JPH0732839A - 車両用サスペンション装置 - Google Patents
車両用サスペンション装置Info
- Publication number
- JPH0732839A JPH0732839A JP17674093A JP17674093A JPH0732839A JP H0732839 A JPH0732839 A JP H0732839A JP 17674093 A JP17674093 A JP 17674093A JP 17674093 A JP17674093 A JP 17674093A JP H0732839 A JPH0732839 A JP H0732839A
- Authority
- JP
- Japan
- Prior art keywords
- control
- damping force
- vehicle
- suspension device
- damper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2600/00—Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
- B60G2600/18—Automatic control means
- B60G2600/187—Digital Controller Details and Signal Treatment
- B60G2600/1878—Neural Networks
Landscapes
- Vehicle Body Suspensions (AREA)
Abstract
(57)【要約】
【目的】 比較的大きな上下運動が車体に発生しても、
乗り心地と操縦安定性とを両立させた車両用サスペンシ
ョン装置を提案する。 【構成】 上下方向加速度を検出するセンサと減衰力の
可変なダンパとを有し、検出された加速度をフィードバ
ックして上下方向加速度の値が減少するように前記ダン
パの減衰力を制御する車両用サスペンション装置におい
て、上下方向加速度が所定の閾値以上のときに、前記ダ
ンパの減衰力を低めるように補正すると共に、走行状態
が所定の状態のときに、前記補正量を小さくするように
制御する。
乗り心地と操縦安定性とを両立させた車両用サスペンシ
ョン装置を提案する。 【構成】 上下方向加速度を検出するセンサと減衰力の
可変なダンパとを有し、検出された加速度をフィードバ
ックして上下方向加速度の値が減少するように前記ダン
パの減衰力を制御する車両用サスペンション装置におい
て、上下方向加速度が所定の閾値以上のときに、前記ダ
ンパの減衰力を低めるように補正すると共に、走行状態
が所定の状態のときに、前記補正量を小さくするように
制御する。
Description
【0001】
【産業上の利用分野】本発明は、減衰力可変ダンパを制
御することによりサスペンション特性を変更する車両用
サスペンション装置に関し、特に、比較的大きな上下方
向加速度が検出されたときにおける乗り心地と操縦安定
性との確保の改良に関する。
御することによりサスペンション特性を変更する車両用
サスペンション装置に関し、特に、比較的大きな上下方
向加速度が検出されたときにおける乗り心地と操縦安定
性との確保の改良に関する。
【0002】
【従来の技術】車両用のサスペンション装置として、従
来より、例えば特開平3−182826号公報に開示さ
れるように、車体と各車輪との間にそれぞれ流体シリン
ダを配設し、該各流体シリンダへの流量を流量制御弁に
より各車輪毎に独立的に給排制御して、車両のサスペン
ション特性を運転状態に応じて可変とするいわゆるフル
アクティブ・コントロール・サスペンション装置(AC
S装置)が知られている。
来より、例えば特開平3−182826号公報に開示さ
れるように、車体と各車輪との間にそれぞれ流体シリン
ダを配設し、該各流体シリンダへの流量を流量制御弁に
より各車輪毎に独立的に給排制御して、車両のサスペン
ション特性を運転状態に応じて可変とするいわゆるフル
アクティブ・コントロール・サスペンション装置(AC
S装置)が知られている。
【0003】しかしながら、このフルアクティブ・コン
トロール・サスペンション装置は、システムが大規模と
なり、また高圧の油圧を用いることによりシステム全体
が極めて高価なものとなるという欠点を有していた。そ
こで、減衰力を変更することのできる減衰力可変ダンパ
を備えた、所謂「セミアクテイブサスペンション装置」
が提案されている。この可変ダンパは、内部を2室に分
離した流体シリンダを用い、その2室の間をオリフィス
で連通し、オリフィスによる絞り量を制御するというも
のである。オリフィスの絞り量の制御は次のようにして
行なう。即ち、例えば、2枚の円板に複数の穴を設け、
この2枚の円板を中心を一致させて重ねて、シリンダ内
の前記2室の境に位置させる。そして、一方の円板を固
定し、他方の円板をステップモータなどで回転させ、前
記一方の円盤に設けられた穴と他方の円盤に設けられた
穴とが重なることによってオリフィスが形成されること
になる。前記一方の円盤に設けられた穴を複数種類の大
きさとし、他方の円盤に設けられた穴も同じように複数
種類の大きさとする。従って、前記ステップモータの回
転位置が絞り量を、即ち、減衰力を表すことになる。
トロール・サスペンション装置は、システムが大規模と
なり、また高圧の油圧を用いることによりシステム全体
が極めて高価なものとなるという欠点を有していた。そ
こで、減衰力を変更することのできる減衰力可変ダンパ
を備えた、所謂「セミアクテイブサスペンション装置」
が提案されている。この可変ダンパは、内部を2室に分
離した流体シリンダを用い、その2室の間をオリフィス
で連通し、オリフィスによる絞り量を制御するというも
のである。オリフィスの絞り量の制御は次のようにして
行なう。即ち、例えば、2枚の円板に複数の穴を設け、
この2枚の円板を中心を一致させて重ねて、シリンダ内
の前記2室の境に位置させる。そして、一方の円板を固
定し、他方の円板をステップモータなどで回転させ、前
記一方の円盤に設けられた穴と他方の円盤に設けられた
穴とが重なることによってオリフィスが形成されること
になる。前記一方の円盤に設けられた穴を複数種類の大
きさとし、他方の円盤に設けられた穴も同じように複数
種類の大きさとする。従って、前記ステップモータの回
転位置が絞り量を、即ち、減衰力を表すことになる。
【0004】
【発明が解決しようとする課題】フルアクティブサスペ
ンション制御装置は、高圧の油圧を利用するので車高を
積極的に上下でき、精度の良い姿勢制御を実現できる。
一方、「セミアクティブサスペンション制御装置」は、
減衰力を変更するだけであるので、車高制御(姿勢制
御)の精度はフルアクティブサスペンション制御装置に
比して落ちるものの、コスト的には有利となる。
ンション制御装置は、高圧の油圧を利用するので車高を
積極的に上下でき、精度の良い姿勢制御を実現できる。
一方、「セミアクティブサスペンション制御装置」は、
減衰力を変更するだけであるので、車高制御(姿勢制
御)の精度はフルアクティブサスペンション制御装置に
比して落ちるものの、コスト的には有利となる。
【0005】しかしながら、減衰力可変ダンパを用いた
「セミアクティブサスペンション制御装置」はフルアク
ティブサスペンション制御装置に比して応答性において
若干落ちるので、従来の「セミアクティブサスペンショ
ン制御装置」は上下方向加速度センサを設け、車輪に比
較的大きな上下方向加速度信号が入力したとき(例え
ば、悪路を走行して車輪が激しく上下運動をしていると
き)に、減衰力をソフト方向に制御するようにしてい
る。
「セミアクティブサスペンション制御装置」はフルアク
ティブサスペンション制御装置に比して応答性において
若干落ちるので、従来の「セミアクティブサスペンショ
ン制御装置」は上下方向加速度センサを設け、車輪に比
較的大きな上下方向加速度信号が入力したとき(例え
ば、悪路を走行して車輪が激しく上下運動をしていると
き)に、減衰力をソフト方向に制御するようにしてい
る。
【0006】ダンパの減衰力をソフトにすることは、操
縦安定性が問題となるような運転条件(例えば、高速走
行や旋回走行)においては操縦安定性を損なうおそれが
ある。本発明は、比較的大きな上下運動が車体に発生し
ても、乗り心地と操縦安定性とを両立させた車両用サス
ペンション装置を提供せんとするものである。
縦安定性が問題となるような運転条件(例えば、高速走
行や旋回走行)においては操縦安定性を損なうおそれが
ある。本発明は、比較的大きな上下運動が車体に発生し
ても、乗り心地と操縦安定性とを両立させた車両用サス
ペンション装置を提供せんとするものである。
【0007】
【課題を解決するための手段】上記目的を達成するた
め、上下方向加速度を検出するセンサと減衰力の可変な
ダンパとを有し、検出された加速度をフィードバックし
て上下方向加速度の値が減少するように前記ダンパの減
衰力を制御する車両用サスペンション装置において、検
出された上下方向加速度が所定の閾値以上のときに、前
記ダンパの減衰力を低めるように補正する補正手段と、
走行状態を検出する検出手段と、検出された走行状態が
所定の状態のときに、前記補正手段による補正量を小さ
くするように制御する制御手段とを具備したことを特徴
とする。
め、上下方向加速度を検出するセンサと減衰力の可変な
ダンパとを有し、検出された加速度をフィードバックし
て上下方向加速度の値が減少するように前記ダンパの減
衰力を制御する車両用サスペンション装置において、検
出された上下方向加速度が所定の閾値以上のときに、前
記ダンパの減衰力を低めるように補正する補正手段と、
走行状態を検出する検出手段と、検出された走行状態が
所定の状態のときに、前記補正手段による補正量を小さ
くするように制御する制御手段とを具備したことを特徴
とする。
【0008】
【作用】上記構成のアクティブサスペンション装置によ
れば、検出された上下方向加速度が所定の閾値以上のと
きはダンパの減衰力を低めるように補正することによ
り、乗り心地が確保される。更に、その一方で検出され
た走行状態が所定の状態のときには補正量を小さくする
ように制御するので操縦安定性を確保することができ
る。
れば、検出された上下方向加速度が所定の閾値以上のと
きはダンパの減衰力を低めるように補正することによ
り、乗り心地が確保される。更に、その一方で検出され
た走行状態が所定の状態のときには補正量を小さくする
ように制御するので操縦安定性を確保することができ
る。
【0009】
【実施例】以下、本発明を適用した好適な実施例を3つ
(第1実施例〜第3実施例)挙げて説明する。 〈概略〉上記実施例のサスペンション装置では、図2に
示したような特性のダンパと図3に示したような特性の
ダンパとを用いている。図2のダンパ特性は、延び方向
と縮み方向の両方で独立に減衰特性を変更できる。従っ
て、このダンパは、細かい段数(実施例では27段階)
に亘って減衰特性を変更できるために、所謂「スカイフ
ックモデル」に従った減衰特性制御に適用できる。以
下、このようなダンパを「SD」(スカイフックダン
パ)ダンパと呼ぶ。また、図3のダンパ特性は、延び方
向の減衰特性を制御すると縮み方向の特性も変化するの
で、粗い段数(実施例では5段階)しか設定できない。
そのために、「スカイフックモデル」に従った減衰特性
制御に適用できず、便宜上、以下、「AD」(アダプテ
ィブダンパ)ダンパと呼ぶ。尚、SDダンパは、27段
に亘る段数の減衰特性を高速に切り替える必要があるた
めに、高速のステップモータ(アクチュエータ)を使う
必要がある。一方、ADダンパは5段しかないために低
速型のステップモータ(アクチュエータ)で十分であ
る。
(第1実施例〜第3実施例)挙げて説明する。 〈概略〉上記実施例のサスペンション装置では、図2に
示したような特性のダンパと図3に示したような特性の
ダンパとを用いている。図2のダンパ特性は、延び方向
と縮み方向の両方で独立に減衰特性を変更できる。従っ
て、このダンパは、細かい段数(実施例では27段階)
に亘って減衰特性を変更できるために、所謂「スカイフ
ックモデル」に従った減衰特性制御に適用できる。以
下、このようなダンパを「SD」(スカイフックダン
パ)ダンパと呼ぶ。また、図3のダンパ特性は、延び方
向の減衰特性を制御すると縮み方向の特性も変化するの
で、粗い段数(実施例では5段階)しか設定できない。
そのために、「スカイフックモデル」に従った減衰特性
制御に適用できず、便宜上、以下、「AD」(アダプテ
ィブダンパ)ダンパと呼ぶ。尚、SDダンパは、27段
に亘る段数の減衰特性を高速に切り替える必要があるた
めに、高速のステップモータ(アクチュエータ)を使う
必要がある。一方、ADダンパは5段しかないために低
速型のステップモータ(アクチュエータ)で十分であ
る。
【0010】図1は、上述の3つの実施例においてサス
ペンション特性制御を実行するために、共通にどのよう
な信号を入力するかを示している。即ち、これら実施例
の制御手段は、車速信号VBと、ハンドル舵角信号θH
と、上下方向加速度信号Gと、ブレーキ信号Brとを入
力している。制御手段は、これらの信号を入力して、S
Dダンパを制御する「スカイフック制御」とADダンパ
を制御する「減衰力切り替え制御」のいずれかを行う。 :第1実施例では、図7,図8に示すように、左右前
輪にSDダンパを用い、左右後輪にはADダンパを用い
ている。また第2実施例では、図16,図17に示すよ
うに、左右前輪にADダンパを用い、左右後輪にはSD
ダンパを用いている。第1,第2実施例では、高速のS
Dダンパにはスカイフックモデルを用いた高速のフィー
ドバック制御を用い、低速のADダンパには車速VB,
ハンドル舵角θH 等をパラメータとしたフィードフォワ
ード制御を用いているので、安価ではあるが高性能のサ
スペンション性能を確保することができる。特に、第1
実施例では、フロントサスペンションについては、姿勢
安定(低周波の領域で5db)と乗り心地の確保を目指
し、リアサスペンションについても乗り心地の確保を目
指す。 :また第3実施例では、図22,図23に示すよう
に、左右前輪と左右後輪にSDダンパを用いている。こ
の第3実施例では、車体のピッチ運動、バウンス運動、
ロール運動のうち、バウンス制御とピッチ制御にはスカ
イフックモデルを用いたフィードバック制御を適用して
いるものの、ロール運動制御(操舵制御)には舵角と車
速を用いたフィードフォワード制御を適用しているため
に、ロール運動制御のために加速度センサが不要となり
コスト低下に寄与するというものである。 :第1実施例〜第3実施例では、共通して、「Gスル
ー制御」と「大振幅入力制御」という制御を行なってい
る。 −1:「Gスルー制御」(図33)は、比較的に大き
な振幅の上下G運動があった場合に、ダンパ特性をソフ
ト方向に補正して乗り心地を確保すると共に、そのよう
な上下G運動が高速運転中とか旋回中に合った場合に
は、ソフト方向への補正を制限して操縦安定性を確保す
るというものである。 −2:また、「大振幅入力制御」(図29)はさらに
大きな振幅の上下G運動があった場合には、操縦安定性
の確保を第一に考えて、減衰力を高めるのであるが、そ
のような上下G運動が高速運転中とか旋回中に合った場
合には、ハード方向への補正を更に高めてより一層の操
縦安定性を確保するというものである。 −3:「Gスルー制御」と「大振幅入力制御」とは、
上下G運動を問題にするので、互いに干渉する可能性が
あるが、この実施例では、「Gスルー制御」よりも「大
振幅入力制御」に高い優先順位を与えているのでその問
題はない。 〈ダンパ〉図2,図3に、夫々、SDダンパ特性とAD
ダンパ特性を示す。横軸は、ステップモータの回転位置
Pであり、縦軸は減衰力を示す。また、前述したよう
に、SDダンパには27位置が設定されており、ADダ
ンパには5位置が設定されている。
ペンション特性制御を実行するために、共通にどのよう
な信号を入力するかを示している。即ち、これら実施例
の制御手段は、車速信号VBと、ハンドル舵角信号θH
と、上下方向加速度信号Gと、ブレーキ信号Brとを入
力している。制御手段は、これらの信号を入力して、S
Dダンパを制御する「スカイフック制御」とADダンパ
を制御する「減衰力切り替え制御」のいずれかを行う。 :第1実施例では、図7,図8に示すように、左右前
輪にSDダンパを用い、左右後輪にはADダンパを用い
ている。また第2実施例では、図16,図17に示すよ
うに、左右前輪にADダンパを用い、左右後輪にはSD
ダンパを用いている。第1,第2実施例では、高速のS
Dダンパにはスカイフックモデルを用いた高速のフィー
ドバック制御を用い、低速のADダンパには車速VB,
ハンドル舵角θH 等をパラメータとしたフィードフォワ
ード制御を用いているので、安価ではあるが高性能のサ
スペンション性能を確保することができる。特に、第1
実施例では、フロントサスペンションについては、姿勢
安定(低周波の領域で5db)と乗り心地の確保を目指
し、リアサスペンションについても乗り心地の確保を目
指す。 :また第3実施例では、図22,図23に示すよう
に、左右前輪と左右後輪にSDダンパを用いている。こ
の第3実施例では、車体のピッチ運動、バウンス運動、
ロール運動のうち、バウンス制御とピッチ制御にはスカ
イフックモデルを用いたフィードバック制御を適用して
いるものの、ロール運動制御(操舵制御)には舵角と車
速を用いたフィードフォワード制御を適用しているため
に、ロール運動制御のために加速度センサが不要となり
コスト低下に寄与するというものである。 :第1実施例〜第3実施例では、共通して、「Gスル
ー制御」と「大振幅入力制御」という制御を行なってい
る。 −1:「Gスルー制御」(図33)は、比較的に大き
な振幅の上下G運動があった場合に、ダンパ特性をソフ
ト方向に補正して乗り心地を確保すると共に、そのよう
な上下G運動が高速運転中とか旋回中に合った場合に
は、ソフト方向への補正を制限して操縦安定性を確保す
るというものである。 −2:また、「大振幅入力制御」(図29)はさらに
大きな振幅の上下G運動があった場合には、操縦安定性
の確保を第一に考えて、減衰力を高めるのであるが、そ
のような上下G運動が高速運転中とか旋回中に合った場
合には、ハード方向への補正を更に高めてより一層の操
縦安定性を確保するというものである。 −3:「Gスルー制御」と「大振幅入力制御」とは、
上下G運動を問題にするので、互いに干渉する可能性が
あるが、この実施例では、「Gスルー制御」よりも「大
振幅入力制御」に高い優先順位を与えているのでその問
題はない。 〈ダンパ〉図2,図3に、夫々、SDダンパ特性とAD
ダンパ特性を示す。横軸は、ステップモータの回転位置
Pであり、縦軸は減衰力を示す。また、前述したよう
に、SDダンパには27位置が設定されており、ADダ
ンパには5位置が設定されている。
【0011】図2のSDダンパは、回転位置Pが正方向
に移動すると、伸び方向の減衰力が増加するが縮み方向
の減衰力は僅かとなる。また、回転位置Pが負の位置に
あれば、伸び方向の減衰力が僅かとなるが縮み方向の減
衰力は増加する。即ち、ステップモータがより正の位置
にあれば、車体を上昇させようとする運動に対しては、
伸び方向の減衰力が働いて所謂「ハード」特性となる
が、車体を低下させようとする運動に対しては所謂「ソ
フト」特性となる。また、ステップモータがより負の位
置にあれば、車体を低下させようとする運動に対して
は、縮み方向の減衰力が働いて所謂「ハード」特性とな
るが、車体を上昇させようとする運動に対しては所謂
「ソフト」特性となる。
に移動すると、伸び方向の減衰力が増加するが縮み方向
の減衰力は僅かとなる。また、回転位置Pが負の位置に
あれば、伸び方向の減衰力が僅かとなるが縮み方向の減
衰力は増加する。即ち、ステップモータがより正の位置
にあれば、車体を上昇させようとする運動に対しては、
伸び方向の減衰力が働いて所謂「ハード」特性となる
が、車体を低下させようとする運動に対しては所謂「ソ
フト」特性となる。また、ステップモータがより負の位
置にあれば、車体を低下させようとする運動に対して
は、縮み方向の減衰力が働いて所謂「ハード」特性とな
るが、車体を上昇させようとする運動に対しては所謂
「ソフト」特性となる。
【0012】一方、ADダンパは、図3に示すように、
ステップモータの回転位置Pが大きくなればなるほど、
伸び方向と縮み方向の両方で「ハード」特性となり、回
転位置が小さくなればなるほど「ソフト」特性となる。 〈制御システムの全体構成〉第1実施例〜第3実施例に
は共通して、操縦安定性に関する「操安制御」、大きな
振幅の上下方向加速度を検知したときにサスペンション
特性をハードにすることにより安全性を高める「大入力
振幅制御」、高周波の上下方向加速度(悪路走行時の加
速度)を検知したときにサスペンション特性をソフトに
することによりこのような加速度を「スルー」させる
「Gスルー制御」、小さな振幅の上下方向加速度を検知
したときにサスペンション特性を比較的ソフトにする
「小振幅制御」等が実施されている。図4,図5は、こ
れらの制御の優先順位と動作領域の関係を概略的に示す
マップである。図5において、横軸は車体の上下方向加
速度Gを、縦軸は車速VBを示す。
ステップモータの回転位置Pが大きくなればなるほど、
伸び方向と縮み方向の両方で「ハード」特性となり、回
転位置が小さくなればなるほど「ソフト」特性となる。 〈制御システムの全体構成〉第1実施例〜第3実施例に
は共通して、操縦安定性に関する「操安制御」、大きな
振幅の上下方向加速度を検知したときにサスペンション
特性をハードにすることにより安全性を高める「大入力
振幅制御」、高周波の上下方向加速度(悪路走行時の加
速度)を検知したときにサスペンション特性をソフトに
することによりこのような加速度を「スルー」させる
「Gスルー制御」、小さな振幅の上下方向加速度を検知
したときにサスペンション特性を比較的ソフトにする
「小振幅制御」等が実施されている。図4,図5は、こ
れらの制御の優先順位と動作領域の関係を概略的に示す
マップである。図5において、横軸は車体の上下方向加
速度Gを、縦軸は車速VBを示す。
【0013】図6は、上記各種の制御の相互の関係を示
す制御ブロック図である。 〈第1実施例〉図7は、前輪サスペンションにSDダン
パ(不図示)を、後輪サスペンションにADダンパ(不
図示)を用いた第1実施例を示す。図中、2L,2Rは夫
々左右に設けられた上下方向加速度センサであり、加速
度信号GL,GRを発生する。この加速度信号はコントロ
ーラ10に送られる。また、左右のSDダンパの夫々
を、高速のステップモータ1FL,1FRが駆動し、後輪用
の左右のADダンパを、夫々低速のステップモータ1R
L,1RRが駆動する。ハンドル舵角θHは舵角センサ3が
検知し、コントローラ10に送る。また、車速センサ4
により検知された車速VB、ブレーキスイッチ5により
検知された信号BRは夫々コントローラ10に送られ
る。
す制御ブロック図である。 〈第1実施例〉図7は、前輪サスペンションにSDダン
パ(不図示)を、後輪サスペンションにADダンパ(不
図示)を用いた第1実施例を示す。図中、2L,2Rは夫
々左右に設けられた上下方向加速度センサであり、加速
度信号GL,GRを発生する。この加速度信号はコントロ
ーラ10に送られる。また、左右のSDダンパの夫々
を、高速のステップモータ1FL,1FRが駆動し、後輪用
の左右のADダンパを、夫々低速のステップモータ1R
L,1RRが駆動する。ハンドル舵角θHは舵角センサ3が
検知し、コントローラ10に送る。また、車速センサ4
により検知された車速VB、ブレーキスイッチ5により
検知された信号BRは夫々コントローラ10に送られ
る。
【0014】図8はこの第1実施例の制御の概略を示す
ブロック図である。図8に示すように、スカイフックモ
デルを用いた操舵制御(操安制御)部SHは加速度信号
GL,GR、舵角信号θH,ブレーキ信号BR,車速信号V
B等を入力し、前輪の左右のSDダンパを制御する。こ
の制御部SHの実際の動作は、図9のフローチャートに
従った制御手順をコントローラ10が実行することによ
り実現される。また、2つの減衰力切替制御部AAは、
舵角信号θH,ブレーキ信号BR,車速信号VBを入力し
て2つの左右後輪用のADダンパを制御する。制御部A
Aの実際の動作は、図13のフローチャートに従った制
御手順をコントローラ10が実行することにより実現さ
れる。このように、後輪の制御には、高速の動作を要求
されるフィードバック制御を適用していないので、後輪
側には高価な上下Gセンサは不要となり、また、安価な
低速型のADダンパで十分となる。
ブロック図である。図8に示すように、スカイフックモ
デルを用いた操舵制御(操安制御)部SHは加速度信号
GL,GR、舵角信号θH,ブレーキ信号BR,車速信号V
B等を入力し、前輪の左右のSDダンパを制御する。こ
の制御部SHの実際の動作は、図9のフローチャートに
従った制御手順をコントローラ10が実行することによ
り実現される。また、2つの減衰力切替制御部AAは、
舵角信号θH,ブレーキ信号BR,車速信号VBを入力し
て2つの左右後輪用のADダンパを制御する。制御部A
Aの実際の動作は、図13のフローチャートに従った制
御手順をコントローラ10が実行することにより実現さ
れる。このように、後輪の制御には、高速の動作を要求
されるフィードバック制御を適用していないので、後輪
側には高価な上下Gセンサは不要となり、また、安価な
低速型のADダンパで十分となる。
【0015】また、前輪用のSDダンパにも、後輪用の
ADダンパにも、上下G信号に基づいて行なう「Gスル
ー制御」(図33)と「大入力振幅制御」(図29)が
適用される。前輪サスペンション制御(SH・操安制御):第1実施
例 制御部SHの制御手順は図9に示される。この図9のフ
ローチャートに従って、第1実施例の操安制御を説明す
る。
ADダンパにも、上下G信号に基づいて行なう「Gスル
ー制御」(図33)と「大入力振幅制御」(図29)が
適用される。前輪サスペンション制御(SH・操安制御):第1実施
例 制御部SHの制御手順は図9に示される。この図9のフ
ローチャートに従って、第1実施例の操安制御を説明す
る。
【0016】ステップS2において、加速度信号GL,
GR、舵角信号θH,ブレーキ信号BR,車速信号VB等の
各種信号を入力する。ステップS4では、加速度信号G
L,GR を夫々積分して、車体の上下方向速度VGL,VG
Rを求める。ステップS6では、車速VBに基づいて図1
0の特性図に従って速度の閾値VG0を求める。ステップ
S8では、上下方向速度VGn(nはL左,R右を示す)
を、夫々、前記閾値VG0 と比較する。ステップS8で
|VGn|≧VG0と判断されたならばステップS12に進
むが、反対に|VGn|<VG0と判断されたならば、ステ
ップS10において、VGn=0とすることにより、車体
は上下方向に動いていないと見做し、そしてステップS
12に進む。後述するように、VGnはダンパの位置を決
定する重要な要素となるので、|VGn|<VG0であるよ
うな車体の上下方向速度VGnの領域は制御の不感帯とな
る。
GR、舵角信号θH,ブレーキ信号BR,車速信号VB等の
各種信号を入力する。ステップS4では、加速度信号G
L,GR を夫々積分して、車体の上下方向速度VGL,VG
Rを求める。ステップS6では、車速VBに基づいて図1
0の特性図に従って速度の閾値VG0を求める。ステップ
S8では、上下方向速度VGn(nはL左,R右を示す)
を、夫々、前記閾値VG0 と比較する。ステップS8で
|VGn|≧VG0と判断されたならばステップS12に進
むが、反対に|VGn|<VG0と判断されたならば、ステ
ップS10において、VGn=0とすることにより、車体
は上下方向に動いていないと見做し、そしてステップS
12に進む。後述するように、VGnはダンパの位置を決
定する重要な要素となるので、|VGn|<VG0であるよ
うな車体の上下方向速度VGnの領域は制御の不感帯とな
る。
【0017】ステップS12では、ダンパ位置Pを決定
するための制御ゲインK1を演算する。この制御ゲイン
K1は、車速VBが大きいほど、またハンドル舵角速度
(=時間変化)θ'H(=dθH/dt)が大きいほど大きな
値を示す。即ち、車速VBや舵角速度θ'Hが大きいとき
は、高速にSDダンパ位置を変更しようとする。ステッ
プS14では、現時点の車体の上下方向の移動速度をキ
ャンセルするような目標車体上下速度VGTRnを(nはL
左,R右を示す)、 VGTRn=VGn・K1 …(1) を演算する。このVGTRnが正のときは、ステップS20
に進んで、前輪SDダンパの目標位置PFTRn(nはL
左,R右を示す)を、 PFTRn=PFn−1 …(2) に従って演算する。(2)式は、伸び方向の車体変位を
抑制するように、減衰特性を1段だけハードに変更する
ものである。反対に、VGTRnが負のときは、ステップS
18に進んで、前輪SDダンパの目標位置PFTRnを、 PFTRn=PFn+1 …(3) に従って演算する。(3)式は、縮み方向の車体変位を
抑制するように、減衰特性を1段だけソフトに変更する
ものである。ステップS18,ステップS20における
PFnはステップS2で求められた前輪SDダンパのステ
ップモータの現在の位置である。
するための制御ゲインK1を演算する。この制御ゲイン
K1は、車速VBが大きいほど、またハンドル舵角速度
(=時間変化)θ'H(=dθH/dt)が大きいほど大きな
値を示す。即ち、車速VBや舵角速度θ'Hが大きいとき
は、高速にSDダンパ位置を変更しようとする。ステッ
プS14では、現時点の車体の上下方向の移動速度をキ
ャンセルするような目標車体上下速度VGTRnを(nはL
左,R右を示す)、 VGTRn=VGn・K1 …(1) を演算する。このVGTRnが正のときは、ステップS20
に進んで、前輪SDダンパの目標位置PFTRn(nはL
左,R右を示す)を、 PFTRn=PFn−1 …(2) に従って演算する。(2)式は、伸び方向の車体変位を
抑制するように、減衰特性を1段だけハードに変更する
ものである。反対に、VGTRnが負のときは、ステップS
18に進んで、前輪SDダンパの目標位置PFTRnを、 PFTRn=PFn+1 …(3) に従って演算する。(3)式は、縮み方向の車体変位を
抑制するように、減衰特性を1段だけソフトに変更する
ものである。ステップS18,ステップS20における
PFnはステップS2で求められた前輪SDダンパのステ
ップモータの現在の位置である。
【0018】ステップS22では、車速VBに基づいて
図12に示すような限界値PLMTを求める。限界値PLMT
は図12に示すように車速VBが増大するに従って大き
くなる傾向を有する。車速が高いほど制御の変化の許容
度を大きくすることによって応答性を上げる必要がある
からである。ステップS24では、この限界値PLMTと
目標位置PFTRnとを比較し、この限界値を目標値PFTRn
が越えていればステップS26で目標値をこの限界値に
クリップする。
図12に示すような限界値PLMTを求める。限界値PLMT
は図12に示すように車速VBが増大するに従って大き
くなる傾向を有する。車速が高いほど制御の変化の許容
度を大きくすることによって応答性を上げる必要がある
からである。ステップS24では、この限界値PLMTと
目標位置PFTRnとを比較し、この限界値を目標値PFTRn
が越えていればステップS26で目標値をこの限界値に
クリップする。
【0019】ステップS28では、フラグINHIBITがセ
ットされているかを調べる。このフラグがセットされて
いなければ、ステップS30で、前輪SDダンパを目標
減衰力が達成できるようにモータ1FL,1FRを回転す
る。ここで、フラグINHIBITは、「Gスルー制御」(図
33のステップS276)や「大振幅入力制御」(図2
9のステップS218)においてセットされるフラグで
あり、前輪サスペンション特性と後輪のサスペンション
特性とが過度に異なったものになるおそれがある場合に
セットされる。従って、このフラグがセットされていれ
ばステップS30は実行されずに、(前輪の)ダンパの
モータ位置を変更されない。後輪サスペンション制御(第1実施例) 後輪のサスペンション特性は5段のAAダンパによって
決定される。換言すれば、このダンパの減衰力はモータ
1RL,1RRの回転位置によって決まる。図13は後輪の
AAダンパのモータ1RL,1RRの制御手順である。
ットされているかを調べる。このフラグがセットされて
いなければ、ステップS30で、前輪SDダンパを目標
減衰力が達成できるようにモータ1FL,1FRを回転す
る。ここで、フラグINHIBITは、「Gスルー制御」(図
33のステップS276)や「大振幅入力制御」(図2
9のステップS218)においてセットされるフラグで
あり、前輪サスペンション特性と後輪のサスペンション
特性とが過度に異なったものになるおそれがある場合に
セットされる。従って、このフラグがセットされていれ
ばステップS30は実行されずに、(前輪の)ダンパの
モータ位置を変更されない。後輪サスペンション制御(第1実施例) 後輪のサスペンション特性は5段のAAダンパによって
決定される。換言すれば、このダンパの減衰力はモータ
1RL,1RRの回転位置によって決まる。図13は後輪の
AAダンパのモータ1RL,1RRの制御手順である。
【0020】第1実施例の後輪サスペンション制御は、
図9の制御手順によって決定された前輪のサスペンショ
ン特性に対して後輪がアンダステア気味になるようにフ
ィードフォワード制御により決定するものである。フィ
ードフォワード制御にした理由は、制御速度が早いこ
と、AAダンパには、高度なフィードバック制御は不要
であることなどによる。
図9の制御手順によって決定された前輪のサスペンショ
ン特性に対して後輪がアンダステア気味になるようにフ
ィードフォワード制御により決定するものである。フィ
ードフォワード制御にした理由は、制御速度が早いこ
と、AAダンパには、高度なフィードバック制御は不要
であることなどによる。
【0021】即ち、ステップS40において、車速VB
に応じた後輪の目標減衰力PR(VB)を、図14に示す
ような特性に従って決定する。ここで、図14におい
て、実線は車速VBが上昇している最中における後輪の
減衰特性であり、破線は車速が減少している最中におけ
る後輪の減衰特性を示す。車速が減速時には、増速時に
比して、より低い減衰力が得られるような特性になって
いる。図14の特性は、減速時には車体姿勢を安定させ
るために、よりアンダステア傾向を得るものである。
に応じた後輪の目標減衰力PR(VB)を、図14に示す
ような特性に従って決定する。ここで、図14におい
て、実線は車速VBが上昇している最中における後輪の
減衰特性であり、破線は車速が減少している最中におけ
る後輪の減衰特性を示す。車速が減速時には、増速時に
比して、より低い減衰力が得られるような特性になって
いる。図14の特性は、減速時には車体姿勢を安定させ
るために、よりアンダステア傾向を得るものである。
【0022】ステップS42では、旋回中であるか否か
を判断するために、現在の舵角θHを所定の閾値θH0と
比較する。旋回中でない(|θH|<θH0)場合には、
ステップS52以下に進む。ステップS52は「大振幅
入力制御」を現在実行しているか否かをフラグ(F=
2)を調べるもので、ステップS54は「Gスルー制
御」を現在実行しているか否かをフラグ(F=3)を調
べるものである。「大振幅入力制御」も「Gスルー制
御」も実行していないときは、ステップS54からメイ
ンルーチンにリターンするので、図9のステップS30
が実行された時点で、ステップS40で設定された目標
位置PRが後輪ダンパのモータ1RL,1RRに設定され
る。
を判断するために、現在の舵角θHを所定の閾値θH0と
比較する。旋回中でない(|θH|<θH0)場合には、
ステップS52以下に進む。ステップS52は「大振幅
入力制御」を現在実行しているか否かをフラグ(F=
2)を調べるもので、ステップS54は「Gスルー制
御」を現在実行しているか否かをフラグ(F=3)を調
べるものである。「大振幅入力制御」も「Gスルー制
御」も実行していないときは、ステップS54からメイ
ンルーチンにリターンするので、図9のステップS30
が実行された時点で、ステップS40で設定された目標
位置PRが後輪ダンパのモータ1RL,1RRに設定され
る。
【0023】旋回中の(|θH|≧θH0)場合には、ス
テップS44以下に進む。ステップS44では、旋回外
側の前輪のダンパの現在のモータ位置をモニタする。こ
のモータ位置をPOFとする。ステップS46では、図1
5の特性に従って、後輪のダンパの目標減衰力(即ち、
モータ位置PRTRn)を決定する。図15の特性は、ステ
ップS44で得た旋回外輪の減衰力POFよりも低い減衰
力が後輪側に設定されるような特性である。尚、前輪側
のSDダンパは27段で、後輪側のAAダンパは5段で
あるので、図15の横軸は、後輪ダンパの前輪ダンパに
対する相対的な減衰強度となっている。即ち、例えば、
前輪の減衰力が後輪側ダンパの減衰力の4段目に相当す
るような減衰力(例えば、25段目)にあるときは、後
輪側ダンパの減衰力を4段よりも1段低い3段に減少さ
せるというものである。
テップS44以下に進む。ステップS44では、旋回外
側の前輪のダンパの現在のモータ位置をモニタする。こ
のモータ位置をPOFとする。ステップS46では、図1
5の特性に従って、後輪のダンパの目標減衰力(即ち、
モータ位置PRTRn)を決定する。図15の特性は、ステ
ップS44で得た旋回外輪の減衰力POFよりも低い減衰
力が後輪側に設定されるような特性である。尚、前輪側
のSDダンパは27段で、後輪側のAAダンパは5段で
あるので、図15の横軸は、後輪ダンパの前輪ダンパに
対する相対的な減衰強度となっている。即ち、例えば、
前輪の減衰力が後輪側ダンパの減衰力の4段目に相当す
るような減衰力(例えば、25段目)にあるときは、後
輪側ダンパの減衰力を4段よりも1段低い3段に減少さ
せるというものである。
【0024】尚、図15の特性は車速を加味するように
変更してもよい。ステップS48では、ステップS40
で車速VBに応じて求めた目標減衰力PRとステップS4
6で前輪の減衰力との関係で求めた目標減衰力PRTRnと
を比較する。もし後者が大きいならば(PR≦PRTR
n)、ステップS50で後輪減衰力の目標値を車速との
関係で求めた減衰力PRとする。即ち、 PRTRn=PR …(4) とする。このPRTRnが、図9のステップS30が実行さ
れた時点で、後輪のステップモータにセットされる。一
方、ステップS48でPR>PRTRnと判断されたなら
ば、前輪のダンパ特性との関係でステップS46で求め
た目標値PRTRnがモータに設定される。このようにする
のは、第1実施例の後輪のサスペンション制御は、旋回
中においてはアンダステア特性になることを確保するた
めのものである。即ち、例えば、ステップS40で車速
VBに応じて決定された減衰力PRが“3段目”であっ
て、ステップS46で決定された減衰力PRTRnが“2段
目”である場合には、PRTRn<PRであるので、PRを減
衰力として採用すると前輪に対して後輪がアンダステア
という関係が成立しない場合がある。従って、ステップ
S48でPR≦PRTRnのときにのみ、即ち、アンダステ
アの関係が確保される場合に限り、ステップS50で後
輪減衰力として車速VBに応じて決定したPRを採用する
のである。
変更してもよい。ステップS48では、ステップS40
で車速VBに応じて求めた目標減衰力PRとステップS4
6で前輪の減衰力との関係で求めた目標減衰力PRTRnと
を比較する。もし後者が大きいならば(PR≦PRTR
n)、ステップS50で後輪減衰力の目標値を車速との
関係で求めた減衰力PRとする。即ち、 PRTRn=PR …(4) とする。このPRTRnが、図9のステップS30が実行さ
れた時点で、後輪のステップモータにセットされる。一
方、ステップS48でPR>PRTRnと判断されたなら
ば、前輪のダンパ特性との関係でステップS46で求め
た目標値PRTRnがモータに設定される。このようにする
のは、第1実施例の後輪のサスペンション制御は、旋回
中においてはアンダステア特性になることを確保するた
めのものである。即ち、例えば、ステップS40で車速
VBに応じて決定された減衰力PRが“3段目”であっ
て、ステップS46で決定された減衰力PRTRnが“2段
目”である場合には、PRTRn<PRであるので、PRを減
衰力として採用すると前輪に対して後輪がアンダステア
という関係が成立しない場合がある。従って、ステップ
S48でPR≦PRTRnのときにのみ、即ち、アンダステ
アの関係が確保される場合に限り、ステップS50で後
輪減衰力として車速VBに応じて決定したPRを採用する
のである。
【0025】ステップS52で「大振幅入力制御」中
(F=2)と判断されたときには、ステップS60で、
減衰力を1段高める。直進中の「大振幅入力制御」中
は、アンダステア特性を保つよりも、障害物などに乗り
上げたときの大きな加速度の上下運動に対処することが
できるように、後輪側もダンパ特性をハード側に高める
必要があるからである。ステップS62では、この後輪
の特性をハード側に補正する制御を所定時間継続するよ
うにする。これは、後述するように、「大振幅入力制
御」(図29)においては、前輪もサスペンション特性
を所定時間ハード側に変更しているからである。
(F=2)と判断されたときには、ステップS60で、
減衰力を1段高める。直進中の「大振幅入力制御」中
は、アンダステア特性を保つよりも、障害物などに乗り
上げたときの大きな加速度の上下運動に対処することが
できるように、後輪側もダンパ特性をハード側に高める
必要があるからである。ステップS62では、この後輪
の特性をハード側に補正する制御を所定時間継続するよ
うにする。これは、後述するように、「大振幅入力制
御」(図29)においては、前輪もサスペンション特性
を所定時間ハード側に変更しているからである。
【0026】また、直進中に「Gスルー制御」を実行し
ているとき(ステップS54でYES)は、ステップS
56で後輪ダンパ力を1段低める。1段低めるのは、後
述するように、「Gスルー制御」(図33)において
は、前輪もサスペンション特性をソフト側に変更してい
るからである。第1実施例の効果 以上説明したように、この第1実施例のサスペンション
装置によれば、 :後輪側のダンパは段数の少ないAAダンパを採用
し、そのダンパの駆動には、低速のステップモータ(1
RL,1RR)を採用しているので、コスト低下が図れる。
このような低速のダンパには、高速制御を必要とする加
速度信号に基づいたフィードバック制御は適用が困難な
ので、この第1実施例では、車速信号VBに基づいたフ
ィードフォワード制御(図13のステップS40)を採
用している。このフィードフォワード制御の採用により
制御が簡素化できるので、コスト低下に寄与する。フィ
ードフォワード制御や低速ダンパの採用は、操安性の低
下をもたらすおそれがあるが、この第1実施例では、前
輪側に高速のSDダンパを採用し、上下方向加速度信号
に基づいたスカイフック制御(図9のステップS12,
ステップS14)を実施しているので操安性を確保でき
る。 :旋回時における後輪のダンパ特性の決定に際して
は、前輪のダンパ特性が参照される。旋回時における後
輪のダンパ特性は、操安性に影響を与えるので、後輪の
ダンパ特性は前輪のダンパ特性に対して所定の関係が成
立するように決定されるべきであるからである。特にこ
の実施例では、後輪が前輪に対してアンダステア傾向が
維持されるように後輪のダンパ特性が決定される(図1
3のステップS48、ステップS50)。 :前輪及び後輪のダンパ特性の決定に際しての制御ゲ
インの設定は、車速VBが高くなるほど、また減速され
ているほど(図14の破線の特性)、また舵角速度が大
きいほど(図11のK1)、ハード傾向になるように設
定している。車速VBが高いほど、また減速されている
ほど、また舵角速度が大きいときほど、サスペンション
特性を上げて応答性が向上する必要があるからである。 〈第2実施例〉前記第1実施例は、前輪にSDダンパ
を、後輪にADダンパを採用したものであった。第2実
施例は、図16に示すように、前輪にはADダンパを、
後輪にSDダンパを採用したものである。従って、この
第2実施例は、前輪には低速のステップモータ1'FL,
1'FRが設けられ、後輪には高速のステップモータ1'R
L,1'RRが設けられている。図17は、この第2実施例
の制御ブロック図を示す。
ているとき(ステップS54でYES)は、ステップS
56で後輪ダンパ力を1段低める。1段低めるのは、後
述するように、「Gスルー制御」(図33)において
は、前輪もサスペンション特性をソフト側に変更してい
るからである。第1実施例の効果 以上説明したように、この第1実施例のサスペンション
装置によれば、 :後輪側のダンパは段数の少ないAAダンパを採用
し、そのダンパの駆動には、低速のステップモータ(1
RL,1RR)を採用しているので、コスト低下が図れる。
このような低速のダンパには、高速制御を必要とする加
速度信号に基づいたフィードバック制御は適用が困難な
ので、この第1実施例では、車速信号VBに基づいたフ
ィードフォワード制御(図13のステップS40)を採
用している。このフィードフォワード制御の採用により
制御が簡素化できるので、コスト低下に寄与する。フィ
ードフォワード制御や低速ダンパの採用は、操安性の低
下をもたらすおそれがあるが、この第1実施例では、前
輪側に高速のSDダンパを採用し、上下方向加速度信号
に基づいたスカイフック制御(図9のステップS12,
ステップS14)を実施しているので操安性を確保でき
る。 :旋回時における後輪のダンパ特性の決定に際して
は、前輪のダンパ特性が参照される。旋回時における後
輪のダンパ特性は、操安性に影響を与えるので、後輪の
ダンパ特性は前輪のダンパ特性に対して所定の関係が成
立するように決定されるべきであるからである。特にこ
の実施例では、後輪が前輪に対してアンダステア傾向が
維持されるように後輪のダンパ特性が決定される(図1
3のステップS48、ステップS50)。 :前輪及び後輪のダンパ特性の決定に際しての制御ゲ
インの設定は、車速VBが高くなるほど、また減速され
ているほど(図14の破線の特性)、また舵角速度が大
きいほど(図11のK1)、ハード傾向になるように設
定している。車速VBが高いほど、また減速されている
ほど、また舵角速度が大きいときほど、サスペンション
特性を上げて応答性が向上する必要があるからである。 〈第2実施例〉前記第1実施例は、前輪にSDダンパ
を、後輪にADダンパを採用したものであった。第2実
施例は、図16に示すように、前輪にはADダンパを、
後輪にSDダンパを採用したものである。従って、この
第2実施例は、前輪には低速のステップモータ1'FL,
1'FRが設けられ、後輪には高速のステップモータ1'R
L,1'RRが設けられている。図17は、この第2実施例
の制御ブロック図を示す。
【0027】図18は後輪のサスペンション制御を、図
19は前輪のサスペンション制御を示す。実施例におい
ては、後輪はSDダンパ制御を行なうために、図18は
第1実施例の図9と実質的に類似し、前輪はAD制御を
行なうために、第x図は第1実施例の図13と実質的に
類似する。後輪サスペンション制御(第2実施例) 図18のフローチャートに従って、第2実施例の後輪に
おける操安制御を簡単に説明する。
19は前輪のサスペンション制御を示す。実施例におい
ては、後輪はSDダンパ制御を行なうために、図18は
第1実施例の図9と実質的に類似し、前輪はAD制御を
行なうために、第x図は第1実施例の図13と実質的に
類似する。後輪サスペンション制御(第2実施例) 図18のフローチャートに従って、第2実施例の後輪に
おける操安制御を簡単に説明する。
【0028】ステップS60において、後輪位置におけ
る上下方向加速度信号GL,GR、並びに、舵角信号θ
H,ブレーキ信号BR,車速信号VB等の各種信号を入力
する。ステップS62では、加速度信号GL,GR を夫
々積分して、車体の後輪位置における上下方向速度VG
L,VGRを求める。ステップS64では、車速VBに基づ
いて図10のような特性図に従って速度の閾値VG0を求
める。ステップS66では、上下方向速度VGn(nはL
左,R右を示す)を、夫々、前記閾値VG0 と比較す
る。ステップS66で|VGn|≧VG0と判断されたなら
ばステップS70に進むが、反対に|VGn|<VG0と判
断されたならば、ステップS68において、VGn=0と
することにより、車体は上下方向に動いていないと見做
し、そしてステップS70に進む。
る上下方向加速度信号GL,GR、並びに、舵角信号θ
H,ブレーキ信号BR,車速信号VB等の各種信号を入力
する。ステップS62では、加速度信号GL,GR を夫
々積分して、車体の後輪位置における上下方向速度VG
L,VGRを求める。ステップS64では、車速VBに基づ
いて図10のような特性図に従って速度の閾値VG0を求
める。ステップS66では、上下方向速度VGn(nはL
左,R右を示す)を、夫々、前記閾値VG0 と比較す
る。ステップS66で|VGn|≧VG0と判断されたなら
ばステップS70に進むが、反対に|VGn|<VG0と判
断されたならば、ステップS68において、VGn=0と
することにより、車体は上下方向に動いていないと見做
し、そしてステップS70に進む。
【0029】ステップS70では、ダンパ位置Pを決定
するための制御ゲインK1を演算する。この制御ゲイン
は、車速VBが大きいほどハンドル舵角速度θ'H(=dθ
H/dt)が大きいほど大きな値を示す。ステップS72で
は、現時点の車体の上下方向の移動速度をキャンセルす
るような目標車体上下速度VGTRnを、 VGTRn=VGn・K1 …(5) を演算する。このVGTRnが正のときは、ステップS76
に進んで、後輪SDダンパの目標位置PRTRnを、 PRTRn=PRn−1 …(6) に従って演算する。(6)式は、伸び方向の車体変位を
抑制するように、減衰特性を1段だけハードに変更する
ものである。反対に、VGTRnが負のときは、ステップS
76に進んで、後輪SDダンパの目標位置PRTRnを、 PRTRn=PRn+1 …(7) に従って演算する。(7)式は、縮み方向の車体変位を
抑制するように、減衰特性を1段だけソフトに変更する
ものである。ステップS76,ステップS78における
PRnはステップS60で求められた後輪SDダンパのス
テップモータの現在の位置である。
するための制御ゲインK1を演算する。この制御ゲイン
は、車速VBが大きいほどハンドル舵角速度θ'H(=dθ
H/dt)が大きいほど大きな値を示す。ステップS72で
は、現時点の車体の上下方向の移動速度をキャンセルす
るような目標車体上下速度VGTRnを、 VGTRn=VGn・K1 …(5) を演算する。このVGTRnが正のときは、ステップS76
に進んで、後輪SDダンパの目標位置PRTRnを、 PRTRn=PRn−1 …(6) に従って演算する。(6)式は、伸び方向の車体変位を
抑制するように、減衰特性を1段だけハードに変更する
ものである。反対に、VGTRnが負のときは、ステップS
76に進んで、後輪SDダンパの目標位置PRTRnを、 PRTRn=PRn+1 …(7) に従って演算する。(7)式は、縮み方向の車体変位を
抑制するように、減衰特性を1段だけソフトに変更する
ものである。ステップS76,ステップS78における
PRnはステップS60で求められた後輪SDダンパのス
テップモータの現在の位置である。
【0030】ステップS80では、車速VBに基づいて
図12に示すような限界値PLMTを求める。ステップS
82では、この限界値PLMTと目標位置PFTRnとを比較
し、この限界値を目標値PRTRnが越えていればステップ
S84で目標値をこの限界値にクリップする。ステップ
S86では、フラグINHIBITがセットされているかを調
べる。このフラグがセットされていなければ、ステップ
S88で、前輪SDダンパを目標減衰力が達成できるよ
うに後輪ダンパのモータ1'FL,1'FRを回転する。ここ
で、フラグINHIBITは第1実施例と同じように「Gスル
ー制御」や「大振幅入力制御」においてセットされるフ
ラグであり、これらの制御手順が、これらの「Gスルー
制御」や「大振幅入力制御」をそのまま実行すると、前
輪サスペンション特性と後輪のサスペンション特性とが
過度に異なったものになるおそれがある場合には、前輪
のダンパのモータ位置を変更させないようにするための
ものである。前輪サスペンション制御(第2実施例) 前輪のサスペンション特性は5段のAAダンパによって
決定される。換言すれば、このダンパの減衰力はモータ
1'RL,1'RRの回転位置によって決まる。図19は後輪
のAAダンパのモータ1'RL,1'RRの制御手順である。
図12に示すような限界値PLMTを求める。ステップS
82では、この限界値PLMTと目標位置PFTRnとを比較
し、この限界値を目標値PRTRnが越えていればステップ
S84で目標値をこの限界値にクリップする。ステップ
S86では、フラグINHIBITがセットされているかを調
べる。このフラグがセットされていなければ、ステップ
S88で、前輪SDダンパを目標減衰力が達成できるよ
うに後輪ダンパのモータ1'FL,1'FRを回転する。ここ
で、フラグINHIBITは第1実施例と同じように「Gスル
ー制御」や「大振幅入力制御」においてセットされるフ
ラグであり、これらの制御手順が、これらの「Gスルー
制御」や「大振幅入力制御」をそのまま実行すると、前
輪サスペンション特性と後輪のサスペンション特性とが
過度に異なったものになるおそれがある場合には、前輪
のダンパのモータ位置を変更させないようにするための
ものである。前輪サスペンション制御(第2実施例) 前輪のサスペンション特性は5段のAAダンパによって
決定される。換言すれば、このダンパの減衰力はモータ
1'RL,1'RRの回転位置によって決まる。図19は後輪
のAAダンパのモータ1'RL,1'RRの制御手順である。
【0031】第2実施例の前輪サスペンション制御は、
前輪のサスペンション特性に対して、図18の制御手順
によって決定された後輪のサスペンション特性がアンダ
ステア気味になるように、その前輪のサスペンション特
性をフィードフォワード制御により決定するものであ
る。即ち、ステップS100において、車速VBに応じ
た前輪の目標減衰力PF(VB)を、図20に示すような
特性に従って決定する。ここで、図20の特性図におい
て、実線は車速VBが上昇している最中における前輪の
減衰特性であり、破線は車速が減少している最中におけ
る前輪の減衰特性を示す。車速が減速時には、増速時に
比して、より低い減衰力が得られるような特性になって
いる。図20の特性は、減速時には車体姿勢を安定させ
るために、よりアンダステア傾向を得るものである。
前輪のサスペンション特性に対して、図18の制御手順
によって決定された後輪のサスペンション特性がアンダ
ステア気味になるように、その前輪のサスペンション特
性をフィードフォワード制御により決定するものであ
る。即ち、ステップS100において、車速VBに応じ
た前輪の目標減衰力PF(VB)を、図20に示すような
特性に従って決定する。ここで、図20の特性図におい
て、実線は車速VBが上昇している最中における前輪の
減衰特性であり、破線は車速が減少している最中におけ
る前輪の減衰特性を示す。車速が減速時には、増速時に
比して、より低い減衰力が得られるような特性になって
いる。図20の特性は、減速時には車体姿勢を安定させ
るために、よりアンダステア傾向を得るものである。
【0032】ステップS102では、旋回中であるか否
かを判断するために、現在の舵角θHを所定の閾値θH0
と比較する。旋回中でない(|θH|<θH0)場合に
は、ステップS102以下に進む。ステップS102は
「大振幅入力制御」を現在実行しているか否かをフラグ
(F=2)を調べるもので、ステップS104は「Gス
ルー制御」を現在実行しているか否かをフラグ(F=
3)を調べるものである。「大振幅入力制御」も「Gス
ルー制御」も実行していないときは、ステップS104
からメインルーチンにリターンするので、図18のステ
ップS88が実行された時点で、ステップS100で設
定された目標位置PFが前輪ダンパのモータ1'FL,1'F
Rに設定される。
かを判断するために、現在の舵角θHを所定の閾値θH0
と比較する。旋回中でない(|θH|<θH0)場合に
は、ステップS102以下に進む。ステップS102は
「大振幅入力制御」を現在実行しているか否かをフラグ
(F=2)を調べるもので、ステップS104は「Gス
ルー制御」を現在実行しているか否かをフラグ(F=
3)を調べるものである。「大振幅入力制御」も「Gス
ルー制御」も実行していないときは、ステップS104
からメインルーチンにリターンするので、図18のステ
ップS88が実行された時点で、ステップS100で設
定された目標位置PFが前輪ダンパのモータ1'FL,1'F
Rに設定される。
【0033】旋回中の(|θH|≧θH0)場合には、ス
テップS104以下に進む。ステップS104では、後
輪の内、旋回外輪の車輪のダンパの現在のモータ位置を
モニタする。このモータ位置をPOFとする。ステップS
106では、図21の特性に従って、前輪のダンパの目
標減衰力(即ち、モータ位置PFTRn)を決定する。図2
1の特性は、後輪がアンダステア特性になるように、ス
テップS104で得た旋回外輪の減衰力POFよりも高い
減衰力が前輪側に設定されるような特性である。
テップS104以下に進む。ステップS104では、後
輪の内、旋回外輪の車輪のダンパの現在のモータ位置を
モニタする。このモータ位置をPOFとする。ステップS
106では、図21の特性に従って、前輪のダンパの目
標減衰力(即ち、モータ位置PFTRn)を決定する。図2
1の特性は、後輪がアンダステア特性になるように、ス
テップS104で得た旋回外輪の減衰力POFよりも高い
減衰力が前輪側に設定されるような特性である。
【0034】ステップS108では、ステップS100
で車速VBに応じて求めた目標減衰力PFとステップS0
6で後輪の減衰力との関係で求めた目標減衰力PFTRnと
を比較する。もし後者が小さいならば(PF>PFTR
n)、ステップS110で前輪減衰力の目標値を車速と
の関係で求めた減衰力PFとする。即ち、 PFTRn=PF …(8) とする。このPFTRnが、図18のステップS880が実
行された時点で、前輪のステップモータにセットされ
る。一方、ステップS108でPF≦PFTRnと判断され
たならば、後輪のダンパ特性との関係でステップS10
6で求めた目標値PFTRnがモータに設定される。
で車速VBに応じて求めた目標減衰力PFとステップS0
6で後輪の減衰力との関係で求めた目標減衰力PFTRnと
を比較する。もし後者が小さいならば(PF>PFTR
n)、ステップS110で前輪減衰力の目標値を車速と
の関係で求めた減衰力PFとする。即ち、 PFTRn=PF …(8) とする。このPFTRnが、図18のステップS880が実
行された時点で、前輪のステップモータにセットされ
る。一方、ステップS108でPF≦PFTRnと判断され
たならば、後輪のダンパ特性との関係でステップS10
6で求めた目標値PFTRnがモータに設定される。
【0035】第2実施例の前輪のサスペンション制御
は、旋回中においては、後輪の減衰特性が前輪の減衰特
性に比してアンダステアになるように、前輪のサスペン
ション特性を設定するものである。即ち、例えば、ステ
ップS100で車速VBに応じて決定された減衰力PFが
“2段目”であって、ステップS06で決定された減衰
力PFTRnが“3段目”である場合には、PFTRn>PFで
あるので、PFを減衰力として採用すると前輪に対して
後輪がアンダステアという関係が成立しない場合があ
る。従って、ステップS108でPR>PRTRnのときに
のみ、即ち、アンダステアの関係が確保される場合に限
り、ステップS110で後輪減衰力として車速VBに応
じて決定したPFを採用するのである。
は、旋回中においては、後輪の減衰特性が前輪の減衰特
性に比してアンダステアになるように、前輪のサスペン
ション特性を設定するものである。即ち、例えば、ステ
ップS100で車速VBに応じて決定された減衰力PFが
“2段目”であって、ステップS06で決定された減衰
力PFTRnが“3段目”である場合には、PFTRn>PFで
あるので、PFを減衰力として採用すると前輪に対して
後輪がアンダステアという関係が成立しない場合があ
る。従って、ステップS108でPR>PRTRnのときに
のみ、即ち、アンダステアの関係が確保される場合に限
り、ステップS110で後輪減衰力として車速VBに応
じて決定したPFを採用するのである。
【0036】ステップS02で「大振幅入力制御」中
(F=2)と判断されたときには、ステップS120
で、減衰力を1段高める。直進中の「大振幅入力制御」
中は、アンダステア特性を保つよりも、障害物などに乗
り上げたときの大きな加速度の上下運動に対処すること
ができるように、後輪側もダンパ特性をハード側に高め
る必要があるからである。ステップS122では、この
前輪の特性をハード側に補正する制御を所定時間継続す
るようにする。これは、後述するように、「大振幅入力
制御」(図29)においては、前輪もサスペンション特
性を所定時間ハード側に変更しているからである。
(F=2)と判断されたときには、ステップS120
で、減衰力を1段高める。直進中の「大振幅入力制御」
中は、アンダステア特性を保つよりも、障害物などに乗
り上げたときの大きな加速度の上下運動に対処すること
ができるように、後輪側もダンパ特性をハード側に高め
る必要があるからである。ステップS122では、この
前輪の特性をハード側に補正する制御を所定時間継続す
るようにする。これは、後述するように、「大振幅入力
制御」(図29)においては、前輪もサスペンション特
性を所定時間ハード側に変更しているからである。
【0037】また、直進中に「Gスルー制御」を実行し
ているとき(ステップS104でYES)は、ステップ
S106で後輪ダンパ力を1段低める。1段低めるの
は、後述するように、「Gスルー制御」(図33)にお
いては、前輪もサスペンション特性をソフト側に変更し
ているからである。 〈第3実施例〉この第3実施例は、前輪と後輪にSDダ
ンパを用い、そして上下方向Gの検出を、前輪側に設け
られた1つのGセンサ6と、後輪側に設けられた1つの
Gセンサ7により行うものである。図22に示すよう
に、前輪側にも後輪側にも夫々1つだけのセンサを用い
たのでは、車体のロール運動の検出は困難になる。しか
しながら、ロール(操舵)制御はそもそも旋回時に最も
必要になるのであって、しかも旋回時には例えば前輪特
性をハードにするなどすれば、必要にして十分な操安特
性を得ることができる。そして、従来では、3つ以上
(左右方向に1対のセンサ、前若しくは後に1つのセン
サ)のセンサが必要であったが、第3実施例では、2つ
のセンサで十分であるので、コスト低下に役立つのであ
る。
ているとき(ステップS104でYES)は、ステップ
S106で後輪ダンパ力を1段低める。1段低めるの
は、後述するように、「Gスルー制御」(図33)にお
いては、前輪もサスペンション特性をソフト側に変更し
ているからである。 〈第3実施例〉この第3実施例は、前輪と後輪にSDダ
ンパを用い、そして上下方向Gの検出を、前輪側に設け
られた1つのGセンサ6と、後輪側に設けられた1つの
Gセンサ7により行うものである。図22に示すよう
に、前輪側にも後輪側にも夫々1つだけのセンサを用い
たのでは、車体のロール運動の検出は困難になる。しか
しながら、ロール(操舵)制御はそもそも旋回時に最も
必要になるのであって、しかも旋回時には例えば前輪特
性をハードにするなどすれば、必要にして十分な操安特
性を得ることができる。そして、従来では、3つ以上
(左右方向に1対のセンサ、前若しくは後に1つのセン
サ)のセンサが必要であったが、第3実施例では、2つ
のセンサで十分であるので、コスト低下に役立つのであ
る。
【0038】図23はこの第3実施例の制御システムの
全体構成を示す。ロール(操舵)制御は、舵角信号θH
と車速信号VBとに基づいて行ない、車体姿勢のバウン
ス,ピッチ成分については、車速信号VB,前後のGセ
ンサからの加速度信号に基づいて行なう。バウンス,ピッチ制御(第3実施例) 図24は、第3実施例において、全ての車輪のSDダン
パについて行なわれるバウンス,ピッチ制御部分につい
ての制御フローチャートを示す。図25は、同じく全輪
のSDダンパについて行なわれるロール制御の制御手順
を示すフローチャートである。
全体構成を示す。ロール(操舵)制御は、舵角信号θH
と車速信号VBとに基づいて行ない、車体姿勢のバウン
ス,ピッチ成分については、車速信号VB,前後のGセ
ンサからの加速度信号に基づいて行なう。バウンス,ピッチ制御(第3実施例) 図24は、第3実施例において、全ての車輪のSDダン
パについて行なわれるバウンス,ピッチ制御部分につい
ての制御フローチャートを示す。図25は、同じく全輪
のSDダンパについて行なわれるロール制御の制御手順
を示すフローチャートである。
【0039】図24において、ステップS132からス
テップS160までは、図9のステップS2〜ステップ
S30と実質的に同じであり、異なるのは、第3実施例
では、ステップS132において前部Gセンサからの信
号GFと後部Gセンサ7からの信号GRを入力し、ステッ
プS134では車体前部の上下運動速度VFと車体後部
の上下運動速度VRとを入力する点で異なっている。ま
た、図24のフローチャートと大きく異なる点は、ステ
ップS130において、フラグFが1のときはステップ
S132〜ステップS160のバウンス/ピッチ制御を
実行しないということである。このフラグFが1に等し
い場合については図25のロール制御によって明らかに
なる。ロール制御 図25は、前後輪の各輪のSDダンパに対して行なわれ
るロール制御(操舵制御)の制御手順を示すフローチャ
ートである。ステップS170において、車体が旋回中
(|θH|≧θH0)か直進中(|θH|<θH0)かを調べ
る。直進中であれば(ステップS170でNO)、ステ
ップS192で舵角の時間変化θ'H(=dθ/dt)を調べ
る。ステップS170で旋回中(YES)と判断される
か、又はステップS192で舵角が変化している(N
O)と判断されれば、ステップS172に進んで、これ
からロール制御を行なうことを示すためにフラグFを1
にする。旋回中でもなく、舵角が変化しているわけでも
ない場合は、ステップS194でフラグを0にリセット
する。従って、フラグFが0の場合は、各輪に対して
は、図24のバウンス/ピッチ制御(図24)が行なわ
れて、図25のロール制御は行なわれないことになる。
この理由は、前述したように、ロール(操舵)制御はそ
もそも旋回時に最も必要になるのであって、しかも旋回
時には例えば前輪特性をハードにするなどすれば、必要
にして十分な操安特性を得ることができるからである。
テップS160までは、図9のステップS2〜ステップ
S30と実質的に同じであり、異なるのは、第3実施例
では、ステップS132において前部Gセンサからの信
号GFと後部Gセンサ7からの信号GRを入力し、ステッ
プS134では車体前部の上下運動速度VFと車体後部
の上下運動速度VRとを入力する点で異なっている。ま
た、図24のフローチャートと大きく異なる点は、ステ
ップS130において、フラグFが1のときはステップ
S132〜ステップS160のバウンス/ピッチ制御を
実行しないということである。このフラグFが1に等し
い場合については図25のロール制御によって明らかに
なる。ロール制御 図25は、前後輪の各輪のSDダンパに対して行なわれ
るロール制御(操舵制御)の制御手順を示すフローチャ
ートである。ステップS170において、車体が旋回中
(|θH|≧θH0)か直進中(|θH|<θH0)かを調べ
る。直進中であれば(ステップS170でNO)、ステ
ップS192で舵角の時間変化θ'H(=dθ/dt)を調べ
る。ステップS170で旋回中(YES)と判断される
か、又はステップS192で舵角が変化している(N
O)と判断されれば、ステップS172に進んで、これ
からロール制御を行なうことを示すためにフラグFを1
にする。旋回中でもなく、舵角が変化しているわけでも
ない場合は、ステップS194でフラグを0にリセット
する。従って、フラグFが0の場合は、各輪に対して
は、図24のバウンス/ピッチ制御(図24)が行なわ
れて、図25のロール制御は行なわれないことになる。
この理由は、前述したように、ロール(操舵)制御はそ
もそも旋回時に最も必要になるのであって、しかも旋回
時には例えば前輪特性をハードにするなどすれば、必要
にして十分な操安特性を得ることができるからである。
【0040】旋回開始若しくは旋回中と判断された場合
について説明する。かかる場合は、ステップS172→
ステップS174と進んで、ステップS174におい
て、前輪についての目標減衰力PFを車速VB,舵角θH
に基づいて決定する。目標減衰力PFは例えば、図26
に示したような特性に従って車速VB,舵角θHに基づい
て決定される。即ち、同図の特性は、舵角θHが高いほ
どまた車速VBが高いほど減衰力が大きくなる(ダンパ
特性をハードにする)というものである。また、ステッ
プS178では係数Aを舵角速度θ'Hに基づいて決定す
る。係数Aは例えば図27のような、舵角速度θ'Hが大
きい程大きくなるという特性を有する。ステップS17
8では、目標減衰力PFAn(nは右又は左を表す)を演
算する。
について説明する。かかる場合は、ステップS172→
ステップS174と進んで、ステップS174におい
て、前輪についての目標減衰力PFを車速VB,舵角θH
に基づいて決定する。目標減衰力PFは例えば、図26
に示したような特性に従って車速VB,舵角θHに基づい
て決定される。即ち、同図の特性は、舵角θHが高いほ
どまた車速VBが高いほど減衰力が大きくなる(ダンパ
特性をハードにする)というものである。また、ステッ
プS178では係数Aを舵角速度θ'Hに基づいて決定す
る。係数Aは例えば図27のような、舵角速度θ'Hが大
きい程大きくなるという特性を有する。ステップS17
8では、目標減衰力PFAn(nは右又は左を表す)を演
算する。
【0041】PFAn=PF・A …………(9) かくして、ステップS174〜ステップS178では、
前輪の目標減衰力PFAnは、車速が高いほど、舵角が大
きいほど、舵角速度が大きいほど、大きな値となるよう
に決定される。ステップS180では、後輪のための係
数Kを決定する。この係数Kは例えば、図28に示すよ
うに、1よりも小さな係数で、車速VBが大きくなれば
なる程小さくなる特徴を有する。
前輪の目標減衰力PFAnは、車速が高いほど、舵角が大
きいほど、舵角速度が大きいほど、大きな値となるよう
に決定される。ステップS180では、後輪のための係
数Kを決定する。この係数Kは例えば、図28に示すよ
うに、1よりも小さな係数で、車速VBが大きくなれば
なる程小さくなる特徴を有する。
【0042】ステップS182では、前輪に対する目標
減衰力PFAnと後輪の実際の現在の減衰力PRnとを比較
する。前輪目標減衰力PFAnが後輪の現在の減衰力PRn
よりも大きい場合、即ち、PFAn≦PRnの場合は、ステ
ップS184に進んで、目標減衰力PFAnを前輪の最終
目標減衰力PFTRnとするために、 PFTRn=PFAn …………(10) とし、ステップS186では、後輪が前輪に対してアン
ダステア傾向となるように、ステップS180で求めた
係数Kを用いて、 PRTRn=PFAn・K …………(11) とする。即ち、図28に示すように、係数Kは1よりも
小さな数なので、(11)式によれば、後輪は常に前輪
の減衰力よりも小さくなるように設定されるからであ
る。
減衰力PFAnと後輪の実際の現在の減衰力PRnとを比較
する。前輪目標減衰力PFAnが後輪の現在の減衰力PRn
よりも大きい場合、即ち、PFAn≦PRnの場合は、ステ
ップS184に進んで、目標減衰力PFAnを前輪の最終
目標減衰力PFTRnとするために、 PFTRn=PFAn …………(10) とし、ステップS186では、後輪が前輪に対してアン
ダステア傾向となるように、ステップS180で求めた
係数Kを用いて、 PRTRn=PFAn・K …………(11) とする。即ち、図28に示すように、係数Kは1よりも
小さな数なので、(11)式によれば、後輪は常に前輪
の減衰力よりも小さくなるように設定されるからであ
る。
【0043】一方。ステップS182で、現在の後輪の
減衰力PRnが前輪の目標減衰力PFAnよりも小さい場合
には、後輪がオーバステアになる可能性があるので、ス
テップS188において、 PFTRn=P+- ……(12) とする。この(12)式の意味するところは、前輪の減
衰力PFTRnを、旋回外側の前輪については縮み方向につ
いてハード特性になるように、旋回内側の前輪について
は伸び方向でハード特性になるように設定するというも
のである。また、ステップS190では、後輪の特性が
アンダステア傾向が確保されるように、現在の減衰力よ
りも低い減衰力となるように、 PRTRn=PRn・K …(13) とする。第3実施例の効果 かくして、第3実施例によれば、 :車幅方向において略中央で、且つ車長方向で前後に
夫々設けられた2つのGセンサ(6,7)からの夫々の
信号GF,GRと舵角センサからの信号θHとに基づい
て、バウンス/ピッチを抑制するような制御(図24)
を行ない、舵角信号θHに基づいてフィードフォワード
形式で旋回制御(ロール制御)を行なうようにしてい
る。このようにすることにより、従来に比して、Gセン
サを1つ減らすことができ、それでいて、バウンス/ピ
ッチ制御とロール制御とを併せて実現することができ
る。 :ロール制御のためのフィードフォワード制御は、前
輪については車速VBと舵角速度θ'Hによって補正され
る(ステップS174,ステップS178)。 :まず、前輪についてのダンパ力が決定され、その後
に、後輪のダンパ特性が前輪よりもアンダステア特性と
なるように決定される(ステップS182〜ステップS
190)。 :フラグFを用いることによって、ロール制御(旋回
制御)をバウンス/ピッチ制御よりも優先させている。
これにより、旋回時におけるロール方向における姿勢制
御が確保される。 :ロール制御においては、旋回時においてのみフィー
ドフォワード制御によって行なわれる。 〈大振幅入力制御とGスルー制御〉以上、3つの実施例
(図8,図17,図23)を説明した。次に、これらの
実施例のサスペンション装置に共通して適用されている
ところの大振幅入力制御とGスルー制御について説明す
る。大振幅入力制御 大振幅入力制御は、例えば、車体が障害物に乗り上げた
ときなどに安全性を確保するために、上下加速度信号G
が大振幅で入力されたことを検出し減衰力を高めるよう
にする制御である。
減衰力PRnが前輪の目標減衰力PFAnよりも小さい場合
には、後輪がオーバステアになる可能性があるので、ス
テップS188において、 PFTRn=P+- ……(12) とする。この(12)式の意味するところは、前輪の減
衰力PFTRnを、旋回外側の前輪については縮み方向につ
いてハード特性になるように、旋回内側の前輪について
は伸び方向でハード特性になるように設定するというも
のである。また、ステップS190では、後輪の特性が
アンダステア傾向が確保されるように、現在の減衰力よ
りも低い減衰力となるように、 PRTRn=PRn・K …(13) とする。第3実施例の効果 かくして、第3実施例によれば、 :車幅方向において略中央で、且つ車長方向で前後に
夫々設けられた2つのGセンサ(6,7)からの夫々の
信号GF,GRと舵角センサからの信号θHとに基づい
て、バウンス/ピッチを抑制するような制御(図24)
を行ない、舵角信号θHに基づいてフィードフォワード
形式で旋回制御(ロール制御)を行なうようにしてい
る。このようにすることにより、従来に比して、Gセン
サを1つ減らすことができ、それでいて、バウンス/ピ
ッチ制御とロール制御とを併せて実現することができ
る。 :ロール制御のためのフィードフォワード制御は、前
輪については車速VBと舵角速度θ'Hによって補正され
る(ステップS174,ステップS178)。 :まず、前輪についてのダンパ力が決定され、その後
に、後輪のダンパ特性が前輪よりもアンダステア特性と
なるように決定される(ステップS182〜ステップS
190)。 :フラグFを用いることによって、ロール制御(旋回
制御)をバウンス/ピッチ制御よりも優先させている。
これにより、旋回時におけるロール方向における姿勢制
御が確保される。 :ロール制御においては、旋回時においてのみフィー
ドフォワード制御によって行なわれる。 〈大振幅入力制御とGスルー制御〉以上、3つの実施例
(図8,図17,図23)を説明した。次に、これらの
実施例のサスペンション装置に共通して適用されている
ところの大振幅入力制御とGスルー制御について説明す
る。大振幅入力制御 大振幅入力制御は、例えば、車体が障害物に乗り上げた
ときなどに安全性を確保するために、上下加速度信号G
が大振幅で入力されたことを検出し減衰力を高めるよう
にする制御である。
【0044】図29はこの大振幅入力制御の制御手順を
示す。この大振幅入力制御(図29)と、例えば第1実
施例におけるSH制御との制御の調停は、前述のフラグ
Fによって行なわれる。即ち、大振幅入力制御が行なわ
れるときは、ステップS210,ステップS222にお
いてフラグFが2にセットされる。一方、第1実施例の
後輪制御(図13)においては、フラグF=2が検出さ
れるとステップS60以下が実行される。
示す。この大振幅入力制御(図29)と、例えば第1実
施例におけるSH制御との制御の調停は、前述のフラグ
Fによって行なわれる。即ち、大振幅入力制御が行なわ
れるときは、ステップS210,ステップS222にお
いてフラグFが2にセットされる。一方、第1実施例の
後輪制御(図13)においては、フラグF=2が検出さ
れるとステップS60以下が実行される。
【0045】まず、図29のフローチャートを参照しな
がら、Gセンサ出力が大振幅入力であった場合にどのよ
うな制御を実行するかを説明する。ステップS200で
は、Gセンサからの信号を積分して、上下方向における
車体速度VGを得る。ステップS202では、旋回中で
あるか否かを判断するために舵角θHと閾値θH0とを比
較する。旋回中と判定された場合と直進中と判定された
場合とでは制御は異なる。また、後述するように、車体
速度VGの大きさによっても制御は異なる。
がら、Gセンサ出力が大振幅入力であった場合にどのよ
うな制御を実行するかを説明する。ステップS200で
は、Gセンサからの信号を積分して、上下方向における
車体速度VGを得る。ステップS202では、旋回中で
あるか否かを判断するために舵角θHと閾値θH0とを比
較する。旋回中と判定された場合と直進中と判定された
場合とでは制御は異なる。また、後述するように、車体
速度VGの大きさによっても制御は異なる。
【0046】図32は、大振幅入力制御の制御の態様を
表としてまとめたものである。同図において、制御間隔
とは、例えば第1実施例の図13の制御手順が実行され
る時間間隔を言う。この時間間隔が短くなれば、制御は
早く行なわれ、その結果、入力に対して敏感に対応する
ようになる。図29の制御手順では、制御間隔が「ゆっ
くり」とは、制御間隔txを、t0>t1>t2とした場合
に、 tx=t0 に設定し、「早く」とは、 tx=t2 に設定し、「通常」とは、 tx=t1 に設定するものとする。また、図32において、上限値
PLMTを「拡大」するとは図12の特性をさらに1.2倍に
広げることを言う。
表としてまとめたものである。同図において、制御間隔
とは、例えば第1実施例の図13の制御手順が実行され
る時間間隔を言う。この時間間隔が短くなれば、制御は
早く行なわれ、その結果、入力に対して敏感に対応する
ようになる。図29の制御手順では、制御間隔が「ゆっ
くり」とは、制御間隔txを、t0>t1>t2とした場合
に、 tx=t0 に設定し、「早く」とは、 tx=t2 に設定し、「通常」とは、 tx=t1 に設定するものとする。また、図32において、上限値
PLMTを「拡大」するとは図12の特性をさらに1.2倍に
広げることを言う。
【0047】直進中の場合(|θH|<θH0)には、ス
テップS219に進んで、大振幅入力があったか否かの
判断のための閾値GAを決定する。この閾値GAは例えば
図30のような特性に従って車速VBに基づいて決定さ
れる。図30の閾値GAの特性は、車速VBが大きくなれ
ばなるほど大きくなるような閾値である。上下方向の車
体速度VGがGAよりも小さい場合、即ち、 |VG|<GA の場合は、ステップS230に進んで、フラグFを0に
して、ステップS232において制御サイクル時間tx
を通常間隔(t1)に設定し、またPLMTは変更しないの
で、「通常」の値(図12)が設定される。
テップS219に進んで、大振幅入力があったか否かの
判断のための閾値GAを決定する。この閾値GAは例えば
図30のような特性に従って車速VBに基づいて決定さ
れる。図30の閾値GAの特性は、車速VBが大きくなれ
ばなるほど大きくなるような閾値である。上下方向の車
体速度VGがGAよりも小さい場合、即ち、 |VG|<GA の場合は、ステップS230に進んで、フラグFを0に
して、ステップS232において制御サイクル時間tx
を通常間隔(t1)に設定し、またPLMTは変更しないの
で、「通常」の値(図12)が設定される。
【0048】ステップS220において車体速度VGが
閾値GAよりも大きいと判断されたときには、ステップ
S222でフラグFを2に設定する。そして、ステップ
S224で制御間隔を「早く」(tx=t2)に設定し、
ステップS226で上限値PLMTを1.2倍に広げる。一
方、直進中に大振幅の入力があったときは、図13(第
1実施例の後輪制御)の制御手順のステップS42にお
いて直進中と判断されてステップS52に進み、フラグ
Fの値が調べられる。前述したように、図29のステッ
プS222によりフラグFは2に設定されているから、
ステップS52ではYESと判断されてステップS60
に進むこととなる。ステップS60では、後輪ダンパの
減衰力目標値PRTRnを現在の値よりもハード傾向にする
ために、 PRTRn=PRn+1 ……(14) とする。ステップS62では、このような後輪の減衰力
制御を所定時間継続する。継続する理由はこのような大
振幅入力状態が前記所定時間継続すると考えられるから
である。
閾値GAよりも大きいと判断されたときには、ステップ
S222でフラグFを2に設定する。そして、ステップ
S224で制御間隔を「早く」(tx=t2)に設定し、
ステップS226で上限値PLMTを1.2倍に広げる。一
方、直進中に大振幅の入力があったときは、図13(第
1実施例の後輪制御)の制御手順のステップS42にお
いて直進中と判断されてステップS52に進み、フラグ
Fの値が調べられる。前述したように、図29のステッ
プS222によりフラグFは2に設定されているから、
ステップS52ではYESと判断されてステップS60
に進むこととなる。ステップS60では、後輪ダンパの
減衰力目標値PRTRnを現在の値よりもハード傾向にする
ために、 PRTRn=PRn+1 ……(14) とする。ステップS62では、このような後輪の減衰力
制御を所定時間継続する。継続する理由はこのような大
振幅入力状態が前記所定時間継続すると考えられるから
である。
【0049】このようにして、直進中に大振幅の入力が
あったときは、後輪のためのダンパ力制御(図13)と
「大振幅入力制御」(図29)とが協調して動作して対
処する。即ち、直進中に大振幅の入力があったときは、
後輪については減衰力を高めるとともに(ステップS6
0)、前輪の制御(図9)と後輪の制御(図13)の制
御間隔を短め(時間間隔t2)にすることにより衝撃入
力に対して反応を鋭くするようにしている。また、反応
を早めることにより減衰力を大きくせざるを得ない場合
がある。そのような場合に対しては、上限値PLMTを大
きくする(ステップS226)ことにより、衝撃入力に
対する応答としての減衰力強化により減衰力が大きくな
ってもそれがクリップされないようにしている。
あったときは、後輪のためのダンパ力制御(図13)と
「大振幅入力制御」(図29)とが協調して動作して対
処する。即ち、直進中に大振幅の入力があったときは、
後輪については減衰力を高めるとともに(ステップS6
0)、前輪の制御(図9)と後輪の制御(図13)の制
御間隔を短め(時間間隔t2)にすることにより衝撃入
力に対して反応を鋭くするようにしている。また、反応
を早めることにより減衰力を大きくせざるを得ない場合
がある。そのような場合に対しては、上限値PLMTを大
きくする(ステップS226)ことにより、衝撃入力に
対する応答としての減衰力強化により減衰力が大きくな
ってもそれがクリップされないようにしている。
【0050】旋回時(ステップS202で|θH|≧θH
0)と判断されたときは、ステップS208において所
定の閾値GBと車体の上下方向速度VGと比較することに
より、衝撃の大きさを測る。この閾値GBは、ステップ
S206において、ハンドル舵角θHと舵角速度θ'Hと
に基づいて例えば図31のような特性に従って決定され
る。この特性は、ハンドル舵角θHが大きいほど、また
舵角速度θ'Hが大きいほど、GBの値が大きくなるとい
うものである。
0)と判断されたときは、ステップS208において所
定の閾値GBと車体の上下方向速度VGと比較することに
より、衝撃の大きさを測る。この閾値GBは、ステップ
S206において、ハンドル舵角θHと舵角速度θ'Hと
に基づいて例えば図31のような特性に従って決定され
る。この特性は、ハンドル舵角θHが大きいほど、また
舵角速度θ'Hが大きいほど、GBの値が大きくなるとい
うものである。
【0051】車体に加わった衝撃入力が|VG|≧GBで
あるように大きいときは、ステップS210でフラグF
を2にセットし、制御間隔をステップS212において
長くし、即ち、衝撃入力に対するダンパ制御の反応を鈍
くする。そして、ステップS214,ステップS216
においては、目標の減衰力が前輪−後輪間で、あるいは
右輪−左輪間において、3段以上の差が発生しないよう
にする。前輪−後輪間で3段以上の差が発生しようとし
ているときは、 |Pf−Pr|≧3 ……(15) であり、右輪−左輪間において3段以上の差が発生しよ
うとしているときは、 |PL−PR|≧3 ……(16) である筈である。但し、Pfは前輪の最終目標減衰力PF
TRnであり、Prは後輪の目標減衰力RTRnである。かかる
場合には、ステップS218に進んで信号INHIBITを出
力する。信号INHIBITは、例えば図24のステップS1
58において、前輪、後輪の各ダンパに対する減衰力信
号を実際に出力するか否かを制御する信号である。この
信号INHIBITが発生すると減衰力の変更は停止されるの
で、発生する減衰力が前輪−後輪間で、あるいは右輪−
左輪間において3段以上の差となることはない。
あるように大きいときは、ステップS210でフラグF
を2にセットし、制御間隔をステップS212において
長くし、即ち、衝撃入力に対するダンパ制御の反応を鈍
くする。そして、ステップS214,ステップS216
においては、目標の減衰力が前輪−後輪間で、あるいは
右輪−左輪間において、3段以上の差が発生しないよう
にする。前輪−後輪間で3段以上の差が発生しようとし
ているときは、 |Pf−Pr|≧3 ……(15) であり、右輪−左輪間において3段以上の差が発生しよ
うとしているときは、 |PL−PR|≧3 ……(16) である筈である。但し、Pfは前輪の最終目標減衰力PF
TRnであり、Prは後輪の目標減衰力RTRnである。かかる
場合には、ステップS218に進んで信号INHIBITを出
力する。信号INHIBITは、例えば図24のステップS1
58において、前輪、後輪の各ダンパに対する減衰力信
号を実際に出力するか否かを制御する信号である。この
信号INHIBITが発生すると減衰力の変更は停止されるの
で、発生する減衰力が前輪−後輪間で、あるいは右輪−
左輪間において3段以上の差となることはない。
【0052】他方、旋回中であっても、衝撃力が小さい
とき(ステップS208でNO)は、ステップS242
で通常の制御間隔(t1)とする。以上説明したよう
に、本システムの「大振幅入力制御」によれば、 :通常の走行中(ステップS202でNO)に、車体
の上下速度VG(即ち上下加速度)が所定の閾値(GA)
を越えた(ステップS220でYES)ときは、後輪の
ダンパ力をハードにしている(図13のステップS6
0)。また更に、減衰力の上限値PLMTも拡張してい
る。 :その一方、旋回中(ステップS202でYES)な
どのときの大きなG入力のとき(ステップS208でY
ES)は、減衰力を過度に急速に高めることが操安性に
影響を与えるので、ステップS212で減衰力をハード
にする応答速度を遅くしている。Gスルー制御 Gスルー制御は、悪路走行中等において、上下加速度信
号Gに含まれる変動成分がそのまま乗り心地に反映され
ないように、ダンパ特性をソフトに変更するものであ
る。
とき(ステップS208でNO)は、ステップS242
で通常の制御間隔(t1)とする。以上説明したよう
に、本システムの「大振幅入力制御」によれば、 :通常の走行中(ステップS202でNO)に、車体
の上下速度VG(即ち上下加速度)が所定の閾値(GA)
を越えた(ステップS220でYES)ときは、後輪の
ダンパ力をハードにしている(図13のステップS6
0)。また更に、減衰力の上限値PLMTも拡張してい
る。 :その一方、旋回中(ステップS202でYES)な
どのときの大きなG入力のとき(ステップS208でY
ES)は、減衰力を過度に急速に高めることが操安性に
影響を与えるので、ステップS212で減衰力をハード
にする応答速度を遅くしている。Gスルー制御 Gスルー制御は、悪路走行中等において、上下加速度信
号Gに含まれる変動成分がそのまま乗り心地に反映され
ないように、ダンパ特性をソフトに変更するものであ
る。
【0053】このGスルー制御の詳細は図33に示され
る。図33のステップS250において、フラグFの値
を調べるフラグFの値が2のときはこのGスルー制御を
行なわずにメインルーチンにリターンする。F=2のと
きにステップS252以下に進む。即ち、前述の大振幅
入力制御はダンパをハードにする制御であるし、このG
スルー制御はダンパをソフトに変更する制御であるの
で、この2つの制御が干渉しないように、フラグFの値
によって互いに排他制御となるようにしているのであ
る。また、ステップS250の存在によって、大振幅入
力制御の方がGスルー制御に比して優先順位が高い。こ
れは、本実施例では乗り心地よりも安全性を優先したた
めである。
る。図33のステップS250において、フラグFの値
を調べるフラグFの値が2のときはこのGスルー制御を
行なわずにメインルーチンにリターンする。F=2のと
きにステップS252以下に進む。即ち、前述の大振幅
入力制御はダンパをハードにする制御であるし、このG
スルー制御はダンパをソフトに変更する制御であるの
で、この2つの制御が干渉しないように、フラグFの値
によって互いに排他制御となるようにしているのであ
る。また、ステップS250の存在によって、大振幅入
力制御の方がGスルー制御に比して優先順位が高い。こ
れは、本実施例では乗り心地よりも安全性を優先したた
めである。
【0054】大振幅入力制御が行なわれていない場合を
説明する。この場合は、ステップS252以下に進み、
ステップS252〜ステップS256において閾値補正
係数G0,G1,G2を演算し、ステップS258で最終
閾値GTRを、 GTR=G0・G1・G2 ……(17) を演算する。ステップS260では、この閾値と上下方
向加速度Gとを比較し、大きな加速度入力があったかを
判断する。G0は車速VBに基づいて例えば図34のごと
き特性に従って決定され、G1は舵角θHに基づいて例え
ば図35のごとき特性に従って決定され、G2は舵角速
度θ'Hに基づいて例えば図36のごとき特性に従って決
定される。
説明する。この場合は、ステップS252以下に進み、
ステップS252〜ステップS256において閾値補正
係数G0,G1,G2を演算し、ステップS258で最終
閾値GTRを、 GTR=G0・G1・G2 ……(17) を演算する。ステップS260では、この閾値と上下方
向加速度Gとを比較し、大きな加速度入力があったかを
判断する。G0は車速VBに基づいて例えば図34のごと
き特性に従って決定され、G1は舵角θHに基づいて例え
ば図35のごとき特性に従って決定され、G2は舵角速
度θ'Hに基づいて例えば図36のごとき特性に従って決
定される。
【0055】ここで、ステップS258の加速度Gと
は、第1実施例,第2実施例では、3つの加速度センサ
からの出力信号の平均値でも、あるいはそれらの最大値
を示すものをGとするようにしてもよい。大きな加速度
の入力があったときはステップS262に進んで、「G
スルー制御」が実行されることを示すためにフラグFを
3にする。ステップS264ではスラローム走行を行な
っているかを判定する。この判定は、例えば、ハンドル
舵角θHの単位時間当たりの変化量に基づいて判断する
ことができる。スラローム走行を行なっていると判断さ
れた場合には、ステップS278において上限値PLMT
を通常時の1.2倍に拡張する。スラローム走行を行なっ
ている場合には、ハード方向への減衰力の大きな変更を
可能にして車体の安定性を保つためである。スラローム
走行を行なっていない場合には、図13のステップS5
6において、PRTRnを1段減衰(ソフトに)している。
ダンパ力がハード方向に大きく変更されることを禁止す
ることにより、乗り心地を確保するためである。また、
スラローム走行を行なっていないと判断された(ステッ
プS264)場合には、ステップS266において上限
値PLMTを通常時の0.8倍に縮小する。
は、第1実施例,第2実施例では、3つの加速度センサ
からの出力信号の平均値でも、あるいはそれらの最大値
を示すものをGとするようにしてもよい。大きな加速度
の入力があったときはステップS262に進んで、「G
スルー制御」が実行されることを示すためにフラグFを
3にする。ステップS264ではスラローム走行を行な
っているかを判定する。この判定は、例えば、ハンドル
舵角θHの単位時間当たりの変化量に基づいて判断する
ことができる。スラローム走行を行なっていると判断さ
れた場合には、ステップS278において上限値PLMT
を通常時の1.2倍に拡張する。スラローム走行を行なっ
ている場合には、ハード方向への減衰力の大きな変更を
可能にして車体の安定性を保つためである。スラローム
走行を行なっていない場合には、図13のステップS5
6において、PRTRnを1段減衰(ソフトに)している。
ダンパ力がハード方向に大きく変更されることを禁止す
ることにより、乗り心地を確保するためである。また、
スラローム走行を行なっていないと判断された(ステッ
プS264)場合には、ステップS266において上限
値PLMTを通常時の0.8倍に縮小する。
【0056】ステップS264でスラローム走行を行な
っていないと判断された場合には、横方向加速度Gの値
によって制御間隔txを変えている。即ち、横方向Gが
閾値横G0よりも大きい(|横G|≧横G0)と判断され
たような場合には、ステップS270において短い制御
間隔(t0)を設定し、横方向Gが閾値横G0よりも小さ
い(|横G|<横G0)と判断されたような場合には、
ステップS282において長めの制御間隔(t1)を設
定する。但し、 t1>t2 である。ステップS272〜ステップS276における
制御は、前述の「大振幅入力制御」におけるステップS
214〜ステップS218と同じで、即ち、目標の減衰
力が前輪−後輪間で、あるいは右輪−左輪間において、
3段以上の差が発生しないようにする。
っていないと判断された場合には、横方向加速度Gの値
によって制御間隔txを変えている。即ち、横方向Gが
閾値横G0よりも大きい(|横G|≧横G0)と判断され
たような場合には、ステップS270において短い制御
間隔(t0)を設定し、横方向Gが閾値横G0よりも小さ
い(|横G|<横G0)と判断されたような場合には、
ステップS282において長めの制御間隔(t1)を設
定する。但し、 t1>t2 である。ステップS272〜ステップS276における
制御は、前述の「大振幅入力制御」におけるステップS
214〜ステップS218と同じで、即ち、目標の減衰
力が前輪−後輪間で、あるいは右輪−左輪間において、
3段以上の差が発生しないようにする。
【0057】他方、ステップS268で横方向Gが閾値
横G0よりも小さい(|横G|<横G0)と判断されたよ
うな場合には、ステップS282において通常の制御間
隔(t1)を設定する。かくして、この「Gスルー制
御」によれば、 :車体の上下加速度(即ち、上下速度)が所定値GTR
よりも大きいときは、ステップS262でフラグFを3
にセットすることにより、ステップS56で減衰力をソ
フト方向に修正せしめている。また、上限値PLMTを縮
小することにより過大な入力を阻止している。 :しかし、スラローム中は上限値を拡張してソフト方
向への変更が大きくセットされることを許容する。 :また、横方向に加速度が発生している(ステップS
268)ときは、制御間隔を長くすることにより減衰力
のソフト化を遅くしている。更に、前項林間、又は左右
車輪感での減衰力の差が大きくならないようにして走行
安定性を高めている。 :「大振幅入力制御」を「Gスルー制御」よりも優先
することにより、操安性を優先する。
横G0よりも小さい(|横G|<横G0)と判断されたよ
うな場合には、ステップS282において通常の制御間
隔(t1)を設定する。かくして、この「Gスルー制
御」によれば、 :車体の上下加速度(即ち、上下速度)が所定値GTR
よりも大きいときは、ステップS262でフラグFを3
にセットすることにより、ステップS56で減衰力をソ
フト方向に修正せしめている。また、上限値PLMTを縮
小することにより過大な入力を阻止している。 :しかし、スラローム中は上限値を拡張してソフト方
向への変更が大きくセットされることを許容する。 :また、横方向に加速度が発生している(ステップS
268)ときは、制御間隔を長くすることにより減衰力
のソフト化を遅くしている。更に、前項林間、又は左右
車輪感での減衰力の差が大きくならないようにして走行
安定性を高めている。 :「大振幅入力制御」を「Gスルー制御」よりも優先
することにより、操安性を優先する。
【0058】
【発明の効果】以上説明したように、本発明によれば、
比較的大きな上下運動が車体に発生しても、乗り心地と
操縦安定性とを両立させたサスペンション制御を行うこ
とができる。
比較的大きな上下運動が車体に発生しても、乗り心地と
操縦安定性とを両立させたサスペンション制御を行うこ
とができる。
【図1】実施例のサスペンション制御装置に入力される
信号と制御手段との関係を概念的に示す図。
信号と制御手段との関係を概念的に示す図。
【図2】実施例のサスペンション装置に使用されるSD
ダンパの特性を示す図。
ダンパの特性を示す図。
【図3】実施例のサスペンション装置に使用されるAD
ダンパの特性を示す図。。
ダンパの特性を示す図。。
【図4】実施例のサスペンション制御システムに適用さ
れている各種制御間の優先順位を示すテーブル図。
れている各種制御間の優先順位を示すテーブル図。
【図5】実施例のサスペンション制御システムに適用さ
れている各種制御間の適用領域を示すマップ図。
れている各種制御間の適用領域を示すマップ図。
【図6】実施例のサスペンション制御システムに適用さ
れている各種制御間の関係を示すブロック図。
れている各種制御間の関係を示すブロック図。
【図7】第1実施例にかかるサスペンション装置におけ
る、アクチュエータと車輪位置との関係を示す図。
る、アクチュエータと車輪位置との関係を示す図。
【図8】第1実施例にかかるサスペンション装置におけ
る、各種信号、各種制御、アクチュエータとの関係を示
す図。
る、各種信号、各種制御、アクチュエータとの関係を示
す図。
【図9】第1実施例にかかる前輪の減衰力制御のための
フローチャート。
フローチャート。
【図10】閾値VG0の車速VBに対する特性を示すグラ
フ図。
フ図。
【図11】係数K1の車速VBに対する特性を示すグラフ
図。
図。
【図12】減衰力の上限値PLMTの車速VBに対する特性
を示すグラフ図。
を示すグラフ図。
【図13】第1実施例にかかる後輪の減衰力制御のため
のフローチャート。
のフローチャート。
【図14】第1実施例における、車速VBから規定され
る後輪の目標減衰力PRの特性を示すグラフ図。
る後輪の目標減衰力PRの特性を示すグラフ図。
【図15】第1実施例における、前輪減衰力POFから規
定される後輪の目標減衰力PRTRの特性を示すグラフ
図。
定される後輪の目標減衰力PRTRの特性を示すグラフ
図。
【図16】第2実施例にかかるサスペンション装置にお
ける、アクチュエータと車輪位置との関係を示す図。
ける、アクチュエータと車輪位置との関係を示す図。
【図17】第2実施例にかかるサスペンション装置にお
ける、各種信号、各種制御、アクチュエータとの関係を
示す図。
ける、各種信号、各種制御、アクチュエータとの関係を
示す図。
【図18】第2実施例にかかる後輪の減衰力制御のため
のフローチャート。
のフローチャート。
【図19】第2実施例にかかる前輪の減衰力制御のため
のフローチャート。
のフローチャート。
【図20】第2実施例における、車速VBから規定され
る前輪の目標減衰力PFの特性を示すグラフ図。
る前輪の目標減衰力PFの特性を示すグラフ図。
【図21】第2実施例における、後輪減衰力PORから規
定される前輪の目標減衰力PFTRの特性を示すグラフ
図。
定される前輪の目標減衰力PFTRの特性を示すグラフ
図。
【図22】第3実施例にかかるサスペンション装置にお
ける、アクチュエータと車輪位置との関係を示す図。
ける、アクチュエータと車輪位置との関係を示す図。
【図23】第3実施例にかかるサスペンション装置にお
ける、各種信号、各種制御、アクチュエータとの関係を
示す図。
ける、各種信号、各種制御、アクチュエータとの関係を
示す図。
【図24】第3実施例にかかるバウンス,ピッチ制御の
際の減衰力制御のためのフローチャート。
際の減衰力制御のためのフローチャート。
【図25】第3実施例にかかるロール制御の際の減衰力
制御のためのフローチャート。
制御のためのフローチャート。
【図26】第3実施例における、前輪目標減衰力PFの
舵角θHに対する特性を示すグラフ図。
舵角θHに対する特性を示すグラフ図。
【図27】第3実施例における、係数Aの舵角変化θ'H
に対する特性を示すグラフ図。
に対する特性を示すグラフ図。
【図28】第3実施例における、係数Kの車速VBに対
する特性を示すグラフ図。
する特性を示すグラフ図。
【図29】第1実施例〜第3実施例のサスペンション装
置に用いられる、大振幅入力制御のフローチャート。
置に用いられる、大振幅入力制御のフローチャート。
【図30】大振幅入力制御において用いられる係数GA
の車速VBに対する特性を示すグラフ図。
の車速VBに対する特性を示すグラフ図。
【図31】大振幅入力制御において用いられる係数GB
の舵角θHに対する特性を示すグラフ図。
の舵角θHに対する特性を示すグラフ図。
【図32】大振幅入力制御の動作を概略的に説明する
図。
図。
【図33】第1実施例〜第3実施例のサスペンション装
置に用いられる、Gスルー制御のフローチャート。
置に用いられる、Gスルー制御のフローチャート。
【図34】Gスルー制御に用いられる係数G0の特性を
示すグラフ図。
示すグラフ図。
【図35】Gスルー制御に用いられる係数G1の特性を
示すグラフ図。
示すグラフ図。
【図36】Gスルー制御に用いられる係数G2の特性を
示すグラフ図。
示すグラフ図。
1FL,1FR…高速モータ、1RL,1RR…低速モータ、
1'FL,1'FR…低速モータ、1'RL,1'RR…高速モー
タ、2L,2R,2'L,2'R…上下Gセンサ
1'FL,1'FR…低速モータ、1'RL,1'RR…高速モー
タ、2L,2R,2'L,2'R…上下Gセンサ
Claims (10)
- 【請求項1】 上下方向加速度を検出するセンサと減衰
力の可変なダンパとを有し、検出された加速度をフィー
ドバックして上下方向加速度の値が減少するように前記
ダンパの減衰力を制御する車両用サスペンション装置に
おいて、 検出された上下方向加速度が所定の閾値以上のときに、
前記ダンパの減衰力を低めるように補正する補正手段
と、 走行状態を検出する検出手段と、 検出された走行状態が所定の状態のときに、前記補正手
段による補正量を小さくするように制御する制御手段と
を具備したことを特徴とする車両用サスペンション装
置。 - 【請求項2】 請求項1の車両用サスペンション装置に
おいて、前記検出手段は走行状態として車速を検出し、
前記制御手段は、車速が大きいほど前記閾値の値を大き
く設定することを特徴とする車両用サスペンション装
置。 - 【請求項3】 請求項1の車両用サスペンション装置に
おいて、前記検出手段は走行状態として車速を検出し、
前記制御手段は、車速が大きいほど、前記補正手段の前
記補正量を小さく設定することを特徴とする車両用サス
ペンション装置。 - 【請求項4】 請求項1の車両用サスペンション装置に
おいて、前記検出手段は走行状態として舵角を検出し、
前記制御手段は、舵角が大きいほど前記閾値の値を大き
く設定することを特徴とする車両用サスペンション装
置。 - 【請求項5】 請求項1の車両用サスペンション装置に
おいて、前記検出手段は走行状態として舵角を検出し、
前記制御手段は、舵角が大きいほど、前記補正手段の前
記補正量を小さく設定することを特徴とする車両用サス
ペンション装置。 - 【請求項6】 請求項1の車両用サスペンション装置に
おいて、前記検出手段は走行状態として舵角の変化量を
検出し、前記制御手段は、舵角の変化量が大きいほど前
記閾値の値を大きく設定することを特徴とする車両用サ
スペンション装置。 - 【請求項7】 請求項1の車両用サスペンション装置に
おいて、前記検出手段は走行状態として舵角の変化量を
検出し、前記制御手段は、舵角の変化量が大きいほど前
記補正手段の前記補正量を小さく設定することを特徴と
する車両用サスペンション装置。 - 【請求項8】 請求項1の車両用サスペンション装置に
おいて、前記可変ダンパは左右の車輪に夫々設けられ、 前記制御手段は、左右の前記ダンパ間における減衰力の
差をモニタし、その差が所定値以上になろうとするとき
に、前記補正手段による補正動作を停止することを特徴
とする車両用サスペンション装置。 - 【請求項9】 請求項1の車両用サスペンション装置に
おいて、前記可変ダンパは前後の車輪に夫々設けられ、 前記制御手段は、前後の前記ダンパ間における減衰力の
差をモニタし、その差が所定値以上になろうとするとき
に、前記補正手段による補正動作を停止することを特徴
とする車両用サスペンション装置。 - 【請求項10】 請求項1の車両用サスペンション装置
において、前記検出手段は、スラローム走行状態を検出
し、 前記制御手段は、スラローム走行状態が検出されると、
前記補正量を小さく設定することを特徴とする車両用サ
スペンション装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17674093A JPH0732839A (ja) | 1993-07-16 | 1993-07-16 | 車両用サスペンション装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17674093A JPH0732839A (ja) | 1993-07-16 | 1993-07-16 | 車両用サスペンション装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0732839A true JPH0732839A (ja) | 1995-02-03 |
Family
ID=16018975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17674093A Pending JPH0732839A (ja) | 1993-07-16 | 1993-07-16 | 車両用サスペンション装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0732839A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013115169A1 (ja) * | 2012-01-31 | 2013-08-08 | 日産自動車株式会社 | 車両の制御装置及び車両の制御方法 |
WO2015037112A1 (ja) | 2013-09-13 | 2015-03-19 | 株式会社昭和テックス | レールボンド |
-
1993
- 1993-07-16 JP JP17674093A patent/JPH0732839A/ja active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013115169A1 (ja) * | 2012-01-31 | 2013-08-08 | 日産自動車株式会社 | 車両の制御装置及び車両の制御方法 |
WO2015037112A1 (ja) | 2013-09-13 | 2015-03-19 | 株式会社昭和テックス | レールボンド |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1623856B1 (en) | Suspension control system | |
KR20140042706A (ko) | 서스펜션 제어 장치 | |
JP3084054B2 (ja) | 車両のサスペンション装置 | |
JP3102230B2 (ja) | サスペンション制御装置 | |
KR100324348B1 (ko) | 서스펜션제어장치 | |
JPH1148734A (ja) | 車両懸架装置 | |
JP3167835B2 (ja) | 車両用サスペンション装置 | |
JPH0692122A (ja) | 車両懸架装置 | |
JP3272828B2 (ja) | 車両用サスペンション装置 | |
JPH0732840A (ja) | 車両用サスペンション装置 | |
JPH09301164A (ja) | 振動抑制装置 | |
JPH0732839A (ja) | 車両用サスペンション装置 | |
JP3167836B2 (ja) | 車両用サスペンション装置 | |
JP2013241075A (ja) | サスペンション制御装置 | |
JP4596133B2 (ja) | 車両統合制御装置 | |
JP5224058B2 (ja) | サスペンション制御装置 | |
JP2000264205A (ja) | 車両用制振装置 | |
JPH0986131A (ja) | サスペンション制御装置 | |
JP2008001144A (ja) | 車両用サスペンション制御装置 | |
JPH0538920A (ja) | シヨツクアブソーバ制御方法及びシヨツクアブソーバ装置 | |
JP3095398B2 (ja) | 車両のサスペンション装置 | |
KR100229413B1 (ko) | 자동차의 롤링 제어장치 및 그 제어방법 | |
JP2812783B2 (ja) | 車両のサスペンション装置 | |
JP4363311B2 (ja) | 減衰力制御装置 | |
JP3148401B2 (ja) | 車両懸架装置 |