JP3382837B2 - Air blower for flue gas desulfurization unit - Google Patents

Air blower for flue gas desulfurization unit

Info

Publication number
JP3382837B2
JP3382837B2 JP02917098A JP2917098A JP3382837B2 JP 3382837 B2 JP3382837 B2 JP 3382837B2 JP 02917098 A JP02917098 A JP 02917098A JP 2917098 A JP2917098 A JP 2917098A JP 3382837 B2 JP3382837 B2 JP 3382837B2
Authority
JP
Japan
Prior art keywords
discharge pipe
liquid
air
discharge
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02917098A
Other languages
Japanese (ja)
Other versions
JPH11207145A (en
Inventor
雅和 鬼塚
徹 高品
岳男 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP02917098A priority Critical patent/JP3382837B2/en
Priority to TW087117447A priority patent/TW402520B/en
Priority to KR1019980045416A priority patent/KR100285102B1/en
Priority to CN98121453A priority patent/CN1088611C/en
Priority to CZ2001239A priority patent/CZ294940B6/en
Priority to CZ19983530A priority patent/CZ291691B6/en
Priority to US09/185,803 priority patent/US6190620B1/en
Priority to TR1998/02243A priority patent/TR199802243A3/en
Publication of JPH11207145A publication Critical patent/JPH11207145A/en
Priority to HK99103722A priority patent/HK1018752A1/en
Priority to US09/751,087 priority patent/US6814942B2/en
Application granted granted Critical
Publication of JP3382837B2 publication Critical patent/JP3382837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ボイラーなどから
の排ガス中のSO2 を湿式脱硫する排煙脱硫装置の空気
吹込み装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air blowing device of a flue gas desulfurization device for wet desulfurization of SO 2 in exhaust gas from a boiler or the like.

【0002】[0002]

【従来の技術】硫黄分を含む燃料を燃焼すると、灰分中
に固定されるものを除いて、亜硫酸ガス(SO2 )とし
て大気に放出され、人体、動物のみならず、酸性雨とし
て地上に降ることにより環境にも大きな悪影響を及ぼ
す。このため従来より大型の燃焼設備やプラントには排
煙脱硫装置が付設され、その多くのものが湿式排煙脱硫
装置である。かかる湿式脱硫法では、石灰等のアルカリ
を含む水溶液と排ガスとを気液接触させ、SO2 を吸収
除去するとともに、排ガスから吸収したSO2 によって
吸収液中に生成した亜硫酸塩を酸化して安定な硫酸塩と
するため、通常、吸収液の中に空気を吹き込んで酸化す
る方法が採られている。
2. Description of the Related Art When a fuel containing sulfur is burned, except for those fixed in ash, it is released into the atmosphere as sulfurous acid gas (SO 2 ), and not only on humans and animals, but also on the ground as acid rain. As a result, it has a great adverse effect on the environment. For this reason, flue gas desulfurization devices are attached to large-scale combustion facilities and plants, and most of them are wet flue gas desulfurization devices. In such a wet desulfurization method, an aqueous solution and the exhaust gas containing an alkali lime and forces the gas-liquid contact, thereby absorbing and removing SO 2, by oxidizing sulfite produced in the absorbing solution by SO 2 absorbed from the exhaust gas stably In order to obtain a proper sulfate, a method of blowing air into the absorbing solution to oxidize it is usually adopted.

【0003】従来、かかる吸収液中への空気の吹き込み
手段として各種技術が開発されている。図5はかかる空
気吹き込み手段を有する湿式排煙脱硫装置(以下第1従
来技術という)を示し、図5において、1は湿式脱硫を
行なう吸収塔で、該吸収塔1下部には石灰等のアルカリ
吸収剤dを含んだ吸収液bを貯留する液溜め3を配設す
ると共に、該液溜め3内の吸収液bを循環ポンプ4及び
吸収塔1内下部に配したスプレーパイプ2を介して揚液
噴霧させるように構成する。
Conventionally, various techniques have been developed as a means for blowing air into the absorbent. FIG. 5 shows a wet flue gas desulfurization apparatus (hereinafter referred to as a first conventional technique) having such an air blowing means. In FIG. 5, 1 is an absorption tower for performing wet desulfurization, and an alkali such as lime is provided under the absorption tower 1. A liquid reservoir 3 for storing an absorbent liquid b containing an absorbent d is arranged, and the absorbent liquid b in the liquid reservoir 3 is lifted up via a circulation pump 4 and a spray pipe 2 arranged in the lower part of the absorption tower 1. It is configured to be liquid sprayed.

【0004】かかる装置構成において、吸収塔1上部よ
り該吸収塔1内に導入された燃焼排ガスaは、スプレー
パイプ2を介して揚液噴霧させたアルカリ水溶液と気液
接触させて、排ガス中のSO2 を吸収除去した後、洗浄
排ガスcを排気煙道13より外部に排出する。一方、排
ガスから吸収したSO2 によって亜硫酸塩が生成された
吸収液は液溜め3内に戻され、そして後記する空気吹込
み手段により吹込まれた空気eにより前記亜硫酸塩を酸
化して硫酸塩とした後、循環ポンプ4及び配管15を介
して吸収したSO2 と量論的に等量の硫酸塩を排液fと
して排出する。又前記液溜め3内には、石灰等のアルカ
リ吸収剤dを配管14より液溜め3内に供給する。
In such an apparatus structure, the combustion exhaust gas a introduced into the absorption tower 1 from the upper part of the absorption tower 1 is brought into gas-liquid contact with the alkaline aqueous solution sprayed and sprayed through the spray pipe 2 to form a gas in the exhaust gas. After absorbing and removing SO 2 , the cleaning exhaust gas c is discharged from the exhaust flue 13 to the outside. On the other hand, the absorbing liquid in which sulfite is generated by SO 2 absorbed from the exhaust gas is returned to the liquid reservoir 3, and the sulfite is oxidized by the air e blown by the air blowing means described later to form the sulfate. After that, SO 2 absorbed via the circulation pump 4 and the pipe 15 is discharged as a drainage f in a stoichiometrically equivalent amount of sulfate. Further, an alkali absorbent d such as lime is supplied into the liquid reservoir 3 through a pipe 14 into the liquid reservoir 3.

【0005】さて、前記空気吹き込み手段は、液溜め3
の底面のほぼ全域に複数の空気供給ノズル109を付設
した複数のノズルヘッダー120を液溜め3側壁より斜
め下方に向け延設し、ブロワー111からの空気eを配
管112及びノズルヘッダー120を介して空気供給ノ
ズル噴射孔110から吸収液b中に噴射させて亜硫酸塩
の酸化を行なうように構成している。
Now, the air blowing means is a liquid reservoir 3
A plurality of nozzle headers 120, each having a plurality of air supply nozzles 109 attached to almost the entire bottom surface, are extended obliquely downward from the side wall of the liquid reservoir 3, and air e from the blower 111 is passed through the pipe 112 and the nozzle header 120. The air supply nozzle injection hole 110 is injected into the absorbing liquid b to oxidize sulfite.

【0006】又、空気吹き込み手段を有する湿式排煙脱
硫装置の他の構成として図6に示すように、液溜め3の
側壁に設置した攪拌機206の前面に配管212の先端
噴射口210を配し、配管212を介してブロワー21
1からの空気eを噴射口210から吸収液b中に噴射さ
せ、前記攪拌機206からの噴流によって空気eの分散
を促進し酸化する方法も実用されている。(以下第2従
来技術という)
Further, as another structure of the wet flue gas desulfurization apparatus having air blowing means, as shown in FIG. 6, a tip end injection port 210 of a pipe 212 is arranged in front of an agitator 206 installed on the side wall of the liquid reservoir 3. , Blower 21 via pipe 212
A method of injecting air e from No. 1 into the absorbing liquid b from the injection port 210 and accelerating the dispersion of the air e by the jet flow from the agitator 206 and oxidizing it is also in practical use. (Hereinafter referred to as second conventional technology)

【0007】又、実開平4−137731号は、図7に
示すように、液溜め槽150の径方向に対し所定の角度
をなして噴流を吹き込む複数のジェットノズル151を
液溜め槽150の所定高さ位置の周壁にその噴出方向が
周壁の周方向に向くように配設し、該ジェットノズル1
51の基部に液溜め槽150に連通し且つ途中に噴流ポ
ンプ152を具えた吸収液管153を設け、該噴流ポン
プ152とジェットノズル151との間の吸収液管15
3に空気配管154を接続したものである。(以下第3
従来技術という)
Further, as shown in FIG. 7, Japanese Utility Model Laid-Open No. 4-137731 has a plurality of jet nozzles 151 for blowing a jet at a predetermined angle with respect to the radial direction of the liquid storage tank 150. The jet nozzle 1 is arranged on the peripheral wall at a height position such that the jetting direction thereof is the peripheral direction of the peripheral wall.
An absorption liquid pipe 153, which is connected to the liquid storage tank 150 and has a jet pump 152 in the middle thereof, is provided at the base of 51, and the absorption liquid pipe 15 between the jet pump 152 and the jet nozzle 151 is provided.
3 is connected to the air pipe 154. (The third below
Prior art)

【0008】更に、図8に示すように、その吐出管16
1を液溜め槽160周壁より液溜め槽160内に貫入さ
せると共に、該吐出管161に、液ポンプ162を介し
て液溜め槽160の吸収液を吸引循環する循環液管16
3を接続し、該前記循環液管163の途中位置に空気吹
込み管164を貫入し、その出口部164aを液管16
3中心位置で折曲し、液の流れ方向に開口し、ブロワー
165より圧送する空気を前記空気吹込み管164より
吸収液管163内に吹き込み、該吸収液と共に空気を吐
出管161より吐出する。(以下第4従来技術とい
う。)
Further, as shown in FIG.
Circulation liquid pipe 16 for penetrating 1 into the liquid storage tank 160 from the peripheral wall of the liquid storage tank 160 and sucking and circulating the absorption liquid of the liquid storage tank 160 to the discharge pipe 161 through the liquid pump 162.
3 is connected to the circulating liquid pipe 163, an air blowing pipe 164 is inserted in the middle of the circulating liquid pipe 163, and an outlet portion 164a thereof is connected to the liquid pipe 16
3 Bent at the center position, opened in the flow direction of the liquid, blow air fed from the blower 165 into the absorbing liquid pipe 163 from the air blowing pipe 164, and discharge the air together with the absorbing liquid from the discharge pipe 161. . (Hereinafter referred to as fourth conventional technology.)

【0009】[0009]

【発明が解決しようとする課題】前記した従来技術に係
る空気吹込み手段は何れも優れた酸化方法であるが、下
記の様な問題がある。例えば図5に示す第1従来技術
は、液溜め3底部の床面上部のほぼ全域に亘って多数の
空気供給ノズル109を敷設しているため液溜め3内の
点検作業などの障害となる不都合がある。図6に示す第
2の従来技術は、噴射口210からの空気eの噴出に伴
うエアーリフト作用による上昇流によって、攪拌翼20
7は一部吐出したばかりの液を再び吸い込む狭域循環を
起こし攪拌効率が低下するとともに、液の吐出流の到達
距離も短くなり攪拌性能低下を起こすため、攪拌動力を
強化して攪拌性能の維持を図る必要がある。
Although the above-mentioned air blowing means according to the prior art are all excellent oxidation methods, they have the following problems. For example, in the first conventional technique shown in FIG. 5, since a large number of air supply nozzles 109 are laid over substantially the entire floor upper portion of the bottom of the liquid reservoir 3, there is an inconvenience that becomes an obstacle to inspection work in the liquid reservoir 3. There is. In the second conventional technique shown in FIG. 6, the stirring blade 20 is caused by an ascending flow due to an air lift action accompanying the ejection of the air e from the ejection port 210.
In No. 7, the stirring efficiency is lowered due to the narrow area circulation that sucks in the liquid that has just been discharged again, and the reaching distance of the discharge flow of the liquid is shortened and the stirring performance is deteriorated. Therefore, the stirring power is strengthened to improve the stirring performance. It is necessary to maintain it.

【0010】図7及び図8に示す第3及び第4の従来技
術は、ジェットノズル151若しくは吐出管161と接
続される吸収液管153,163の途中より空気を供給
するものである為に、吸収液管中を液と共に空気泡が流
れる過程で、空気泡の一部は合体し、粗大泡化したり、
空気と吸収液との相に分離したりしてしまい、この状態
で吐出するためジェットノズル151若しくは吐出管1
61から泡吐出しても空気泡の均等な分散が図れず、円
滑な酸化が困難となるほか、吸収管内面のキャビテーシ
ョンによるエロージョンの問題も生じやすい。
The third and fourth prior arts shown in FIGS. 7 and 8 supply air from the middle of the absorption liquid pipes 153 and 163 connected to the jet nozzle 151 or the discharge pipe 161. In the process of air bubbles flowing with the liquid in the absorbing liquid pipe, some of the air bubbles coalesce and become coarse bubbles,
The jet nozzle 151 or the discharge pipe 1 is used for discharging in this state because the air and the absorbing liquid are separated into phases.
Even if bubbles are discharged from 61, air bubbles cannot be evenly dispersed, smooth oxidation becomes difficult, and erosion problems due to cavitation on the inner surface of the absorption tube easily occur.

【0011】本発明は、かかる不具合を解消すべくなさ
れたものであり、空気供給ノズル数の大幅低減並びに動
力の低減ができ、しかも吸収液の攪拌分散能力も大幅に
向上し得る排煙脱硫装置の空気吹込み装置を提供するこ
とを目的とする。
The present invention has been made to solve such a problem, and is capable of significantly reducing the number of air supply nozzles and power, and also capable of significantly improving the stirring and dispersing capacity of the absorbing liquid, and a flue gas desulfurization apparatus. An object of the present invention is to provide an air blowing device.

【0012】[0012]

【課題を解決するための手段】本発明は、燃焼排ガス中
のSO2 を吸収して湿式脱硫する湿式排煙脱硫装置にお
いて、吸収液の液溜め中に、吸収液を吐出する吐出配管
の吐出口を開口するとともに、該吐出配管の吐出口近傍
(吐出口開口直後若しくは直前)の吐出流域中に空気を
噴射する空気供給ノズルを設けたことを要旨とする。
SUMMARY OF THE INVENTION The present invention relates to a wet flue gas desulfurization apparatus that absorbs SO2 in combustion exhaust gas to perform wet desulfurization, and discharge port of a discharge pipe that discharges the absorption liquid during storage of the absorption liquid. The gist of the present invention is to provide an air supply nozzle for injecting air into the discharge flow region near the discharge port of the discharge pipe (immediately before or immediately before the discharge port is opened).

【0013】本発明によれば、吸収液吐出配管先端の吐
出口からの吸収液吐出噴流は伴流を伴ってより大きな流
量となって吐出方向に運動するため、空気供給ノズルか
ら噴射される空気のエアーリフトによる上昇流に打ち勝
って空気を気泡として広域に分散させることができる。
そのため空気供給ノズルの数を大幅に低減でき、また、
ポンプによる吸収液の吸引部と吐出部とを離して設置す
ることができるため狭城循環も起こさず、吸収液の吐出
噴流が伴流を伴ってより大きな流量となって吐出方向に
運動するため気泡の分散効率が高く余分の動力を必要と
しない。
According to the present invention, since the absorbing liquid discharge jet flow from the discharge port at the tip of the absorbing liquid discharge pipe has a larger flow rate along with the wake and moves in the discharge direction, the air jetted from the air supply nozzle The air can be dispersed over a wide area as bubbles by overcoming the upward flow caused by the air lift.
Therefore, the number of air supply nozzles can be greatly reduced, and
Since the suction part and the discharge part of the absorption liquid by the pump can be installed separately from each other, the narrow castle circulation does not occur, and the discharge jet of the absorption liquid moves in the discharge direction with the wake and a larger flow rate. The efficiency of air bubble dispersion is high and no extra power is required.

【0014】又、本発明によれば、第3及び第4の従来
技術の様に、吐出管の上流側の液管中に空気を供給する
ものではなく、吐出配管の吐出口近傍(吐出口開口直後
若しくは直前)の吐出流域中に空気を噴射するものであ
る為に、吐出口までは液のみが供給され、結果として液
管中での空気泡の合体や空気と吸収液との分離、さらに
はそれらに起因する吐出後の空気泡の分散不良や液管内
の性能不良といった問題点を解消する。而も吐出口開口
直後若しくは直前の最も強い圧力の吐出流速で前記噴出
空気が衝突する為に、吐出時に噴出空気が微細粒化する
と共に円滑な分散が図られ、広域において円滑な亜硫酸
塩の酸化が可能となる。
Further, according to the present invention, unlike the third and fourth conventional techniques, air is not supplied into the liquid pipe on the upstream side of the discharge pipe, but the vicinity of the discharge port of the discharge pipe (the discharge port). (Before or just before opening) Air is injected into the discharge flow area, so only liquid is supplied to the discharge port, resulting in coalescence of air bubbles in the liquid pipe and separation of air and absorbing liquid, Further, problems such as poor dispersion of air bubbles after ejection and poor performance in the liquid pipe due to these are eliminated. Moreover, since the jet air collides at the discharge flow velocity of the strongest pressure immediately after or immediately before the opening of the discharge port, the jet air is atomized during the discharge and is smoothly dispersed, so that the sulfite can be smoothly oxidized in a wide area. Is possible.

【0015】また、本発明では、前記空気供給ノズルの
先端噴射口を前記吐出配管からの吐出噴流の流域内に配
置することも有効であり、空気供給ノズルから噴射され
る空気を微細気泡として分散できる。また、本発明で
は、前記吐出配管先端の吐出口の上面を下面よりも長く
なるように張り出させ、該上面張り出し部を貫通して前
記空気供給ノズルを取り付けることにより、空気供給ノ
ズルからの噴射空気の吹き抜けを防止できる。また、前
記吐出配管を液溜め内で下方へ傾斜させることにより、
ポンプによる吸収液循環停止時に該吐出配管内への固形
物の堆積や逆流を防止できる、この場合該吐出配管を鉛
直となるまで傾斜させてもよい。
In the present invention, it is also effective to dispose the tip end injection port of the air supply nozzle in the flow region of the discharge jet from the discharge pipe, and the air injected from the air supply nozzle is dispersed as fine bubbles. it can. Further, in the present invention, the upper surface of the discharge port at the tip of the discharge pipe is projected so as to be longer than the lower surface, and the air supply nozzle is attached by penetrating the upper surface projecting portion, thereby ejecting from the air supply nozzle. It is possible to prevent blow-through of air. Also, by tilting the discharge pipe downward in the liquid reservoir,
It is possible to prevent accumulation of solid matter and backflow in the discharge pipe when the absorption liquid circulation by the pump is stopped. In this case, the discharge pipe may be tilted to be vertical.

【0016】また、前記空気供給ノズルを吐出配管の先
端吐出口手前位置で吐出配管に貫入させることによっ
て、空気の気泡をさらに微細な気泡に分散させることが
でき、気液混相流の吐出配管内での滞留時間を最小限と
して、これにより前記第3及び第4の従来技術の欠点を
解消しつつ、気液混相流による吐出配管の損耗を最小限
にすることができる。
Further, by inserting the air supply nozzle into the discharge pipe at a position in front of the discharge port at the tip of the discharge pipe, it is possible to disperse air bubbles into finer bubbles. By minimizing the residence time in the above, it is possible to minimize the wear of the discharge pipe due to the gas-liquid multiphase flow while eliminating the disadvantages of the third and fourth conventional techniques.

【0017】更に本発明では、前記吐出配管を液溜め側
壁より侵入させ、該液溜め内で前記吐出配管からの吐出
流が液溜め側壁に沿うように吐出配管を半径方向に対し
接線方向に向けて偏向させ、前記液溜め内で旋回流が生
じるように配置することにより、該旋回流により更に空
気流の吸収液との気接触時間を長くすることが出来る。
Further, in the present invention, the discharge pipe is introduced from the side wall of the liquid reservoir, and the discharge pipe is directed tangentially to the radial direction so that the discharge flow from the discharge pipe is along the side wall of the liquid reservoir in the liquid reservoir. By arranging so that a swirl flow is generated in the liquid reservoir, the swirl flow can further prolong the gas contact time of the air flow with the absorbing liquid.

【0018】[0018]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be exemplarily described in detail below with reference to the drawings. However, unless otherwise specified, the dimensions, materials, shapes, relative positions, etc. of the constituent parts described in this embodiment are not intended to limit the scope of the present invention thereto, but are merely illustrative examples. Only.

【0019】(実施例1)本発明の構成を図1及び図2
の実施形態を用いて具体的に説明する。図1において図
5と同一符号を付した部分は図5と同一の形態を示すも
のである。図1において、1は湿式脱硫を行なう吸収塔
で、該吸収塔1下部には石灰等のアルカリ吸収剤dを含
んだ吸収液bを貯留する液溜め3を配設すると共に、該
液溜め3内の吸収液bを循環ポンプ4及び吸収塔1内下
部に配したスプレーパイプ2を介して揚液噴霧させるよ
うに構成する。
(Embodiment 1) FIG. 1 and FIG. 2 show the configuration of the present invention.
This will be specifically described with reference to the embodiment. In FIG. 1, the parts designated by the same reference numerals as those in FIG. 5 have the same configurations as those in FIG. In FIG. 1, reference numeral 1 is an absorption tower for performing wet desulfurization, and a liquid reservoir 3 for storing an absorption liquid b containing an alkaline absorbent d such as lime is disposed below the absorption tower 1 and the liquid reservoir 3 is provided. The absorption liquid b therein is configured to be sprayed as a pumping liquid via the circulation pump 4 and the spray pipe 2 arranged in the lower part of the absorption tower 1.

【0020】かかる装置構成において、吸収塔1上部よ
り吸収塔1内に導入された燃焼排ガスaは、スプレーパ
イプ2を介して揚液噴霧させたアルカリ水溶液と気液接
触して、排ガス中のSO2 を吸収除去された後、洗浄排
ガスcを排気煙道13より外部に排出する。一方、排ガ
スから吸収したSO2 よって亜硫酸塩が生成された吸収
液bは液溜め3内に戻され、そして後記する空気吹込み
手段により吹込まれた空気eにより前記亜硫酸塩を酸化
して硫酸塩とした後、循環ポンプ4及び配管15を介し
て排液fを排出する。又前記液溜め3内には、石灰その
他の吸収剤dを配管14より液溜め3内に供給する。か
かる構成は図5の従来技術と同様である。
In such an apparatus structure, the combustion exhaust gas a introduced from the upper part of the absorption tower 1 into the absorption tower 1 comes into gas-liquid contact with the alkaline aqueous solution sprayed and sprayed via the spray pipe 2, and the SO in the exhaust gas is discharged. After 2 is absorbed and removed, the cleaning exhaust gas c is discharged from the exhaust flue 13 to the outside. On the other hand, the absorption liquid b in which sulfite is generated by SO 2 absorbed from the exhaust gas is returned into the liquid reservoir 3, and the sulfite is oxidized by the air e blown by the air blowing means described later to sulphate. After that, the drainage liquid f is discharged through the circulation pump 4 and the pipe 15. Further, an absorbent d such as lime is supplied into the liquid reservoir 3 through the pipe 14 into the liquid reservoir 3. Such a configuration is similar to that of the conventional technique shown in FIG.

【0021】そして本実施例の空気吹込み手段は、吸収
液b貯留部分の液溜め3周壁底部付近に開口する配管5
でポンプ6と連通させ、該ポンプ6には該ポンプ6で吸
引した液溜め3内の吸収液bを再び液溜め3内へ戻す吐
出配管7を接続する。前記吐出配管7は液溜め3周壁よ
り液溜め3内で下方へ傾斜させて延設させて侵入させる
とともに、該吐出配管7を図1(B)に示すように、液
溜め3の側壁を貫通させる手前で2本に分岐させ該液溜
め3内で前記吐出配管からの吐出流が液溜め3側壁に沿
うように吐出配管を半径方向に対し接線方向に向けて偏
向させて延設する。又液溜め3内で開口する吐出配管7
先端の吸収液吐出口8の前に配管12を介してブロワー
11からの空気eを噴射する空気供給ノズル9を配置さ
せている。
The air blowing means of this embodiment is provided with a pipe 5 which opens near the bottom of the peripheral wall of the liquid reservoir 3 of the absorbing liquid b storage portion.
Is connected to the pump 6, and the pump 6 is connected to a discharge pipe 7 for returning the absorbed liquid b in the liquid reservoir 3 sucked by the pump 6 back into the liquid reservoir 3. The discharge pipe 7 is slanted downward in the liquid reservoir 3 from the peripheral wall of the liquid reservoir 3 so as to extend and enter, and the discharge pipe 7 penetrates the side wall of the liquid reservoir 3 as shown in FIG. 1 (B). Before this is done, it is branched into two and the discharge pipe is extended in the tangential direction with respect to the radial direction so that the discharge flow from the discharge pipe is along the side wall of the liquid reservoir 3 in the liquid reservoir 3. Also, the discharge pipe 7 that opens in the liquid reservoir 3
An air supply nozzle 9 for injecting air e from a blower 11 via a pipe 12 is arranged in front of the absorbent discharge port 8 at the tip.

【0022】次に、吐出配管7と空気供給ノズル9との
配置関係について図2乃至図4に説明する。その第1の
実施例を図2に示す。図2において、空気供給ノズル9
は前記吐出配管7先端の吸収液吐出口8の前に垂直下方
に向け設置すると共にその先端噴射口10が前記吐出口
から吐出直後の吐出噴流の流域内に配置されるように、
該先端噴射口10位置を吐出配管7の吐出口8の下端延
長線と中心線上の間に位置させるようにした。
Next, the positional relationship between the discharge pipe 7 and the air supply nozzle 9 will be described with reference to FIGS. The first embodiment is shown in FIG. In FIG. 2, the air supply nozzle 9
Is installed vertically downward in front of the absorbent discharge port 8 at the tip of the discharge pipe 7, and its tip injection port 10 is arranged in the flow area of the discharge jet immediately after discharge from the discharge port.
The position of the tip end injection port 10 is located between the lower end extension line of the discharge port 8 of the discharge pipe 7 and the center line.

【0023】図1の形態をなす装置に図2の配置構成の
空気吹込み手段を用いて行なった実験では、図1におけ
る吸収塔1に約1,000ppmのSO2 を含んだ燃焼
排ガスaを毎時10,000m3 N導き、液溜め3から
毎時200m3 の量の吸収液bを循環ポンプ4で吸引揚
液しスプレーパイプ2を介して吸収塔1内に散布し前記
排ガスaを洗浄して脱硫処理し、洗浄排ガスcとして排
気煙道13から排出した。液溜め3には脱硫したSO2
と量論的にほぼ等しい量の石灰石を吸収剤dとして配管
14から補給する一方、脱硫したSO2 と量論的に等量
の石膏を排液fとして配管15から抜き出した。液溜め
3には液面gが約2mとなるまで吸収液bを貯留させ、
液面gから1.5m下の液溜め3側壁を配管5でポンプ
6と接続し、ポンプ6の吐出配管7は液面gから1.3
m下の液溜め3側壁を貫通させて液溜め3内部へ約lm
挿入して吸収液吐出口8を閉口させた。
In the experiment conducted by using the air blowing means having the arrangement shown in FIG. 2 in the apparatus having the form shown in FIG. 1, the absorption tower 1 shown in FIG. 1 is supplied with the combustion exhaust gas a containing about 1,000 ppm of SO 2. 10,000 m 3 N per hour is introduced, 200 m 3 per hour of absorption liquid b is drawn up from the liquid reservoir 3 by the circulation pump 4 and sprayed into the absorption tower 1 through the spray pipe 2 to wash the exhaust gas a. It was desulfurized and discharged as exhaust gas c from the exhaust flue 13. Desulfurized SO 2 is stored in the liquid reservoir 3.
While the amount of limestone that is stoichiometrically approximately equal to that of the above is supplied from the pipe 14 as the absorbent d, the amount of gypsum that is stoichiometrically equivalent to that of the desulfurized SO 2 is withdrawn as the drainage liquid f from the pipe 15. The absorbing liquid b is stored in the liquid reservoir 3 until the liquid surface g becomes about 2 m,
The side wall of the liquid reservoir 3 1.5 m below the liquid level g is connected to the pump 6 by the pipe 5, and the discharge pipe 7 of the pump 6 is 1.3 from the liquid level g.
lm inside the liquid reservoir 3 by penetrating the side wall of the liquid reservoir 3 below
The absorbent discharge port 8 was closed by inserting.

【0024】吐出配管7は図1(B)に示すように、液
溜め3の側壁を貫通させる手前で2本に分岐させ、該液
溜め3内で前記吐出配管7からの吐出流が液溜め3側壁
に沿うように吐出配管7を半径方向に対し接線方向に向
けて偏向させて延設する。そしてポンプ2からは毎時1
00m3 の吸収液bを吸引し、2本に分岐した吐出配管
7のそれぞれの吸収液吐出口8より吸収液b中へ噴射し
た。一方、配管12も吐出配管7に対応させて2本に分
岐させ、配管12先端の空気供給ノズル9からはブロワ
ー11で毎時100m3 Nの空気eを吸収液b中に噴射
した。本実験において用いた設備の各部の仕様は次の通
りである。
As shown in FIG. 1B, the discharge pipe 7 is branched into two before the side wall of the liquid reservoir 3 is penetrated, and the discharge flow from the discharge pipe 7 is stored in the liquid reservoir 3. 3 The discharge pipe 7 is provided so as to be deflected in the tangential direction with respect to the radial direction along the side wall. And from the pump 2 1 per hour
Absorption liquid b of 00 m 3 was sucked and jetted into the absorption liquid b from each absorption liquid discharge port 8 of the discharge pipe 7 branched into two. On the other hand, the pipe 12 was also branched into two pipes corresponding to the discharge pipe 7, and 100 m 3 N of air e per hour was jetted into the absorbing liquid b by the blower 11 from the air supply nozzle 9 at the tip of the pipe 12. The specifications of each part of the equipment used in this experiment are as follows.

【0025】1)吸収塔1は断面積1m2 で、スプレー
パイプ2から上の高さは12mである。 2)液溜め3の断面寸法は2m×3.2mで底からの高
さは3.5mである。 3)スプレーパイプ2は呼び径100Aであり、呼び径
40Aで長さ100mmのノズル4本を上向きに取り付
けた。 4)配管5の呼び径は125Aである。 5)吐出配管7の呼び径は100Aであり、分岐後は呼
び径65Aとし、液溜め3の3.2m(前記2)参照)
方向の側壁から内部に1m挿入し、且つ、床から0.7
mの位置で挿入した後内部に向かって下方に約20°傾
斜させ吸収液吐出口8を開口させた。また、2本に分岐
した吐出配管7の間隔は1mとした。 6)空気供給用の配管12の呼び径は25Aとし、2本
に分岐後は呼び径20Aとし、一旦、液溜め3の液面g
よりも上位の3mまで持ち上げた後、液溜め3内に挿入
した。 7)2本の空気供給ノズル2の呼び径は20Aである。 8)空気供給ノズル9の先端噴射口10は吸収液吐出口
8の下端延長線よりも2cm上方に位置せしめた。 以上の条件で行なった実験では空気eの供給開始によっ
て液面gが約10cm上昇すると共に亜硫酸塩の完全酸
化を達成した。
1) The absorption tower 1 has a cross-sectional area of 1 m 2 and the height above the spray pipe 2 is 12 m. 2) The cross-sectional size of the liquid reservoir 3 is 2 m × 3.2 m, and the height from the bottom is 3.5 m. 3) The spray pipe 2 had a nominal diameter of 100 A, and four nozzles having a nominal diameter of 40 A and a length of 100 mm were attached upward. 4) The nominal diameter of the pipe 5 is 125A. 5) The nominal diameter of the discharge pipe 7 is 100 A, the nominal diameter is 65 A after branching, and 3.2 m of the liquid reservoir 3 (see 2 above)).
Insert 1m from the side wall in the direction and 0.7 from the floor
After being inserted at the position of m, the absorbing solution discharge port 8 was opened by inclining downward by about 20 ° toward the inside. The distance between the two discharge pipes 7 was set to 1 m. 6) The nominal diameter of the air supply pipe 12 is 25 A, and the nominal diameter is 20 A after branching into two pipes.
After being lifted up to the upper 3 m, it was inserted into the liquid reservoir 3. 7) The nominal diameter of the two air supply nozzles 2 is 20A. 8) The tip injection port 10 of the air supply nozzle 9 was positioned 2 cm above the extension line of the lower end of the absorbent discharge port 8. In the experiment conducted under the above conditions, the liquid level g increased by about 10 cm when the supply of the air e was started, and the complete oxidation of sulfite was achieved.

【0026】(実施例2)本実施例の全体の構成は図1
の形態とほぼ同様の設備を用い、図3に示した空気吹込
み手段を用いた。図3の形態において図1及び図2と同
じ符号を付した部分は、同じ機能を果たすものである。
本実施例では図3に示したように斜め下方に向け延出さ
せた吸収液吐出配管7先端をほぼ水平にカットし、言換
えれば吐出配管7先端の吐出口8先端上端7aを下端7
bよりも長くなるように張り出させ、該張り出し部7c
に上方より下方に垂下するごとく貫通させて前記空気供
給ノズル9を取り付ける。空気供給ノズル9の先端噴射
口10は、水平にカットした吐出配管7の延長線流域内
に位置せしめている。これにより前記空気供給ノズル9
の先端噴射口10が、前記吐出口8から吐出直後の吐出
噴流の流域内に位置することとなる。
(Embodiment 2) The overall construction of this embodiment is shown in FIG.
The air blowing means shown in FIG. In the configuration of FIG. 3, the parts denoted by the same reference numerals as those in FIGS. 1 and 2 perform the same functions.
In this embodiment, as shown in FIG. 3, the tip of the absorbing liquid discharge pipe 7 extending obliquely downward is cut substantially horizontally, in other words, the discharge port 8 at the tip of the discharge pipe 7 and the top end 7a of the tip end 7a.
The protrusion 7c is extended to be longer than b.
The air supply nozzle 9 is attached by penetrating it downwardly from above. The tip injection port 10 of the air supply nozzle 9 is positioned in the extended line flow region of the discharge pipe 7 that is cut horizontally. As a result, the air supply nozzle 9
The tip injection port 10 is located in the flow area of the discharge jet immediately after the discharge from the discharge port 8.

【0027】本実施例の空気吹込み手段を用いて実施例
1と同様の実験条件のもとで試験した結果、亜硫酸塩の
完全酸化を達成すると共に空気eの供給開始によって液
面gが約12cm上昇する結果が得られた。
As a result of a test conducted under the same experimental conditions as in Example 1 using the air blowing means of this Example, complete oxidation of sulfite was achieved and the liquid level g was reduced by starting the supply of air e. A result of 12 cm increase was obtained.

【0028】(実施例3)本実施例の全体の構成は図1
の形態とほぼ同様の設備を用い、図4に示した空気吹込
み手段を用いた。図4の形態において図1及び図2と同
じ符号を付した部分は、同じ機能を果たすものである。
本実施例では図4に示したように斜め下方に向け延出さ
せた吸収液吐出配管7先端と軸線と直交する方向にカッ
トし、該吐出配管7先端開口手前の直上位置で空気供給
ノズル9を上方より吐出配管7に垂直に貫入して取り付
け、噴射口10より空気eを吐出配管7開口直前位置に
噴射する構造としている。
(Embodiment 3) The overall construction of this embodiment is shown in FIG.
The air blowing means shown in FIG. 4 was used by using the equipment almost similar to that of FIG. In the embodiment of FIG. 4, the parts denoted by the same reference numerals as those in FIGS. 1 and 2 perform the same functions.
In the present embodiment, as shown in FIG. 4, the absorbent liquid discharge pipe 7 extending obliquely downward is cut in a direction orthogonal to the axis, and the air supply nozzle 9 is positioned immediately above the discharge pipe 7 front end opening. Is vertically inserted into the discharge pipe 7 from above, and the air e is injected from the injection port 10 to a position immediately before the opening of the discharge pipe 7.

【0029】本実施例からなる実験装置を用いて実施例
1と同様の実験条件のもとで試験した結果、亜硫酸塩の
完全酸化を達成すると共に空気eの供給開始によって液
面gが約15cm上昇する結果が得られた。
As a result of a test using the experimental apparatus according to this example under the same experimental conditions as in Example 1, complete oxidation of sulfite was achieved and the liquid level g was about 15 cm when the supply of air e was started. A rising result was obtained.

【0030】従って前記各実施例によれば、吸収液吐出
口開口出口直後若しくは直前位置に空気供給ノズルを設
けた為に、該空気供給ノズルの背面以降には吐出口から
噴射した吸収液の噴流量に応じて渦流が形成され、該渦
流によって空気供給ノズルから噴射された空気は微細気
泡にせん断され、空気を微細気泡化したことによって気
液接触面積が向上し酸化性能アップへと繋がる。
Therefore, according to each of the above-described embodiments, since the air supply nozzle is provided immediately after or immediately before the outlet of the absorbent outlet, the absorption liquid jetted from the outlet is ejected from the rear of the air supply nozzle. A vortex is formed according to the flow rate, and the air jetted from the air supply nozzle is sheared into fine bubbles by the vortex and the air is made into fine bubbles to improve the gas-liquid contact area and improve the oxidation performance.

【0031】また、図4に示すように、吐出配管内の出
口開口直前位置に空気供給ノズルを貫入した場合には、
空気供給ノズルの貫入部分の断面積分だけ吐出配管の断
面積が狭まり吐出配管内を流れる吸収液の流速は上昇
し、一方空気供給ノズルの回りでは吸収液の流速に応じ
た渦流が発生し、ここへ空気供給ノズルから空気を吹き
込むと空気はこの渦によって微細な気泡となり、吸収液
吐出配管先端から気液混相噴流として液溜め3中に吐出
分散される。
Further, as shown in FIG. 4, when the air supply nozzle penetrates into the discharge pipe immediately before the outlet opening,
The cross-sectional area of the discharge pipe is narrowed by the cross-sectional integration of the penetrating portion of the air supply nozzle, and the flow velocity of the absorbing liquid flowing in the discharge pipe rises. When air is blown into the liquid supply nozzle from the air supply nozzle, the air becomes fine bubbles due to this vortex, and is discharged and dispersed as a gas-liquid mixed phase jet into the liquid reservoir 3 from the tip of the absorbing liquid discharge pipe.

【0032】[0032]

【発明の効果】従って本発明によれば、吸収液吐出配管
の吐出口近傍の吐出流域中に空気を噴射する空気供給ノ
ズルを設け、更にその先端噴射口を、前記吐出口から吐
出直後の吐出噴流の流域内に配置することにより、排ガ
ス洗浄によって排ガスから取り込んだSO2 によって吸
収液中に生成する亜硫酸塩を空気供給ノズルから噴射し
た空気を吸収液吐出口から噴射する吸収液によって微細
気泡にせん断し完全に酸化できるとともに、吸収液の噴
流によって空気を微細化し、液溜め内に分散させるため
液溜め内の点検清掃時に障害となる空気供給ノズルの数
を大幅に低減できた。
Therefore, according to the present invention, an air supply nozzle for injecting air is provided in the discharge flow region near the discharge port of the absorbent discharge pipe, and the tip injection port is further discharged immediately after the discharge from the discharge port. By arranging the sulphite in the jet flow area, the sulphite generated in the absorption liquid by SO 2 taken from the exhaust gas by the exhaust gas cleaning is injected from the air supply nozzle, and the air is injected from the absorption liquid discharge port into fine bubbles. In addition to being able to shear and completely oxidize, the jet of absorbing liquid atomizes the air and disperses it in the liquid reservoir, which significantly reduces the number of air supply nozzles that hinder the inspection and cleaning of the liquid reservoir.

【0033】又、空気の噴射位置を液溜め内部の自由な
位置に設定できるため、ポンプへの気泡の巻き込みがな
いため、ポンプが余分の動力を必要としないのみなら
ず、所望の場所に十分な空気を供給でき、更に吸収液吐
出噴流への伴流による噴流液量の増大などもあって、吸
収液の攪拌効果が得られる。
Further, since the injection position of air can be set at a free position inside the liquid reservoir, no bubbles are entrained in the pump, so that the pump does not need extra power and is sufficiently located at a desired place. It is possible to supply a sufficient amount of air, and the amount of jet liquid is increased due to the wake of the jet for jetting the absorbing liquid, so that the effect of stirring the absorbing liquid can be obtained.

【0034】又、請求項記載の発明において、前記吐
出配管先端の吐出口の上面を下面よりも長くなるように
張り出させた上面張り出し部より貫通させて前記空気供
給ノズルを取り付けることにより、空気供給ノズルから
の噴射空気の吹き抜けを防止できる。
Further, in the invention according to claim 1, by mounting the air supply nozzle by penetrating the upper surface of the discharge port at the tip of the discharge pipe from the upper surface protruding portion which is protruded so as to be longer than the lower surface, It is possible to prevent blowout of jet air from the air supply nozzle.

【0035】また、請求項記載のように前記吐出配管
を液溜め内で下方へ傾斜させることにより、運転休止時
に吐出配管内への固形物沈積を軽減すると共に再起動時
の固形物の排出を容易にできるとともに、更に該液溜め
内で前記吐出配管からの吐出流が、前記液溜め内で旋回
流が生じるように配置することにより、空気流の吸収液
との気接触時間を長くすることが出来る。
Further, by tilting the discharge pipe downward in the liquid reservoir as described in claim 2 , solid deposits in the discharge pipe are reduced when the operation is stopped, and solid substances are discharged at the time of restart. And the discharge flow from the discharge pipe in the liquid reservoir is arranged so that a swirl flow is generated in the liquid reservoir, thereby increasing the gas contact time with the absorbing liquid of the air flow. You can

【0036】また、請求項記載のように、前記空気供
給ノズルを吐出配管の先端吐出口手前位置で吐出配管に
貫入させることによって、空気の気泡をさらに微細な気
泡に分散させることができる。
Further, as described in claim 3 , air bubbles can be dispersed into finer bubbles by penetrating the air supply nozzle into the discharge pipe at a position before the tip discharge port of the discharge pipe.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明に係る気液接触装置の全体構成
例を示す概略正面図(B)は吐出配管の液溜め内の配置
例を示す上面図である。
FIG. 1A is a schematic front view showing an example of the overall configuration of a gas-liquid contact device according to the present invention, and FIG. 1B is a top view showing an arrangement example of a discharge pipe in a liquid reservoir.

【図2】本発明の第1実施例に係る図1の装置に用いる
空気吹き込み手段の吸収液吐出部の部分拡大図である。
FIG. 2 is a partially enlarged view of an absorbent discharge section of an air blowing unit used in the apparatus of FIG. 1 according to the first embodiment of the present invention.

【図3】本発明の第2実施例に係る図1の装置に用いる
空気吹き込み手段の吸収液吐出部の部分拡大図である。
FIG. 3 is a partially enlarged view of an absorbent discharge section of an air blowing unit used in the apparatus of FIG. 1 according to the second embodiment of the present invention.

【図4】本発明の第3実施例に係る図1の装置に用いる
空気吹き込み手段の吸収液吐出部の部分拡大図である。
FIG. 4 is a partially enlarged view of an absorbent discharge section of an air blowing unit used in the apparatus of FIG. 1 according to the third embodiment of the present invention.

【図5】第1従来技術にかかる気液接触装置の全体構成
例を示す概略正面図である。
FIG. 5 is a schematic front view showing an example of the overall configuration of a gas-liquid contactor according to a first conventional technique.

【図6】第2従来技術にかかる気液接触装置の全体構成
例を示す概略正面図である。
FIG. 6 is a schematic front view showing an example of the overall configuration of a gas-liquid contactor according to a second conventional technique.

【図7】第3従来技術にかかる液溜め内の空気吹き込み
手段の配置例を示す上面図である。
FIG. 7 is a top view showing an arrangement example of air blowing means in a liquid reservoir according to a third conventional technique.

【図8】第4従来技術にかかる気液接触装置の空気吹き
込み手段部分の要部構成例を示す概略正面図である。
FIG. 8 is a schematic front view showing a configuration example of a main part of an air blowing means portion of a gas-liquid contact device according to a fourth conventional technique.

【符号の説明】[Explanation of symbols]

1 吸収搭 2 スプレーパイプ 3 液溜め 4 循環ポンプ 5 配管 6 ポンプ 7 吐出配管 8 吐出口 9 空気供給ノズル 10 噴射口 11 ブロワー 12 配管 13 排気煙道 14、15 配管 1 absorption tower 2 spray pipe 3 liquid reservoir 4 circulation pumps 5 piping 6 pumps 7 Discharge pipe 8 outlets 9 Air supply nozzle 10 injection ports 11 Blower 12 piping 13 exhaust flue 14, 15 piping

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平11−128671(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01D 53/34 B01F 3/04 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-11-128671 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) B01D 53/34 B01F 3/04

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 燃焼排ガス中のSO 2 を吸収して湿式脱
硫する湿式排煙脱硫装置において、 吸収液の液溜め中に、該吸収液を吐出する吐出配管の吐
出口を開口するとともに、該吐出配管の吐出口近傍の吐
出流域中に空気を噴射する空気供給ノズルを設けるとと
もに、 前記吐出配管先端の吐出口先端上面を下面よりも
長くなるように張り出させ、該張り出し部を貫通して前
記空気供給ノズルを取り付けたことを特徴とする排煙脱
硫装置の空気吹込み装置。
1. Wet desorption by absorbing SO 2 in combustion exhaust gas.
In a wet flue gas desulfurization device for sulfurization, the discharge pipe of the discharge pipe that discharges the absorbing liquid during the absorption liquid storage
The outlet is opened and the discharge pipe near the discharge port is discharged.
With an air supply nozzle that injects air into the outflow area,
In particular, the upper surface of the discharge port tip of the discharge pipe is projected so as to be longer than the lower surface, and the air supply nozzle is attached through the projecting portion. Including device.
【請求項2】 燃焼排ガス中のSO 2 を吸収して湿式脱
硫する湿式排煙脱硫装置において、 吸収液の液溜め中に、該吸収液を吐出する吐出配管の吐
出口を開口するとともに、該吐出配管の吐出口近傍の吐
出流域中に空気を噴射する空気供給ノズルを設けるとと
もに、 前記吐出配管を液溜め側壁より侵入させ、該液溜
め内で前記吐出配管からの吐出流が液溜め側壁に沿うよ
うに吐出配管を半径方向に対し接線方向に水平に偏向さ
せると共に、該液溜め内で下方へ傾斜させて延設させた
ことを特徴とす排煙脱硫装置の空気吹込み装置。
2. Wet desorption by absorbing SO 2 in combustion exhaust gas
In a wet flue gas desulfurization device for sulfurization, the discharge pipe of the discharge pipe that discharges the absorbing liquid during the absorption liquid storage
The outlet is opened and the discharge pipe near the discharge port is discharged.
With an air supply nozzle that injects air into the outflow area,
In addition, the discharge pipe is introduced from the side wall of the liquid reservoir, and the discharge pipe is horizontally deflected in the tangential direction with respect to the radial direction so that the discharge flow from the discharge pipe is along the side wall of the liquid reservoir in the liquid reservoir. An air blowing device for a flue gas desulfurization device, characterized in that it is slanted and extended downward in the liquid reservoir.
【請求項3】 燃焼排ガス中のSO 2 を吸収して湿式脱
硫する湿式排煙脱硫装置において、 吸収液の液溜め中に、該吸収液を吐出する吐出配管の吐
出口を開口するとともに、該吐出配管の吐出口近傍の吐
出流域中に空気を噴射する空気供給ノズルを設けるとと
もに、 前記空気供給ノズルを吐出配管の先端吐出口手前
位置で吐出配管に貫入させたことを特徴とする排煙脱硫
装置の空気吹込み装置。
3. Wet desorption by absorbing SO 2 in combustion exhaust gas
In a wet flue gas desulfurization device for sulfurization, the discharge pipe of the discharge pipe that discharges the absorbing liquid during the absorption liquid storage
The outlet is opened and the discharge pipe near the discharge port is discharged.
With an air supply nozzle that injects air into the outflow area,
An air blowing device for a flue gas desulfurization device, characterized in that the air supply nozzle is inserted into the discharge pipe at a position in front of the discharge port at the tip of the discharge pipe.
JP02917098A 1997-11-05 1998-01-27 Air blower for flue gas desulfurization unit Expired - Fee Related JP3382837B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP02917098A JP3382837B2 (en) 1998-01-27 1998-01-27 Air blower for flue gas desulfurization unit
TW087117447A TW402520B (en) 1997-11-05 1998-10-21 Wet flue gas desulfurizer and oxygen-containing gas blowing device for use therein
KR1019980045416A KR100285102B1 (en) 1997-11-05 1998-10-28 Oxygen-containing gas blower of wet flue gas desulfurizer and flue gas desulfurizer
CN98121453A CN1088611C (en) 1997-11-05 1998-10-30 Wet flue gas desulfurizer and oxygen-containing gas blowing device for use therein
CZ19983530A CZ291691B6 (en) 1997-11-05 1998-11-03 Wet combustion products desulfurizer
CZ2001239A CZ294940B6 (en) 1997-11-05 1998-11-03 Oxygen-containing gas blowing device
US09/185,803 US6190620B1 (en) 1997-11-05 1998-11-04 Wet flue gas desulfurizer
TR1998/02243A TR199802243A3 (en) 1997-11-05 1998-11-05 Wet flue gas desulfurizer and oxygen-containing gas blowing device for use in this desulfurizer.
HK99103722A HK1018752A1 (en) 1997-11-05 1999-08-30 Wet flue gas desulfurizer and oxygen-containing gas blowing device for use therein
US09/751,087 US6814942B2 (en) 1997-11-05 2000-12-29 Oxygen-containing gas blowing devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02917098A JP3382837B2 (en) 1998-01-27 1998-01-27 Air blower for flue gas desulfurization unit

Publications (2)

Publication Number Publication Date
JPH11207145A JPH11207145A (en) 1999-08-03
JP3382837B2 true JP3382837B2 (en) 2003-03-04

Family

ID=12268777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02917098A Expired - Fee Related JP3382837B2 (en) 1997-11-05 1998-01-27 Air blower for flue gas desulfurization unit

Country Status (1)

Country Link
JP (1) JP3382837B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL191234B1 (en) 1995-06-07 2006-04-28 Danisco Method for preparing a consumer product resist on a flour dough
MY116524A (en) 1995-06-07 2004-02-28 Danisco Recombinant hexose oxidase, a method of producing same and use of such enzyme
US8440006B2 (en) * 2009-08-21 2013-05-14 Alstom Technology Ltd System and method for flue gas scrubbing
JP6891446B2 (en) * 2016-10-20 2021-06-18 株式会社Ihi Flue gas desulfurization equipment
TW201834735A (en) * 2017-03-21 2018-10-01 大陸商昆山納諾新材料科技有限公司 Waste gas treatment method via application of nano-bubble and waste gas treatment system using the same
CN107441900A (en) * 2017-08-02 2017-12-08 大唐东北电力试验研究所有限公司 The floated high-efficiency wet-desulfurizing slurries oxidative system of microbubble

Also Published As

Publication number Publication date
JPH11207145A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3854481B2 (en) Wet flue gas desulfurization apparatus and wet flue gas desulfurization method
KR100366159B1 (en) Wet type flue gas desulfurization equipment
US6814942B2 (en) Oxygen-containing gas blowing devices
JP3382837B2 (en) Air blower for flue gas desulfurization unit
JP3073972B2 (en) Flue gas desulfurization equipment
CN111892182B (en) Ship desulfurization washing water circulation cabin, ship desulfurization system and ship
JP3621159B2 (en) Exhaust gas treatment method and apparatus
JP2002248318A (en) Wet flue gas desulfurizing apparatus
JP4014073B2 (en) Two-chamber wet flue gas desulfurization system
JP3968830B2 (en) Absorption tower of flue gas desulfurization equipment
JP3842706B2 (en) Wet flue gas desulfurization apparatus and method
JP4349511B2 (en) Exhaust gas treatment device and operation method thereof
JP3842693B2 (en) Wet flue gas desulfurization equipment
JP2001276506A (en) Method for suppressing bubble generation in gas absorption tower and device therefor
JPH0938447A (en) Liquid absorbent dispersing equipment and flue gas desulfurizer
JPH08950A (en) Gas blowing device
JP2020093191A (en) Exhaust gas desulfurizer
JP2004041875A (en) Wet flue gas desulfurization equipment
JPH08103626A (en) Method for desulfurizing waste gas
JPH0910546A (en) Wet type flue gas desulfurization device
JP2000176321A (en) Spray device
KR20210096257A (en) Renovation method of liquid column absorption tower and liquid column absorption tower
JPH10113534A (en) Flue gas treatment device
JPH05285338A (en) Wet desulfurizer for flue gas

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

LAPS Cancellation because of no payment of annual fees