JPH0733580B2 - 立方晶系窒化ホウ素膜の製造方法 - Google Patents

立方晶系窒化ホウ素膜の製造方法

Info

Publication number
JPH0733580B2
JPH0733580B2 JP21235086A JP21235086A JPH0733580B2 JP H0733580 B2 JPH0733580 B2 JP H0733580B2 JP 21235086 A JP21235086 A JP 21235086A JP 21235086 A JP21235086 A JP 21235086A JP H0733580 B2 JPH0733580 B2 JP H0733580B2
Authority
JP
Japan
Prior art keywords
cbn
gas
boron nitride
boron
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21235086A
Other languages
English (en)
Other versions
JPS6369973A (ja
Inventor
和彦 福島
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21235086A priority Critical patent/JPH0733580B2/ja
Publication of JPS6369973A publication Critical patent/JPS6369973A/ja
Publication of JPH0733580B2 publication Critical patent/JPH0733580B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/10Heating of the reaction chamber or the substrate
    • C30B25/105Heating of the reaction chamber or the substrate by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、切削工具、耐摩工具などの工具材料およびヒ
ートシンクなどの電子材料あるいはその他様々の用途が
期待されている高硬度、高絶縁性等の優れた特性を有す
る立方晶系窒化ホウ素膜の製造方法に関し、特に、気相
反応により立方晶系窒化ホウ素膜を基板上に析出させる
立方晶系窒化ホウ素膜の製造方法に関する。
従来の技術 窒化ホウ素は、通常、黒鉛に似た結晶構造〔六方晶系窒
化ホウ素膜〕(以下、HBNと略す)であり、柔らかくて
滑りやすい物質であるが、高温高圧下において黒鉛がダ
イヤモンドに転移するように窒化ホウ素もまた黒鉛型の
HBNからダイヤモンド型結晶構造の立方晶系窒化ホウ素
(以下、CBNと略す)に転移し、硬度、絶縁性、熱伝導
性、耐蝕性において優れた材料となることが知られてい
る。特に硬度においては、ダイヤモンドと互いに傷つけ
合う程の硬度をもち、しかも、ダイヤモンドにない高温
の鉄族金属に対する耐蝕性を有するため、高温で使用す
る切削工具や刃物などの材料として使用されている。さ
らに、CBNは、酸化シリコンと同程度の絶縁性を有して
おり熱伝導性においては酸化シリコンの3倍程度の熱伝
導度を有しているので、超LSIなどの基板あるいはヒー
トシンクなどの電子材料としても注目されている材料で
ある。
従来、このような優れた特性を有するCBNを製造するに
は、超高圧高温焼結法、すなわちHBNを超高圧発生装置
を用いて60Kbar以上の圧力をかけ、1500〜2000℃以上の
高温度下で触媒と共に溶融させる方法に頼らざるを得な
かった。
ところで、CBNの立方晶系結晶内において、窒素および
ホウ素原子は安定なSP3混成結合を形成していることが
知られている。このようなSP3混成結合について、窒素
およびホウ素を別々に原料として、超高圧高温焼結法を
用いないで形成するには、まず何らかの方法で窒素原子
およびホウ素原子の電子をSP3混成軌道を作るべく各々
の電子励起状態に励起する必要がある。次に、このよう
な電子励起状態の窒素原子およびホウ素原子が互いに衝
突する機会を与えることで、窒素およびホウ素原子間に
SP3混成結合が形成される。このような安定なSP3混成結
合を生じさせるための具体的な機構は未だ明らかにされ
ておらず、その糸口となるべきいくつかの説が唱えられ
ているにすぎない。
このような現状のもとに、近年、CBNおよび、超高圧高
温焼結法においてCBNと同時に得られる立方最密充填系
窒化ホウ素(以下、WBNと略す)を、上記の超高圧高温
焼結法を用いず、物理蒸着および/またはイオン照射な
どを使用して製造する方法が提案されている。
例えば、(i)ホウ素を含有する蒸発源から負のバイア
ス電圧を印加した基板上にホウ素を蒸着させると共に、
そこに質量分析機で分離された少なくとも窒素を含むイ
オン種を照射して、該基板上にCBNを生成されるCBNの製
造方法が提案されている〔特開昭60−181262号公報参
照〕。また、(ii)HCD(ホローカソード蒸着)法によ
り、電子線でホウ素を蒸発させながら、ホローアノード
において形成されたN2のイオン種を、高周波電圧を印加
してセルフバイアス効果を付与した基板に照射するCBN
の製造方法〔プロシーディング・9th・シンポジウム・
オン・イオン・ソース・イオン・アシステッド・テクノ
ロジー(Proceeding 9th Symposium on Ion Source Ion
Asisted Technology),・85,東京,(1985)参照〕、
さらに、(iii)ダイヤモンド状薄膜の製造に使用され
るイオン蒸着(ID)法を窒化ホウ素の製造方法に応用し
た方法、すなわちホウ素含有固体に電子線を照射してホ
ウ素を蒸発させ、それに窒素含有ガスを導入し、ホウ素
および窒素を同時にイオン化することにより基板表面に
CBNを生成させる方法〔真空、第28巻,第7号(1985)
参照〕等が提案されている。
発明が解決しようとする問題点 以上述べたように、CBNは切削工具材料、電子材料など
に適用するのに有利な各種の優れた特性を有しているこ
とから、これまでに上記の如く様々な製造技術が提案さ
れてきた。
しかし、上記(i)の方法は、イオンに5〜100KeVとい
う高い運動エネルギーを持たせる、イオンビームを集束
させる、特定のN2 +を選択する質量分離の機能を有する
等極めて複雑で高価な装置を必要とするという問題を有
していた。また、上記(ii)の方法および上記(iii)
の方法においては、ホウ素は融点と沸点が近いため電子
線照射することによって固体表面上において突沸を起こ
しやすく、電子線の制御が困難であるという問題を有し
ており、さらに前者においては反応装置に用いられる不
活性ガスが、析出する生成物中に混入しやすいという問
題を、一方、後者においては、得られたCBNの純度が比
較的低いという問題点も有していた。
そこで、本発明の目的は、CBNの製造において、イオン
ビーム、電子銃等の複雑な装置を要さず、簡略であり、
しかも不純物等の混入の可能性の低いCBNの製造方法を
提供することにある。
問題点を解決するための手段 本発明者らは、従来提案されていたCBNの製造方法にお
ける上記のような諸問題点を解決すべく、鋭意検討・研
究した結果、赤外線照射による予備加熱およびプラズマ
化という反応ガスの処理並びに基板の加熱という一連の
工程を組合わせることによって、窒素原子およびホウ素
原子の間に安定なSP3混成結合を生じさせ、基板上にCBN
を析出し得ることを見出した。
すなわち本発明はホウ素含有ガスおよび窒素含有ガスの
混合物を赤外線照射により300〜1500℃に予備加熱し、
次いで該混合物に高周波電圧を印加してプラズマ化し、
加熱した基板上にCBNを析出させる各工程を含むCBNの製
造方法を提供するものである。
本発明の方法においては、まず、ホウ素含有ガスおよび
窒素含有ガスを赤外線照射によって300〜1500℃に予備
加熱する。ここで用いる本発明の原料ガス、即ちホウ素
含有ガスとしては、例えばB2H6、BCl3、B3H6N3、BF3
が挙げられ、また勿論これらガスの混合物を使用するこ
ともできる。一方、窒素含有ガスとしては、例えばN2
NH3、低級アルキル基置換アンモニア、NO等、あるいは
これらの混合物が挙げられる。この工程において原料ガ
ス混合物は予備励起される。
これらの反応ガスにおいて、ホウ素含有ガスと窒素含有
ガスの混合比は、これらのガス成分中における窒素原子
に対するホウ素原子の割合(以下、B/Nと略す)が0.1〜
10の範囲となるように決めることが好ましい。B/Nが0.1
未満になると非晶質の窒化ホウ素が析出しやすくなり、
一方、10を越えるとホウ素が過剰となり、非晶質のホウ
素を基板上に析出しやすくなるのでいずれも好ましくな
い。これらの反応ガスであるホウ素含有ガスおよび窒素
含有ガスの全圧力および流量は、一般的に、赤外線で予
備加熱した後の工程である放電条件に支配される。
これらの反応ガスを予備加熱するための赤外線照射の手
段としては、通常、加熱に使用される赤外線源でよく、
例えば、赤外線ランプが挙げられ、このような赤外線源
により反応ガスの温度を300〜1500℃の範囲に調整する
ことが好ましい。この温度が300℃未満であると、目的
とするCBNを基板上に析出させることができず、他の晶
系が析出し、一方、1500℃を越えると石英等の反応容器
の材料が溶融するので好ましくない。
本発明の方法に従えば、次の工程として上記のように赤
外線照射により予備加熱され、予備励起された原料ガス
混合物に高周波電圧を印加する。これによって原料ガス
混合物がプラズマ化し、更に励起、解離、イオン化を生
じ、様々な分子種、原子種となり、加熱された基板の熱
エネルギーの作用によって特に化学的に活性な遊離ホウ
素および窒素とが反応して安定なSP3結合を形成し、立
方晶系窒化ホウ素として基板状に堆積される。この工程
において、高周波電圧印加条件としては原料ガス圧0.01
〜100Torr、高周波周波数1KHz〜13.56MHzとすることが
好ましい。また、十分な活性化を達成するためには高周
波印加領域での原料ガスの滞留時間は10-2〜1Sとするこ
とが有利であり、この条件を満たすように原料ガス流
量、高周波電圧印加領域の幅等を調節する。
本発明の製造方法の目的とするCBNを析出させる基板に
おいて、基板の温度を300〜2000℃に加熱することが必
要であり、この温度範囲外であると基板上にCBN以外の
晶系の窒化ホウ素や非晶質の窒化ホウ素が析出する。基
板を上記の温度に加熱するには、通常、加熱用ヒーター
を基板の下部に設置するのが好ましい。基板の材料とし
ては、上記の加熱条件で溶融しないものがよく、例え
ば、タングステン、シリコンウエーハ、モリブデン等お
よびセラミック材料、例えばAl2O3、Si3N4、SiC等、お
よび、超硬合金などが挙げられる。
本発明に用いられる製造装置の一具体例を第1図に示
す。本装置は、主に、反応ガスである窒素含有ガスおよ
びホウ素含有ガスの混合物を反応容器に供給すると同時
に該反応容器の内圧を調整する反応ガス制御系と、該反
応ガスを励起、解離かつ反応させた基板上にCBNを析出
させるCBN反応系とからなる。気密性を保つことができ
る反応容器1において、反応ガスの導入口2付近であっ
て、反応容器の外側面に対向するように赤外線加熱装置
3が配置されている。また反応ガスの導入口2を備えた
面と対向する内壁にはCBNを析出させるための基板4お
よびその支持台5が設置され、該支持台5付近であって
反応容器の側面である外周に高周波電源6と接続された
高周波コイル7が配置されている。さらに、反応容器1
は、反応ガスの導入口2および導入管8を介して反応ガ
ス供給装置9および10に接続しており、一方、反応ガス
の排出口11および排気管12を介して反応ガス排気装置12
と接続している。
上記のような本発明に用いられる製造装置を運転してCB
Nを得るためには、まず反応室内を排気装置13、例えば
オイル拡散ポンプなどで排気した後、ホウ素含有ガスな
らびに窒素含有ガス供給装置9、10および排気装置13に
よって所定の混合比、反応容器内圧および反応ガスの移
動速度となるようにホウ素含有ガスおよび窒素含有ガス
を供給すると共に、その混合ガスの温度が所定の温度に
なるように赤外線加熱装置3で加熱する。また、高周波
プラズマが発生するように高周波電圧を印加する。さら
に、基板4を、所定の温度が得られるようにヒーター14
で加熱する。このような操作をした後、この装置の運転
を続けることで基板4上にCBNが析出される。
作用 CBNは立方晶系結晶内において、窒素原子とホウ素原子
が安定なSP3混成結合をしてダイヤモンド型結晶構造を
有している。
このSP3混成結合を形成するには、窒素原子およびホウ
素原子を、それぞれ何らかの方法でSP3混成軌道を作る
べく励起状態に励起する必要があり、さらに、これらが
互いに衝突する機会を与えることで、SP3混成結合とな
る分子軌道を形成する。このようなSP3混成結合となる
分子軌道にそれぞれの励起原子の有していた電子が配置
されることで多大な安定化エネルギーを得、系が安定化
する結果、上記のような優れた特性を有するのである。
かくして、CBNを作製するためにはB源及びN源からSP3
混成結合を形成し易い条件を見出すことが重要である。
この点本発明によれば、原料混合ガスを予め赤外線照射
により加熱して予備励起し、次いで高周波電圧を印加し
てこれをプラズマ化し、基板を加熱するといった一連の
エネルギー供給処理を施すことにより上記のSP3混成結
合を生じさせることが可能となり、基板上にCBNが析出
することができた。ここで予備加熱温度、基板温度並び
にプラズマ化条件は本発明において重要であり、既に述
べたような範囲条件とすることがCBNを得る上で好まし
い。
本発明によれば、比較的簡単な操作で、かつ安価な装置
により高品位のCBN薄膜が得られるので経済的に有利で
あり、従って上記の如き各種工具、電子材料として有用
である。
実施例 以下、実施例により本発明を具体的に説明するが、本発
明はこれらに限定されるものではない。
実施例1 第1図に示した製造装置を使用し、基板にシリコンウエ
ーハを用い、原料ガスであるホウ素含有ガスはB2H6、窒
素含有ガスはN2を用い、それぞれ10cc/min,20cc/minの
流量で反応室に導入した。また、赤外線照射によって反
応容器内の温度が1000℃になるように調整し、高周波プ
ラズマの出力を1KWとなるように高周波電圧を印加し、
上記ガスを流した状態で排気装置を使って反応室内の圧
力を10Torrに調整した。基板温度を1000℃に設定した
後、この状態で4時間連続運転を続けたところ、10μm
程度の膜厚の窒化ホウ素膜が得られた。
得られた窒化ホウ素膜について、粉砕してX線回折に供
したところ、2θ=43.2°付近にCBN特有の鋭いピーク
が観測され、CBNであることが同定された。
実施例2 第1図に示した製造装置を使用し、基板にモリブデン基
板を用い、原料ガスであるホウ素含有ガスはBCl3、窒素
含有ガスはNH3を用い、それぞれ5cc/min,10cc/minの流
量で反応室に導入した。また、赤外線照射によって反応
容器内の温度が900℃になるように調整し、高周波プラ
ズマの出力を1.5KWとなるように高周波電圧を印加し、
上記ガスを流した状態で排気装置を使って反応室内の圧
力を15Torrに調整した。基板温度を1200℃に設定した
後、この状態で3時間連続運転を続けたところ、8μm
程度の膜厚の窒化ホウ素膜が得られた。
得られた窒化ホウ素膜について、ラマン分析に供したと
ころ1310cm-1および1055cm-1付近にCBN特有の鋭いピー
クが観測され、CBNであることが同定された。
比較例1 実施例1において、赤外線照射を行なわず、反応室内の
圧力を5Torrとし、成膜時間を3時間とした以外は実施
例1と同様にして、6μm程度の膜厚の窒化ホウ素膜を
得た。得られた窒化ホウ素膜について、粉砕してX線回
折に供したところ2θ=26.7°付近にHBN特有の鋭いピ
ークと、CBN特有のピーク位置である2θ=43.2°付近
になだらかなピークが観測され、この窒化ホウ素膜はHB
NとCBNの多結晶系であり、しかもHBNの方が多量に含ま
れていることが明らかとなった。
比較例2 実施例1において、基板としてシリコンウエーハのかわ
りにタングステン基板を用い、原料ガスとしてB2H6のか
わりにBCl3を8cc/min、N2のかわりにNH3を12cc/min流
し、高周波電圧を印加しなかった以外は実施例1と同様
にして、膜厚が4μm程度の窒化ホウ素膜を得た。
こうして得られた窒化ホウ素膜について、ラマン分析に
供したところ、1370cm-1付近のHBN特有のピークした観
測できず、CBNが析出していないことが明らかとなっ
た。
窒化ホウ素膜による切削試験 実施例1〜2および比較例1〜2の製造条件を用いて基
板であるチップに3μmの膜厚でコーティングを行な
い、第1表に示した切削条件、即ち被削材、切削速度、
切り込みおよび送りの下で切削試験を行ない、各条件下
で逃げ摩耗幅0.1mmに達する時間を測定した。得られた
結果を第2表に示す。また、コーティングを行なわない
場合およびCVD法を用いてAl2O3のコーティングを行なっ
た場合についても、チップにWC基超硬合金であるTNG332
を用いて、同様の切削試験を行ない、結果を第2表に示
した。
第2表より、耐摩耗性については実施例1および2で得
られた純粋なCBNのコーティングを行なったチップが最
も優れていることが明らかである。CBN以外の窒化ホウ
素の晶系の混合(比較例1)はAl2O3をコーティングし
た場合と同程度の耐摩耗性を示している。
また、第2図に、チップとしてTNG332を用い、被削材と
してFC45を用い、実施例1で得られたCBNコートチッ
プ、TiCコートチップおよびコーティングをしていない
チップについて、それぞれ切削試験を行ない、結果を切
削速度とチップの寿命の関係として示した。第3図に、
チップとしてSNG432を用い、被削材としてSCM435を用
い、切削速度が200m/minのときの、実施例2で得られた
CBNコートチップ、Al2O3コートチップおよびコーティン
グをしていないチップについて、それぞれ切削試験を行
ない、逃げ面摩耗量と切削時間の関係としてプロットし
た。第2図および第3図より、CBNをコーティングした
チップは他の材料をコーティングしたチップと比べて2
倍程度の耐摩耗性を有していることがわかる。
発明の効果 以上説明したように、本発明の製造方法は、従来のよう
な超高圧高温焼結法を用いない気相反応法であり、しか
も、イオンビーム、電子銃等の複雑で高価な装置を必要
としない簡略なCBN製造方法である。さらに、本発明のC
BN製造方法によれば、不純物や他の晶系の窒化ホウ素の
混入の少ない優れたCBNを製造することができ、その工
業的価値は極めて高いものである。
【図面の簡単な説明】
第1図は、本発明に用いられる製造装置の概略図であ
る。 第2図は、CBNコートチップおよび他のチップについ
て、切削速度とチップの寿命の関係をプロットしたグラ
フである。 第3図は、CBNコートチップおよび他のチップにつき逃
げ面摩耗料と切削時間との関係をプロットしたグラフで
ある。 (主な参照番号) 1……反応容器、2……反応ガス導入口、3……赤外線
加熱装置、4……基板、5……基板支持台、6……高周
波電源、7……高周波コイル、8……反応ガス導入管、
9……ホウ素含有ガス供給装置、10……窒素含有ガス供
給装置、11……ガス排気口、12……ガス排気管、13……
ガス排気装置、14……ヒーター

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】ホウ素含有ガスおよび窒素含有ガスの混合
    物を赤外線放射により300〜1500℃に予備加熱し、次い
    で該混合物に高周波を照射してプラズマ化した後、300
    〜2000℃に加熱した基板上に立方晶系窒化ホウ素膜を析
    出させる各工程を含む立方晶系窒化ホウ素膜の製造方
    法。
  2. 【請求項2】ホウ素含有ガスが、B2H6、BCl3、BBr3、B3
    H6N3、BF3から選ばれる少なくとも1種を含むガスであ
    る特許請求の範囲第1項記載の立方晶系窒化ホウ素膜の
    製造方法。
  3. 【請求項3】窒素含有ガスがN2、NH3、低級アルキル基
    置換アンモニア、NOから選ばれる少なくとも1種を含む
    ガスである特許請求の範囲第1項記載の立方晶系窒化ホ
    ウ素膜の製造方法。
  4. 【請求項4】上記ホウ素含有ガスおよび窒素含有ガスの
    混合物において、窒素原子に対するホウ素原子の割合B/
    Nが0.1〜10である特許請求の範囲第1項記載の立方晶系
    窒化ホウ素膜の製造方法。
JP21235086A 1986-09-09 1986-09-09 立方晶系窒化ホウ素膜の製造方法 Expired - Fee Related JPH0733580B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21235086A JPH0733580B2 (ja) 1986-09-09 1986-09-09 立方晶系窒化ホウ素膜の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21235086A JPH0733580B2 (ja) 1986-09-09 1986-09-09 立方晶系窒化ホウ素膜の製造方法

Publications (2)

Publication Number Publication Date
JPS6369973A JPS6369973A (ja) 1988-03-30
JPH0733580B2 true JPH0733580B2 (ja) 1995-04-12

Family

ID=16621084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21235086A Expired - Fee Related JPH0733580B2 (ja) 1986-09-09 1986-09-09 立方晶系窒化ホウ素膜の製造方法

Country Status (1)

Country Link
JP (1) JPH0733580B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03111573A (ja) * 1989-09-26 1991-05-13 Olympus Optical Co Ltd 立方晶窒化硼素の合成方法
EP0450125B1 (de) * 1990-04-06 1994-10-26 Siemens Aktiengesellschaft Verfahren zur Herstellung von mikrokristallin kubischen Bornitridschichten
JP7065599B2 (ja) * 2017-12-28 2022-05-12 株式会社トクヤマ パイロリティック窒化ホウ素及びパイロリティック窒化ホウ素の製造方法、並びにパイロリティック窒化ホウ素を用いた結晶成長装置

Also Published As

Publication number Publication date
JPS6369973A (ja) 1988-03-30

Similar Documents

Publication Publication Date Title
KR910001367B1 (ko) 기상 합성 다이아몬드막 및 그 합성방법
US5316804A (en) Process for the synthesis of hard boron nitride
KR910001359B1 (ko) 다이아몬드의 합성방법 및 장치
JPH0259862B2 (ja)
JPH0733580B2 (ja) 立方晶系窒化ホウ素膜の製造方法
JPS6395200A (ja) 硬質窒化ホウ素膜の製造方法
JPH03240959A (ja) 窒化炭素薄膜の合成方法
JPH07100859B2 (ja) 立方晶系窒化ホウ素膜の製造方法
JP2569423B2 (ja) 窒化ホウ素の気相合成法
JPS63128179A (ja) 硬質窒化硼素の合成方法および合成装置
JPS6340800A (ja) 高硬度窒化ホウ素の合成法
JPH031377B2 (ja)
JPH0481552B2 (ja)
JPS62243770A (ja) 高硬度窒化ホウ素の合成方法
JPS62207869A (ja) 酸素含有硬質窒化硼素被覆部品
JPS63134661A (ja) 高硬度窒化硼素の合成法
KR910001360B1 (ko) 다이아몬드 벌크재의 합성방법
JPS63199871A (ja) 高硬度窒化ホウ素の合成法
JPH0649635B2 (ja) ダイヤモンドの合成方法
JPS62224675A (ja) 硬質窒化硼素合成法
JP2762561B2 (ja) ダイヤモンド膜の合成方法
JPS62260062A (ja) 高硬度窒化ホウ素の合成法
JPH03142104A (ja) ダイヤモンド膜工具類並びにその製造法
JPH04116155A (ja) 薄膜の形成方法
JPH07110993B2 (ja) 硬質窒化硼素の製造方法及びそれに用いる合成装置

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees