JP6968405B2 - Gas-liquid mixing nozzle - Google Patents

Gas-liquid mixing nozzle Download PDF

Info

Publication number
JP6968405B2
JP6968405B2 JP2017114506A JP2017114506A JP6968405B2 JP 6968405 B2 JP6968405 B2 JP 6968405B2 JP 2017114506 A JP2017114506 A JP 2017114506A JP 2017114506 A JP2017114506 A JP 2017114506A JP 6968405 B2 JP6968405 B2 JP 6968405B2
Authority
JP
Japan
Prior art keywords
liquid
gas
chamber
swirling
introduction path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017114506A
Other languages
Japanese (ja)
Other versions
JP2018202375A (en
Inventor
一郎 手柴
康矢 田仲
Original Assignee
穂栄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 穂栄株式会社 filed Critical 穂栄株式会社
Priority to JP2017114506A priority Critical patent/JP6968405B2/en
Publication of JP2018202375A publication Critical patent/JP2018202375A/en
Application granted granted Critical
Publication of JP6968405B2 publication Critical patent/JP6968405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、粒径がナノメートルレベルの気泡(ナノバブル)を大量に含む液体を発生する機能を有する気液混合ノズルに関する。 The present invention relates to a gas-liquid mixing nozzle having a function of generating a liquid containing a large amount of bubbles (nano bubbles) having a particle size of nanometer level.

水中あるいはその他の液体中にマイクロバブルやナノバブルとも呼称される微細気泡を発生させる機能を有する器具や装置については、従来、様々な形状、構造を有するものが提案されているが、本発明に関連するものとして、例えば、特許文献1に記載された「微細気泡発生装置」あるいは特許文献2に記載された「高濃度気体溶解液の製造装置」などがある。 As for an instrument or device having a function of generating microbubbles or nanobubbles in water or other liquids, those having various shapes and structures have been conventionally proposed, but are related to the present invention. For example, there are the "micro bubble generator" described in Patent Document 1 and the "device for producing a high-concentration gas solution" described in Patent Document 2.

特許文献1に記載された「微細気泡発生装置」は、円筒形の第一の円筒状密閉容器と、気液混合流体の旋回可能な空間を有する円筒形第二の円筒状開放容器と、第一の円筒状密閉容器の内側面の接線方向に沿って気液混合流体を導入する導入口と、エジェクター導入口を備えた気液導入口と、第一の円筒状密閉容器のエジェクター導入口が配設された面と直交する底面壁と、その壁面と対向し、導入口の近くに位置する天井壁と、円筒形第二の円筒状開放容器の中心軸線に位置し、天井壁を貫通した気液吐出口を備えた第二の円筒状開放容器により構成され、気液混合流体に旋回力を加え、剪断力により気泡を微細化する機能を有している。 The "fine bubble generator" described in Patent Document 1 includes a first cylindrical closed container, a second cylindrical open container having a swirling space for a gas-liquid mixed fluid, and a second cylindrical open container. An introduction port for introducing a gas-liquid mixed fluid along the tangential direction of the inner surface of one cylindrical closed container, a gas-liquid introduction port provided with an ejector introduction port, and an ejector introduction port for the first cylindrical closed container. It was located on the bottom wall orthogonal to the arranged surface, the ceiling wall facing the wall surface and located near the inlet, and the central axis of the second cylindrical open container, and penetrated the ceiling wall. It is composed of a second cylindrical open container provided with a gas / liquid discharge port, and has a function of applying a swirling force to the gas / liquid mixed fluid and making bubbles finer by a shearing force.

特許文献2に記載された「高濃度気体溶解液の製造装置」は、円筒形の内側スペースを有する容器本体の一端側が壁体で閉口され、他端側がその中央部に前記円筒形の内側スペースの内径より小さな径の開口を有する壁体で覆われてなる容器本体と、前記一端側の壁体に開設された被溶解気体導入孔と、前記容器本体の円筒部の内壁面の一部に円周の接線方向に開設された加圧液体導入口とからなる旋回式気体溶解装置の前記他端側の壁体の中央部の開口に、一端部と他端部に開口部を有する壁体を備えた液体を貯留した別容器の一端部を結合して構成され、前記別容器他端部の開口部から高濃度気体溶解液を導出する機能を有する。 In the "device for producing a high-concentration gas solution" described in Patent Document 2, one end side of a container body having a cylindrical inner space is closed by a wall body, and the other end side is the cylindrical inner space in the central portion thereof. A container body covered with a wall having an opening with a diameter smaller than the inner diameter of the container body, a gas introduction hole to be dissolved provided in the wall body on one end side, and a part of the inner wall surface of the cylindrical portion of the container body. A wall body having an opening at one end and an opening at the other end of the opening at the center of the wall on the other end side of the swirl type gas melting device including a pressurized liquid introduction port opened in the tangential direction of the circumference. It is configured by connecting one end of another container for storing the liquid, and has a function of deriving a high-concentration gas solution from the opening of the other end of the other container.

特開2015−20165号公報Japanese Unexamined Patent Publication No. 2015-20165 特開2013−52319号公報Japanese Unexamined Patent Publication No. 2013-52319

特許文献1に記載された「微細気泡発生装置」は、粒径がマイクロメートルオーダーの気泡を効率的に発生させることができるという長所を有するが、マイクロメートルのレベルを超える大きな粒径の気泡が混在することがある。 The "fine bubble generator" described in Patent Document 1 has an advantage that bubbles having a particle size on the order of micrometers can be efficiently generated, but bubbles having a large particle size exceeding the micrometer level can be generated. May be mixed.

一方、特許文献2に記載された「高濃度気体溶解液の製造装置」は、液体中に気体を高効率で溶解することができるという長所を有するが、前述と同様、マイクロメートルのレベルを超える大きな粒径の気泡が混在することがある。また、この「高濃度気体溶解液の製造装置」は、特許文献2の[発明を実施するための形態]に記載されているように、加圧液体導入口に0.3MPaの加圧水を導入した場合、高濃度気体溶解液粒放出口から放出される高濃度気体溶解液流は水勢が強すぎて、空気中でシャワーなどとして利用することが困難となることがある。 On the other hand, the "device for producing a high-concentration gas solution" described in Patent Document 2 has an advantage that a gas can be dissolved in a liquid with high efficiency, but it exceeds the micrometer level as described above. Bubbles with a large particle size may be mixed. Further, in this "device for producing a high-concentration gas solution", 0.3 MPa of pressurized water was introduced into the pressurized liquid introduction port as described in [Mode for carrying out the invention] of Patent Document 2. In this case, the high-concentration gas-dissolving liquid flow discharged from the high-concentration gas-dissolving liquid particle outlet may have too strong water force, and it may be difficult to use it as a shower or the like in the air.

本発明の属する技術分野においては、液体に対する気体の溶解効率を高めること、及び、ナノメートルあるいはマイクロメートルのレベルを超える大きな粒径の気泡の混在を抑制することは、常に要請され続ける重要な解決課題である。 In the technical field to which the present invention belongs, it is an important solution that is always required to improve the dissolution efficiency of a gas in a liquid and to suppress the mixing of bubbles having a large particle size exceeding the nanometer or micrometer level. It is an issue.

そこで、本発明が解決しようとする課題は、液体に対する気体の溶解効率が高く、ナノメートルあるいはマイクロメートルのレベルを超える大きな粒径の気泡の混在が極めて少ない気液混合ノズルを提供することにある。 Therefore, an object to be solved by the present invention is to provide a gas-liquid mixing nozzle having high gas dissolution efficiency in a liquid and extremely little mixing of bubbles having a large particle size exceeding the nanometer or micrometer level. ..

本発明の気液混合ノズルは、外部から液体導入経路を経由して導入する液体によって液体旋回流を発生させる第一旋回室と、前記第一旋回室内の液体旋回流を流入させ外部から導入した気体と混合させて微細気泡混じりの気液旋回流を発生させる第二旋回室と、前記第二旋回室内の気液旋回流を流入させて乱流化する気液混合室と、前記気液混合室内の微細気泡混じりの気液混合流体を外部へ排出する所定口径の排出孔と、を備えたことを特徴とする。 The gas-liquid mixing nozzle of the present invention has a first swirling chamber that generates a liquid swirling flow by a liquid introduced from the outside via a liquid introduction path, and a liquid swirling flow in the first swirling chamber that is introduced from the outside. A second swirling chamber that mixes with a gas to generate a gas-liquid swirling flow mixed with fine bubbles, a gas-liquid mixing chamber that flows in the gas-liquid swirling flow in the second swirling chamber to turbulent flow, and the gas-liquid mixing chamber. It is characterized by being provided with a discharge hole having a predetermined diameter for discharging the gas-liquid mixed fluid mixed with fine bubbles in the room to the outside.

また、前記気液混合ノズルにおいては、
前記第一旋回室が、両方の端部に隔壁を有する第一筒状体と、一方の前記隔壁を貫通して前記第一筒状体内に向かって挿入された筒状の液体導入経路と、前記液体導入経路の軸心と捩れの位置をなす方向に沿って当該液体導入経路の周壁に開設された液体流出孔と、を備え、
前記第二旋回室が、両方の端部に隔壁を有し、少なくとも一方の端部側が前記第一筒状体内に収容保持された第二筒状体と、前記第一筒状体内に位置する前記第二筒状体の周壁にその軸心と捩れの位置をなす方向に沿って開設された液体導入孔と、前記第二筒状体内に気体を流入させる気体導入経路と、前記第二筒状体の他方の端部の隔壁に開設された貫通孔と、を備え、
前記気液混合室が、前記貫通孔を経由して前記第二筒状体内と連通する混合容器と、前記混合容器の隔壁に開設された複数の前記排出孔と、を備えたものとすることができる。
Further, in the gas-liquid mixing nozzle,
The first swivel chamber has a first cylindrical body having partition walls at both ends, and a tubular liquid introduction path that penetrates one of the partition walls and is inserted toward the first tubular body. A liquid outflow hole is provided in the peripheral wall of the liquid introduction path along a direction forming a twisting position with the axis of the liquid introduction path.
The second swivel chamber has a partition wall at both ends, and at least one end side is located in the first tubular body and the second tubular body accommodated and held in the first tubular body. A liquid introduction hole formed in the peripheral wall of the second cylinder along a direction forming a twisting position with its axis, a gas introduction path for allowing gas to flow into the second cylinder, and the second cylinder. With a through hole opened in the partition wall at the other end of the shape,
The gas-liquid mixing chamber shall be provided with a mixing container that communicates with the second tubular body via the through hole, and a plurality of the discharging holes opened in the partition wall of the mixing container. Can be done.

さらに、前記気液混合ノズルにおいては、
複数の前記排出孔を、前記混合容器の前記貫通孔と対向する隔壁面に仮想される複数の放射曲線に沿って並んだ状態に配列することができる。
Further, in the gas-liquid mixing nozzle,
The plurality of the discharge holes can be arranged in a state of being arranged along a plurality of radiation curves virtualized on the partition wall surface facing the through hole of the mixing container.

本発明により、液体に対する気体の溶解効率が高く、ナノメートルあるいはマイクロメートルのレベルを超える大きな粒径の気泡の混在が極めて少ない気液混合ノズルを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a gas-liquid mixing nozzle having high gas dissolution efficiency in a liquid and extremely little mixing of bubbles having a large particle size exceeding the nanometer or micrometer level.

本発明の実施形態である気液混合ノズルを示す斜視図である。It is a perspective view which shows the gas-liquid mixing nozzle which is an embodiment of this invention. 図1中のS−S線における断面図である。It is sectional drawing in the SS line in FIG. 図2中のT−T線における断面図である。It is sectional drawing in the TT line in FIG. 図2中のU−U線における断面図である。It is sectional drawing in the U-U line in FIG. 図2中の矢線V方向から見た気液混合ノズルの底面図である。It is a bottom view of the gas-liquid mixing nozzle seen from the arrow V direction in FIG. 図1に示す気液混合ノズルの使用事例を示す図である。It is a figure which shows the use example of the gas-liquid mixing nozzle shown in FIG.

以下、図1〜図6に基づいて、本発明の実施形態である気液混合ノズル100について説明する。図1〜図4に示すように、本実施形態の気液混合ノズル100は、外部から液体導入経路1を経由して導入する液体Rによって液体旋回流F1を発生させる第一旋回室10と、第一旋回室10内の液体旋回流F1を流入させ外部から気体導入経路50を経由して導入した気体Gと混合させて微細気泡AB混じりの気液旋回流F2を発生させる第二旋回室20と、第二旋回室20内の気液旋回流F2を流入させて乱流化する気液混合室30と、気液混合室30内の微細気泡AB混じりの気液混合流体F3を外部へ排出する所定口径の複数の排出孔40と、を備えている。 Hereinafter, the gas-liquid mixing nozzle 100 according to the embodiment of the present invention will be described with reference to FIGS. 1 to 6. As shown in FIGS. 1 to 4, the gas-liquid mixing nozzle 100 of the present embodiment includes a first swirl chamber 10 that generates a liquid swirl flow F1 by a liquid R introduced from the outside via the liquid introduction path 1. The second swirling chamber 20 that causes the liquid swirling flow F1 in the first swirling chamber 10 to flow in and mixes with the gas G introduced from the outside via the gas introduction path 50 to generate a gas-liquid swirling flow F2 mixed with fine bubbles AB. And, the gas-liquid mixing chamber 30 in which the gas-liquid swirling flow F2 in the second swirling chamber 20 is made to flow in and turbulent, and the gas-liquid mixing fluid F3 mixed with fine bubbles AB in the gas-liquid mixing chamber 30 are discharged to the outside. It is provided with a plurality of discharge holes 40 having a predetermined diameter.

図2,図3に示すように、第一旋回室10は、両方の端部に隔壁11a,11bを有する円筒状の第一筒状体11と、一方の隔壁11aを貫通して第一筒状体11内に向かって挿入された円筒状の液体導入経路1と、液体導入経路1の軸心1cと捩れの位置をなす方向に沿って液体導入経路1の周壁に開設された複数の液体流出孔2と、を備えている。第一筒状体11内に位置する液体導入経路1の先端部は蓋体3で閉塞されている。円管状の気体導入経路50は、液体導入経路1の筒状周壁を貫通し、軸心1cと同軸をなすように配管され、蓋体3を貫通して第二旋回室20内に連通している。本実施形態においては、液体導入経路1の液体流出孔2は軸心1cの周りに60度間隔で6個開設しているが、これに限定するものではない。 As shown in FIGS. 2 and 3, the first swivel chamber 10 has a cylindrical first cylindrical body 11 having partition walls 11a and 11b at both ends, and a first cylinder penetrating one partition wall 11a. A plurality of liquids opened on the peripheral wall of the liquid introduction path 1 along the direction forming a twisting position with the cylindrical liquid introduction path 1 inserted into the body 11 and the axial center 1c of the liquid introduction path 1. It is provided with an outflow hole 2. The tip of the liquid introduction path 1 located in the first tubular body 11 is closed by the lid body 3. The circular tubular gas introduction path 50 penetrates the tubular peripheral wall of the liquid introduction path 1, is piped so as to be coaxial with the axis 1c, penetrates the lid 3, and communicates with the inside of the second swivel chamber 20. There is. In the present embodiment, six liquid outflow holes 2 of the liquid introduction path 1 are provided around the axis 1c at intervals of 60 degrees, but the present invention is not limited to this.

図2,図4に示すように、第二旋回室20は、両方の端部に隔壁21a,21bを有し、一方の端部側(隔壁21a側)が第一筒状体11内に収容保持された円筒状の第二筒状体21と、第一筒状体11内に位置する第二筒状体21の周壁にその軸心21cと捩れの位置をなす方向に沿って開設された複数の液体導入孔22と、第二筒状体21内に気体Gを流入させる気体導入経路50と、第二筒状体21の他方の端部の隔壁21bの中心部(軸心21cを含む位置)に開設された円形の貫通孔23と、を備えている。 As shown in FIGS. 2 and 4, the second swivel chamber 20 has partition walls 21a and 21b at both ends, and one end side (partition wall 21a side) is housed in the first cylindrical body 11. It was opened on the peripheral wall of the held cylindrical second cylindrical body 21 and the second tubular body 21 located in the first tubular body 11 along the direction forming a twisting position with the axis 21c thereof. A plurality of liquid introduction holes 22, a gas introduction path 50 for allowing gas G to flow into the second cylindrical body 21, and a central portion (axis center 21c) of the partition wall 21b at the other end of the second cylindrical body 21. It is provided with a circular through hole 23 provided at the position).

本実施形態において、第二筒状体21の複数の液体導入孔22は口径3mmであり、これらの液体導入孔22を、軸心21cの周りに約70度の間隔をおいて、且つ、軸心21c方向に沿って所定距離ずつ変位させて配置している。これにより、複数の液体導入孔22は、軸心21cを中心とする螺旋に沿って所定間隔ごとに並ぶように配列されているが、これに限定するものではない。 In the present embodiment, the plurality of liquid introduction holes 22 of the second tubular body 21 have a diameter of 3 mm, and these liquid introduction holes 22 are spaced about 70 degrees around the axis 21c and have a shaft. They are arranged so as to be displaced by a predetermined distance along the direction of the center 21c. As a result, the plurality of liquid introduction holes 22 are arranged so as to be arranged at predetermined intervals along a spiral centered on the axis 21c, but the present invention is not limited to this.

図1,図2に示すように、気液混合室30は、貫通孔23を経由して第二筒状体21内と連通する円筒状の混合容器31と、第二筒状体21の隔壁21bと対向する位置にある、混合容器31の隔壁(底板41)に開設された複数の排出孔40と、を備えている。図5に示すように、複数の排出孔40は、底板41面に仮想される複数の放射曲線Lに沿って並んだ状態に配列されている。本実施形態では、5本の放射曲線Lに沿って、口径2mmの排出孔40を21個開設しているが、これに限定するものではない。 As shown in FIGS. 1 and 2, the gas-liquid mixing chamber 30 has a cylindrical mixing container 31 that communicates with the inside of the second tubular body 21 via a through hole 23, and a partition wall of the second tubular body 21. It is provided with a plurality of discharge holes 40 opened in the partition wall (bottom plate 41) of the mixing container 31 at a position facing the 21b. As shown in FIG. 5, the plurality of discharge holes 40 are arranged in a state of being arranged along a plurality of radiation curves L virtualized on the bottom plate 41 surface. In the present embodiment, 21 discharge holes 40 having a diameter of 2 mm are provided along the five radiation curves L, but the present invention is not limited to this.

図1,図2に示すように、気液混合ノズル100においては、一本の円筒部材5内に、貫通孔23を有する円板部材4を、当該円筒部材5内を横断する状態で固着することにより、第一旋回室10及び気液混合室30を区画形成している。また、第一筒状体11内において、第二筒状体21の下端開口部21dを円板部材4に固着して第二旋回室20を形成したことにより、円板部材4は、第一旋回室10の隔壁11b及び第二旋回室20の隔壁21bの機能を兼備している。なお、前述した構造は一例であり、これに限定するものではない。 As shown in FIGS. 1 and 2, in the gas-liquid mixing nozzle 100, the disk member 4 having the through hole 23 is fixed in one cylindrical member 5 in a state of crossing the inside of the cylindrical member 5. As a result, the first swivel chamber 10 and the gas-liquid mixing chamber 30 are partitioned. Further, in the first tubular body 11, the lower end opening 21d of the second tubular body 21 is fixed to the disc member 4 to form the second swivel chamber 20, so that the disc member 4 is first. It also has the functions of the partition wall 11b of the swivel chamber 10 and the partition wall 21b of the second swivel chamber 20. The above-mentioned structure is an example and is not limited to this.

次に、図6に基づいて、図1に示す気液混合ノズル100の使い方及び機能などについて説明する。図6に示すように、水槽60内に貯留された水Wの中に気液混合ノズル100が浸漬され、気液混合ノズル100の液体導入経路1とポンプPとが送水管62で接続されている。また、ポンプPから水槽60内の水Wの中に向かって吸水管61が配管されている。気液混合ノズル100の気体導入経路50の上流側(気体送給側)は水面W1から突出して水槽60外に配設されている。 Next, the usage and function of the gas-liquid mixing nozzle 100 shown in FIG. 1 will be described with reference to FIG. As shown in FIG. 6, the gas-liquid mixing nozzle 100 is immersed in the water W stored in the water tank 60, and the liquid introduction path 1 of the gas-liquid mixing nozzle 100 and the pump P are connected by a water pipe 62. There is. Further, a water absorption pipe 61 is piped from the pump P toward the water W in the water tank 60. The upstream side (gas feeding side) of the gas introduction path 50 of the gas-liquid mixing nozzle 100 protrudes from the water surface W1 and is arranged outside the water tank 60.

気液混合ノズル100及びポンプPを図6に示すようにセットした後、ポンプPを稼働させると、水槽60内の水Wが吸水管61及び送水管62を経由して、気液混合ノズル100の液体導入経路1へ供給される。これと並行して、気液混合ノズル100に対し、気体導入経路50を経由して空気が供給される。この場合、空気体導入経路50を経由して供給される空気は、後述するように、第二旋回室20(図2参照)の内部に生じる減圧に基づく吸気圧によって自吸される。 After setting the gas-liquid mixing nozzle 100 and the pump P as shown in FIG. 6, when the pump P is operated, the water W in the water tank 60 passes through the water absorption pipe 61 and the water supply pipe 62, and the gas-liquid mixing nozzle 100 It is supplied to the liquid introduction path 1 of. In parallel with this, air is supplied to the gas-liquid mixing nozzle 100 via the gas introduction path 50. In this case, the air supplied via the air body introduction path 50 is self-sucked by the intake pressure based on the decompression generated inside the second swirl chamber 20 (see FIG. 2), as will be described later.

液体導入経路1を経由して気液混合ノズル100に供給された水Wは、図2に示すように、液体導入経路1の蓋体3に向かって流動した後、複数の液体流出孔2から第一旋回室10内へ流出する。図3に示すように、複数の液体流出孔2はそれぞれ軸心1cに対して捩れの位置をなす方向(本実施形態では、前記方向の一つである液体導入経路1の周壁の接線方向)に沿って開設されているので、複数の液体流出孔2から流出する水流により、第一旋回室10内には液体旋回流F1が形成される。 As shown in FIG. 2, the water W supplied to the gas-liquid mixing nozzle 100 via the liquid introduction path 1 flows toward the lid 3 of the liquid introduction path 1 and then flows from the plurality of liquid outflow holes 2. It flows out into the first swivel chamber 10. As shown in FIG. 3, the plurality of liquid outflow holes 2 each have a twisting position with respect to the axis 1c (in the present embodiment, the tangential direction of the peripheral wall of the liquid introduction path 1 which is one of the above directions). The liquid swirling flow F1 is formed in the first swirling chamber 10 by the water flow flowing out from the plurality of liquid outflow holes 2.

この後、第一旋回室10内に形成される液体旋回流F1は、図2,図4に示すように、第二旋回室20の周囲を旋回しながら、複数の液体導入孔22を通過して第二旋回室20内へ流入する。図4に示すように、複数の液体導入孔22はそれぞれ軸心21cに対して捩れの位置をなす方向(本実施形態では、前記方向の一つである液筒状体21の周壁の接線方向)に沿って開設されているので、複数の液体導入孔22から流入する水流によって第二旋回室20内に軸心21c周りの旋回水流が発生するとともに、気体導入経路50から導入される空気と混合した気液旋回流F2が形成される。 After that, the liquid swirling flow F1 formed in the first swirling chamber 10 passes through the plurality of liquid introduction holes 22 while swirling around the second swirling chamber 20, as shown in FIGS. 2 and 4. And flows into the second swivel chamber 20. As shown in FIG. 4, the plurality of liquid introduction holes 22 each have a twisting position with respect to the axis 21c (in the present embodiment, the tangential direction of the peripheral wall of the liquid cylinder 21 which is one of the above directions). ), The water flow flowing from the plurality of liquid introduction holes 22 generates a swirling water flow around the axis 21c in the second swirl chamber 20, and also with the air introduced from the gas introduction path 50. A mixed gas-liquid swirling flow F2 is formed.

第二旋回室20内に形成される気液旋回流F2は軸心21cの周りを高速回転するので、気液旋回流F2の中心付近(軸心21cを含む領域)には減圧空洞部Xが発生する。気体導入経路50を経由して第二旋回室20内へ導入された空気は減圧空洞部X内へ流入し、高速回転する気液旋回流F2によって細かく剪断されるので、気液旋回流F2内には大量の微細気泡ABが発生する。 Since the gas-liquid swirling flow F2 formed in the second swirling chamber 20 rotates at high speed around the axis 21c, the decompression cavity portion X is located near the center of the gas-liquid swirling flow F2 (the region including the axis 21c). appear. The air introduced into the second swirling chamber 20 via the gas introduction path 50 flows into the decompression cavity portion X and is finely sheared by the gas-liquid swirling flow F2 rotating at high speed, so that the air is finely sheared in the gas-liquid swirling flow F2. A large amount of fine bubbles AB are generated in.

大量の微細気泡ABを含む気液旋回流F2は隔壁21bに向かって流動し、隔壁21bの中心にある貫通孔23を通過し、大量の微細気泡ABを含む気液混合流体F3の乱流となって気液混合室30内を拡散流動する。このとき、前記乱流の撹拌作用により、大量の微細気泡ABは気液混合流体F3内に均等に分散混合された状態となる。 The gas-liquid swirling flow F2 containing a large amount of fine bubbles AB flows toward the partition wall 21b, passes through the through hole 23 in the center of the partition wall 21b, and becomes a turbulent flow of the gas-liquid mixed fluid F3 containing a large amount of fine bubbles AB. Then, it diffuses and flows in the gas-liquid mixing chamber 30. At this time, due to the stirring action of the turbulent flow, a large amount of fine bubbles AB are uniformly dispersed and mixed in the gas-liquid mixing fluid F3.

気液混合室30内において撹拌混合された気液混合流体F3は、図2に示すように、底板41に開設された複数の排出孔40を通過して排出され、水槽60内の水Wの中へ拡散流動して行く。これにより、水W中に大量の空気を溶解させることができる。 As shown in FIG. 2, the gas-liquid mixing fluid F3 stirred and mixed in the gas-liquid mixing chamber 30 is discharged through a plurality of discharge holes 40 provided in the bottom plate 41, and the water W in the water tank 60 is discharged. It spreads and flows in. This makes it possible to dissolve a large amount of air in the water W.

本実施形態の気液混合ノズル100においては、排出孔40の口径は2mmに設定しているので、気液混合室30内の気液混合流体F3中に粒径2mmを超える大粒径の気泡Bが発生することがあっても、気液混合ノズル100の外部(水Wの中)へ排出されることはない。なお、排出孔40の口径は2mmに限定するものではないので、使用状況などに応じて適切な口径に設定することができる。 In the gas-liquid mixing nozzle 100 of the present embodiment, since the diameter of the discharge hole 40 is set to 2 mm, bubbles having a large particle size exceeding 2 mm are contained in the gas-liquid mixing fluid F3 in the gas-liquid mixing chamber 30. Even if B is generated, it is not discharged to the outside (inside the water W) of the gas-liquid mixing nozzle 100. Since the diameter of the discharge hole 40 is not limited to 2 mm, it can be set to an appropriate diameter according to the usage situation and the like.

また、本実施形態の気液混合ノズル100においては、第二旋回室20(図2参照)の内部に生じる減圧に基づく吸気圧により、空気は気体導入経路50を経由して第二旋回室20内へ自吸されるが、必要に応じてエアポンプ(図示せず)を用いて圧送することもできる。 Further, in the gas-liquid mixing nozzle 100 of the present embodiment, air is sent to the second swirl chamber 20 via the gas introduction path 50 due to the intake pressure based on the decompression generated inside the second swirl chamber 20 (see FIG. 2). Although it is self-sucked inward, it can also be pumped using an air pump (not shown) if necessary.

本実施形態の気液混合ノズル100においては、第一旋回室10内に液体旋回流F1を発生させ、これを第二旋回室20内へ流入させることにより、高速で回転する気液旋回流F2を形成するので、大量の微細気泡ABを効率良く発生させることができ、気体の溶解効率が高まる。第一旋回室10内で発生させた液体旋回流F1を第二旋回室20内へ導入する方式としたことにより、第二旋回室20内の気液旋回流F2の旋回流速を高めることができるため、従来に比べて小型のポンプPでも大量の微細気泡ABを発生させることができる。 In the gas-liquid mixing nozzle 100 of the present embodiment, the liquid swirling flow F1 is generated in the first swirling chamber 10 and flows into the second swirling chamber 20, so that the gas-liquid swirling flow F2 rotates at high speed. Therefore, a large amount of fine bubbles AB can be efficiently generated, and the gas dissolution efficiency is increased. By introducing the liquid swirling flow F1 generated in the first swirling chamber 10 into the second swirling chamber 20, the swirling flow velocity of the gas-liquid swirling flow F2 in the second swirling chamber 20 can be increased. Therefore, even a pump P smaller than the conventional one can generate a large amount of fine bubbles AB.

また、気液混合ノズル100においては、気液混合室30の底板41に開設された複数の流出孔40を通して微細気泡AB混じりの気液混合流体F3を排出するので、排出孔40より排出される微細気泡AB混じりの気液混合流体F3中に粒径の大きな気泡Bが混在するのを防止することができる。このように、気液混合ノズル100を使用することにより、液体(例えば、水)に対する気体(例えば、空気)の溶解効率を大幅に高めることができる。 Further, in the gas-liquid mixing nozzle 100, the gas-liquid mixed fluid F3 mixed with fine bubbles AB is discharged through the plurality of outflow holes 40 provided in the bottom plate 41 of the gas-liquid mixing chamber 30, so that the gas-liquid mixing fluid F3 is discharged from the discharge holes 40. It is possible to prevent bubbles B having a large particle size from being mixed in the gas-liquid mixed fluid F3 mixed with fine bubbles AB. As described above, by using the gas-liquid mixing nozzle 100, the dissolution efficiency of the gas (for example, air) in the liquid (for example, water) can be significantly increased.

図6に示すように、気液混合ノズル100を用いて処理した水槽60中の水Wには大量の空気が溶解しているため、この水Wを植物栽培用水として使用すると、植物の生育状態を大幅に向上させることができる。例えば、気液混合ノズル100を用いて処理した水Wをトマトの水耕栽培用水として使用したり、サツマイモ苗を水Wに一定時間浸漬して培地に植えたりしたところ、いずれの場合においても、収穫量を大幅に高めることができた。 As shown in FIG. 6, since a large amount of air is dissolved in the water W in the water tank 60 treated by using the gas-liquid mixing nozzle 100, when this water W is used as water for plant cultivation, the growing state of the plant Can be greatly improved. For example, the water W treated using the gas-liquid mixing nozzle 100 was used as water for hydroponic cultivation of tomatoes, or the sweet potato seedlings were immersed in the water W for a certain period of time and planted in a medium. We were able to significantly increase the yield.

なお、図6においては、気液混合ノズル100を用いて水槽60中の水Wに空気を溶解させる場合について説明しているが、気液混合ノズル100の用途を限定するものではないので、気液混合ノズル100は、水W以外の液体に対し、空気以外の様々な気体を溶解させる分野においても使用することができる。 Note that FIG. 6 describes a case where the gas-liquid mixing nozzle 100 is used to dissolve air in the water W in the water tank 60, but the application of the gas-liquid mixing nozzle 100 is not limited. The liquid mixing nozzle 100 can also be used in the field of dissolving various gases other than air in a liquid other than water W.

本実施形態に係る気液混合ノズル100は、外部から液体導入経路1を経由して導入する液体Rの圧力が0.02MPa程度の低圧であっても、気体導入経路50を経由する気体の自吸が始まり微細気泡の発生が可能である。従って、水道水、省電力の安価なポンプで利用できるので、利用分野が大きく広がる。 The gas-liquid mixing nozzle 100 according to the present embodiment is a gas self that passes through the gas introduction path 50 even if the pressure of the liquid R introduced from the outside via the liquid introduction path 1 is as low as about 0.02 MPa. Suction starts and fine bubbles can be generated. Therefore, it can be used with tap water and inexpensive pumps that save power, and the fields of application are greatly expanded.

また、気液混合ノズル100は、液体導入経路1を経由して導入する液体Rの圧力(水圧)が0.1MPa以下であっても使用することができるので、シャワーなどとしても、安全に使用することができる。 Further, since the gas-liquid mixing nozzle 100 can be used even if the pressure (water pressure) of the liquid R introduced via the liquid introduction path 1 is 0.1 MPa or less, it can be safely used as a shower or the like. can do.

気液混合ノズル100においては、第一旋回室10を設けたことにより、第二旋回室20への液体導入孔22を複数設けることが可能となり、0.02MPa程度の水圧でも、第二旋回室20内の旋回流が乱れることなく生成される。一方、特許文献2記載の発明においては、同文献中の図1に記載されているように、加圧液体導入口4が1箇所であるため、円筒部2a内に旋回流を乱れることなく発生させるには、必然的に、加圧液体導入口4に供給する液体の圧力を高める必要がある。 By providing the first swivel chamber 10 in the gas-liquid mixing nozzle 100, it is possible to provide a plurality of liquid introduction holes 22 into the second swivel chamber 20, and even with a water pressure of about 0.02 MPa, the second swirl chamber 20 can be provided. The swirling flow in 20 is generated without being disturbed. On the other hand, in the invention described in Patent Document 2, as shown in FIG. 1 in the same document, since the pressurized liquid introduction port 4 is provided at one place, the swirling flow is not disturbed in the cylindrical portion 2a. Inevitably, it is necessary to increase the pressure of the liquid supplied to the pressurized liquid introduction port 4.

気液混合ノズル100においては、第二旋回室20から気液混合室30へ流入した気液中の気体が過剰になり気液混合室30内で滞留すると、第二旋回室20内の減圧空洞部Xと連通し、減圧が解消されると吸気圧も解消され、気体導入経路50からの気体Gの供給がストップするので、気体Gの過剰状態が防止され、大径の気泡の発生を防止することができる。このため、気液混合ノズル100の排出孔40から排出される気液混合流体F3においては、大きな粒径の気泡の混在が極めて少ない。また、気液混合ノズル100においては、気体Gの供給量が常に自動調整されるので、気体Gの供給量を調整するためのコック(開閉弁)なども不要である。 In the gas-liquid mixing nozzle 100, when the gas in the gas-liquid flowing from the second swirl chamber 20 into the gas-liquid mixing chamber 30 becomes excessive and stays in the gas-liquid mixing chamber 30, the decompression cavity in the second swirl chamber 20 When the depressurization is eliminated by communicating with the part X, the intake pressure is also eliminated and the supply of the gas G from the gas introduction path 50 is stopped, so that the excess state of the gas G is prevented and the generation of large-diameter bubbles is prevented. can do. Therefore, in the gas-liquid mixing fluid F3 discharged from the discharge hole 40 of the gas-liquid mixing nozzle 100, the mixture of bubbles having a large particle size is extremely small. Further, in the gas-liquid mixing nozzle 100, since the supply amount of the gas G is always automatically adjusted, a cock (on-off valve) for adjusting the supply amount of the gas G is unnecessary.

気液混合ノズル100をシャワーなどとして使用する場合は、液体導入経路1に供給する水圧を弱め、前記機能を積極的に利用することにより、気液混合ノズル100の排出孔40から排出される水流(気液混合流体F3)に脈動を発生させることができるため、心地良いマッサージ効果を得ることができる。 When the gas-liquid mixing nozzle 100 is used as a shower or the like, the water pressure supplied to the liquid introduction path 1 is weakened, and the water flow discharged from the discharge hole 40 of the gas-liquid mixing nozzle 100 is positively used. Since pulsation can be generated in (gas-liquid mixed fluid F3), a comfortable massage effect can be obtained.

また、図1〜図6に基づいて説明した気液混合ノズル100及びその使い方や用途などは一例を示すものであり、本発明の気混合ノズル及びその使い方や用途などは、前述した気液混合ノズル100に限定されない。 Further, the gas-liquid mixing nozzle 100 described with reference to FIGS. 1 to 6 and its usage and use are shown as examples, and the gas-liquid mixing nozzle of the present invention and its usage and use are described above. It is not limited to the nozzle 100.

本発明に係る気液混合ノズルは、農作物の栽培用水、畜産動物の飲料用水、魚介類の養殖用水などとして使用するナノバブル水の製造手段として、農林水産業や畜産業などの産業分野において広く利用することができる。 The gas-liquid mixing nozzle according to the present invention is widely used in industrial fields such as agriculture, forestry and fisheries and livestock industry as a means for producing nanobubble water used as water for cultivation of agricultural products, drinking water for livestock animals, and water for aquaculture of fish and shellfish. can do.

1 液体導入経路
1c,21c 軸心
2 液体流出孔
3 蓋体
4 円板部材
5 円筒部材
10 第一旋回室
11 第一筒状体
11a,11b,21a,21b 隔壁
20 第二旋回室
21 第二筒状体
21d 下端開口部
22 液体導入孔
23 貫通孔
30 気液混合室
31 混合容器
40 排出孔
41 底板
50 気体導入経路
60 水槽
61 吸水管
62 送水管
100 気液混合ノズル
AB 微細気泡
B 気泡
F1 液体旋回流
F2 気液旋回流
F3 気液混合流体
G 気体
L 放射曲線
P ポンプ
R 液体
W 水
W1 水面
X 減圧空洞部
1 Liquid introduction path 1c, 21c Axial center 2 Liquid outflow hole 3 Lid 4 Disc member 5 Cylindrical member 10 First swivel chamber 11 First tubular body 11a, 11b, 21a, 21b Partition wall 20 Second swivel chamber 21 Second Cylindrical body 21d Lower end opening 22 Liquid introduction hole 23 Through hole 30 Gas-liquid mixing chamber 31 Mixing container 40 Discharge hole 41 Bottom plate 50 Gas introduction route 60 Water tank 61 Water absorption pipe 62 Water supply pipe 100 Gas-liquid mixing nozzle AB Fine bubbles B Bubbles F1 Liquid swirling flow F2 Gas-liquid swirling flow F3 Gas-liquid mixed fluid G Gas L Radiation curve P Pump R Liquid W Water W1 Water surface X Decompression cavity

Claims (2)

外部から液体導入経路を経由して導入する液体によって液体旋回流を発生させる第一旋回室と、前記第一旋回室内の液体旋回流を流入させ外部から導入した気体と混合させて微細気泡混じりの気液旋回流を発生させる第二旋回室と、前記第二旋回室内の気液旋回流を流入させて乱流化する気液混合室と、前記気液混合室内の微細気泡混じりの気液混合流体を外部へ排出する所定口径の排出孔と、を備え
前記第一旋回室が、両方の端部に隔壁を有する第一筒状体と、一方の前記隔壁を貫通して前記第一筒状体内に向かって挿入された筒状の液体導入経路と、前記液体導入経路の軸心と捩れの位置をなす方向に沿って当該液体導入経路の周壁に開設された液体流出孔と、を備え、
前記第二旋回室が、両方の端部に隔壁を有し、少なくとも一方の端部側が前記第一筒状体内に収容保持された第二筒状体と、前記第一筒状体内に位置する前記第二筒状体の周壁にその軸心と捩れの位置をなす方向に沿って開設された液体導入孔と、前記第二筒状体内に気体を流入させる気体導入経路と、前記第二筒状体の他方の端部の隔壁に開設された貫通孔と、を備え、
前記気液混合室が、前記貫通孔を経由して前記第二筒状体内と連通する混合容器と、前記混合容器の隔壁に開設された複数の前記排出孔と、を備えた気液混合ノズル。
The first swirling chamber that generates a liquid swirling flow by the liquid introduced from the outside via the liquid introduction path and the liquid swirling flow in the first swirling chamber are mixed with the gas introduced from the outside and mixed with fine bubbles. A second swirling chamber that generates a swirling flow of gas and liquid, a gas-liquid mixing chamber that flows in the swirling flow of gas and liquid in the second swirling chamber to form a turbulent flow, and a gas-liquid mixing mixture of fine bubbles in the swirling chamber. Equipped with a discharge hole of a predetermined diameter for discharging the liquid to the outside ,
The first swivel chamber has a first cylindrical body having partition walls at both ends, and a tubular liquid introduction path that penetrates one of the partition walls and is inserted toward the first tubular body. A liquid outflow hole is provided in the peripheral wall of the liquid introduction path along a direction forming a twisting position with the axis of the liquid introduction path.
The second swivel chamber has a partition wall at both ends, and at least one end side is located in the first tubular body and the second tubular body accommodated and held in the first tubular body. A liquid introduction hole formed in the peripheral wall of the second cylinder along a direction forming a twisting position with its axis, a gas introduction path for allowing gas to flow into the second cylinder, and the second cylinder. With a through hole opened in the partition wall at the other end of the shape,
A gas-liquid mixing nozzle provided with a mixing container in which the gas-liquid mixing chamber communicates with the second tubular body via the through hole, and a plurality of the discharging holes provided in the partition wall of the mixing container. ..
複数の前記排出孔を、前記混合容器の前記貫通孔と対向する隔壁面に仮想される複数の放射曲線に沿って並んだ状態に配列した請求項記載の気液混合ノズル。 A plurality of said discharge hole, the through hole facing the gas-liquid mixing nozzle of claim 1, wherein arranged in a state aligned along a plurality of radiation curve is virtually a partition wall surface of the mixing vessel.
JP2017114506A 2017-06-09 2017-06-09 Gas-liquid mixing nozzle Active JP6968405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017114506A JP6968405B2 (en) 2017-06-09 2017-06-09 Gas-liquid mixing nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017114506A JP6968405B2 (en) 2017-06-09 2017-06-09 Gas-liquid mixing nozzle

Publications (2)

Publication Number Publication Date
JP2018202375A JP2018202375A (en) 2018-12-27
JP6968405B2 true JP6968405B2 (en) 2021-11-17

Family

ID=64955779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017114506A Active JP6968405B2 (en) 2017-06-09 2017-06-09 Gas-liquid mixing nozzle

Country Status (1)

Country Link
JP (1) JP6968405B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114314824B (en) * 2021-12-15 2023-11-03 深圳市益嘉昇科技有限公司 Device and method for treating denitrification and anoxic wastewater
JP7442846B2 (en) 2022-01-28 2024-03-05 穂栄株式会社 Gas solution generation device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794952B2 (en) * 2001-12-13 2006-07-12 株式会社 多自然テクノワークス Swivel type micro bubble generator
JP3765759B2 (en) * 2002-02-04 2006-04-12 株式会社 多自然テクノワークス Microbubble generator
JP2005034814A (en) * 2003-07-18 2005-02-10 Tashizen Techno Works:Kk Fine bubble generator
JP4980765B2 (en) * 2007-03-26 2012-07-18 株式会社仲田コーティング Fine bubble generator, cleaning device using the same, showering device, ginger
JP4652478B1 (en) * 2010-07-07 2011-03-16 大巧技研有限会社 Micro bubble generator
JP5844577B2 (en) * 2011-08-31 2016-01-20 株式会社ナノプラネット High concentration gas solution manufacturing equipment
JP6048648B2 (en) * 2012-10-11 2016-12-21 パナソニックIpマネジメント株式会社 shower head

Also Published As

Publication number Publication date
JP2018202375A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
EP3130395B1 (en) Loop flow bubble-generating nozzle
KR100739922B1 (en) Fine air bubble generator and fine air bubble generating device with the generator
JP6384765B2 (en) Microbubble forming method and microbubble forming apparatus
JP2003205228A (en) Turning type fine bubbles production apparatus
JP2000000447A (en) Swirling type fine bubble generator
JP2010155243A (en) Swirling type fine-bubble generating system
KR101667492B1 (en) Apparatus for generating micro bubbles
JP6157688B1 (en) Fine bubble liquid production equipment
JP6968405B2 (en) Gas-liquid mixing nozzle
JP4124956B2 (en) Fine bubble supply method and fine bubble supply device
JP2002059186A (en) Water-jet type fine bubble generator
JP3751308B1 (en) Mixer and mixing apparatus using the same
JPH11333491A (en) Microbubble jet water purifying apparatus
JP2011115674A (en) Micronization mixer
KR200497600Y1 (en) Connector for nano bubble generator
JP5785158B2 (en) Microbubble generator
JP3494587B2 (en) Liquid quality reformer
JP2006043636A (en) Fine bubble generating apparatus
JP5611387B2 (en) Refinement mixing equipment
JP5294434B2 (en) Refinement mixing equipment
JP2009178702A (en) Gas-liquid mixing equipment
KR20200139373A (en) Dissolving device for Nano-bubble
WO2002002216A1 (en) Method and device for feeding fine bubbles
KR20210016978A (en) Nabo bubble water drain nozzle
KR20200007178A (en) Micro bubble generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211020

R150 Certificate of patent or registration of utility model

Ref document number: 6968405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150