JPH0838850A - Gas blowing-in apparatus - Google Patents

Gas blowing-in apparatus

Info

Publication number
JPH0838850A
JPH0838850A JP6176673A JP17667394A JPH0838850A JP H0838850 A JPH0838850 A JP H0838850A JP 6176673 A JP6176673 A JP 6176673A JP 17667394 A JP17667394 A JP 17667394A JP H0838850 A JPH0838850 A JP H0838850A
Authority
JP
Japan
Prior art keywords
liquid
gas
air
pipe
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6176673A
Other languages
Japanese (ja)
Inventor
Tadayoshi Tamaru
忠義 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6176673A priority Critical patent/JPH0838850A/en
Publication of JPH0838850A publication Critical patent/JPH0838850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

PURPOSE:To blow-in even a large quantity of a gas as fine bubbles by installing a recovering part for a dropping liquid in a liquid sump, installing a descending pipe whose cross-section surface area is smaller than that of the recovering part in the lower part of the recovering part, and blowing a gas into the pipe. CONSTITUTION:As a liquid sump to sump an absorption liquid, a liquid sump tank 4 is installed in the inner lower part of an absorption tank 1. A cylindrical recovering part 11 whose upper part is opened is installed above the liquid surface in the liquid sump tank 4. A descending 12 is connected coaxially with the lower part of the recovering part 11 and the diameter d2 of the descending pipe 12 is made to be smaller than the diameter d1 of the recovering part 11. A funnel is composed of the recovering part 11 and descending pipe 12 and a portion of a spray liquid from a spray nozzle 6 is recovered in the recovering part 11, and then the liquid is made to descend in the descending pipe 12 due to self-weight and guided to the lower part of the liquid saving tank 14. An air blowing-in pipe 13 to blow in air is connected with the descending pipe 12, a blowing-in inlet 14 is formed along the flow direction of the descending pipe 12, and bubbles descend following the descending current and ascend from the lower part of the tank 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液体に気体を吹き込む気
体吹込装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas blowing device for blowing a gas into a liquid.

【0002】[0002]

【従来の技術】気体吹込装置は、液体中に気体を吹き込
ませるもので、例えば燃焼機器からの排ガスを脱硫処理
する湿式の排煙脱硫装置に備えられている。
2. Description of the Related Art A gas blowing device blows gas into a liquid and is provided in, for example, a wet flue gas desulfurization device for desulfurizing exhaust gas from a combustion device.

【0003】湿式の排煙脱硫装置は、吸収塔内で排ガス
と吸収剤例えば炭酸カルシウムを含むスラリ状の吸収液
とを接触させ、ガス中の硫黄酸化物を吸収剤に吸収させ
て排ガスの脱硫処理を行うものであり、その硫黄酸化物
を吸収した吸収剤を石こうとして回収するために脱硫処
理後の吸収液を酸化処理する場合に気体吹込装置が用い
られている。この気体吹込装置は、脱硫処理後の吸収液
が貯留される塔全面(吸収液中)に空気の吹込管を複数
配設して、その吹込管の吹込口から空気を吸収液中に吹
き込ませるパイプ吹込式のものと、図4に示すように、
脱硫処理後の吸収液を撹拌する側面式撹拌機20の翼2
1の吸込側(背面側)に空気を噴出させる撹拌機吸込側
空気吹込式のもの(特公平 4-69089号公報等)とがあ
り、これにより吸収液と空気中の酸素とが反応して石こ
うが析出する。
In a wet flue gas desulfurization apparatus, exhaust gas is desulfurized by bringing the exhaust gas and an absorbent such as a slurry-like absorbent containing calcium carbonate into contact with each other in the absorption tower to absorb the sulfur oxide in the gas into the absorbent. A gas blowing device is used when oxidizing the absorbent after desulfurization in order to recover the absorbent that has absorbed the sulfur oxides as gypsum. In this gas blowing device, a plurality of air blowing pipes are arranged on the entire surface (in the absorbing liquid) where the absorbing liquid after desulfurization treatment is stored, and the air is blown into the absorbing liquid from the blowing port of the blowing pipe. With a pipe blowing type, as shown in FIG.
Blade 2 of a lateral stirrer 20 for stirring the absorbent after desulfurization treatment
There is a stirrer suction side air-blowing type that blows air to the suction side (rear side) of No. 1 (Japanese Patent Publication No. 4-69089, etc.), which allows the absorbing liquid to react with oxygen in the air. Gypsum deposits.

【0004】[0004]

【発明が解決しようとする課題】ところで、上述の気体
吹込装置では、前者のパイプ吹込式の場合には複数の吹
込管の吹込口から気体を液体中に単に吹き込ませるた
め、特に大容量の気体を吹き込ませる場合には気泡が大
きくなり、吸収液の酸化効率が悪くなる。後者の撹拌機
吸込側空気吹込式では、翼の吸込側に空気を噴出させて
翼で空気を分解して微細な気泡にしているため、翼と空
気が接触するのでキャビテーションを起し易く、気体吹
込量に制限がある。
In the gas blowing device described above, in the case of the former pipe blowing type, gas is simply blown into the liquid through the blowing ports of a plurality of blowing pipes. When bubbles are blown in, the bubbles become large and the efficiency of oxidation of the absorbing liquid deteriorates. In the latter agitator suction side air blowing type, since air is jetted to the suction side of the blade and the air is decomposed into fine bubbles by the blade, the blade and air are in contact with each other, so cavitation is likely to occur and gas is generated. There is a limit to the blowing amount.

【0005】そこで、本発明は、このような事情を考慮
してなされたものであり、その目的は、大容量の気体で
も微細な気泡として吹き込ませることができる気体吹込
装置を提供することにある。
Therefore, the present invention has been made in consideration of such circumstances, and an object thereof is to provide a gas blowing device capable of blowing even a large volume of gas as fine bubbles. .

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成するために、落下して貯留された液体に気体を吹き込
む装置において、上記液体の液溜部に、落下する液体を
受ける回収部を設け、この回収部の下部に、回収部の液
を自重で液溜部の下方に案内すべく回収部より断面積が
小さい下降管を接続し、この下降管内に気体を吹き込む
気体吹込口を設けたものである。また、下降管内を流下
する液体の流速が1m/s以上になるようにすることが
好ましい。
In order to achieve the above-mentioned object, the present invention is a device for blowing gas into a liquid that has been dropped and stored, in a liquid collecting part for receiving the falling liquid. A downcomer having a smaller cross-sectional area than the recovery section is connected to the lower part of the recovery section to guide the liquid in the recovery section to the lower side of the liquid storage section by its own weight, and a gas injection port for blowing gas into the downcomer is connected. It is provided. Further, it is preferable that the flow velocity of the liquid flowing down in the downcomer is 1 m / s or more.

【0007】[0007]

【作用】落下し回収部で回収された液体は、下降管内を
流下する。この下降流の途中に気体が吹き込まれるた
め、気体は液の流動部分に吹き込まれるので、液体の乱
流に巻き込まれて気泡が微細化する。この気泡が混入し
た混相流が液溜部の下方に案内されるため、気体の量を
多くしてもキャビテーションを起す心配がない。また、
気体は液体と混ざった混相流として液溜部に吹き込まれ
るため、ガスだけを噴出する場合に比して噴出時の慣性
力が強いので、液体内に容易に気泡が拡散する。さら
に、落下液を利用して気泡が混入した混相流(気泡流)
をつくるので、気泡流を作るための動力が不要である。
従って、大容量の気体でも微細な気泡として液体内に吹
き込ませることが可能となると共に、気泡流を作るため
の動力が不要で、かつ気泡を液体内に容易に拡散させる
ことが可能となる。
The liquid dropped and recovered by the recovery unit flows down in the downcomer. Since gas is blown in the middle of this descending flow, the gas is blown into the flowing portion of the liquid, so that it is entrained in the turbulent flow of the liquid and the bubbles are miniaturized. Since the multiphase flow in which the air bubbles are mixed is guided below the liquid reservoir, there is no fear of causing cavitation even if the amount of gas is increased. Also,
Since gas is blown into the liquid reservoir as a multiphase flow mixed with liquid, the inertial force at the time of jetting is stronger than when jetting only gas, and thus bubbles easily diffuse in the liquid. Furthermore, multiphase flow (bubble flow) in which bubbles are mixed using the falling liquid
Therefore, no power is required to create a bubbly flow.
Therefore, even a large volume of gas can be blown into the liquid as fine bubbles, and power for creating a bubble flow is not required, and the bubbles can be easily diffused into the liquid.

【0008】また、下降管内を流下する液体の流速を1
m/s以上にすることにより、気泡の微細化を確実に行
える。
The flow velocity of the liquid flowing down the downcomer is 1
By making it m / s or more, it is possible to surely miniaturize the bubbles.

【0009】[0009]

【実施例】以下、本発明の一実施例を添付図面に基づい
て詳述する。
An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0010】本実施例では本発明の気体吹込装置を湿式
の排煙脱硫装置の吸収塔に適用した場合について述べ
る。
In this embodiment, a case where the gas blowing device of the present invention is applied to an absorption tower of a wet type flue gas desulfurization device will be described.

【0011】図1において、1は燃焼機器例えばボイラ
からの排ガスを脱硫処理する円筒状の吸収塔を示し、こ
の吸収塔1の側部下方には排ガスのガス導入口2が設け
られている。
In FIG. 1, reference numeral 1 denotes a cylindrical absorption tower for desulfurizing exhaust gas from a combustion device such as a boiler, and a gas introduction port 2 for exhaust gas is provided below a side portion of the absorption tower 1.

【0012】吸収塔1には、排ガス中の硫黄酸化物の硫
黄分を吸収するための炭酸カルシウム等の吸収剤が溶解
されたスラリ状の吸収液を供給する吸収液供給管3が接
続されていると共に、その内部下方には吸収液を溜める
液溜部としての液溜タンク4が設けられている。また、
吸収塔1の液溜タンク4には、タンク4内の吸収液の一
部を循環ポンプ5により塔1内上方に設けられたスプレ
ーノズル6に移送する移送管7が接続されており、スプ
レーノズル6から噴霧された吸収液(スプレ液)と塔1
内を上昇する排ガスとが向流接触してガス中の硫黄分が
吸収液に吸収除去され、排ガスが脱硫処理されるように
なっている。
The absorption tower 1 is connected with an absorption liquid supply pipe 3 for supplying a slurry-shaped absorption liquid in which an absorption agent such as calcium carbonate for absorbing the sulfur content of sulfur oxides in exhaust gas is dissolved. In addition, a liquid storage tank 4 as a liquid storage portion for storing the absorbing liquid is provided below the inside thereof. Also,
A transfer pipe 7 is connected to the liquid reservoir tank 4 of the absorption tower 1 to transfer a part of the absorbed liquid in the tank 4 to a spray nozzle 6 provided above the tower 1 by a circulation pump 5. Absorption liquid (spray liquid) sprayed from 6 and tower 1
The exhaust gas rising in the interior is brought into countercurrent contact with the sulfur content in the gas to be absorbed and removed by the absorption liquid, and the exhaust gas is desulfurized.

【0013】さらに、吸収塔1の液溜タンク4内の吸収
液中には、タンク4内の吸収液を回転により吐出流を生
じさせて撹拌するプロペラ状の側面式撹拌翼8が側壁近
傍に回転自在に設けられている。撹拌翼8はその側壁を
貫通して設けられたモータ9のシャフト10に取り付け
られ、モータ9の駆動により回転して液中に吐出流が生
じるようになっており、この吐出流の方向はタンク4の
中心より所定の角度ずれるように撹拌翼8(シャフト1
0)を回転自在に支持するようにする。
Further, in the absorbing liquid in the liquid storage tank 4 of the absorption tower 1, a propeller-shaped side stirring blade 8 for stirring the absorbing liquid in the tank 4 by rotating to generate a discharge flow is provided near the side wall. It is rotatably installed. The stirring blade 8 is attached to a shaft 10 of a motor 9 provided through the side wall of the stirring blade 8 and is rotated by the drive of the motor 9 to generate a discharge flow in the liquid. The stirring blade 8 (the shaft 1
0) should be rotatably supported.

【0014】また、液溜タンク4には、上部が開放され
た円筒状の回収体(回収部)11がその同軸上に液面よ
り上方に配設されている。回収体11の下部には、その
同軸上に下降管12が接続され、下降管12は、他端が
タンク4下方に配置されると共に直径d2 が回収体11
の直径d1 より小さく形成されている。すなわち、回収
体11と下降管12とで一種の漏斗が形成され、スプレ
ーノズル6から噴霧され落下するスプレ液の一部が回収
体11に回収されて集められ、この集められた液が自重
で下降管12内を流下して液溜タンク4の下方に案内さ
れるようになっている。
Further, in the liquid storage tank 4, a cylindrical recovery body (recovery section) 11 having an open top is arranged coaxially above the liquid surface. A downcomer pipe 12 is coaxially connected to the lower part of the recovery body 11, and the other end of the downcomer pipe 12 is arranged below the tank 4 and a diameter d 2 of the recovery body 11 is reduced.
Is formed to be smaller than the diameter d 1 . That is, a kind of funnel is formed by the collection body 11 and the downcomer 12, and a part of the spray liquid sprayed and dropped from the spray nozzle 6 is collected and collected by the collection body 11, and the collected liquid is attached by its own weight. The liquid flows down in the downcomer pipe 12 and is guided below the liquid storage tank 4.

【0015】下降管12には、空気を吹き込むための空
気吹込管13が接続され、この空気吹込管13の吹込口
14は空気を下降管12の流れ方向に沿って吹き出すよ
うに配置され、吹込口14からの空気すなわち気泡は下
降管12内の液の下降流に乗って下降し、そして液溜タ
ンク4の下方から上昇するようになっている。空気吹込
管13の下降管12への接続位置は、下降管12内に空
気が吹き込まれるならば任意に決められるが、酸化を考
慮するとできるだけ高い位置にすることが好ましい。
An air blow-in pipe 13 for blowing air is connected to the downcomer 12, and a blow-in port 14 of the air blow-in pipe 13 is arranged so as to blow out the air along the flow direction of the downcomer 12 so as to blow the air. The air, that is, the bubbles from the port 14 rides on the descending flow of the liquid in the descending pipe 12 and descends, and rises from below the liquid reservoir tank 4. The connection position of the air blowing pipe 13 to the downcomer pipe 12 is arbitrarily determined as long as air is blown into the downcomer pipe 12, but it is preferably set to a position as high as possible in consideration of oxidation.

【0016】回収体11及び下降管12の大きさ(直
径)は、空気吹込管13の吹込口14からの空気(気
泡)が下降管12内を下降すると共に良い気泡状態(微
細な気泡)となるように任意に設定、すなわち下降管1
2内の液速度が1m/s以上になるように設定する。具
体的には、下降管12の直径d2 は、スプレーノズル6
からのスプレ液が吸収塔1内に均一に噴霧され、このス
プレ液量は多量であるため、断面積が吸収塔1の1割あ
ればよく、例えば吸収塔1の径をDとすると0.33Dとす
る。回収体11の直径d1 は、回収体11で回収して集
めたスプレ液の全スプレ液に対する割合を、タンク全断
面に対する下降管の断面比率よりも高くする必要があ
り、例えば0.50Dとする。このように、回収体11の直
径d1 を0.50D、下降管12の直径d2 を0.33Dとする
ことにより、下降管12内の液速度が1m/s以上にな
り、吹込口13からの空気は液の流動部分に吹き込まれ
て乱流に巻き込まれ、微細な気泡となる。
The size (diameter) of the recovery body 11 and the downcomer pipe 12 is such that the air (bubbles) from the blow-in port 14 of the air blowing pipe 13 descends in the downcomer pipe 12 and a good bubble state (fine bubbles) is obtained. Arbitrarily set to be, that is, downcomer 1
The liquid velocity in 2 is set to be 1 m / s or more. Specifically, the diameter d 2 of the downcomer pipe 12 is determined by the spray nozzle 6
Since the spray liquid from No. 1 is uniformly sprayed into the absorption tower 1, and the amount of this spray liquid is large, the cross-sectional area may be 10% of that of the absorption tower 1. For example, if the diameter of the absorption tower 1 is D, it is 0.33D. And The diameter d 1 of the recovery body 11 is required to make the ratio of the spray liquid collected and collected by the recovery body 11 to the total spray liquid higher than the cross-sectional ratio of the downcomer pipe to the total cross-section of the tank, and is set to 0.50D, for example. . In this way, by setting the diameter d 1 of the recovery body 11 to 0.50 D and the diameter d 2 of the downcomer pipe 12 to 0.33 D, the liquid velocity in the downcomer pipe 12 becomes 1 m / s or more, and The air is blown into the flowing part of the liquid and is entrained in the turbulent flow to form fine bubbles.

【0017】このように液速度を1m/s以上にするの
は以下の理由による。
The reason why the liquid velocity is set to 1 m / s or more is as follows.

【0018】先ず、亜硫酸ナトリウム(Na2 SO3
を空気で酸化する試験を、Na2 SO3 濃度1%の液を
用いて液速度と空気量を変えて行った。その結果を図2
に示す。図2に示した結果から、液の速度がある程度な
いと良い状態の気泡流(微細な気泡流)ができないこと
が分り、液速度を1m/s以上にすれば確実に良い状態
の気泡流(微細な気泡流)ができることが分った。すな
わち、液体が多いほど、空気が少ないほど良い状態の気
泡流が得られる。また、空気一定で、液量を変えて、酸
化速度を調べ、その結果を図3に示した。その結果、図
示するように、液空気比が 1.0以上になると酸化速度が
よくなる。すなわち、液空気比が 1.0以上でないと良い
状態の気泡流(微細な気泡流)ができない。従って、湿
式の排煙脱硫装置の吸収塔の場合、排ガス中の硫黄酸化
物を吸収して酸化する(吸収剤が炭酸カルシウム(Ca
CO3 )の場合:CaCO3 +SO2 +1/2・O2
2H2 O→CaSO4 ・2H2 O+CO2 )ため、空気
の量は硫黄酸化物の吸収量で決まるため、空気量は少な
くてすむので、液速度を1m/s以上にすれば、微細な
気泡として空気を吹き込め、確実に吸収液の酸化を行え
る。尚、気泡の上昇速度は約 0.4〜0.5 m/sであるの
で、液速度を1m/s以上にすれば気泡が下降管内を上
昇することはほとんどない。
First, sodium sulfite (Na 2 SO 3 )
Was oxidized with air using a liquid having a Na 2 SO 3 concentration of 1% while changing the liquid velocity and the amount of air. The result is shown in Figure 2.
Shown in From the results shown in FIG. 2, it can be seen that the bubble flow in a good state (fine bubble flow) cannot be performed unless the liquid velocity is to some extent, and if the liquid velocity is 1 m / s or more, the bubble flow in a good state can be surely obtained. It was found that a fine bubbly flow) can be formed. That is, the more liquid and the less air, the better the bubbly flow obtained. Further, the oxidation rate was examined by changing the liquid amount while keeping the air constant, and the results are shown in FIG. As a result, as shown in the figure, the oxidation rate improves when the liquid-air ratio is 1.0 or more. That is, if the liquid-air ratio is not 1.0 or more, a good bubbly flow (fine bubbly flow) cannot be obtained. Therefore, in the case of an absorption tower of a wet flue gas desulfurization device, it absorbs and oxidizes sulfur oxides in exhaust gas (the absorbent is calcium carbonate (Ca
CO 3 ): CaCO 3 + SO 2 + 1/2 · O 2 +
2H 2 O → CaSO 4 · 2H 2 O + CO 2 ) Therefore, the amount of air is determined by the amount of sulfur oxide absorbed, so the amount of air can be small, so if the liquid velocity is set to 1 m / s or more, fine bubbles will be generated. As a result, air can be blown in to reliably oxidize the absorbing liquid. Since the ascending speed of the bubbles is about 0.4 to 0.5 m / s, if the liquid velocity is 1 m / s or more, the bubbles hardly rise in the downcomer pipe.

【0019】次に本実施例の作用を述べる。Next, the operation of this embodiment will be described.

【0020】排ガスは、ガス導入口2から吸収塔1内に
導入され、塔1内を上昇する。この吸収塔1には、炭酸
カルシウム等の吸収剤が溶解されたスラリ状の吸収液が
吸収液供給管3から導入され、液溜タンク4内に溜ま
る。その一部が循環ポンプ5により移送管7を介してス
プレーノズル6に移送され、そのノズル6から塔1内に
噴霧される。この吸収液とガスとが気液接触してガス中
の硫黄酸化物が吸収液に吸収され、被処理ガスが脱硫処
理される。脱硫処理されたガスは、塔1の上部から排出
され他の系に導かれる。
Exhaust gas is introduced into the absorption tower 1 through the gas introduction port 2 and rises in the tower 1. A slurry-like absorption liquid in which an absorption agent such as calcium carbonate is dissolved is introduced into the absorption tower 1 through the absorption liquid supply pipe 3 and is accumulated in the liquid storage tank 4. A part thereof is transferred to the spray nozzle 6 via the transfer pipe 7 by the circulation pump 5, and is sprayed from the nozzle 6 into the tower 1. The absorbing liquid and the gas come into gas-liquid contact with each other, the sulfur oxide in the gas is absorbed by the absorbing liquid, and the gas to be treated is desulfurized. The desulfurized gas is discharged from the upper part of the tower 1 and guided to another system.

【0021】脱硫処理後の吸収液は液溜タンク4に落下
し、この一部が回収体11に回収され、タンク4中央に
集められる。この回収体11で集めた吸収液は、全落下
する吸収液(全スプレ液)に対する割合がタンク1全断
面に対する下降管12の断面比率よりも高いので、下降
管12内を流下する。
After the desulfurization treatment, the absorbing liquid drops into the liquid storage tank 4, and a part of the absorbing liquid is collected by the collecting body 11 and collected in the center of the tank 4. Since the ratio of the absorbing liquid collected by the recovery body 11 to the total falling absorbing liquid (total spray liquid) is higher than the cross-sectional ratio of the downcomer pipe 12 to the entire cross-section of the tank 1, it flows down in the downcomer pipe 12.

【0022】この下降管12内を流下する吸収液に空気
吹込管13の吹込口14から空気が吹き込まれる。空気
は、静止タンク内でなく、液の流動部分に吹き込まれる
ので、乱流により気泡が微細化する。この気泡を含んだ
液(気泡と液の混相流)が下降管12からタンク4下方
に案内され、そして反転して下降管の外周を上昇してタ
ンク4全体に拡散する。このように、空気は微細気泡と
なって液と共に下降管12内を流下してタンク4下方に
案内され、そして上昇して液面に至るので、空気の滞溜
時間が単に空気を吹き込む場合に比して長くなる。ま
た、気泡が微細になると、表面積が大きくなり接触面積
が増えるため、吸収液と空気とが十分接触する。このよ
うに、吸収液と空気との接触が効率よく行われるので、
脱硫処理後の吸収液の酸化反応がよく進み、吸収液の酸
化を効率よく行え、吸収液に吹き込む空気量を低減する
ことが可能となる。
Air is blown into the absorbing liquid flowing down in the downcomer pipe 12 through the blow-in port 14 of the air blow-in pipe 13. Since air is blown into the flowing portion of the liquid, not in the stationary tank, the bubbles are made fine by the turbulent flow. The liquid containing the bubbles (mixed-phase flow of bubbles and liquid) is guided from the downcomer pipe 12 to the lower side of the tank 4, and then reverses and rises on the outer periphery of the downcomer pipe to diffuse throughout the tank 4. As described above, the air becomes fine bubbles and flows down with the liquid in the downcomer 12 and is guided to the lower side of the tank 4, and ascends to reach the liquid surface. Therefore, when the air retention time is simply blown in, It will be longer than that. Further, when the bubbles become fine, the surface area becomes large and the contact area increases, so that the absorbing liquid and the air come into sufficient contact with each other. In this way, since the contact between the absorbing liquid and air is performed efficiently,
After the desulfurization treatment, the oxidation reaction of the absorbing solution progresses well, the absorbing solution can be efficiently oxidized, and the amount of air blown into the absorbing solution can be reduced.

【0023】また、気体と液体が混ざった混相流が下降
管12から吹き出されるため、ガスだけを噴出する場合
に比して噴出時の慣性力が強いので、気泡が液溜タンク
4(吸収液)内の遠くまで拡がり、吸収液内に容易にし
かも均一に分散される。この際、撹拌翼8をモータ9に
より回転駆動することにより、その翼8の背面(吸込
側)の液が翼の前方に押し出されて吐出流が起こり、タ
ンク4内に液の流れが生じて吸収液が撹拌される。これ
により、微細気泡をより確実に吸収液内に均一に分散す
ることができ、均一な酸化反応の促進が図れる。また、
吸収液中のSSの沈降防止をも図れる。
Further, since the mixed phase flow in which the gas and the liquid are mixed is blown out from the downcomer 12, the inertial force at the time of ejection is stronger than that when only gas is ejected, so that the bubbles are absorbed in the liquid storage tank 4 (absorption). It spreads far into the liquid and is easily and uniformly dispersed in the absorbing liquid. At this time, when the stirring blade 8 is rotationally driven by the motor 9, the liquid on the back surface (suction side) of the blade 8 is pushed out in front of the blade and a discharge flow occurs, causing a liquid flow in the tank 4. The absorption liquid is agitated. As a result, the fine bubbles can be more surely uniformly dispersed in the absorbing liquid, and the uniform oxidation reaction can be promoted. Also,
It is also possible to prevent SS from settling in the absorbent.

【0024】従って、落下する吸収液を利用して吸収液
の下降流を作り、この吸収液の流動部分に空気を吹き込
み、これをタンク4の下方に案内する(吹き出す)た
め、撹拌翼8の近くに空気を吹き込むことがなく、すな
わち空気と翼8が接触することがないので、大容量の空
気を吹き込んでもキャビテーションを起すことがない。
また、スプレの落下液を利用して気泡流をつくるので、
気泡流をつくるための動力が不要である。さらに、気体
吹込管13の位置が高い位置にあるので、空気の圧力が
小さく、気体圧縮機の動力(空気を吹き出す際の動力)
が少なくて済む。
Therefore, a descending flow of the absorbing liquid is created by utilizing the falling absorbing liquid, air is blown into the flowing portion of the absorbing liquid, and this is guided (blown out) below the tank 4, so that the stirring blade 8 Since air is not blown into the vicinity, that is, the air and the blade 8 do not come into contact with each other, cavitation does not occur even if a large amount of air is blown.
In addition, since the bubbly flow is created using the falling liquid of the spray,
No power is needed to create the bubbly flow. Furthermore, since the position of the gas blowing pipe 13 is at a high position, the pressure of the air is small, and the power of the gas compressor (power at the time of blowing air)
Is less.

【0025】[0025]

【発明の効果】以上要するに本発明によれば、次のよう
な優れた効果を奏する。
In summary, the present invention has the following excellent effects.

【0026】(1) 大容量の気体でも微細な気泡とするこ
とができ、しかも気泡流を作るための動力が不要で、か
つ気泡を液体内に容易に拡散させることができる。
(1) Even a large volume of gas can be made into fine bubbles, and the power for creating a bubble flow is not necessary, and the bubbles can be easily diffused in the liquid.

【0027】(2) 下降管内を流下する液体の流速を1m
/s以上にすることで、気泡の微細化を確実に行える。
(2) The flow velocity of the liquid flowing down the downcomer is 1 m.
By setting it to be / s or more, it is possible to surely miniaturize the bubbles.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す構成図である。FIG. 1 is a configuration diagram showing an embodiment of the present invention.

【図2】気泡流の状態を見掛の空気速度と見掛の液速度
との関係で示した図である。
FIG. 2 is a diagram showing a relationship between an apparent air velocity and an apparent liquid velocity of a bubbly flow state.

【図3】液空気比と酸化速度との関係を示す図である。FIG. 3 is a diagram showing a relationship between a liquid-air ratio and an oxidation rate.

【図4】従来の一例を示す構成図である。FIG. 4 is a configuration diagram showing a conventional example.

【符号の説明】[Explanation of symbols]

4 液溜部(液溜タンク) 11 回収部(回収体) 12 下降管 14 気体吹込口 4 Liquid Reservoir (Liquid Reservoir Tank) 11 Recovery Part (Recovery Body) 12 Downcomer 14 Gas Inlet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 落下して貯留された液体に気体を吹き込
む装置において、上記液体の液溜部に、落下する液体を
受ける回収部を設け、該回収部の下部に、回収部の液を
自重で液溜部の下方に案内すべく回収部より断面積が小
さい下降管を接続し、該下降管内に気体を吹き込む気体
吹込口を設けたことを特徴とする気体吹込装置。
1. A device for blowing gas into a liquid that has fallen and stored, wherein a collecting part for receiving the falling liquid is provided in the liquid reservoir part, and the liquid in the collecting part is self-weighted under the collecting part. A gas injecting device, characterized in that a downcomer having a smaller cross-sectional area than the recovering part is connected so as to be guided below the liquid reservoir, and a gas injecting port for injecting gas is provided in the downcomer.
【請求項2】 前記下降管内を流下する液体の流速が1
m/s以上になるようにすることを特徴とする請求項1
記載の気体吹込装置。
2. The flow velocity of the liquid flowing down in the downcomer is 1
2. The ratio is set to m / s or more.
The described gas blowing device.
JP6176673A 1994-07-28 1994-07-28 Gas blowing-in apparatus Pending JPH0838850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6176673A JPH0838850A (en) 1994-07-28 1994-07-28 Gas blowing-in apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6176673A JPH0838850A (en) 1994-07-28 1994-07-28 Gas blowing-in apparatus

Publications (1)

Publication Number Publication Date
JPH0838850A true JPH0838850A (en) 1996-02-13

Family

ID=16017727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6176673A Pending JPH0838850A (en) 1994-07-28 1994-07-28 Gas blowing-in apparatus

Country Status (1)

Country Link
JP (1) JPH0838850A (en)

Similar Documents

Publication Publication Date Title
JP3854481B2 (en) Wet flue gas desulfurization apparatus and wet flue gas desulfurization method
KR19990044912A (en) Oxygen-containing gas blower of wet flue gas desulfurizer and flue gas desulfurizer
KR0179220B1 (en) Wet flue gas desulfurization apparatus
TW201132404A (en) Exhaust gas treatment device
JP2002248318A (en) Wet flue gas desulfurizing apparatus
JP3968830B2 (en) Absorption tower of flue gas desulfurization equipment
JPH0838850A (en) Gas blowing-in apparatus
JPH08950A (en) Gas blowing device
JP3910307B2 (en) Wet flue gas desulfurization equipment
JP3486256B2 (en) Wet flue gas desulfurization equipment
JP3381389B2 (en) Gas injection device
JP3842706B2 (en) Wet flue gas desulfurization apparatus and method
JP4014073B2 (en) Two-chamber wet flue gas desulfurization system
JP2001120946A (en) Wet stack gas desulfurizing device and its operation method
JP3883745B2 (en) Two-chamber wet flue gas desulfurization apparatus and method
JP2005342721A (en) Two-chamber type wet flue gas desulfurization apparatus and method
JP4349511B2 (en) Exhaust gas treatment device and operation method thereof
JPH0578367B2 (en)
JP3610437B2 (en) Exhaust gas treatment method and apparatus
JPH05329327A (en) Absorbing tower
JP3590856B2 (en) Exhaust gas desulfurization method
JPH0866613A (en) Absorption tower
JP2000317259A (en) Flue gas desulfurization equipment
JPH05317642A (en) Absorber for wet flue gas desulfurizer
JP3202299B2 (en) Wet flue gas desulfurization tower