-like absorbent containing calcium carbonate into contact with each other in the absorption tower to absorb the sulfur oxide in the gas into the absorbent. A gas blowing device is used when oxidizing the absorbent after desulfurization in order to recover the absorbent that has absorbed the sulfur oxides as gypsum. In this gas blowing device, a plurality of air blowing pipes are provided on the entire surface of the tower (in the absorbing liquid) where the desulfurized absorbing liquid is stored, and air is blown into the absorbing liquid from the blowing port of the blowing pipe. Pipe blower type and agitator suction side air blower type that blows air to the suction side of the blade of a side stirrer that stirs the absorption liquid after desulfurization treatment (Japanese Patent Publication No. 4-69089 etc.) This causes the absorption liquid to react with oxygen in the air to precipitate gypsum.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述の気体
吹込装置では、前者のパイプ吹込式の場合には複数の吹
込管の吹込口から気体を液体中に単に吹き込ませるた
め、特に大容量の気体を吹き込ませる場合には気泡が大
きくなり、吸収液の酸化効率が悪くなる。撹拌機吸込側
空気吹込式では、翼の吸込側に気体を噴出させて翼で空
気を分解して微細な気泡にしているため、翼と空気が接
触するのでキャビテーションを起し易く、気体吹込量に
制限がある。
In the gas blowing device described above, in the case of the former pipe blowing type, gas is simply blown into the liquid through the blowing ports of a plurality of blowing pipes. When bubbles are blown in, the bubbles become large and the efficiency of oxidation of the absorbing liquid deteriorates. In the air intake type of the agitator suction side, gas is jetted to the suction side of the blade and the air is decomposed into fine bubbles by the blade, so the blade and air come into contact with each other, which easily causes cavitation and the amount of gas blown. Is limited.

【0005】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、大容量の気体で
も微細な気泡として吹き込ませることができる気体吹込
装置を提供することにある。
Therefore, the present invention has been made in consideration of such circumstances, and an object thereof is to provide a gas blowing device capable of blowing even a large volume of gas as fine bubbles. .

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、液体に気体を吹き込む装置において、上
記液体の一部を抜き出し、これを液体に噴出させて戻す
循環流路に、乱流を生じさせ、この乱流部分に気体を吹
き込み、気泡と液の混相流を形成する混合部を介設した
ものである。
In order to achieve the above object, the present invention is a device for injecting a gas into a liquid, in which a part of the liquid is extracted, and is circulated by returning the liquid to the liquid, A turbulent flow is generated, a gas is blown into this turbulent flow portion, and a mixing section that forms a mixed-phase flow of bubbles and liquid is provided.

【0007】また、液体に気体を吹き込む装置におい
て、上記液体の一部を抜き出し、これに気体を混合する
混合部を上記液体の液面より上方に配設すると共に、こ
の混合部からの流体を上記液体に吹き込む循環流路を設
けたものである。
Further, in an apparatus for blowing a gas into a liquid, a mixing section for extracting a part of the liquid and mixing the gas therein is arranged above the liquid surface of the liquid, and the fluid from the mixing section is discharged. A circulation channel for blowing into the liquid is provided.

【0008】[0008]

【作用】液体の一部は抜き出されて循環流路を通り、そ
して混合部を流れる。この際、混合部で乱流が生じ、こ
の部分に気体が吹き込まれる。これにより、気体は液の
流動部分でしかも乱流を生じている部分に吹き込まれる
ため、乱流に巻き込まれて気泡が微細化する。この気泡
が混入した混相流が液体に戻されるため、気体の量を多
くしてもキャビテーションを起す心配がない。また、気
体と液体が混ざった混相流を液体に噴出させるため、ガ
スだけを噴出する場合に比して噴出時の慣性力が強いの
で、液体内に容易に気泡が拡散する。従って、大容量の
気体でも微細な気泡として液体内に吹き込ませることが
可能となると共に、気泡を液体内に容易に拡散させるこ
とが可能となる。
A part of the liquid is withdrawn, passes through the circulation channel, and flows through the mixing section. At this time, turbulent flow occurs in the mixing section, and gas is blown into this section. As a result, the gas is blown into the flowing part of the liquid and also into the part where the turbulent flow is generated, so that the gas is entrained in the turbulent flow and the bubbles are miniaturized. Since the multiphase flow mixed with the bubbles is returned to the liquid, there is no fear of causing cavitation even if the amount of gas is increased. Further, since the multiphase flow in which the gas and the liquid are mixed is jetted to the liquid, the inertial force at the time of jetting is stronger than the case where only the gas is jetted, so that the bubbles easily diffuse in the liquid. Therefore, even a large volume of gas can be blown into the liquid as fine bubbles and the bubbles can be easily diffused into the liquid.

【0009】また、液体の一部を抜き出し、これに気体
を混合する混合部を上記液体の液面より上方に配設する
ことにより、混合部からの流体を液体に吹き込む際の吹
込部での気体吹込圧力が低くなり、気体の送気動力が低
くなる。また、気体吹込部が混合部の下に位置されてい
るため、混合部で混入された気泡が圧力で小さくなり、
微細化を図れる。従って、大容量の気体でも微細にして
液体全体に分散できると共に、気体の送気動力を低減す
ることが可能となる。
Further, a part of the liquid is taken out and a mixing part for mixing the gas into the liquid is arranged above the liquid surface of the liquid, so that the blowing part at the time of blowing the fluid from the mixing part into the liquid. The gas injection pressure becomes low and the gas supply power becomes low. Further, since the gas blowing section is located below the mixing section, the bubbles mixed in the mixing section are reduced in pressure,
Can be miniaturized. Therefore, even a large volume of gas can be made fine and dispersed in the entire liquid, and the gas feeding power can be reduced.

【0010】[0010]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0011】本実施例では本発明の気体吹込装置を湿式
の排煙脱硫装置の吸収塔に適用した場合について述べ
る。
In this embodiment, a case where the gas blowing device of the present invention is applied to an absorption tower of a wet type flue gas desulfurization device will be described.

【0012】図1において、1は燃焼機器例えばボイラ
からの排ガスを脱硫処理する円筒状の吸収塔を示し、こ
の吸収塔1の側部下方には排ガスのガス導入口2が設け
られている。
In FIG. 1, reference numeral 1 denotes a cylindrical absorption tower for desulfurizing exhaust gas from a combustion device such as a boiler, and a gas inlet 2 for the exhaust gas is provided below a side portion of the absorption tower 1.

【0013】吸収塔1には、排ガス中の硫黄酸化物の硫
黄分を吸収するための炭酸カルシウム等の吸収剤が溶解
されたスラリ状の吸収液を供給する吸収液供給管3が接
続されていると共に、その内部下方には吸収液を溜める
液溜タンク4が設けられている。また、吸収塔1の液溜
タンク4には、タンク4内の吸収液の一部を循環ポンプ
5により塔1内上方に設けられたスプレーノズル6に移
送する移送管7が接続されており、スプレーノズル6か
ら噴霧された吸収液と塔1内を上昇する排ガスとが向流
接触してガス中の硫黄分が吸収液に吸収除去され、排ガ
スが脱硫処理されるようになっている。
The absorption tower 1 is connected with an absorption liquid supply pipe 3 for supplying a slurry-shaped absorption liquid in which an absorption agent such as calcium carbonate for absorbing the sulfur content of sulfur oxides in exhaust gas is dissolved. In addition, a liquid storage tank 4 for storing the absorbing liquid is provided below the inside thereof. A transfer pipe 7 is connected to the liquid storage tank 4 of the absorption tower 1 to transfer a part of the absorbed liquid in the tank 4 to a spray nozzle 6 provided above the tower 1 by a circulation pump 5, The absorption liquid sprayed from the spray nozzle 6 and the exhaust gas rising in the tower 1 are countercurrently contacted with each other, and the sulfur content in the gas is absorbed and removed by the absorption liquid, so that the exhaust gas is desulfurized.

【0014】さらに、吸収塔1の液溜タンク4内の吸収
液中には、タンク4内の吸収液を回転により吐出流を生
じさせて撹拌するプロペラ状の側面式撹拌翼8が側壁近
傍に回転自在に設けられている。撹拌翼8はその側壁を
貫通して設けられたモータ9のシャフト10に取り付け
られ、モータ9の駆動により回転して液中に吐出流が生
じるようになっており、この吐出流の方向はタンク4の
中心より所定の角度ずれるように撹拌翼8(シャフト1
0)を回転自在に支持するようにする。
Further, in the absorbing liquid in the liquid storage tank 4 of the absorption tower 1, a propeller-shaped side stirring blade 8 for stirring the absorbing liquid in the tank 4 by rotating to generate a discharge flow is provided near the side wall. It is rotatably installed. The stirring blade 8 is attached to a shaft 10 of a motor 9 provided through the side wall of the stirring blade 8 and is rotated by the drive of the motor 9 to generate a discharge flow in the liquid. The stirring blade 8 (the shaft 1
0) should be rotatably supported.

【0015】また、液溜タンク4の下部には、タンク4
内の吸収液の一部を抜き出す抜出ポンプ11を有する循
環流路である循環管12が接続されている。この循環管
12はタンク4の撹拌翼8の上方の側面に接続され、循
環管12から液がタンク4に噴出されるようになってい
る。この循環管12は、上記吐出流と同様に中心より所
定の角度ずれた角度でタンクに接続されて、循環管12
からの噴出流によりタンク4内に撹拌流が生じるように
なっている。
In addition, below the liquid reservoir tank 4, the tank 4
A circulation pipe 12, which is a circulation flow path, having an extraction pump 11 for extracting a part of the absorbing liquid therein is connected. The circulation pipe 12 is connected to the upper side surface of the stirring blade 8 of the tank 4, and the liquid is jetted from the circulation pipe 12 to the tank 4. The circulation pipe 12 is connected to the tank at an angle deviated from the center by a predetermined angle similarly to the discharge flow, and the circulation pipe 12
An agitated flow is generated in the tank 4 by the jet flow from.

【0016】循環管12の抜出ポンプ11より下流側に
は、管12内に乱流を生じさせ、この乱流部分に気体を
吹き込み、気泡と液の混相流を形成する混合部13が介
設されている。混合部13は、乱流を生じさせ、この乱
流部分に気体を吹き込むものであればどのような構造の
ものでもよく、例えば、図1及び図3に示すような構造
の混合部がある。この混合部13は、循環管12に、そ
の軸に直角に空気供給管14を貫通させ、この空気供給
管14の循環管12と同軸上に、流体の流れ方向に空気
を吹き出す空気吹出口15を設けてなり、循環管12内
の流路が空気供給管14により狭められて、空気供給管
14の下流側で乱流が生じ、この乱流部分に空気吹出口
15が位置されてこの吹出口15から空気が乱流に巻き
込まれて気泡が微細化するようになっている。空気供給
管14の直径dは、抜出ポンプ11による循環管12内
の流速により異なるが、例えば流速が2〜3m/sの場
合には、 0.3D〜 0.7Dの範囲(D:循環管12の直
径)内が好ましく、例えば循環管12の直径Dの半分
( 0.5D)にする。この範囲内であると乱流が生じて空
気吹出口15からの空気が乱流に巻き込まれて微細な気
泡となる。また循環管12を流れる吸収液の流量及び空
気の供給量は、例えば10m3 N/h及び6m3 N/hと
する。
On the downstream side of the withdrawal pump 11 of the circulation pipe 12, a turbulent flow is generated in the pipe 12, and a gas is blown into this turbulent flow portion, and a mixing portion 13 for forming a multiphase flow of bubbles and liquid is interposed. It is set up. The mixing section 13 may have any structure as long as it produces a turbulent flow and blows a gas into this turbulent flow section. For example, there is a mixing section having a structure as shown in FIGS. 1 and 3. The mixing portion 13 has an air supply pipe 14 penetrating the circulation pipe 12 at right angles to its axis, and an air outlet 15 that blows out air in the fluid flow direction coaxially with the circulation pipe 12 of the air supply pipe 14. Is provided, the flow path in the circulation pipe 12 is narrowed by the air supply pipe 14, and a turbulent flow is generated on the downstream side of the air supply pipe 14, and the air outlet 15 is located at this turbulent flow portion. Air is entrained in the turbulent flow from the outlet 15 to make bubbles fine. The diameter d of the air supply pipe 14 varies depending on the flow velocity in the circulation pipe 12 by the extraction pump 11, but when the flow velocity is 2 to 3 m / s, for example, in the range of 0.3D to 0.7D (D: circulation pipe 12 The diameter of the circulation pipe 12 is preferably half (0.5D). Within this range, a turbulent flow occurs and the air from the air outlet 15 is entrained in the turbulent flow to form fine bubbles. The flow rate of the absorbing liquid flowing through the circulation pipe 12 and the supply amount of air are, for example, 10 m 3 N / h and 6 m 3 N / h.

【0017】次に本実施例の作用を述べる。Next, the operation of this embodiment will be described.

【0018】排ガスは、ガス導入口2から吸収塔1内に
導入され、塔1内を上昇する。この吸収塔1には、炭酸
カルシウム等の吸収剤が溶解されたスラリ状の吸収液が
吸収液供給管3から導入され、液溜タンク4内に溜ま
る。その一部が循環ポンプ5により移送管7を介してス
プレーノズル6に移送され、そのノズル6から塔1内に
噴霧される。この吸収液とガスとが気液接触してガス中
の硫黄酸化物が吸収液に吸収され、被処理ガスが脱硫処
理される。脱硫処理されたガスは、塔1の上部から排出
され他の系に導かれる。脱硫処理後の液は液溜タンク4
に溜まり、タンク4内で酸化処理されて適宜抜き出され
処理される。
Exhaust gas is introduced into the absorption tower 1 through the gas introduction port 2 and rises in the tower 1. A slurry-like absorption liquid in which an absorption agent such as calcium carbonate is dissolved is introduced into the absorption tower 1 through the absorption liquid supply pipe 3 and is accumulated in the liquid storage tank 4. A part thereof is transferred to the spray nozzle 6 via the transfer pipe 7 by the circulation pump 5, and is sprayed from the nozzle 6 into the tower 1. The absorbing liquid and the gas come into gas-liquid contact with each other, the sulfur oxide in the gas is absorbed by the absorbing liquid, and the gas to be treated is desulfurized. The desulfurized gas is discharged from the upper part of the tower 1 and guided to another system. The liquid after desulfurization is the liquid storage tank 4
Accumulated in the tank 4, oxidized in the tank 4 and appropriately extracted and processed.

【0019】液溜タンク4内の吸収液の一部は、抜出ポ
ンプ11により抜き出されて循環管12内を流れ、混合
部13に至る。すると、循環管12の流路は、貫通され
ている空気供給管14により狭められ、この部分を液が
流れると空気供給管14の下流側に乱流が生じ、この乱
流部分に空気吹出口15から空気が吹き込まれる。これ
により、空気は、液の流動部分でしかも乱流を生じてい
る部分に吹き込まれるため、乱流に巻き込まれて気泡が
微細化する。この気泡を含んだ液(気泡と液の混相流)
が循環管12からタンク4に噴出される。この際、その
噴出流はタンク4の中央より所定の角度ずれた方向に向
いているため、旋回流が起こり、吸収液が撹拌される。
この噴出流は、気体と液体が混ざった混相流によりなる
ため、ガスだけを噴出する場合に比して噴出時の慣性力
が強いので、気泡が液溜タンク4(吸収液)内の遠くま
で拡がり、吸収液内に容易にしかも均一に分散される。
この際、撹拌翼8をモータ9により回転駆動することに
より、その翼8の背面(吸込側)の液が翼の前方に押し
出されて吐出流が起こり、タンク4内に液の流れが生じ
て吸収液が撹拌される。これにより、微細気泡をより確
実に吸収液内に均一に分散することができ、均一な酸化
反応の促進が図れる。また、吸収液中のSSの沈降防止
をも図れる。
A part of the absorption liquid in the liquid storage tank 4 is extracted by the extraction pump 11, flows through the circulation pipe 12, and reaches the mixing section 13. Then, the flow path of the circulation pipe 12 is narrowed by the penetrating air supply pipe 14, and when liquid flows through this portion, a turbulent flow is generated on the downstream side of the air supply pipe 14, and the air outlet is formed in this turbulent portion. Air is blown from 15. As a result, the air is blown into the part where the liquid is flowing and the turbulent flow is generated. Therefore, the air is entrained in the turbulent flow and the bubbles are miniaturized. Liquid containing bubbles (mixed-phase flow of bubbles and liquid)
Are jetted from the circulation pipe 12 to the tank 4. At this time, since the jet flow is directed in a direction deviating from the center of the tank 4 by a predetermined angle, a swirling flow occurs and the absorbing liquid is agitated.
Since this jet flow is a multiphase flow in which a gas and a liquid are mixed, the inertial force at the time of jetting is stronger than when jetting only gas, so that the bubbles can reach far inside the liquid storage tank 4 (absorption liquid). Spreads and is easily and uniformly dispersed in the absorbent.
At this time, when the stirring blade 8 is rotationally driven by the motor 9, the liquid on the back surface (suction side) of the blade 8 is pushed out in front of the blade and a discharge flow occurs, causing a liquid flow in the tank 4. The absorption liquid is agitated. As a result, the fine bubbles can be more surely uniformly dispersed in the absorbing liquid, and the uniform oxidation reaction can be promoted. Further, it is possible to prevent SS from settling in the absorbent.

【0020】このように、空気を予め吸収液に吹き込ん
でおき、これをタンク4に噴出するため、撹拌翼8の近
くに空気を吹き込むことがなく、すなわち空気と翼8が
接触することがないので、大容量の空気を吹き込んでも
キャビテーションを起すことなく気泡を微細化すること
ができる。また、気泡が微細になると、表面積が大きく
なり接触面積が増えるため、吸収液と空気とが十分接触
する。このため、吸収液の酸化反応がよく進み、空気量
を減らすことが可能となる。
As described above, since the air is blown into the absorbing liquid in advance and the liquid is jetted to the tank 4, the air is not blown near the stirring blade 8, that is, the air and the blade 8 do not come into contact with each other. Therefore, even if a large amount of air is blown, the bubbles can be made fine without causing cavitation. Further, when the bubbles become fine, the surface area becomes large and the contact area increases, so that the absorbing liquid and the air come into sufficient contact. Therefore, the oxidation reaction of the absorbing liquid progresses well, and the amount of air can be reduced.

【0021】具体的には、亜硫酸ナトリウム(Na2
3 )を空気で酸化する試験を本発明に係る予混合式、
パイプ吹込、撹拌機吸込側空気吹込式について行い、そ
の酸化速度を測定した。その結果は表1に示す。尚、各
条件は下記に示すとおりである。
Specifically, sodium sulfite (Na 2 S
A test of oxidizing O 3 ) with air is carried out by the premixing method according to the present invention,
The pipe blowing and the air blowing method on the suction side of the stirrer were performed, and the oxidation rate was measured. The results are shown in Table 1. The conditions are as shown below.

【0022】 試験装置 タンク:φ 800mm×高さ 2000mm 液面 :1500mm 撹拌機:撹拌翼のφ 140mm,3枚プロペラ羽根 試験条件 空気量:10m3 N/h 温度 :50℃ Na2 SO3 濃度:1%Test equipment Tank: φ 800 mm × Height 2000 mm Liquid level: 1500 mm Stirrer: Stirrer blade φ 140 mm, 3 propeller blades Test conditions Air volume: 10 m 3 N / h Temperature: 50 ° C. Na 2 SO 3 concentration: 1%

【0023】[0023]

【表1】 [Table 1]

【0024】表1に示した結果からもわかる通り、本発
明に係る予混合式は、パイプ吹込式及び撹拌機吸込側空
気吹込式に比して酸化速度が一段とよくなる。
As can be seen from the results shown in Table 1, the premixing type according to the present invention has a much higher oxidation rate than the pipe blowing type and the agitator suction side air blowing type.

【0025】図4は本発明の他の実施例を示す構成図で
あり、本実施例の特徴は、抜き出した液体に気体を混合
する混合部を液体の液面より上方に配置したところであ
り、上記実施例と同じ構造のものはその説明を省略し同
一符号を付す。
FIG. 4 is a constitutional view showing another embodiment of the present invention. The characteristic feature of this embodiment is that the mixing section for mixing gas with the extracted liquid is arranged above the liquid surface of the liquid. The description of the same structure as that of the above embodiment is omitted and the same reference numerals are given.

【0026】すなわち、図4に示すように、液溜タンク
4の下部には、タンク4内の吸収液の一部を抜き出す抜
出ポンプ17を有する循環流路である循環管18が接続
されている。この循環管18はタンク4の吸収液の液面
より上方に設けられた混合部19を介してタンク4の吸
収液の液面より下方側面に接続され、循環管18からの
吹込角度は、水平面上でかつタンク4中心より所定の角
度ずれた角度でタンク4に吹き込まれるようにする。こ
れにより、循環管18からの噴出流によりタンク4内に
撹拌流が生じるようになっている。
That is, as shown in FIG. 4, a circulation pipe 18 which is a circulation passage having a withdrawal pump 17 for withdrawing a part of the absorbing liquid in the tank 4 is connected to the lower portion of the liquid reservoir tank 4. There is. The circulation pipe 18 is connected to a side surface below the liquid surface of the absorbing liquid in the tank 4 through a mixing portion 19 provided above the liquid surface of the absorbing liquid in the tank 4, and the blowing angle from the circulation pipe 18 is a horizontal plane. It is blown into the tank 4 at an angle which is above and a predetermined angle from the center of the tank 4. As a result, the jet flow from the circulation pipe 18 causes a stirring flow in the tank 4.

【0027】混合部19は、吸収液中に空気を吹き込む
ものであればどのような構造のものでもよく、例えば上
記実施例の構造でもよい。
The mixing section 19 may have any structure as long as it blows air into the absorbing liquid, and may have the structure of the above embodiment, for example.

【0028】さて、このように混合部19を吸収液の液
面より上方に配置することにより、大容量の空気を微細
にして、タンク4内全体に分散することができる。
By arranging the mixing portion 19 above the liquid surface of the absorbing liquid in this way, a large volume of air can be made fine and dispersed in the entire tank 4.

【0029】すなわち、液溜タンク4内の吸収液の一部
は、抜出ポンプ17により抜き出されて循環管18内を
流れ、混合部19に至り、そこで空気が混入されて、気
泡を含んだ液(気泡と液の混相流)が形成される。そし
て、この気泡流(気泡と液の混相流)が循環管18から
タンク4に噴出される。
That is, a part of the absorbing liquid in the liquid storage tank 4 is withdrawn by the withdrawing pump 17 and flows through the circulation pipe 18 to reach the mixing section 19, where air is mixed and contains bubbles. A saliva (multiphase flow of bubbles and liquid) is formed. Then, this bubble flow (mixed-phase flow of bubbles and liquid) is ejected from the circulation pipe 18 to the tank 4.

【0030】この際、混合部19はタンク4の液面より
上方に配置されているため、混合部19からの気泡流
(混相流)を吹き込む際の吹込部での気体吹込圧力が低
くなり、気体の送気動力が低くなる。また、吹込部が混
合部19の下方に位置されているため、混合部19で混
入された気泡が圧力で小さくなり、微細化を図れる。
At this time, since the mixing section 19 is arranged above the liquid surface of the tank 4, the gas injection pressure at the injection section when the bubble flow (multiphase flow) from the mixing section 19 is decreased, The air supply power of gas becomes low. In addition, since the blowing section is located below the mixing section 19, the bubbles mixed in the mixing section 19 become smaller due to the pressure, and it is possible to achieve miniaturization.

【0031】さらに、噴出流はタンク4の中央より所定
の角度ずれた方向に向いているため、旋回流が起こり、
吸収液が撹拌される。この噴出流は、気体と液体が混ざ
った混相流によりなるため、ガスだけを噴出する場合に
比して噴出時の慣性力が強いので、気泡が液溜タンク4
(吸収液)内の遠くまで拡がり、吸収液内に容易にしか
も均一に分散される。この際、撹拌翼8をモータ9によ
り回転駆動することにより、その翼8の背面(吸込側)
の液が翼の前方に押し出されて吐出流が起り、タンク4
内に液の流れが生じて吸収液が撹拌される。これによ
り、微細気泡をより確実に吸収液内に均一に分散するこ
とができ、均一な酸化反応の促進が図れる。また、吸収
液中のSSの沈降防止をも図れる。
Furthermore, since the jet flow is directed in a direction deviating from the center of the tank 4 by a predetermined angle, a swirling flow occurs,
The absorption liquid is agitated. Since this jet flow is a multiphase flow in which a gas and a liquid are mixed, the inertial force at the time of jetting is stronger than the case of jetting only gas, and therefore bubbles are generated in the liquid storage tank 4.
It spreads far into the (absorption liquid) and is easily and uniformly dispersed in the absorption liquid. At this time, by rotating the stirring blade 8 by the motor 9, the back surface of the blade 8 (suction side)
Liquid is pushed out to the front of the blades and a discharge flow occurs,
A liquid flow is generated inside and the absorption liquid is agitated. As a result, the fine bubbles can be more surely uniformly dispersed in the absorbing liquid, and the uniform oxidation reaction can be promoted. Further, it is possible to prevent SS from settling in the absorbent.

【0032】このように、空気を予め吸収液に吹き込ん
でおき、これをタンク4に噴出するため、撹拌翼8の近
くに空気を吹き込むことがなく、すなわち空気と翼8が
接触することがないので、大容量の空気を吹き込んでも
キャビテーションを起すことなく気泡を微細化すること
ができる。また、気泡が微細になると、表面積が大きく
なり接触面積が増えるため、吸収液と空気とが十分接触
する。このため、吸収液の酸化反応がよく進み、空気量
を減らすことが可能となる。
As described above, the air is blown into the absorbing liquid in advance, and the absorbing liquid is jetted to the tank 4. Therefore, the air is not blown near the stirring blade 8, that is, the air and the blade 8 do not come into contact with each other. Therefore, even if a large amount of air is blown, the bubbles can be made fine without causing cavitation. Further, when the bubbles become fine, the surface area becomes large and the contact area increases, so that the absorbing liquid and the air come into sufficient contact. Therefore, the oxidation reaction of the absorbing liquid progresses well, and the amount of air can be reduced.

【0033】従って、大容量の空気でも微細にして吸収
液全体に分散できると共に、空気の送気動力(吹込空気
源の動力)を低減することができる。
Therefore, even a large volume of air can be finely divided and dispersed in the entire absorbing liquid, and the air supply power (power of the blown air source) can be reduced.

【0034】また、混合部19のメンテナンスを行う場
合には、混合部19が液面上に配置されているため、
液、気体の供給を停止すれば、タンク4内の液面までし
か液がこない、すなわち、混合部19には液がこないの
で、容易に行える。
When performing maintenance on the mixing section 19, since the mixing section 19 is arranged on the liquid surface,
If the supply of the liquid or gas is stopped, the liquid only reaches the liquid level in the tank 4, that is, the liquid does not reach the mixing section 19, so that it can be easily performed.

【0035】尚、本実施例では気泡を混合した混相流を
直接吸収液に噴射させて気泡の拡散を行うようにした
が、混相流に含まれる気泡が拡散するならば混相流の液
溜タンクへの供給はどのようにしてもよく、例えば、側
面式撹拌翼の前方に供給して撹拌翼の回転による吐出流
で気泡を拡散するようにしてもよい。また、混合部から
の流体(気泡を含んだ液(気泡と液の混相流))を循環
管から液溜タンクに1ケ所から噴出させたが、複数箇所
から噴出するようにしてもよい。このようにすれば、液
溜タンクが大きくなっても確実に液溜タンク内全体に気
泡を分散させることが可能となる。
In this embodiment, the mixed-phase flow mixed with bubbles is directly injected into the absorbing liquid to diffuse the bubbles. However, if the bubbles contained in the mixed-phase flow are diffused, the multi-phase flow reservoir tank It may be supplied by any method, for example, it may be supplied in front of the side stirring blade and the bubbles may be diffused by the discharge flow due to the rotation of the stirring blade. Further, the fluid (liquid containing bubbles (mixed-phase flow of bubbles and liquid)) from the mixing portion is ejected from the circulation pipe into the liquid reservoir tank from one location, but may be ejected from a plurality of locations. With this configuration, it becomes possible to reliably disperse the air bubbles in the entire liquid storage tank even if the liquid storage tank becomes large.

【0036】[0036]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を奏する。
In summary, the present invention has the following excellent effects.

【0037】(1) 循環流路に、乱流を生じさせこの乱流
部分に気体を吹き込む混合部を介設したので、大容量の
気体でも微細な気泡とすることができ、しかもこの気泡
を液体内に容易に拡散させることができる。
(1) Since a turbulent flow is generated in the circulation flow path and a mixing section for blowing gas into the turbulent flow section is provided, even a large volume of gas can be made into fine bubbles. It can easily diffuse into a liquid.

【0038】(2) 液体に気体を混合する混合部を液体の
液面より上方に配設したので、大容量の気体でも微細に
して液体全体に分散できると共に、気体の送気動力を低
減できる。
(2) Since the mixing section for mixing the gas with the liquid is arranged above the liquid surface of the liquid, even a large volume of gas can be made fine and dispersed throughout the liquid, and the gas feeding power can be reduced. .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】図1中のA−A線矢視図である。FIG. 2 is a view taken along the line AA in FIG.

【図3】本発明の混合部の一例を示す図である。FIG. 3 is a diagram showing an example of a mixing unit of the present invention.

【図4】本発明の他の実施例を示す構成図である。FIG. 4 is a configuration diagram showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

12 循環流路 13 混合部 12 Circulation flow path 13 Mixing section

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 10/00 104 0821−4D B01D 53/34 125 E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location B01J 10/00 104 0821-4D B01D 53/34 125 E

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 液体に気体を吹き込む装置において、上
記液体の一部を抜き出し、これを液体に噴出させて戻す
循環流路に、乱流を生じさせ、この乱流部分に気体を吹
き込み、気泡と液の混相流を形成する混合部を介設した
ことを特徴とする気体吹込装置。
1. A device for injecting gas into a liquid, wherein a turbulent flow is generated in a circulation flow path in which a part of the liquid is extracted and jetted back to the liquid, and the gas is blown into the turbulent flow part to generate bubbles. And a liquid mixing unit for forming a multiphase flow of liquid.
【請求項2】 液体に気体を吹き込む装置において、上
記液体の一部を抜き出し、これに気体を混合する混合部
を上記液体の液面より上方に配設すると共に、該混合部
からの流体を上記液体に吹き込む循環流路を設けたこと
を特徴とする気体吹込装置。
2. A device for blowing gas into a liquid, wherein a mixing portion for extracting a part of the liquid and mixing the gas therein is provided above the liquid surface of the liquid, and a fluid from the mixing portion is supplied. A gas blowing device comprising a circulation flow path for blowing into the liquid.
JP6137249A 1994-06-20 1994-06-20 Gas blowing device Pending JPH08950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6137249A JPH08950A (en) 1994-06-20 1994-06-20 Gas blowing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6137249A JPH08950A (en) 1994-06-20 1994-06-20 Gas blowing device

Publications (1)

Publication Number Publication Date
JPH08950A true JPH08950A (en) 1996-01-09

Family

ID=15194258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6137249A Pending JPH08950A (en) 1994-06-20 1994-06-20 Gas blowing device

Country Status (1)

Country Link
JP (1) JPH08950A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009243A1 (en) * 1998-08-11 2000-02-24 Mitsubishi Heavy Industries, Ltd. Wet type flue gas desulfurization equipment
JP2001187313A (en) * 1999-12-28 2001-07-10 Hisao Kojima Wet stack gas desulfurizing device
WO2002040137A1 (en) * 2000-11-17 2002-05-23 Mitsubishi Heavy Industries, Ltd. Method and apparatus for wet type flue-gas desulfurizaion
EP1972368A1 (en) * 2007-03-16 2008-09-24 ALSTOM Technology Ltd System & method for preventing scaling in a gas desulphurization system
WO2017014200A1 (en) * 2015-07-23 2017-01-26 三菱日立パワーシステムズ株式会社 Wet type flue gas desulfurization device and method for operating wet type flue gas desulfurization device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000009243A1 (en) * 1998-08-11 2000-02-24 Mitsubishi Heavy Industries, Ltd. Wet type flue gas desulfurization equipment
US6896851B1 (en) 1998-08-11 2005-05-24 Mitsubishi Heavy Industries, Ltd. Wet type flue gas desulfurization equipment
JP2001187313A (en) * 1999-12-28 2001-07-10 Hisao Kojima Wet stack gas desulfurizing device
WO2002040137A1 (en) * 2000-11-17 2002-05-23 Mitsubishi Heavy Industries, Ltd. Method and apparatus for wet type flue-gas desulfurizaion
US6787114B2 (en) 2000-11-17 2004-09-07 Mitsubishi Heavy Industries, Ltd. Method and apparatus for wet type flue-gas desulfurization
US6932952B2 (en) 2000-11-17 2005-08-23 Mitsubishi Heavy Industries, Ltd. Method and apparatus for wet type flue-gas desulfurization
EP1972368A1 (en) * 2007-03-16 2008-09-24 ALSTOM Technology Ltd System & method for preventing scaling in a gas desulphurization system
US8540219B2 (en) 2007-03-16 2013-09-24 Alstom Technology Ltd System and method for preventing scaling in a flue gas desulphurization system
US8662481B2 (en) 2007-03-16 2014-03-04 Alstom Technology Ltd System and method for preventing scaling in a flue gas desulphurization system
WO2017014200A1 (en) * 2015-07-23 2017-01-26 三菱日立パワーシステムズ株式会社 Wet type flue gas desulfurization device and method for operating wet type flue gas desulfurization device
KR20180019721A (en) * 2015-07-23 2018-02-26 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Wet type flue gas desulfurization device and method for operating wet type flue gas desulfurization device
JPWO2017014200A1 (en) * 2015-07-23 2018-05-31 三菱日立パワーシステムズ株式会社 Wet flue gas desulfurization apparatus and operation method of wet flue gas desulfurization apparatus
US10646820B2 (en) 2015-07-23 2020-05-12 Mitsubishi Hitachi Power Systems, Ltd. Wet flue gas desulfurization apparatus and operation method for wet flue gas desulfurization apparatus

Similar Documents

Publication Publication Date Title
KR0136372B1 (en) Wet-type exhaust gas desulfurizing apparatus
ES2263673T3 (en) DEVICE FOR DESULFURATION OF WET TYPE OF COMBUSTION GASES.
WO2007066443A1 (en) Wet flue-gas desulfurization apparatus and method of wet flue-gas desulfurization
JPH08323130A (en) Waste gas desulfurizing method
TW402520B (en) Wet flue gas desulfurizer and oxygen-containing gas blowing device for use therein
JP3555557B2 (en) Aeration device
JP5046755B2 (en) Gas-liquid contact device
JPH08950A (en) Gas blowing device
TW201132404A (en) Exhaust gas treatment device
JP3621159B2 (en) Exhaust gas treatment method and apparatus
JP3381389B2 (en) Gas injection device
JPS6134026Y2 (en)
JP3910307B2 (en) Wet flue gas desulfurization equipment
JP3382837B2 (en) Air blower for flue gas desulfurization unit
JPH0866613A (en) Absorption tower
JP3842706B2 (en) Wet flue gas desulfurization apparatus and method
JP4349511B2 (en) Exhaust gas treatment device and operation method thereof
JP3590856B2 (en) Exhaust gas desulfurization method
JP2001120946A (en) Wet stack gas desulfurizing device and its operation method
JPH0838850A (en) Gas blowing-in apparatus
JP3486256B2 (en) Wet flue gas desulfurization equipment
JP3610437B2 (en) Exhaust gas treatment method and apparatus
JP3392660B2 (en) Flue gas treatment equipment and foam breaker
KR0135324B1 (en) Aeration and mixing equipment for desulfurixation process
JPS6115932Y2 (en)