JP2011020043A - Aeration method and water drop pipe - Google Patents

Aeration method and water drop pipe Download PDF

Info

Publication number
JP2011020043A
JP2011020043A JP2009166748A JP2009166748A JP2011020043A JP 2011020043 A JP2011020043 A JP 2011020043A JP 2009166748 A JP2009166748 A JP 2009166748A JP 2009166748 A JP2009166748 A JP 2009166748A JP 2011020043 A JP2011020043 A JP 2011020043A
Authority
JP
Japan
Prior art keywords
water
pipe
aeration
falling
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009166748A
Other languages
Japanese (ja)
Inventor
Masamitsu Arita
正光 有田
Takeshi Takemura
武 武村
Eiichi Furusato
栄一 古里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Denki University
Original Assignee
Tokyo Denki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Denki University filed Critical Tokyo Denki University
Priority to JP2009166748A priority Critical patent/JP2011020043A/en
Publication of JP2011020043A publication Critical patent/JP2011020043A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aeration method and a water drop pipe, capable of obtaining a high aeration effect at a low cost. <P>SOLUTION: In the aeration method for accelerating aeration by dropping water, a plurality of air holes 4b are formed at the part projected above a water surface of the water drop pipe 4 inserted in the water for a fixed length, and water is poured in through a gradually widened part 4a installed at the upper part of the water drop pipe 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、落水により曝気を促す曝気方法および落水管に関する。   The present invention relates to an aeration method that promotes aeration by falling water and a falling pipe.

多量の生活排水が流入する東南アジアの都市河川や、湖沼、養殖池などの貧酸素化の問題がクローズアップされている。このような水域の貧酸素化による水質悪化を防止するために、様々な手法の検討が行われている(非特許文献1〜7、特許文献1〜5参照)。具体的には、河道に設置した越流堰を越える流れによる再曝気効果の検討(非特許文献1、2参照)や、微小気泡による曝気効果の検討(非特許文献3、4参照)、気液界面を極限まで大きくして酸素溶解を促すための検討(非特許文献6、7参照)、気液混合体を邪魔板へ噴射して気液の接触面積を多くして曝気を促そうとする検討(特許文献3参照)等、があげられる。これら貧酸素化防止技術は、(1)コンプレッサーにより得た圧縮空気を水中の散気装置から吐出する方法や水中プロペラ等によって水表面近傍を攪拌して大気中から酸素を供給する方法(機械的方法)、(2)水路中に段落部や堰を設置して落水により曝気を図る方法(自然の落差を利用する方法)、(3)特殊な装置により発生させたマイクロバブルを水中に放出する方法などに分類することができる。   The problem of hypoxia such as urban rivers, lakes and aquaculture ponds in Southeast Asia into which a large amount of domestic wastewater flows is highlighted. In order to prevent such deterioration of water quality due to poor oxygenation in water areas, various methods have been studied (see Non-Patent Documents 1 to 7 and Patent Documents 1 to 5). Specifically, examination of the effect of re-aeration by the flow over the overflow weir installed in the river channel (see Non-Patent Documents 1 and 2), examination of the aeration effect by microbubbles (see Non-Patent Documents 3 and 4), Study to promote oxygen dissolution by enlarging the liquid interface to the limit (see Non-Patent Documents 6 and 7), trying to promote aeration by injecting the gas-liquid mixture onto the baffle plate to increase the contact area of the gas-liquid And the like (see Patent Document 3). These techniques for preventing hypoxia include (1) a method in which compressed air obtained by a compressor is discharged from an underwater diffuser, and a method in which oxygen is supplied from the atmosphere by stirring the vicinity of the water surface with an underwater propeller, etc. Method), (2) Method of aeration by falling water by installing a paragraph or weir in the waterway (method of using natural head), (3) Discharging microbubbles generated by special equipment into water It can be classified into methods.

特開2001−70773号公報JP 2001-70773 A 特開2003−265938号公報JP 2003-265938 A 特開2004−188263号公報JP 2004-188263 A 特開2000−61489号公報JP 2000-61489 A 特開2007−307530号公報JP 2007-307530 A

長勝史:落差工における再曝気能力に関する研究,鹿大農学術報告,47,pp.37-41,1997.Nagakatsu Fumi: Research on re-aeration capability in the fall head construction, Deer University agricultural report, 47, pp.37-41, 1997. 炭本祥生,森健,井上英二,原口智和:堰を越える落下水による酸素再曝気モデル,九大農学芸誌,57(1),pp.59-65,2002.Yukio Sumimoto, Ken Mori, Eiji Inoue, Tomokazu Haraguchi: Oxygen re-aeration model with falling water over the weir, Kyushu University Agricultural Journal, 57 (1), pp.59-65, 2002. 道奥康治,神田徹,大成博文,守口昌仁,松尾昌和,白澤静敏,松尾克美:マイクロバブルによる富栄養化貯水池の水質改善工と浄化効率,水工学論文集,第45巻,pp.1201-1206,2001.Koji Oku, Toru Kanda, Hirofumi Taisei, Masahito Moriguchi, Masakazu Matsuo, Shizutoshi Shirasawa, Katsumi Matsuo: Water quality improvement and purification efficiency of eutrophication reservoirs by microbubbles, Journal of Hydraulic Engineering, Vol. 45, pp.1201 -1206, 2001. 池田裕一,佐々木俊典,須賀尭三:二成層水域での微細気泡発生装置を用いた曝気循環流の流動形態と酸素供給に関する基礎的実験,水工学論文集,第45巻,pp.1213-1218,2001.Ikeda, Yuichi, Sasaki, Toshinori, Suga, Junzo: Fundamental experiment on flow pattern and oxygen supply of aeration circulation flow using microbubble generator in bi-stratified waters, Journal of Hydraulic Engineering, Vol.45, pp.1213-1218 , 2001. 豊島靖,天野邦彦,田中康泰:ダム貯水池における曝気循環による成層破壊状況の現地観測と評価,水工学論文集,第47巻,pp.1243-1248,2003.Satoshi Toyoshima, Kunihiko Amano, Yasuyasu Tanaka: Field observation and evaluation of stratification failure due to aeration circulation in a dam reservoir, Journal of Hydraulic Engineering, Vol. 47, pp.1243-1248, 2003. 奥貴則,羽田野袈裟義,原田利男,藤里哲彦,馬駿:水質浄化技術の水理に関する研究,土木学会第61回年次学術講演会,pp.395-396,2006.Takanori Oku, Masayoshi Haneda, Toshio Harada, Tetsuhiko Fujisato, Mabuchi: Research on hydraulics of water purification technology, 61st Annual Conference of Japan Society of Civil Engineers, pp.395-396, 2006. 羽田野袈裟義,馬駿,今井剛,藤里哲彦,原田利男:液膜を利用するDO改善技術に関する基礎的研究,土木学会論文集G,63(1),pp.1-11,2007.Hanedano Yasuyoshi, Mabuchi, Imai Tsuyoshi, Fujisato Tetsuhiko, Harada Toshio: Fundamental research on DO improvement technology using liquid film, JSCE G, 63 (1), pp.1-11, 2007.

しかしながら、上記(1)の従来技術によるとイニシャルおよびランニングコストが比較的高価な電機機械装置類が必要である。また、上記(2)の従来技術は十分な落水高が得られない地点では曝気効果が弱いという欠点を持っている。更に、上記(3)の従来技術はマイクロバブルの発生装置が特殊であり高価である。   However, according to the prior art of (1) above, electrical machine devices with relatively high initial and running costs are required. Further, the conventional technique (2) has a drawback that the aeration effect is weak at a point where a sufficient amount of falling water cannot be obtained. Further, the conventional technology (3) has a special microbubble generator and is expensive.

本発明は、上記課題を解決するためになされたものであり、その目的は、低コストで高い曝気効果が得られる曝気方法および落水管を提供することである。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an aeration method and a water pipe that can provide a high aeration effect at low cost.

本発明の第1の特徴は、落水により曝気を促す曝気方法において、水中に一定長だけ挿入した落水管の水面上に出ている部分に複数個の空気孔を設置し、前記落水管の上部に設置した漸拡部を通して水を流し込むことである。   A first feature of the present invention is an aeration method in which aeration is promoted by falling water, wherein a plurality of air holes are provided on a portion of the falling water pipe inserted into the water for a certain length and are provided above the falling water pipe. It is to pour water through the gradually expanded part.

本発明の第2の特徴は、前記曝気方法において、前記落水管下端の高さ位置が、水表面近傍の高さ位置であって、かつ、落水による水表面の撹乱によって前記落水管下端が大気中に露出しない高さ位置であることである。   A second feature of the present invention is that in the aeration method, the height position of the lower end of the waterfall pipe is a height position near the water surface, and the lower end of the waterfall pipe is in the atmosphere due to disturbance of the water surface due to waterfall. The height position is not exposed.

本発明の第3の特徴は、前記曝気方法において、曝気効果を示す再曝気係数がピーク値となる流量をフルード数に基づいて予め求めておき、求めた流量で前記落水管に水を流し込むことである。   A third feature of the present invention is that, in the aeration method, a flow rate at which a re-aeration coefficient indicating an aeration effect has a peak value is obtained in advance based on the Froude number, and water is poured into the drain pipe at the obtained flow rate. is there.

本発明の第4の特徴は、前記曝気方法において、自然の落差を利用して落水させる場合は、その落差範囲内であって、かつ、前記落水管の最も高い位置近傍に前記空気孔を設置することである。   According to a fourth aspect of the present invention, in the aeration method, when water is dropped using a natural head, the air hole is installed within the head range and in the vicinity of the highest position of the water pipe. That is.

本発明の第5の特徴は、落水により曝気を促す曝気方法に用いる落水管において、円管の途中に複数の空気孔を備えるとともに、前記円管の一方端から他方端に向かって管径が漸拡する漸拡部を前記円管の一方端に備えることである。   According to a fifth feature of the present invention, in the falling pipe used in the aeration method for promoting aeration by falling water, a plurality of air holes are provided in the middle of the circular pipe, and the pipe diameter gradually increases from one end to the other end of the circular pipe. It is to provide the one end of the said circular pipe with the gradually enlarged part expanded.

本発明の第6の特徴は、前記落水管において、前記複数の空気孔を前記漸拡部の下流側に備えることである。   A sixth feature of the present invention is that the waterfall pipe is provided with the plurality of air holes on the downstream side of the gradually expanding portion.

本発明によれば、低コストで高い曝気効果が得られる曝気方法および落水管を提供することができる。従って、水質悪化により貧酸素化した養殖場や貯水池などの水域を効果的に曝気して水質改善を図ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the aeration method and the water pipe which can obtain the high aeration effect at low cost can be provided. Therefore, it is possible to effectively aerate water areas such as aquaculture farms and reservoirs that have become hypoxic due to deterioration of water quality, thereby improving water quality.

本発明の実施の形態に係る曝気装置(実験装置)の構成を示す図である。It is a figure which shows the structure of the aeration apparatus (experimental apparatus) which concerns on embodiment of this invention. 本発明の実施の形態に係る落水管の構成を示す図である。It is a figure which shows the structure of the waterfall pipe which concerns on embodiment of this invention. 本発明の実施の形態に係る実験結果を示す図である。It is a figure which shows the experimental result which concerns on embodiment of this invention. 落水高の違いによる曝気効果の違いを示す図である。It is a figure which shows the difference in the aeration effect by the difference in falling water height. 本発明の実施の形態に係る実験結果を示す図である。It is a figure which shows the experimental result which concerns on embodiment of this invention. 本発明の実施の形態に係る実験結果を示す図である。It is a figure which shows the experimental result which concerns on embodiment of this invention. 本発明の実施の形態に係る実験結果を示す図である。It is a figure which shows the experimental result which concerns on embodiment of this invention. 本発明の実施の形態に係る実験結果を示す図である。It is a figure which shows the experimental result which concerns on embodiment of this invention. 本発明の実施の形態に係る実験結果を示す図である。It is a figure which shows the experimental result which concerns on embodiment of this invention. 本発明の実施の形態に係る空気孔設置方法における流況の模式図である。It is a schematic diagram of the flow condition in the air hole installation method which concerns on embodiment of this invention. 本発明の実施の形態に係る曝気装置の利用場面の一例を示す図である。It is a figure which shows an example of the utilization scene of the aeration apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る曝気装置の利用場面の一例を示す図である。It is a figure which shows an example of the utilization scene of the aeration apparatus which concerns on embodiment of this invention.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明は、水路中の越流堰や段落部からの落水による曝気(以下では落水工法という)を念頭に置き、その効果を向上させる手法について実験的に検討し、提案するものである。ただし、本発明は落差が得られる水路のみを念頭に置いているのでは無く養殖池や自然流下方式の省資源・省エネルギー型の汚水処理装置など、広く一般的な応用を目指している。また、本発明で取り扱った円管を使用する曝気法に関する研究は本発明者等の知る限り存在しないことを付記する。なお、本報では落水管が円管の場合のみについて実験的に検証したが、矩形など落水管の断面が異なる場合にもメカニズム的に考えて効果は落ちるものの類似の曝気向上効果が生ずると考えられる。   The present invention experimentally examines and proposes a method for improving the effect, taking into account the aeration caused by the overflow from the overflow weir and the paragraph in the water channel (hereinafter referred to as the “waterfall method”). However, the present invention is not intended only for a water channel where a head can be obtained, but is aimed at a wide general application such as an aquaculture pond or a natural flow-down resource-saving / energy-saving sewage treatment apparatus. In addition, it should be noted that there is no research on the aeration method using the circular tube handled in the present invention as far as the present inventors know. In this report, only the case where the waterfall pipe is a circular pipe was experimentally verified. However, when the cross section of the waterfall pipe such as a rectangle is different, the effect is considered in terms of mechanism, but a similar aeration improvement effect is considered to occur.

実験では、まず円管を利用した落水工法の曝気効果を明らかにするための一連の実験を実施する。その上で、円管に空気孔を設置した曝気方法(以下では空気孔設置工法という)を提案し、その工法の曝気向上効果とメカニズムを明らかにする。   In the experiment, first, a series of experiments will be conducted to clarify the aeration effect of the falling water method using a circular pipe. Then, we propose an aeration method (hereinafter referred to as air hole installation method) in which air holes are installed in a circular pipe, and clarify the aeration improvement effect and mechanism of the method.

《実験概要》
本発明で用いる実験装置の円管のサイズは現地でこのサイズのまま使用するプロトタイプを念頭に置いているが、満管状態における流れの相似則の検討により、より大きな水域を持つ現地において適用可能な大型化が可能となる。
<Outline of experiment>
The size of the circular pipe of the experimental device used in the present invention is kept in mind as a prototype to be used at this size in the field, but it can be applied in the field with a larger water area by examining the similarity law of the flow in the full pipe state Can be increased in size.

(1)実験装置と方法
実験には図1に示すような縦27cm×横120cm×高さ80cmのアクリル製の水槽1を使用した。水槽1中に落水させるための水の供給には水槽1内に設置した2台の水中ポンプを使用した。水槽1の水は水中ポンプに接続された直径25mmの塩化ビニール製の送水管2を通して一定の高さまで上昇させた後に合流部3を通して、鉛直円管の落水管4で水槽1中に落下させた。なお、落水管4が送水管2の管径より小さい場合は漸縮管を、大きい場合は漸拡管を使用して接続した。実験は、管径、流量、落水高(水表面から落水管4下端までの高さ)の諸量を任意に設定可能である。なお、流量は送水管2に設置した流量計で計測した。
(1) Experimental apparatus and method An acrylic water tank 1 having a length of 27 cm, a width of 120 cm and a height of 80 cm as shown in FIG. 1 was used for the experiment. Two submersible pumps installed in the aquarium 1 were used to supply water for dropping into the aquarium 1. The water in the water tank 1 was raised to a certain height through a water supply pipe 2 made of vinyl chloride having a diameter of 25 mm connected to a submersible pump, and then dropped into the water tank 1 through a junction 3 and a waterfall pipe 4 of a vertical circular pipe. In addition, when the falling pipe 4 was smaller than the pipe diameter of the water supply pipe 2, it connected using the gradual contraction pipe, and when larger, the gradual expansion pipe was used. In the experiment, various quantities such as pipe diameter, flow rate, and falling water height (height from the water surface to the lower end of the falling water pipe 4) can be set arbitrarily. The flow rate was measured with a flow meter installed in the water pipe 2.

実験開始に当たっては水槽1内に亜硫酸ナトリウムを添加して水中の酸素を消費させ、溶存酸素量をゼロ付近まで低下させた。その後、落水を開始すると落水の時間経過tとともに水槽1中の水の曝気が促され溶存酸素濃度CがC=0から上昇し、最終的に水槽1中の水が飽和酸素濃度Cに到達して安定する。実験では曝気効果を計測するためのDOメーターと水温計を水槽1内の水深25cm、真中から左に30cmの地点(図1参照)に設置して実験開始から30秒ごとに測定した。同測定位置は落水によって水槽1内に形成される空気泡の影響を直接受けない事を実験中に目視により確認している。なお、本実験では、落水管4より落下した水が水槽1内の水を局所的に曝気し、その後の移流により測定点を含む水槽1内のDO濃度を上昇させることとなる。すなわち、測定点のDO濃度は必ずしも水槽1内の平均値を示しているわけでは無い。しかし、提案する工法の曝気効果が高ければ、測定地点のDO値に反映されることから、簡易的に定点のDOメーターの値を利用して曝気効果を調べることとした。 At the start of the experiment, sodium sulfite was added to the water tank 1 to consume oxygen in the water, and the amount of dissolved oxygen was reduced to near zero. After that, when the falling water is started, aeration of the water in the tank 1 is promoted as the falling time elapses, and the dissolved oxygen concentration C L increases from C L = 0, and finally the water in the tank 1 becomes the saturated oxygen concentration C S. Reach and stabilize. In the experiment, a DO meter and a water temperature meter for measuring the aeration effect were installed at a depth of 25 cm in the tank 1 and 30 cm from the middle to the left (see Fig. 1), and measurements were taken every 30 seconds from the start of the experiment. It was confirmed by visual observation during the experiment that the measurement position was not directly affected by air bubbles formed in the water tank 1 due to falling water. In this experiment, the water dropped from the waterfall pipe 4 locally aerated the water in the water tank 1, and the DO concentration in the water tank 1 including the measurement point is increased by subsequent advection. That is, the DO concentration at the measurement point does not necessarily indicate an average value in the water tank 1. However, if the aeration effect of the proposed method is high, it will be reflected in the DO value at the measurement point, so the aeration effect was simply investigated using the value of the DO meter at a fixed point.

落水の曝気による水槽1中の溶存酸素(DO)濃度の時間変化を次式で表現する。
The change over time of dissolved oxygen (DO) concentration in tank 1 due to aeration of falling water is expressed by the following equation.

ここに、CLは水槽1中の水の溶存酸素濃度、CSは飽和溶存酸素濃度、K2は再曝気係数、tは落水開始後の経過時間である。〔数1〕は一般的には水表面全域からの曝気を仮定して誘導されるものであり、厳密には提案する工法の曝気メカニズムを再現するものでは無い。しかし、本工法の平均的曝気効果を表すために使用可能であると考える。なお、同様の手法は過去に堰からの落水による曝気の評価に採用されている(非特許文献1、2参照)。 Here, a C L dissolved oxygen concentration of water in the water tank 1, C S is the saturation dissolved oxygen concentration, K 2 is re-aeration coefficient, t is the elapsed time after the start overboard. [Equation 1] is generally derived on the assumption of aeration from the entire surface of the water, and strictly speaking, it does not reproduce the aeration mechanism of the proposed method. However, it can be used to represent the average aeration effect of this method. In addition, the same method has been adopted in the past for evaluation of aeration due to falling water from the weir (see Non-Patent Documents 1 and 2).

本実験では各種条件における落水による曝気効果の評価のために再曝気係数K2を求めて比較検討することとする。K2の算出においては、実験により得られるCL-t曲線よりCLが安定して上昇することが認められている、CLがCSの10〜80%となる領域のデータを使用した。これらのデータを〔数1〕を積分した次式に代入し、その平均値を求めてK2の値とした。
In this experiment, the re-aeration coefficient K 2 is obtained and compared for evaluation of the aeration effect due to falling water under various conditions. In the calculation of K 2 , data of a region where C L is 10 to 80% of C S , in which C L is stably increased from the C L -t curve obtained by experiment, was used. . And substituting these data into the following equation by integrating the equation (1), and the value of K 2 with the average value is obtained.

ここに、A=(CS-CL)/(CS-C0)、C0は計測開始時溶存酸素量であり、一般にはC0=0である。 Here, A = (C S −C L ) / (C S −C 0 ), C 0 is the dissolved oxygen amount at the start of measurement, and generally C 0 = 0.

(2)落水管4の概略と現象を支配するパラメータ
図2は本実験で使用する円管である落水管4を示している。同図に示すように本発明では二つのパターンについて実験を実施した。
(2) Outline of the waterfall pipe 4 and parameters governing the phenomenon FIG. 2 shows the waterfall pipe 4 which is a circular pipe used in this experiment. As shown in the figure, in the present invention, experiments were conducted on two patterns.

パターンAは落水工法であり、図2(a)に示すように、管径Dの落水管4の先端から流量Qを落水高Hで自由落下させる場合である。このパターンAの実験結果は、後述のパターンBの効果を検討するための基準となるものである。一方、パターンBは図2(b)に示すように、管径Dの落水管4の先端から流量Qを流す点は落水工法と同様であるが、落水管4を水中にLの長さだけ挿入した上で、開口高lの位置に直径dの空気孔4bをn個設置して空気を管内に流入させて再曝気効果の向上を図ろうとするものである。ただし、後述のメカニズムを促進するように落水管4の上部に漸拡部4aを設置している。本報ではこのパターンBの手法を空気孔設置工法と呼ぶこととする。   Pattern A is a falling water method, and is a case where the flow rate Q is freely dropped at a falling height H from the tip of the falling pipe 4 having a pipe diameter D, as shown in FIG. The experimental result of this pattern A serves as a reference for examining the effect of pattern B described later. On the other hand, as shown in FIG. 2 (b), the pattern B is the same as the falling water method in that the flow rate Q flows from the tip of the falling pipe 4 with the diameter D, but the falling pipe 4 is inserted into the water for the length of L. In the above, n air holes 4b having a diameter d are provided at the position of the opening height l and air is caused to flow into the pipe to improve the re-aeration effect. However, a gradual expansion portion 4a is provided at the upper part of the waterfall pipe 4 so as to promote the mechanism described later. In this report, this pattern B method is called the air hole installation method.

本発明では、曝気現象を支配する因子として、パターンAについて流量Q、落水高H、管径D、落水管断面積Aを使用して次式の落水管下端で定義される落水全エネルギーEを採用した。
In the present invention, as a factor governing the aeration phenomenon, the total water energy E defined by the lower end of the waterfall pipe of the following equation is adopted using the flow rate Q, the waterfall height H, the pipe diameter D, and the waterfall cross section A for the pattern A. .

ここに、右辺第一項は落水の運動エネルギー、第二項は位置エネルギーである。   Here, the first term on the right side is the kinetic energy of falling water, and the second term is the potential energy.

一方、パターンBでは開口高lの空気孔4bより空気が流入するため、そこでの管内圧力は近似的に大気圧(p=0)と見なすことが可能である。よって、落水全エネルギーEは〔数3〕のHをlに置き換えて計算できるものとする(H=l)。   On the other hand, in the pattern B, since air flows in from the air hole 4b having the opening height l, the pressure inside the pipe can be approximately regarded as atmospheric pressure (p = 0). Therefore, it is assumed that the total falling water energy E can be calculated by replacing H in [Equation 3] with l (H = l).

本発明ではEを現象を支配するパラメータとして考察する。なお、Eは主要なパラメータであると考えられるものの、厳密には管径Dなどの他のパラメータの影響も考慮する必要がある。しかし、本報では提案する空気孔設置工法の効果を明らかにすることを主たる目的としているため、以下ではEのみを使用して考察を進める。   In the present invention, E is considered as a parameter governing the phenomenon. Although E is considered to be a main parameter, strictly speaking, it is necessary to consider the influence of other parameters such as the pipe diameter D. However, since the main purpose of this report is to clarify the effect of the proposed air hole installation method, the following discussion will proceed using only E.

《実験結果および考察》
パターンAとパターンBの実験における曝気効果に関する実験結果と考察を示す。
《Experimental results and discussion》
The experimental results and discussion on the aeration effect in the experiment of pattern A and pattern B are shown.

(1)パターンA(落水工法)の実験と考察
パターンAの実験条件一覧を表1に示す。同表に示すように実験では管径Dを20mmと30mmの2種類とし、流量Qと落水高Hを変化させた。
(1) Experiment and Consideration of Pattern A (Water Falling Method) Table 1 shows a list of pattern A test conditions. As shown in the table, in the experiment, the pipe diameter D was set to two types of 20 mm and 30 mm, and the flow rate Q and the falling water height H were changed.

図3はcase4(D=30mm、流量Q=90l/min)の実験結果より、全エネルギーEと再曝気係数K2の関係を描いたものである。同図よりEの増加(落水高Hの増加)に伴いK2が上昇していることが分かる。同図で落水管4が水表面に接している場合(H=0)は、K2〜0となっているが、これは落水と大気との接触面積がほぼ0であるために曝気効果が極めて小さいことを意味している(Eが小さいので水表面の撹乱も小さい)。また、落水高Hが小さい領域(H=0、1cm)ではEに対してK2が急増していることが分かる。これは同領域では、落水高Hが大きくなると、落水と大気との接触面積が増加して空気の水平連行量が増加するためであると考えられる。なお、このようにして落水中に混入した空気が水中で空気泡となる結果、水中における曝気が生ずる事となる。この時の再曝気係数K2の上昇メカニズムをメカニズムIとする(図4(a)参照)。 FIG. 3 shows the relationship between the total energy E and the re-aeration coefficient K 2 from the experimental results of case 4 (D = 30 mm, flow rate Q = 90 l / min). From the figure, it can be seen that K 2 increases as E increases (fall water height H increases). In the figure, when the water pipe 4 is in contact with the water surface (H = 0), it is K 2 to 0. This is because the contact area between the water and the atmosphere is almost 0, so the aeration effect is extremely high. It means small (E is small, so water surface disturbance is small). In addition, it can be seen that in the region where the falling water height H is small (H = 0, 1 cm), K 2 rapidly increases relative to E. This is considered to be because, in the same region, when the falling water height H increases, the contact area between the falling water and the atmosphere increases and the amount of horizontal entrainment of air increases. In addition, as a result of the air mixed in the falling water thus forming air bubbles in the water, aeration in the water occurs. The increase mechanism of the re-aeration coefficient K 2 at this time is assumed to be mechanism I (see FIG. 4 (a)).

一方、Hが大きな領域でのEに対するK2の増加は、メカニズムIの空気連行の他に、落水の水脈の乱れによる空気の混入、重力による落水速度の増大による水表面の攪乱による空気の混入、などが原因となって生ずる。このようなK2の上昇メカニズムをメカニズムIIとする(図4(b)参照)。ただし、本領域ではEに対するK2の増加が小さいことが認められる。これは、空気連行による曝気効果はHが大きくなると増加の割合が小さくなること、落水への空気抵抗が大きくなること、水槽1中で落下する水塊中の空気泡が大きくなりその浮力効果が増大することなどの原因が考えられる。 On the other hand, the increase of K 2 with respect to E in the region where H is large is not only due to the air entrainment of mechanism I, but also air contamination due to turbulence of falling water veins, and air contamination due to disturbance of the water surface due to an increase in water falling velocity due to gravity. , Etc. Such a mechanism of increasing K 2 is referred to as mechanism II (see FIG. 4 (b)). However, it is recognized that the increase in K 2 relative to E is small in this region. This is because the aeration effect due to air entrainment decreases as the H increases, the air resistance to falling water increases, the air bubbles in the water mass falling in the tank 1 increase, and the buoyancy effect increases. Possible causes such as an increase.

図5は表1の実験の全データをプロットしたものである。各実験ケースのE- K2曲線の傾向は流量Q、管径Dに関わらず図3と類似であることが分かる。図5中のデータより、メカニズムIの曝気現象が生じていると考えられる領域、つまりH=0cm、1cmのデータを削除した結果を図6に示す。同図にはメカニズムIIの曝気現象が生じている領域のデータがプロットされていることになる。図中に示すように、メカニズムIIの領域ではK2はEの増加とともに増加するが、同領域の全てのデータを含む一点鎖線で囲まれる部分の平均的な関係を表す式は次式で与えられる。
FIG. 5 is a plot of all data from the experiments in Table 1. Trend of E- K 2 curves for each experiment case flow Q, is found to be similar to Figure 3 regardless of the pipe diameter D. FIG. 6 shows the result of deleting the region where the aeration phenomenon of mechanism I is considered from the data in FIG. 5, that is, data of H = 0 cm and 1 cm. In the same figure, data of a region where the aeration phenomenon of mechanism II occurs is plotted. As shown in the figure, in the mechanism II region, K 2 increases with an increase in E, but the equation representing the average relationship of the portion surrounded by the alternate long and short dash line including all data in the region is given by the following equation: It is done.

なお、K2が急上昇しているH=0cm、1cmのデータをメカニズムIの領域として取り扱ったが、本来は実験条件毎にメカニズムIとメカニズムIIの領域区分は変化すると考えられる。しかし、両領域を正確に分割するためには、両メカニズムに関する詳細な追加的検討が必要である。それ故、本発明では工学的な応用を優先し、定性的ではあるが、簡易的な領域区分を行ったものである。
In addition, although data of H = 0 cm and 1 cm in which K 2 rapidly increased was handled as the region of mechanism I, it is considered that the region division of mechanism I and mechanism II changes depending on the experimental conditions. However, in order to accurately divide both areas, detailed additional studies on both mechanisms are necessary. Therefore, in the present invention, priority is given to engineering applications, and qualitative but simple region segmentation is performed.

(2)パターンB(空気孔設置工法)の実験と考察
本節では本報で提案するパターンB(空気孔設置工法)の曝気効果についての実験事例を示す。図7にパターンBに関する実験結果の一例とパターンAの実験結果(図6の一点鎖線で囲まれる領域を陰影部として示す)を比較して示す。同図に示すパターンBの実験は、流量Q=90l/min、管径D=50mm(落水管上部に直径25mmからD=50mmとなる漸拡部4aを設置)、開口高l=10cm、空気孔直径d=11mm、空気孔個数n=6とし、円管の貫入水深Lを変化させてK2を求めたものである。
(2) Experiment and Consideration of Pattern B (Air Hole Installation Method) In this section, an experimental example of the aeration effect of Pattern B (air hole installation method) proposed in this report is shown. FIG. 7 shows a comparison between an example of the experimental result regarding pattern B and the experimental result of pattern A (the region surrounded by the one-dot chain line in FIG. 6 is shown as a shaded portion). In the experiment of pattern B shown in the figure, the flow rate is Q = 90 l / min, the pipe diameter is D = 50 mm (the gradual expansion part 4a with a diameter from 25 mm to D = 50 mm is installed on the upper part of the falling pipe), the opening height l = 10 cm, the air hole The diameter d = 11 mm, the number of air holes n = 6, and the penetration depth L of the circular pipe is changed to obtain K 2 .

図7より、Lが適当な大きさではK2の値がパターンAの実験に比較して4〜5倍程度に上昇して曝気効果が著しく向上していることが分かる。なお、図中の陰影部分の●の実験データは、比較の事例として採用したパターンBの実験と同一のQ、Dを採用した上で、H=l=10cmとしたものであり、両パターンの曝気効果の差を明らかにするためのものである。一方、Lが十分に大きく(ここではL=45cm)なると、K2=0となることが分かる。これは管内に空気孔4bから流入した空気が水中に突入した後に管内で再浮上するため、水槽1内を効果的に曝気できなくなるためである。以上のように、空気孔設置工法は曝気効果を著しく向上させるものの貫入水深Lの影響を受けることが明らかになった。 From FIG. 7, it can be seen that when L is an appropriate size, the value of K 2 increases to about 4 to 5 times as compared with the experiment of pattern A, and the aeration effect is remarkably improved. In addition, the experimental data of ● in the shaded part in the figure is the same as the experiment of pattern B adopted as a comparison example, and after adopting the same Q and D, H = l = 10 cm, This is to clarify the difference in aeration effect. On the other hand, when L becomes sufficiently large (here, L = 45 cm), it can be seen that K 2 = 0. This is because the air that has flowed into the pipe from the air hole 4b enters the water and then re-floats in the pipe, so that the water tank 1 cannot be effectively aerated. As described above, it has been clarified that the air hole installation method is influenced by the penetration depth L, although it significantly improves the aeration effect.

空気孔設置工法の曝気向上効果を系統的に調べるために管径D=50mm、開口高l=10cmを一定とし、流量Q、貫入水深Lを変化させて実施した実験条件・結果一覧を表2に示す。また、同表の実験結果を三次元グラフにして図8(a)に示す。同図より貫入水深Lを一定とすると再曝気係数K2が流量Qに対してピーク値を持っていることが分かる。これは、Qが大きい領域では満管状態(管内が全域で水で満たされて流れる状態)で流れるようになるため、空気孔4bから空気が流入出来ないことがK2が小さくなる原因である。一方、Qが小さい領域ではEが小さいので、そもそも曝気効果が小さいのみならず、後述の空気孔設置工法における曝気効果向上のメカニズムが機能しないために、K2が小さくなると考えられる。また、Lが大きくなるとK2が小さくなることが分かる。これは前述のように空気の管内での再浮上によるものである。従って、Lは落水による水表面の撹乱によって落水部下端が大気中に露出しない範囲で小さいほど曝気効果が高くなると考えられる。 Table 2 shows a list of experimental conditions and results that were carried out by changing the flow rate Q and penetration water depth L with a constant pipe diameter D = 50 mm, opening height l = 10 cm in order to systematically investigate the aeration improvement effect of the air hole installation method. Shown in Also, the experimental results in the same table are shown as a three-dimensional graph in FIG. 8 (a). From the figure, it is understood that the re-aeration coefficient K 2 has a peak value with respect to the flow rate Q when the penetration water depth L is constant. This is because in a region where Q is large, the air flows in a full tube state (a state in which the inside of the tube is filled with water and flows), and therefore K 2 is reduced because air cannot flow in from the air holes 4b. . On the other hand, since E is small in the region where Q is small, not only the aeration effect is small in the first place, but also the aeration effect improvement mechanism in the air hole installation method described later does not function, so K 2 is considered to be small. It can also be seen that K 2 decreases as L increases. This is due to the re-levitation of air in the tube as described above. Therefore, it is considered that the aeration effect becomes higher as L is smaller in a range where the lower end of the falling water portion is not exposed to the atmosphere due to disturbance of the water surface due to falling water.

図8(b)、(c)は、表2の実験条件の中で、lのみをl=30cm、l=50cmと大きくした場合のK2に関する実験結果の三次元グラフを示したものである。同図より、開口高lが大きくなると、全体としてK2が大きくなること、K2のピーク値を与えるQが大きくなること、K2が大きくなるQの領域が大きくなること、Lが大きくなってもK2の減少が小さいなどが分かる。これはlが大きくなると、空気孔4bからの空気の落水管4への流入が促されること(後述のメカニズム参照)、落水管4での空気と水の接触時間が大きくなり、両者の混合が強くなることに主因があると考えられる。なお、lが大きくなると落水の全エネルギーEが大きくなることも原因の一つであることを念頭に置く必要がある。
FIGS. 8 (b) and (c) show three-dimensional graphs of experimental results for K 2 when only l is increased to l = 30 cm and l = 50 cm in the experimental conditions of Table 2. . From the figure, the aperture height l is increased, overall K 2 that is increased, the Q giving the peak value of K 2 is increased, the area of Q where K 2 is increased becomes larger, L increases But we can see that the decrease in K 2 is small. This is because when l increases, the inflow of air from the air hole 4b into the waterfall pipe 4 is promoted (see the mechanism described later), the contact time of air and water in the waterfall pipe 4 increases, and the mixing of both becomes stronger. There seems to be a main reason. It should be noted that one of the causes is that the total energy E of falling water increases as l increases.

《曝気効果向上のメカニズム》
提案するパターンBの曝気効果が向上するメカニズムについて流れの可視化により考察する。
《Mechanism for improving aeration effect》
The mechanism that improves the aeration effect of the proposed pattern B is discussed by visualizing the flow.

(1)可視化による流れの観察
流れの可視化により観察する実験の実験条件一覧を表3に示す。同表に示すようにすべての実験で流量Q=70l/min、管径D=5cmとしている。
(1) Observation of flow by visualization Table 3 shows a list of experimental conditions for experiments observed by visualization of flow. As shown in the table, the flow rate Q is 70 l / min and the tube diameter D is 5 cm in all experiments.

写真−1(図9(a)参照)は落水高H=10cmとしたCASE I(パターンA)の流れの可視化写真である。同写真より、落水は穏やかであり曝気効果が弱いことが認められる。なお、管内流れは満管状態となっている。   Photo 1 (see Fig. 9 (a)) is a visualization of the flow of CASE I (Pattern A) with a falling water height H = 10 cm. From the photograph, it is recognized that the falling water is mild and the aeration effect is weak. The pipe flow is full.

写真−2(図9(b)参照)はCASE II(パターンB)の可視化写真であり、貫入水深L=5cmとした上で、開口高lをCASE Iの落水高Hと同一(H=l=10cm)としている。このケースの落水全エネルギーEはCASE Iと同一であるにもかかわらず曝気効果が大きく向上していること、つまり、空気孔設置工法の著しい曝気向上効果が可視化されている。なお、CASE Iでは、実験開始直後に満管状態で流れるようになったのに対し、CASE IIでは30分程度の実験実施中に満管状態の流れとはならなかった。これは、CASE IIでは曝気向上のメカニズムが機能していることを意味している。   Photo-2 (see Fig. 9 (b)) is a visualization photo of CASE II (Pattern B), with an intrusion depth of L = 5cm and an opening height l equal to the falling height H of CASE I (H = l = 10cm). In this case, the aeration effect is greatly improved in spite of the fact that the total amount of falling water E is the same as CASE I, that is, the remarkable aeration improvement effect of the air hole installation method is visualized. In CASE I, it flowed in a full pipe immediately after the start of the experiment, whereas in CASE II, it did not flow in a full pipe during the experiment for about 30 minutes. This means that the mechanism for improving aeration functions in CASE II.

写真−3(図9(c)参照)はCASE III(パターンB )の可視化写真であり、開口高lをCASE IIより大きいl=55cmとし、その他の条件は同一としている。同写真を見ると、写真−2と比較して、より深い位置まで空気塊が侵入していること、また、空気泡を含む水塊の体積が大きくなっており、より高い曝気効果が得られていると推察することが可能である。これはlが大きくなるときのEの増大の他に後述の曝気向上のメカニズムがより効果的に働くためであると考えられる。   Photo-3 (see Fig. 9 (c)) is a visualization photo of CASE III (pattern B). The opening height l is set to 1 = 55cm higher than CASE II, and other conditions are the same. Looking at the photo, compared to Photo-2, the air mass has penetrated to a deeper position, and the volume of the water mass containing air bubbles is larger, so a higher aeration effect can be obtained. It is possible to infer that This is thought to be because the aeration improvement mechanism described later works more effectively in addition to the increase in E when l increases.

(2)曝気効果向上のメカニズムに関する考察
表3の空気孔設置工法の曝気向上効果が強く現れるCASE IIIの実験をビデオ撮影し、スロー再生して流況を観察した。以下に観察により得られた落水管4内の流動と曝気効果向上のメカニズムを箇条書きにして示す。なお、落水の挙動を模式的に図10に示す。
(2) Consideration of the mechanism for improving the aeration effect The video of the CASE III experiment in which the aeration improvement effect of the air hole installation method shown in Table 3 is strong was video-recorded and replayed to observe the flow state. The flow of the falling water pipe 4 obtained by observation and the mechanism for improving the aeration effect are shown in the following list. Note that the falling water behavior is schematically shown in FIG.

(I) 落水管4の漸拡部4a(25mm→50mm)に向かって空気孔4bから空気が侵入する。また、送水管2から漸拡部4aに至った水が管径の大きい落水管4に落水するとき、コアンダ効果により管壁からの剥離と再付着現象が生ずる(図10(a)参照)。この、剥離点と再付着点の位置が安定せず、流軸が不安定化する。 (I) Air enters from the air hole 4b toward the gradually expanding portion 4a (25 mm → 50 mm) of the falling pipe 4. Further, when the water that reaches the gradually expanding portion 4a from the water pipe 2 falls into the water pipe 4 having a large pipe diameter, peeling and reattachment phenomenon from the pipe wall occur due to the Coanda effect (see FIG. 10 (a)). The positions of the separation point and the reattachment point are not stable, and the flow axis becomes unstable.

(II) 流軸が不安定化した流れは落水管4中を、落水管4の管壁に沿って「時計回り」もしくは「反時計回り(図10(a)参照)」に回転しながら落下、管央を落下(図10(b)参照)など、不規則かつ間欠的な挙動を示す。その結果、落水流れは絡み合う。 (II) The flow with the flow axis destabilized falls down the pipe 4 while rotating clockwise or counterclockwise (see Fig. 10 (a)) along the wall of the pipe 4 It shows irregular and intermittent behavior such as falling in the center (see Fig. 10 (b)). As a result, the falling water stream is intertwined.

(III) 複雑で間欠的な挙動を示す落水は強い乱れを生じて空気孔4bから流入した空気を十分混入させ、白濁化する。一方で、絡み合った流れは落水管4内で空気塊と白濁した水塊に分離する(図10(c)参照)。 (III) Falling water that exhibits complex and intermittent behavior causes strong turbulence and sufficiently mixes the air flowing in from the air holes 4b, resulting in white turbidity. On the other hand, the entangled flow is separated into an air mass and a cloudy water mass in the waterfall pipe 4 (see FIG. 10 (c)).

(IV) 空気塊が水中に落下するとき、それに続く水塊により水槽1中に押し込まれる。つまり、空気塊は空気弾となり、間欠的に水槽1中に侵入する。このとき、空気を十分含んだ落水と間欠的な空気弾の水槽1中への貫入により、水槽1中の水は強く曝気されることとなる。なお、写真−3には空気弾が水中に深く侵入する時の挙動が可視化されている。
(IV) When the air mass falls into the water, it is pushed into the water tank 1 by the subsequent water mass. That is, the air mass becomes air bullets and intermittently enters the water tank 1. At this time, the water in the aquarium 1 is strongly aerated due to the falling water containing sufficient air and the intrusion of intermittent air bullets into the aquarium 1. Photo-3 visualizes the behavior when air bullets penetrate deeply into the water.

《まとめ》
本発明は曝気方法として、円管を用いた空気孔設置工法を提案して実験的にその効果を検証したものである。本発明によって提案された空気孔設置工法は、空気孔4bを設置しない場合と比較して4〜5倍程度強い曝気効果が得られることが判明した。これは、空気孔4bから取り込まれた空気が、コアンダ効果が誘因となって激しく乱れる落水中に混入するとともに、落水管4中に間欠的に空気弾が形成されて水槽1中に押し込まれるという曝気向上のメカニズムが機能するためであることが判明した。
<Summary>
The present invention proposes an air hole installation method using a circular pipe as an aeration method, and experimentally verifies its effect. It has been found that the air hole installation method proposed by the present invention provides an aeration effect that is about 4 to 5 times stronger than the case where the air hole 4b is not installed. This is because the air taken in from the air holes 4b is mixed into falling water that is violently disturbed due to the Coanda effect, and aerial bullets are intermittently formed in the falling water pipe 4 and pushed into the water tank 1. It turns out that the mechanism of improvement works.

提案する工法の曝気向上効果のメカニズムが機能するためには、貫入水深Lは落水管4の下端が攪乱の影響を受ける水表面から露出しないことが条件であるものの短い方が良いことが明らかになった。一方、流量Qについては最適な流量の範囲が存在することが明らかになった。また、開口高lは大きいほど有利であるが、より大きな落水エネルギーEを必要とする点に注意が必要である。従って、養殖池などの現地で自然の落差を利用する場合は、lを大きくすればよいが、ポンプを利用して落水を生じさせる場合は経済性の観点から、ポンプの出力による制限を受ける。   In order for the mechanism of the aeration improvement effect of the proposed method to function, it is clear that the penetration depth L should be shorter although the lower end of the downfall pipe 4 is not exposed from the water surface affected by disturbance. It was. On the other hand, it has been clarified that there is an optimum flow rate range for the flow rate Q. Further, the larger the opening height l, the more advantageous, but it should be noted that a larger amount of falling water energy E is required. Therefore, when a natural head is used in a local area such as an aquaculture pond, it is sufficient to increase l. However, when water is generated using a pump, there is a limitation due to the output of the pump from the viewpoint of economy.

以上のように、本発明では、水中に一定長だけ挿入した落水管4の水面上に出ている部分に複数個の空気孔4bを設置し、落水管4の上部に設置した漸拡部4aを通して水を流し込むようにしている。これにより、低コストで高い曝気効果が得られ、貧酸素化した養殖場や貯水池などの水域を効果的に曝気して水質改善を図ることが可能となる。   As described above, in the present invention, a plurality of air holes 4b are provided in the portion of the waterfall pipe 4 inserted into the water for a certain length and are exposed on the water surface, and the water is passed through the gradually expanding portion 4a provided at the top of the waterfall pipe 4. I try to pour in. As a result, a high aeration effect can be obtained at a low cost, and it becomes possible to effectively aerate water areas such as aquaculture farms and reservoirs that have become oxygen-depleted to improve water quality.

言い換えると、曝気を行うための特殊で高価な機械装置が不要な点が本工法の特徴である。特に、養殖場などで地形を利用して自然の落水高が得られる地点では水補給用の配管に若干の工作をすることにより曝気効果を高めることが可能である(図11参照)。また、図12に示すように、水路中の越流堰10等に落水管4を設置するだけでも高い曝気効果を期待することができる。この場合、落水管4の本数は特に限定されるものではない。越流堰10の幅や設置コスト等を考慮して適切な本数の落水管4を設置すればよい。このように、本発明は、近年問題となっている水域の貧酸素化に伴う水質悪化障害、例えば、異臭、有毒藻類発生、生活環境悪化、水界生態系の劣化等の問題に低コストで広範囲に対応することができ、非常に実用的価値の高い発明である。   In other words, the feature of this construction method is that a special and expensive mechanical device for performing aeration is unnecessary. In particular, it is possible to enhance the aeration effect by performing a little work on the water supply pipe at a point where natural waterfall height can be obtained by using topography at a farm or the like (see FIG. 11). Moreover, as shown in FIG. 12, a high aeration effect can be expected only by installing the drain pipe 4 in the overflow weir 10 or the like in the water channel. In this case, the number of the water pipes 4 is not particularly limited. In consideration of the width of the overflow weir 10 and the installation cost, an appropriate number of water pipes 4 may be installed. As described above, the present invention is low-cost for problems such as deterioration of water quality caused by hypoxia in water areas, which have been a problem in recent years, such as off-flavors, generation of toxic algae, deterioration of living environment, deterioration of aquatic ecosystems, etc. The invention can be applied to a wide range and has a very high practical value.

なお、前記では、貫入水深Lを一定とすると再曝気係数K2が流量Qに対してピーク値を持つと説明したが、このピーク値はフルード数Flを用いて分析することができる。フルード数Flは、落水管4内の流速v、重力の加速度g、管径Dを用いて次式で表される。更に、落水管4の断面比などを考慮すれば、より精度よく分析をすることが可能となる。再曝気係数K2がピーク値となる流量をフルード数Flに基づいて予め求めておき、求めた流量で落水管4に水を流し込む流量調整機構を設けてもよいのは勿論である。
Incidentally, in the above, although when the penetration depth L and constant re-aeration coefficient K 2 has been described as having a peak value relative to the flow rate Q, the peak value can be analyzed using the Froude number F l. Froude number F l, the flow rate v of the falling water pipe 4, the gravitational acceleration g, using a pipe diameter D is expressed by the following equation. Furthermore, if the cross-sectional ratio of the falling water pipe 4 is taken into consideration, it becomes possible to analyze with higher accuracy. Previously obtained in advance based on the flow rate re-aeration coefficient K 2 has a peak value in the Froude number F l, the may be provided flow regulating mechanism for pouring water into drainage tube 4 at a flow rate determined as a matter of course.

1 水槽
2 送水管
3 合流部
4 落水管
4a 漸拡部
4b 空気孔
H 落水高
l 開口高
L 貫入水深
Q 流量
DESCRIPTION OF SYMBOLS 1 Water tank 2 Water supply pipe 3 Merging part 4 Falling pipe 4a Gradual expansion part 4b Air hole H Falling height l Opening height L Penetration depth Q Flow rate

Claims (6)

落水により曝気を促す曝気方法であって、
水中に一定長だけ挿入した落水管の水面上に出ている部分に複数個の空気孔を設置し、前記落水管の上部に設置した漸拡部を通して水を流し込むことを特徴とする曝気方法。
An aeration method that encourages aeration by falling water,
A method of aeration, characterized in that a plurality of air holes are provided in a portion of a waterfall pipe inserted into the water for a fixed length and that protrudes from the surface of the waterfall, and water is poured through a gradual expansion part installed in the upper part of the waterfall pipe.
前記落水管下端の高さ位置は、水表面近傍の高さ位置であって、かつ、落水による水表面の撹乱によって前記落水管下端が大気中に露出しない高さ位置であることを特徴とする請求項1記載の曝気方法。   The height position of the lower end of the water pipe is a height position in the vicinity of the water surface, and is a height position at which the lower end of the water pipe is not exposed to the atmosphere due to disturbance of the water surface due to water falling. The aeration method according to 1. 曝気効果を示す再曝気係数がピーク値となる流量をフルード数に基づいて予め求めておき、求めた流量で前記落水管に水を流し込むことを特徴とする請求項1記載の曝気方法。   The aeration method according to claim 1, wherein a flow rate at which a re-aeration coefficient indicating an aeration effect has a peak value is obtained in advance based on the Froude number, and water is poured into the drain pipe at the obtained flow rate. 自然の落差を利用して落水させる場合は、その落差範囲内であって、かつ、前記落水管の最も高い位置近傍に前記空気孔を設置することを特徴とする請求項1記載の曝気方法。   2. The aeration method according to claim 1, wherein when water is dropped using a natural head, the air hole is installed within the head range and in the vicinity of the highest position of the water pipe. 落水により曝気を促す曝気方法に用いる落水管であって、
円管の途中に複数の空気孔を備えるとともに、前記円管の一方端から他方端に向かって管径が漸拡する漸拡部を前記円管の一方端に備えることを特徴とする落水管。
A drain pipe used in an aeration method for promoting aeration by falling water,
A drainage pipe having a plurality of air holes in the middle of the circular pipe and a gradually expanding portion at one end of the circular pipe having a pipe diameter gradually expanding from one end to the other end of the circular pipe.
前記複数の空気孔を前記漸拡部の下流側に備えることを特徴とする請求項5記載の落水管。   The falling pipe according to claim 5, wherein the plurality of air holes are provided on the downstream side of the gradually expanding portion.
JP2009166748A 2009-07-15 2009-07-15 Aeration method and water drop pipe Pending JP2011020043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166748A JP2011020043A (en) 2009-07-15 2009-07-15 Aeration method and water drop pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166748A JP2011020043A (en) 2009-07-15 2009-07-15 Aeration method and water drop pipe

Publications (1)

Publication Number Publication Date
JP2011020043A true JP2011020043A (en) 2011-02-03

Family

ID=43630574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166748A Pending JP2011020043A (en) 2009-07-15 2009-07-15 Aeration method and water drop pipe

Country Status (1)

Country Link
JP (1) JP2011020043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11521807B2 (en) 2018-07-13 2022-12-06 Abb Schweiz Ag Heat sink for a high voltage switchgear

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124858A (en) * 1975-04-22 1976-10-30 Fuoogerubutsushiyu Gmbh Device that mix gas into liquid
JPS5459499U (en) * 1977-10-01 1979-04-24
JPS55122896U (en) * 1979-02-22 1980-09-01
JPS5647798U (en) * 1979-09-20 1981-04-28
JPS5811027A (en) * 1981-07-14 1983-01-21 Aimu Denki Kogyo Kk Gas-liquid mixing process for deep tank
JPS5840132A (en) * 1981-09-01 1983-03-09 Ataka Kogyo Kk Gas-liquid mixing apparatus
JPH0564800A (en) * 1991-09-07 1993-03-19 Hirobumi Onari Apparatus for purifying closed natural water region
JPH06505432A (en) * 1991-12-02 1994-06-23 テクノロジカル リソーシィズ プロプライエタリー リミテッド reactor
JPH1094792A (en) * 1996-09-25 1998-04-14 Mitsubishi Heavy Ind Ltd Underwater aeration device
JP2002001386A (en) * 2000-06-16 2002-01-08 Kurita Water Ind Ltd Aerator
JP2003530989A (en) * 2000-04-12 2003-10-21 プレミア ウェイストウォーター インターナショナル,インコーポレイテッド Differential ejector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51124858A (en) * 1975-04-22 1976-10-30 Fuoogerubutsushiyu Gmbh Device that mix gas into liquid
JPS5459499U (en) * 1977-10-01 1979-04-24
JPS55122896U (en) * 1979-02-22 1980-09-01
JPS5647798U (en) * 1979-09-20 1981-04-28
JPS5811027A (en) * 1981-07-14 1983-01-21 Aimu Denki Kogyo Kk Gas-liquid mixing process for deep tank
JPS5840132A (en) * 1981-09-01 1983-03-09 Ataka Kogyo Kk Gas-liquid mixing apparatus
JPH0564800A (en) * 1991-09-07 1993-03-19 Hirobumi Onari Apparatus for purifying closed natural water region
JPH06505432A (en) * 1991-12-02 1994-06-23 テクノロジカル リソーシィズ プロプライエタリー リミテッド reactor
JPH1094792A (en) * 1996-09-25 1998-04-14 Mitsubishi Heavy Ind Ltd Underwater aeration device
JP2003530989A (en) * 2000-04-12 2003-10-21 プレミア ウェイストウォーター インターナショナル,インコーポレイテッド Differential ejector
JP2002001386A (en) * 2000-06-16 2002-01-08 Kurita Water Ind Ltd Aerator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11521807B2 (en) 2018-07-13 2022-12-06 Abb Schweiz Ag Heat sink for a high voltage switchgear

Similar Documents

Publication Publication Date Title
JP2007237153A (en) Air mixing and agitation technology
WO2013038748A1 (en) Air diffusing method provided with hydroelectric power generating device and air diffuser
JP3925711B2 (en) Oxygen supply device for water
JP2010101149A (en) Bubble preventing water channel structure for water discharge passage in power station
Wu et al. Air entrainment of hydraulic jump aeration basin
JP4374069B2 (en) Microbubble diffusion device and method
Majid et al. On the performance of venturi-porous pipe microbubble generator with inlet angle of 20° and outlet angle of 12°
KR101683601B1 (en) An oxygen dissolving apparatus with improved structure
JP2011020043A (en) Aeration method and water drop pipe
JP2006305494A (en) Oxygen dissolving system
Park et al. An experimental investigation of the flow and mass transfer behavior in a vertical aeration process with orifice ejector
JP2007196108A (en) Water quality improvement method and its apparatus
JP4518235B2 (en) Water purification system
CN205359316U (en) Foam bathtub
RU138311U1 (en) WATER DISCHARGE
JP4420452B2 (en) Water flow generation agitator
Raikar et al. Use of hydraulic phenomena in enhancement of dissolved oxygen concentration
US20180078910A1 (en) Artificial-whirlpool generator
Baylar et al. Study of aeration efficiency at weirs
CN105417682B (en) A kind of reoxygenation devices and methods therefor of unpowered river surface water
TW201825413A (en) Improved submerged type heating and aerating device for pond solving problems including having too strong water flow produced by unidirectional jetting and submerged aerating device, single direction, and poor diffusion effect when using an impeller jetting and submerged aerating device
KR100653595B1 (en) Apparatus and method for water transfering from surface to deep place
KR200475766Y1 (en) Water quality improvement apparatus using aeration and the flow of water
KR101193250B1 (en) Diffuser for creation of density stratification and creation apparatus with the same, creation method of density stratification
CN205442804U (en) Reoxygenation device of unpowered river surface water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022