JPH07325583A - サウンドの分析及び合成方法並びに装置 - Google Patents

サウンドの分析及び合成方法並びに装置

Info

Publication number
JPH07325583A
JPH07325583A JP5349245A JP34924593A JPH07325583A JP H07325583 A JPH07325583 A JP H07325583A JP 5349245 A JP5349245 A JP 5349245A JP 34924593 A JP34924593 A JP 34924593A JP H07325583 A JPH07325583 A JP H07325583A
Authority
JP
Japan
Prior art keywords
data
sound
waveform
analysis
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5349245A
Other languages
English (en)
Other versions
JP2906970B2 (ja
Inventor
Sera Zabieru
セラ ザビエル
Uiriamusu Kurisu
ウィリアムス クリス
Gurosu Robaato
グロス ロバート
Uorudo Aaringu
ウォルド アーリング
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Publication of JPH07325583A publication Critical patent/JPH07325583A/ja
Application granted granted Critical
Publication of JP2906970B2 publication Critical patent/JP2906970B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H5/00Instruments in which the tones are generated by means of electronic generators
    • G10H5/005Voice controlled instruments
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H3/00Instruments in which the tones are generated by electromechanical means
    • G10H3/12Instruments in which the tones are generated by electromechanical means using mechanical resonant generators, e.g. strings or percussive instruments, the tones of which are picked up by electromechanical transducers, the electrical signals being further manipulated or amplified and subsequently converted to sound by a loudspeaker or equivalent instrument
    • G10H3/125Extracting or recognising the pitch or fundamental frequency of the picked up signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/031Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal
    • G10H2210/066Musical analysis, i.e. isolation, extraction or identification of musical elements or musical parameters from a raw acoustic signal or from an encoded audio signal for pitch analysis as part of wider processing for musical purposes, e.g. transcription, musical performance evaluation; Pitch recognition, e.g. in polyphonic sounds; Estimation or use of missing fundamental
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/161Note sequence effects, i.e. sensing, altering, controlling, processing or synthesising a note trigger selection or sequence, e.g. by altering trigger timing, triggered note values, adding improvisation or ornaments or also rapid repetition of the same note onset
    • G10H2210/191Tremolo, tremulando, trill or mordent effects, i.e. repeatedly alternating stepwise in pitch between two note pitches or chords, without any portamento between the two notes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2210/00Aspects or methods of musical processing having intrinsic musical character, i.e. involving musical theory or musical parameters or relying on musical knowledge, as applied in electrophonic musical tools or instruments
    • G10H2210/155Musical effects
    • G10H2210/195Modulation effects, i.e. smooth non-discontinuous variations over a time interval, e.g. within a note, melody or musical transition, of any sound parameter, e.g. amplitude, pitch, spectral response or playback speed
    • G10H2210/201Vibrato, i.e. rapid, repetitive and smooth variation of amplitude, pitch or timbre within a note or chord
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/025Envelope processing of music signals in, e.g. time domain, transform domain or cepstrum domain
    • G10H2250/031Spectrum envelope processing
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/131Mathematical functions for musical analysis, processing, synthesis or composition
    • G10H2250/215Transforms, i.e. mathematical transforms into domains appropriate for musical signal processing, coding or compression
    • G10H2250/235Fourier transform; Discrete Fourier Transform [DFT]; Fast Fourier Transform [FFT]
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10HELECTROPHONIC MUSICAL INSTRUMENTS; INSTRUMENTS IN WHICH THE TONES ARE GENERATED BY ELECTROMECHANICAL MEANS OR ELECTRONIC GENERATORS, OR IN WHICH THE TONES ARE SYNTHESISED FROM A DATA STORE
    • G10H2250/00Aspects of algorithms or signal processing methods without intrinsic musical character, yet specifically adapted for or used in electrophonic musical processing
    • G10H2250/471General musical sound synthesis principles, i.e. sound category-independent synthesis methods
    • G10H2250/481Formant synthesis, i.e. simulating the human speech production mechanism by exciting formant resonators, e.g. mimicking vocal tract filtering as in LPC synthesis vocoders, wherein musical instruments may be used as excitation signal to the time-varying filter estimated from a singer's speech

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Electrophonic Musical Instruments (AREA)

Abstract

(57)【要約】 【目的】 スペクトルモデリング合成(SMS)技術に
基づく部分音合成その他の分析的なサウンド合成技術に
おいて、合成するサウンドの音楽的特徴を制御するため
に、分析的なアプローチを採用し、良好なサウンド制御
を行なう。 【構成】 オリジナルサウンド波形を構成する複数の成
分を示す分析データから所定の要素に関する特徴(フォ
ルマント、ビブラート、トレモロ、スペクトル、ピッチ
変動など)を夫々分析して、分析した該特徴を示すデー
タを音楽パラメータとして抽出する。抽出されたパラメ
ータに対応する特徴を分析データから取り除き、変更さ
れた分析データと音楽パラメータとの組合せにより、サ
ウンド波形が表現される。抽出した音楽パラメータを可
変制御し、分析パラメータに対して付加することによ
り、制御された特徴が付加された分析データに基づきサ
ウンド波形を再生合成する。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明は、サウンド特に楽音あ
るいは人声音などのような音楽サウンドの分析及び合成
方法並びに装置に関し、更には、スペクトル・モデリン
グ・合成(Spectral Modeling Synthesis)技術を用い
た音楽シンセサイザにおける様々な改良に関する。
【0002】
【従来の技術】スペクトル・モデリング・合成(以下、
SMSと略称する)技術を用いた音楽シンセサイザの従
来技術は、本願の発明者の一人であるザビエル・セラ
(XavierSerra)の執筆に関わる「確定的成分とストカ
スティック成分の分解に基づくサウンドの分析/変換/
合成のためのシステム」("A System for Sound Analys
is/Transformation/Synthesis based on a Determinist
ic plus Stochastic Decomposition")と題する1989年1
0月発表のスタンフォード大学博士論文に示されてい
る。また、同じくザビエル・セラの発明に関わる「確定
的波形とストカスティック波形の組合せによる音楽シン
セサイザ」("Musical Synthesizer CombiningDetermin
istic and Stochastic Waveforms")と題する米国特許
第5,029,509号にも示されており、また、上記
米国特許に対応する国際出願公開番号WO90/13887にも開
示されている。
【0003】SMS技術は、サウンドが2つのタイプの
成分,すなわち確定的成分(a deterministic componen
t)とストカスティック成分 (a stochastic component;
確率的な若しくは不規則的な成分),で構成されると考
えるモデルを使用する楽音の分析及び合成技術である。
確定的成分は、一連のシヌソイド(sinusoid; 正弦波の
形状で変化する波形) で表わされ、各シヌソイド毎に振
幅と周波数関数を持つ。つまり、確定された振幅と周波
数を持つスペクトル成分である。ストカスティック成分
は、マグニチュード・スペクトルエンベロープで表わさ
れる。例えば、オリジナル波形のスペクトルから確定的
成分のスペクトルを差し引いた結果であるところの残差
スペクトルを、スペクトルエンベロープで表現したもの
がストカスティック成分である。サウンドの分析と合成
は、一連の時間フレームにおける各時間フレーム毎に夫
々行なわれる。
【0004】各時間フレーム毎の分析データは、夫々が
特定の周波数と振幅値を持つ1揃いの部分音(partia
l;パーシャル)と、周波数領域のエンベロープとによ
って、下記数1のように、表現される。
【0005】
【数1】
【0006】ここで、fは、特定のフレームを示す。a
n(ι)とfn(ι)は、フレームιにおける各部分音の振幅
及び周波数を示し、確定的成分に対応する。Nは、その
フレームにおける部分音の数である。em(ι)は、スト
カスティック成分に対応するスペクトルエンベロープで
あり、mはブレークポイント番号、Mはそのフレームに
おけるブレークポイント数である。
【0007】
【発明が解決しようとする課題】このようなSMS技術
に基づく楽音合成は、圧縮された分析データを使用して
極めて高品質のサウンド波形を合成することができると
いう利点を持つ。また、サウンド合成に使用する分析デ
ータを、ユーザーが自由に制御することにより、幅広い
多様なニューサウンドを作り出すことができる可能性を
秘めているものである。そこで、SMS技術に基づく楽
音合成技術において、様々な音楽的制御のための具体的
手法を確立することが望まれていた。
【0008】一方、オリジナルサウンド波形をフーリエ
変換その他の技術によって分析して部分音スペクトルデ
ータを得て、これをメモリに記憶し、メモリから読み出
した部分音スペクトルデータを逆フーリエ変換すること
によりサウンド波形を合成する技術それ自体もよく知ら
れている。しかし、従来知られた部分音合成技術は、単
なる合成技術にすぎず、合成しようとするサウンドの音
楽的特徴を制御するために分析的なアプローチを採用す
るものではなかった。
【0009】音楽シンセサイザにおける一つの技術的課
題として、人声音を如何にして合成するかというものが
ある。従来知られたボーカル音合成技術の多くは、ボー
カル・モデルに基づくものである。すなわち、振動信号
を時変動するフィルタに通すものである。このモデル
は、高品質のサウンドを生成することができず、また、
融通性に欠けているものである。また、従来のボーカル
音合成技術の大多数は、分析に基づくものではなく、単
なる合成技術である。すなわち、或る与えられたシンガ
ー(歌い手)に基づいてモデル形成できるものではな
い。また、従来の技術では、記録したシンガー音からビ
ブラートを取り除くための方法が提案されていない。
【0010】この発明は上述の点に鑑みてなされたもの
であり、その1つの目的は、SMS技術に基づく楽音合
成技術あるいは部分音合成技術又はその他の分析的なサ
ウンド合成技術において、合成しようとするサウンドの
音楽的特徴を制御するために分析的なアプローチを採用
することにより、良好なサウンド制御を達成しうるよう
にすることである。また、この発明の目的は、SMS技
術を基にしたサウンドの合成及び分析において、様々な
改良を提案し、その実用性を高めることにある。
【0011】更に、この発明の他の目的は、オリジナル
サウンド波形の分析データからフォルマントの特徴を抽
出し、制御し、サウンド波形の合成のために利用するた
めの技術を提供することにある。更に、この発明の他の
目的は、オリジナルサウンド波形の分析データからビブ
ラート又はトレモロの特徴を抽出し、制御し、サウンド
波形の合成のために利用するための技術を提供すること
にある。更に、この発明の他の目的は、オリジナルサウ
ンド波形の分析データからスペクトルチルトの特徴を抽
出し、制御し、サウンド波形の合成のために利用するた
めの技術を提供することにある。
【0012】更に、この発明の他の目的は、オリジナル
サウンド波形の分析データからピッチを抽出し、制御
し、可変ピッチ制御したサウンド波形を合成するために
利用するための技術を提供することにある。更に、この
発明の他の目的は、オリジナルサウンド波形の分析デー
タからビブラートのような低周波域の変動を検出するこ
とにより特定の波形セグメントを抽出し、抽出した波形
セグメントを制御し、発音時間長を延長又は短縮したサ
ウンド波形を合成するために利用するための技術を提供
することにある。更に、この発明の他の目的は、SMS
技術とデジタルウェーブガイド技術とを融合した新規な
サウンド合成技術を提供することにある。更に、この発
明の他の目的は、SMS技術を使用した分析的な手法に
より、高品質のボーカルフレーズ音声を合成することを
提案することにある。
【0013】
【課題を解決するための手段】上述の目的を達成するた
めに、第1の観点に従えば、この発明に係るサウンドを
分析し合成するための方法は、オリジナルサウンドを分
析することにより、該オリジナルサウンド波形を構成す
る複数の成分を示す分析データを提供する第1のステッ
プと、前記分析データから所定のサウンド要素に関する
特徴を分析して、分析した該特徴を示すデータを、前記
オリジナルサウンドにおける前記要素についての固有の
特性を示すサウンドパラメータとして抽出する第2のス
テップと、抽出されたサウンドパラメータに対応する特
徴を前記分析データから取り除く第3のステップと、前
記特徴が取り除かれた分析データに対して、サウンドパ
ラメータに対応する特徴を付加する第4のステップと、
この特徴が付加された分析データに基づき、サウンド波
形を合成する第5のステップとを備える。
【0014】上述の目的を達成するために、第2の観点
に従えば、この発明に係るサウンドを分析するための方
法は、前記第1のステップと、前記第2のステップと、
前記第3のステップとを備え、前記特徴が取り除かれた
分析データと、前記サウンドパラメータとの組合せによ
って前記オリジナルサウンド波形を表現することを特徴
とする。
【0015】上述の目的を達成するために、第3の観点
に従えば、この発明に係るサウンドを分析し合成するた
めの方法は、前記第1のステップと、前記第2のステッ
プとを備え、更に、前記サウンドパラメータを変更する
ための第3のステップと、前記分析データに対して、前
記サウンドパラメータに対応する特徴を付加する第4の
ステップと、この特徴が付加された分析データに基づ
き、サウンド波形を合成する第5のステップとを備えた
ことを特徴とする。
【0016】上述の目的を達成するために、第4の観点
に従えば、この発明に係るサウンド波形合成装置は、オ
リジナルサウンドの分析に基づき該オリジナルサウンド
波形を構成する複数の成分を示す分析データを提供する
分析手段と、前記分析データから所定のサウンド要素に
関する特徴を分析して、分析した該特徴を示すデータを
サウンドパラメータとして抽出すると共に、抽出された
サウンドパラメータに対応する特徴を前記分析データか
ら取り除くデータ処理手段と、前記特徴が取り除かれた
分析データと前記サウンドパラメータとを記憶する記憶
手段と、前記分析データとサウンドパラメータを前記記
憶手段から読み出し、読み出した分析データに対して該
サウンドパラメータに対応する特徴を付加するデータ再
生手段と、データ再生手段で再生された分析データに基
づき、サウンド波形を合成するサウンド合成手段とを備
えたことを特徴とする。
【0017】上述の目的を達成するために、第5の観点
に従えば、この発明に係るサウンド波形合成装置は、部
分音を示すデータを含む波形分析データと、オリジナル
サウンドから抽出された所定のサウンド要素に関する特
徴を示すサウンドパラメータとを記憶している記憶手段
と、前記波形分析データとサウンドパラメータを前記記
憶手段から読み出す読出し手段と、読み出されたサウン
ドパラメータを変更するための制御を行なう制御手段
と、前記読み出した波形分析データを、前記制御された
サウンドパラメータによって変更するデータ変更手段
と、データ変更手段で変更された波形分析データに基づ
き、サウンド波形を合成するサウンド合成手段とを備え
る。
【0018】上述の目的を達成するために、第6の観点
に従えば、この発明に係るサウンド波形合成装置は、オ
リジナルサウンドをスペクトル分析したデータを提供す
る第1の手段と、前記スペクトル分析されたデータから
フォルマント構造を検出し、検出したフォルマントを記
述するパラメータを生成する第2の手段と、前記スペク
トル分析されたデータから前記検出されたフォルマント
構造を差引き、残余のスペクトルデータを生成する第3
の手段とを備え、前記残余のスペクトルデータと前記パ
ラメータとの組合せによって前記オリジナルサウンド波
形を表現することを特徴とする。このサウンド波形合成
装置は、更に、前記フォルマントを制御するために前記
パラメータを可変制御する第4の手段と、前記パラメー
タに基づきフォルマント構造を再生し、再生されたフォ
ルマント構造を前記残余のスペクトルデータに付加し、
制御されたフォルマント構造を有するスペクトルデータ
を作成する第5の手段と、前記第5の手段で作成された
スペクトルデータに基づきサウンド波形を合成するサウ
ンド合成手段とを具備していてよい。
【0019】上述の目的を達成するために、第7の観点
に従えば、この発明に係るサウンド波形合成装置は、オ
リジナルサウンドの分析によって得た複数のサウンド部
分を示す部分音データのセットを提供するものであり、
各部分音データは周波数データを含み、前記部分音デー
タのセットを時間関数で提供する第1の手段と、前記部
分音データにおける周波数データの時間関数からオリジ
ナルサウンドにおけるビブラートを検出し、検出したビ
ブラートを記述するパラメータを生成する第2の手段
と、前記部分音データにおける周波数データの時間関数
から前記検出されたビブラートの特徴を取り除き、修正
された周波数データの時間関数を生成する第3の手段と
を備え、前記修正された周波数データの時間関数を含む
前記部分音データと前記パラメータとの組合せによって
時間的に変化する前記オリジナルサウンド波形を表現す
ることを特徴とする。このサウンド波形合成装置は、更
に、ビブラートを制御するために前記パラメータを可変
制御する第4の手段と、前記パラメータに基づきビブラ
ート関数を発生し、発生されたビブラート関数によって
前記修正された周波数データの時間関数にビブラートを
付与する第5の手段と、ビブラート付与された周波数デ
ータの時間関数を含む前記部分音データに基づきサウン
ド波形を合成するサウンド合成手段とを備えていてよ
い。
【0020】上述の目的を達成するために、第8の観点
に従えば、このサウンド波形合成装置において、前記部
分音データにおけるマグニチュードデータの時間関数か
らオリジナルサウンドにおけるトレモロを検出し、これ
により上記ビブラートの場合と同様の処理をしてもよ
い。そうすると、トレモロの抽出と、その可変制御、及
びそれに基づくサウンド波形合成が可能である。
【0021】上述の目的を達成するために、第9の観点
に従えば、この発明に係るサウンド波形合成装置は、オ
リジナルサウンドのスペクトル構造を示すスペクトルデ
ータを提供する第1の手段と、前記スペクトルデータに
基づき、そのスペクトルエンベロープに概ね適合してい
るただ1本のチルトラインを検出し、検出したチルトラ
インを記述するチルトパラメータを生成する第2の手段
と、スペクトルの傾きを制御するために、前記チルトパ
ラメータを可変制御する第3の手段と、制御されたチル
トパラメータに基づき前記スペクトルデータのスペクト
ル構造を制御する第4の手段と、制御されたスペクトル
データに基づきサウンド波形を合成するサウンド合成手
段とを備える。
【0022】上述の目的を達成するために、第10の観
点に従えば、この発明に係るサウンド波形合成装置は、
オリジナルサウンドを構成する部分音のスペクトルデー
タを複数の時間フレームに対応して提供する第1の手段
と、一連の時間フレームにおける前記部分音スペクトル
データにおける周波数データに基づき前記オリジナルサ
ウンドの平均ピッチを検出し、ピッチデータを生成する
第2の手段と、前記ピッチデータを可変制御するための
第3の手段と、制御されたピッチデータに応じて前記部
分音スペクトルデータにおける周波数データを修正する
第4の手段と、前記修正された周波数データを含む前記
部分音スペクトルデータに基づき、可変制御されたピッ
チを持つサウンド波形を合成するサウンド合成手段とを
備える。
【0023】上述の目的を達成するために、第11の観
点に従えば、この発明に係るサウンドを分析し合成する
方法は、オリジナル波形を構成する部分音のスペクトル
データを、複数の時間フレームに対応して順次に提供す
るステップと、前記複数の時間フレームのスペクトルデ
ータ列から前記オリジナル波形におけるビブラート変動
を検出し、この変動の少なくとも1サイクルに対応する
長さを持つ1又は複数の波形セグメントを指摘するデー
タリストを作成するステップと、前記データリストを参
照して、任意の波形セグメントを選択するステップと、
選択した波形セグメントに対応する前記スペクトルデー
タ列を前記オリジナル波形のスペクトルデータ列から抜
き出すステップと、抜き出したスペクトルデータ列を繰
り返すことにより前記波形セグメントの繰り返しに対応
するスペクトルデータ列を作成するステップと、前記繰
り返しに対応するスペクトルデータ列を使用して、延長
された長さを持つサウンド波形を合成するステップとを
備える。上記方法において、更に、前記部分音スペクト
ルデータに対応する確定的成分波形を前記オリジナル波
形から引いた残りである残差成分波形に対応するストカ
スティックデータを、複数の時間フレームに対応してシ
リーズで提供するステップと、前記選択した波形セグメ
ントに対応する前記ストカスティックデータシリーズを
前記オリジナル波形のストカスティックデータシリーズ
から抜き出すステップと、抜き出したストカスティック
データシリーズを繰り返すことにより前記波形セグメン
トの繰り返しに対応するストカスティックデータシリー
ズを作成するステップと、前記繰り返しに対応するスト
カスティックデータシリーズを使用して、延長された長
さを持つストカスティック波形を合成し、これを前記サ
ウンド波形に組み込むステップとを備えていてもよい。
【0024】上述の目的を達成するために、第12の観
点に従えば、この発明に係るサウンドを分析し合成する
方法は、オリジナル波形を構成する部分音のスペクトル
データを、複数の時間フレームに対応して順次に提供す
るステップと、前記複数の時間フレームのスペクトルデ
ータ列から前記オリジナル波形におけるビブラート変動
を検出し、この変動の少なくとも1サイクルに対応する
長さを持つ1又は複数の波形セグメントを指摘するデー
タリストを作成するステップと、前記データリストを参
照して、任意の波形セグメントを選択するステップと、
選択した波形セグメントに対応する前記スペクトルデー
タ列を前記オリジナル波形のスペクトルデータ列から取
り去り、その前後で残された2つのスペクトルデータ列
を接続し、短縮されたスペクトルデータ列を作成するス
テップと、前記短縮されたスペクトルデータ列を使用し
て、短縮された長さを持つサウンド波形を合成するステ
ップとを備える。上記方法において、更に、前記部分音
スペクトルデータに対応する確定的成分波形を前記オリ
ジナル波形から引いた残りである残差成分波形に対応す
るストカスティックデータを、複数の時間フレームに対
応して順次に提供するステップと、前記選択した波形セ
グメントに対応する前記ストカスティックデータ列を前
記オリジナル波形のストカスティックデータ列から取り
去り、その前後で残された2つのストカスティックデー
タ列を接続し、短縮されたストカスティックデータ列を
作成するステップと、前記短縮されたストカスティック
データ列を使用して短縮された長さを持つストカスティ
ック波形を合成し、これを前記サウンド波形に組み込む
ステップとを更に備えていてよい。
【0025】
【作用】前記第1の観点乃至第5の観点のいずれかに従
う方法または装置によれば、オリジナルサウンドの分析
データから所定のサウンド要素に関する特徴を分析し、
分析した該特徴を示すデータをサウンドパラメータとし
て抽出するようにしたので、例えばフォルマントやビブ
ラートなどのような様々なサウンド要素に関して、オリ
ジナルの特徴を示している品質のよいサウンドパラメー
タを得ることができる。従って、このパラメータをサウ
ンド波形合成に際して利用すれば、品質のよい各種音楽
的特徴の合成を行なうことができる。しかも、サウンド
パラメータとして分析データから分離抽出されているた
め、その可変制御が容易であり、ユーザーによる自由な
音楽制御に適したものである。また、抽出されたサウン
ドパラメータに対応する特徴を前記分析データから取り
除くようにしているため、分析データの構造が簡単化さ
れ、データ圧縮が期待できるものである。このように、
サウンドパラメータを分析データから抽出分離し、該サ
ウンドパラメータに対応する特徴が取り除かれた分析デ
ータとサウンドパラメータの組み合わせによってオリジ
ナルサウンド波形を表現するデータを提供し、これに基
づきサウンド波形を合成する技術は、種々の効果が期待
できるものである。前記第6の観点乃至第12の観点の
いずれかに従う装置または方法によれば、各種のサウン
ドパラメータ(フォルマント、ビブラート、トレモロ、
スペクトルなど)の抽出とそれに基づく波形合成・制御
が達成される。
【0026】
【実施例】以下、この発明の実施例を添付図面を参照し
て詳細に説明しよう。 〔全体説明〕図1は、この発明の一実施例に係る音楽シ
ンセサイザーの全体図である。このシンセサイザーは、
大別して、オリジナルサウンドの分析を行なう分析部1
0と、分析された表現物すなわち分析データからサウン
ドを合成する合成部11とを含んでいる。オリジナルサ
ウンドはマイクロフォン12によって外部からピックア
ップして、分析部10に入力するようにしてよいし、そ
の他の適宜の方法で分析部10に導入してもよい。この
シンセサイザーにおける分析と合成の両方が、前述の米
国特許第5,029,509号にその基本原理が示され
たようなSMS(スペクトル・モデリング・合成)技術
を基にしているものである。なお、分析されたデータが
すでにシンセサイザーのメモリ内にストアされていても
よく、その場合は分析部10はオプショナルであってよ
い。このシンセサイザーは、シンギング・ボイス(人の
歌声)若しくはボーカル・フレーズ(人声音フレーズ)
の分析及び合成に適しているシンギング・シンセサイザ
ーとして構成してよい。しかし、本発明は、シンギング
ボイスに限らず、自然楽器音やその他の楽音/サウンド
一般の分析と合成に応用可能である。
【0027】以下で説明する実施例においては、SMS
分析に関して或るいくつかの改良がなされている。その
ような改良は、シンギング・ボイス若しくはボーカル・
フレーズの分析と合成に適しているものであるが、サウ
ンド一般の分析と合成にも適するものである。そのよう
な改良の1つとして、SMS分析データから所定のサウ
ンド要素に関する特徴を分析し、分析した特徴を示すデ
ータをサウンドパラメータとして抽出するための処理が
分析部10で行なわれる。このサウンドパラメータを以
下では音楽パラメータという。抽出された音楽パラメー
タは、合成部11に与えられ、サウンド合成の際にユー
ザーによって操作することができるようになっている。
すなわち、ユーザーは、合成しようとするサウンドを好
みに応じて変更制御しようとする場合、特殊なSMS分
析データのフォームからなるパラメータで相互作用する
必要がなく、なじみの深い従前の音楽制御情報に対応す
るフォームからなる音楽パラメータで相互作用すればよ
いことになり、便利である。そのような音楽パラメータ
とは、例えば、トーンピッチ、ビブラート、トレモロ、
などのような音楽要素又は楽音要素に対応するパラメー
タである。そのために、相互作用的な編集機器群13や
音楽コントローラ群14を装備していてよい。
【0028】編集機器群13は、各種のコンピュータ端
末機器(入力キーボードや、ディスプレイ、マウスその
他)であってよい。音楽コントローラ群14は、音階音
を指定するためのキーボードや、音色を選択若しくは設
定するためのパネルスイッチ群や、各種の楽音効果を選
択制御するためのスイッチ群や、ユーザーの自由な意志
に従って楽音制御を行なうための各種の操作子群などを
含んでいてよい。この音楽コントローラ群14の中に
は、ユーザーのボイス(人の音声)で楽音を制御するも
のを含んでいてもよいし、ボディアクションやブレスで
制御するものを含んでいてもよい。ユーザーにより操作
可能なこれらの編集機器群13及びコントローラ群14
と、合成部11との間には、音楽パラメータインターフ
ェース部15が設けられ、パラメータのやり取りや情報
の翻訳が適切に行なわれる。
【0029】以下、図2以降の図を参照して、このシン
セサイザーの詳細例を更に詳しく説明するが、提示した
各部の詳細図は機能ブロック図である。図示された各機
能を実現する手段を、ディスクリート回路によって構成
してもよいし、マイクロコンピュータを使用したソフト
ウェア処理によって構成してもよい。また、このシンセ
サイザーは、以下で説明する改良に関わる全ての機能を
併せ持っている必要はなく、任意の1つの機能のみ持っ
ているだけでもよい。
【0030】〔分析部の説明〕図2は、分析部10の一
例を示すブロック図である。オリジナルサウンド信号が
入力されるSMS分析器20は、前述の米国特許第5,
029,509号に示されたようなSMS分析技術に従
ってオリジナルサウンドのSMS分析を行なうものであ
る。このSMS分析器20の具体的構成としては、例え
ばその米国特許の第1図に示されたような構成を参照す
ることができる。しかし、便宜のために、SMS分析器
20の基本構成例をブロック20内に概略的に示す。
【0031】−SMS分析器− SMS分析器20において、入力サウンド信号は、最初
に時間窓処理部20aで処理される。ここでは、入力サ
ウンド信号を、時間窓と言われる一連の時間フレームに
分ける処理が行なわれる。次の周波数分析部20bで
は、各時間フレーム毎のサウンド信号を分析し、1組の
マグニチュードスペクトルデータを発生する。例えば、
高速フーリエ変換器(FFT)による分析により、複素
数スペクトルを発生し、複素数-実数変換器でこれをマ
グニチュードスペクトルに変換するようにしてもよい
し、その他の周波数分析方法を使用してもよい。
【0032】線スペクトル抽出部20cでは、分析され
たオリジナルサウンドの1組のマグニチュードスペクト
ルから部分音の線スペクトルを抽出する。例えば、分析
されたオリジナルサウンドの1組のマグニチュードスペ
クトルにおけるピークを検出し、これらのピークに対応
する特定の周波数と振幅値すなわちマグニチュード値を
持つスペクトルを線スペクトルとして抽出する。これら
の抽出された線スペクトルが確定的成分に対応する。抽
出された1つの線スペクトルすなわち確定的成分は、特
定の周波数を示すデータと、その振幅値すなわちマグニ
チュード値を示すデータのペアからなっていてよいし、
更にはそのデータペアに位相を示すデータが加わってい
てもよい。これらの部分音の線スペクトルデータは、各
時間フレームに対応して時系列的に得られるものであ
り、そのような時系列的な線スペクトルデータセットを
夫々周波数トラジェクトリ(trajectory; 軌跡若しくは
遍歴)、マグニチュードトラジェクトリ、位相トラジェ
クトリと呼んでいる。
【0033】残差スペクトル生成演算部20dでは、各
時間フレーム毎に、オリジナルサウンドの1組のマグニ
チュードスペクトルから、前記抽出された線スペクトル
を引算し、残差スペクトルを生成する。この場合、前記
米国特許に示されているように、前記抽出された線スペ
クトルに基づき確定的成分の波形を合成し、これを再分
析して線スペクトルの再抽出を行ない、再抽出した線ス
ペクトルをオリジナルサウンドの1組のマグニチュード
スペクトルから引算する処理を行なってもよい。
【0034】次の残差スペクトルエンベロープ発生器2
0eでは、各時間フレーム毎に、残差スペクトルをエン
ベロープによって表現する処理を行なう。この残差スペ
クトルエンベロープは、例えば、線セグメント近似物の
形でデータ表現することができるので、データ圧縮の促
進に寄与する。一連の時間フレームに対応して発生され
る残差スペクトルエンベロープは、ストカスティック成
分に対応するものである。SMS分析器20で得られ
る、確定的成分に対応する周波数トラジェクトリ及びマ
グニチュードトラジェクトリ(更に位相トラジェクトリ
を含んでいてもよい)と、ストカスティック成分に対応
する残差スペクトルエンベロープとを総称して、以下で
はSMSデータと呼ぶ。
【0035】−SMSデータ処理の概略− SMSデータ処理部30では、SMS分析器20で得ら
れたSMSデータに対して適宜の処理を施す。ここでの
処理は、大別して2種類ある。1つは、SMSデータを
適宜に処理することにより、変更されたされたSMSデ
ータを得ること。もう1つは、SMSデータから各種の
音楽パラメータを抽出することである。データ処理ブロ
ック30aでは、確定的成分に対応する周波数トラジェ
クトリ及びマグニチュードトラジェクトリ(更に位相ト
ラジェクトリを含んでいてもよい)について上述のデー
タ処理を行なう。データ処理ブロック30bでは、スト
カスティック成分に対応する残差スペクトルエンベロー
プについて上述のデータ処理を行なう。
【0036】SMSデータ処理部30における処理によ
って得られた、処理済みの又は変更されたSMSデータ
と、各種の音楽パラメータは、データメモリ100にお
いて各フレームに対応してストアされる。SMSデータ
処理部30において行なう処理は、色々あるが、発明の
実施にあたってはそのすべてを行なう必要はなく、適宜
選択して実施してよい。処理が施されなかったSMSデ
ータに関しては、分析器20から与えられたものと同じ
ものがデータメモリ100にストアされるであろう。
【0037】SMSデータ処理部30において行なわれ
る各種処理の概略について図3を参照して説明する。た
だし、図3は、SMSデータ処理部30において行なわ
れるすべての処理を紹介するものではなく、いくつかの
代表的な処理について示している。前述のように、図3
に示されたすべての処理を実施する必要はなく、実施に
あたって不要なステップは適宜省略してよい。図3に示
された処理のいくつかは追って更に詳しく説明される。
また、図3に示されたなかった処理についても、追って
詳しく説明されるものがある。
【0038】ステップ31:スペクトルの傾き分析 この処理の基本思想は、マグニチュードとスペクトルの
チルトすなわち傾きとの相関を見つけだすことである。
ここで、チルトとはスペクトルの全体的なスロープのこ
とである。すなわち、チルトとは、各ハーモニックピー
クの頂部を概ね結んだ一直線状のスロープである。典型
的には、音楽サウンドにおいて、チルトがより小さい場
合、より高いハーモニックスの振幅が相対的に高めら
れ、その結果、より明るい感じのサウンドをもたらす。
このスペクトルの傾き分析処理では、“チルトファクタ
ー”と称する単一の数値データを求める。このチルトフ
ァクターは、マグニチュードとスペクトルのチルトとの
間の相関を表わしている。このチルトファクターは、各
フレーム毎に求められる。各フレーム毎に求めたチルト
ファクターを使用して、どのフレームに対しても共通の
単一のチルトフアクターを求めるための“スペクトルチ
ルト正規化”が後のステップで行なわれる。チルトフア
クターは音楽パラメータの一種といってよいものであ
る。これによって、1つのチルトファクターをユーザー
が自由に制御することで、SMSにより合成されるサウ
ンドの特性を、ユーザーの意志を的確に反映してかつ自
由に制御できるものとなる。
【0039】ステップ32:周波数及びマグニチュード
のデトレンディング(de-trending;癖取り除き) 記録したオリジナルサウンドは、その安定状態におい
て、クレッセンドやデクレッセンドのような音量変化、
又はわずかなピッチ変化を持っているのが普通である。
ところで、記録した波形データの持続時間よりも長い時
間だけサウンドを再生発音することを可能にする技術と
して、ループ処理といわれる繰返し発音処理を安定状態
において行なうことが知られている。そのようなループ
処理にあたって、ループする波形データ区間において音
量やピッチの変動があると、ループポイント(繰返しの
つなぎポイント)で目立った不連続が生じたり、ルーピ
ングによる不自然な周期性が目立ったりするので好まし
くない。そこで、この問題を解決するために、このデト
レンディング処理では、SMSデータにおけるその種の
変動を取り除き、サウンドの安定状態での全体的な傾向
(トレンド)を可能な限り平坦にするよう処理する。た
だし、ビブラートやサウンドの微変動は取り除かずに残
しておく。
【0040】ステップ33:スペクトルチルト正規化 ここでは、各フレーム毎に求めたチルトファクターを使
用して、どのフレームに対しても共通の単一のチルトフ
アクターを求める。これにより、ユーザーによる制御対
象であるチルトフアクターは、時間フレームに関係なく
単一となるので、制御性が向上する。
【0041】ステップ34:平均マグニチュード抽出 ここでは、各フレーム毎に、全ての確定的信号のマグニ
チュード値の平均値を計算する。すなわち、1つのフレ
ームについては、全ての部分音成分 のマグニチュード
値を加算し、その加算値を部分音成分の数で割る。こう
して得た各フレーム毎の平均マグニチュードをマグニチ
ュード関数と呼ぶ。このマグニチュード関数は、確定的
成分によって代表されるサウンドの音量の時変動を示し
ている。さらには、これらのフレーム毎の平均マグニチ
ュードから、全体の平均マグニチュードを計算する。全
体の平均マグニチュードは、サウンドの安定状態につい
て計算される。この全体の平均マグニチュードは、安定
状態における該サウンドの代表的音量レベルを示してい
る。
【0042】ステップ35:ピッチ抽出 ここでは、各フレーム毎のピッチが計算される。これ
は、1つのフレームについては、SMSデータにおける
最初のいくつかの、つまり低次の、部分音成分を使用し
て、重み付けされた平均ピッチを計算することにより行
なう。この重みづけにあたっては、重み付けファクター
として、各部分音成分のマグニチュード値を使用する。
こうして求めた平均ピッチが、そのフレームにおけるサ
ウンドのピッチと呼ばれる。こうして得た各フレーム毎
の平均ピッチをピッチ関数と呼ぶ。このピッチ関数は、
確定的成分によって代表されるサウンドのピッチの時変
動を示している。さらには、これらのフレーム毎の平均
ピッチから、全体の平均ピッチを計算する。全体の平均
ピッチは、サウンドの安定状態について計算される。こ
の全体の平均ピッチは、安定状態における該サウンドの
代表的ピッチを示している。 ステップ36:フォルマント抽出及び引算 この基本思想は、SMSデータからフォルマントを抽出
し、抽出したフォルマントをSMSデータから引算する
ことである。その結果得られる変更されたSMSデータ
における全ての部分音成分が似たようなマグニチュード
値を持つことになる。つまり、スペクトル形状が平坦に
なる。抽出したフォルマントを表現するフォルマントデ
ータは、後段の合成段階で利用される。このフォルマン
トデータは、音楽パラメータの一種といってよいもので
ある。これによって、フォルマントデータをユーザーが
自由に制御することで、SMSにより合成されるサウン
ドの特性を、ユーザーの意志を的確に反映してかつ自由
に制御できるものとなる。
【0043】ステップ37:ビブラート抽出及び引算 ここでは、上記ステップ35で求めたピッチ関数から、
ビブラートのかかっている部分を抽出し、抽出したビブ
ラート成分をピッチ関数から引算する。抽出したビブラ
ートを表現するビブラートデータは、後段の合成段階で
利用される。ビブラートデータも、音楽パラメータの一
種といってよく、ユーザーによるビブラートの容易な制
御を可能にする。
【0044】ステップ38:ピッチ正規化 ここでは、上記ステップ37から出力されるビブラート
抜きのピッチ関数における各フレームの平均ピッチから
前記全体平均ピッチを引き算することにより、正規化さ
れたピッチ関数を得る。
【0045】ステップ39:トレモロ抽出及び引算 ここでは、上記ステップ34で求めたマグニチュード関
数から、トレモロのかかっている部分を抽出し、抽出し
たトレモロ成分をマグニチュード関数から引算する。こ
うして、トレモロデータとトレモロ成分を除去したマグ
ニチュード関数とを得る。また、SMSデータにおける
マグニチュードトラジェクトリからもトレモロ成分を除
去し、かつ、ストカスティックゲイン(各フレーム毎の
残差スペクトルエンベロープのゲイン)からトレモロ成
分を除去してもよい。トレモロデータも、音楽パラメー
タの一種といってよく、ユーザーによるトレモロの容易
な制御を可能にする。
【0046】ステップ40:マグニチュード及び周波数
の正規化 ここでは、SMSデータを正規化する処理を行なう。周
波数データは、ステップ35で抽出されたピッチ関数に
よって、各部分音成分毎の周波数トラジェクトリを、そ
の部分音数分だけ、割算することによって正規化され
る。これにより、各部分音成分の演算結果は、1に近い
周波数値を持つようになる。マグニチュードデータは、
マグニチュードトラジェクトリから、上記マグニチュー
ド関数を引算することによって正規化する。ストカステ
ィックデータについては、安定状態におけるストカステ
ィックゲイン(各フレーム毎の残差スペクトルエンベロ
ープのゲイン)の平均値を求め、これを基準値として、
各フレーム毎の残差スペクトルエンベロープのゲインか
ら引算することにより正規化してよい。こうして、正規
化されたSMSデータを得るようにしてよい。また、マ
グニチュード関数に関しても、全体平均マグニチュード
を基準にして正規化し、正規化されたマグニチュード関
数を得るようにしてよい。
【0047】上述したようなSMSデータ処理部30に
おける各処理によって得られた、処理済みの、すなわち
変更された又は正規化されたSMSデータと、各種の音
楽パラメータは、前述したように、データメモリ100
において各フレームに対応してストアされる。前述した
ように、本発明の実施にあたっては、上述した各処理は
オプショナルであるため、例えば上記ステップ40のよ
うな正規化処理を行なった場合は正規化されたSMSデ
ータがデータメモリ100にストアされるが、行なわな
かった場合は、単に変更されたSMSデータがデータメ
モリ100にストアされる。また、変更も正規化も行な
わなかった場合は、SMS分析器20で分析されたまま
のSMSデータがデータメモリ100にストアされるで
あろう。
【0048】〔合成部の説明〕図4は、合成部11の一
例を示すブロック図である。データメモリ100は、図
2に示されたものと同じものであり、上記のように、各
フレームについての処理済みのSMSデータと抽出され
た各種の音楽パラメータがストアされている。これらの
データは、1つのオリジナルサウンドに対応するものだ
けに限らず、多数の異なるオリジナルサウンドに対応す
るものをストアするようにしてもよいのは勿論である。
【0049】再生処理部50は、所望のサウンドを再生
するために、データメモリ100からストアされたデー
タの読み出しを行なう処理と、読み出したSMSデータ
と音楽パラメータに基づく、追って述べるような様々な
データ操作処理を行なう。また、図1に示された編集機
器群13や音楽コントローラ群14によって発生された
制御パラメータを含む各種の音楽パラメータがこの再生
処理部50に与えられ、この再生処理部50における各
種処理をユーザーの制御に従って行なえるようにしてい
る。例えば、ユーザーによって、望みのボイス若しくは
音色を選択すると、このボイス若しくは音色に対応する
1つのオリジナルサウンドに対応する一揃いのデータ
を、データメモリ100から読み出し可能にする。それ
から、ユーザーによって、発音開始指示が与えられる
と、時間フレームのシーケンスがスタートし、上記読み
出し可能にされた一揃いのデータのうち、該シーケンス
によって指定される特定のフレームについてのSMSデ
ータと各種パラメータがデータメモリ100から読み出
される。こうして読み出されたSMSデータと音楽パラ
メータとに基づき、様々なデータ操作処理を行ない、処
理済みのSMSデータをSMSサウンド合成器110に
与える。
【0050】SMSサウンド合成器110は、入力され
たSMSデータに基づき、前述の米国特許第5,02
9,509号に示されたようなSMS合成技術に従って
サウンドの合成を行なうものである。このSMSサウン
ド合成器110の具体的構成としては、例えばその米国
特許の第2図、第4図又は第5図に示されたような構成
を参照することができる。しかし、便宜のために、SM
Sサウンド合成器110の基本構成例をブロック110
内に概略的に示す。すなわち、入力されたSMSデータ
のうち、確定的成分に対応する線スペクトルデータ(周
波数,マグニチュード,位相)が確定的波形発生部11
0aに入力され、これらに基づくフーリエ合成技術によ
って確定的成分に対応する波形が発生される。また、入
力されたSMSデータのうち、ストカスティック成分に
対応する残差スペクトルエンベロープがストカスティッ
ク波形発生部110bに入力され、このスペクトルエン
ベロープに対応するスペクトル特性を持つストカスティ
ック波形が発生される。ストカスティック波形発生部1
10bは、例えば、ノイズ信号を残差スペクトルエンベ
ロープに応じた特性でフィルタすることによりストカス
ティック波形を発生する。発生された確定的成分に対応
する波形とストカスティック波形が加算器110cで加
算され、望まれていたサウンドの波形信号が得られる。
【0051】再生処理部50では、合成すべきサウンド
のピッチを、ユーザーの所望により自由に設定すること
が可能である。すなわち、ユーザーが所望のピッチを指
定すると、これに応じて、SMSデータにおける周波数
データを変更する処理を行ない、所望ピッチでのサウン
ド合成を可能にする。勿論、再生処理部50は、ユーザ
ーによるリアルタイムでの発音指示に応じた1つのサウ
ンドの合成に限らず、例えば編集機器群13でプログラ
ムされたデータに従って、複数のサウンドを、同時にま
たは所定シーケンスで順番に、合成するよう処理するこ
とも可能である。ユーザーがリアルタイムで所望のボー
カルフレーズに対応する制御パラメータを順次入力す
る、又は、プログラムされたデータに基づいて所望のボ
ーカルフレーズに対応する制御パラメータを入力する、
ことによって所望のボーカルフレーズの合成が可能であ
る。
【0052】−再生処理部における処理例− 再生処理部50において行なわれる各種処理の一例につ
いて図5を参照して説明する。図5は、再生処理部50
において行なわれるすべての処理を紹介するものではな
く、いくつかの代表的な処理について示している。図5
に示された処理における特徴的事項は、データの補間
と、音楽パラメータを考慮したSMSデータの再生であ
る。データ補間を行なわない場合は、補間に関連する処
理ステップを省略してよいのは勿論である。まず、デー
タ補間を行なわない場合について説明する。その場合
は、図5のステップ51〜59が有効とされると考えて
よい。すなわち、現在発音すべきことが選択されている
1つの音についてのみ処理が行なわれる。
【0053】ステップ51:フレーム選択 ここでは、シンセサイザークロックに従って、現在のフ
レームが指定され、この現在フレームに対応するデータ
(SMSデータと各種パラメータ)をデータメモリ10
0から取り出す。このフレーム選択処理のアルゴリズム
は、シンセサイザークロックに従ってフレームを単純に
進めることのみならず、前述のループ処理のために、ル
ープエンドのフレームの次にループスタートのフレーム
に戻ることも行なうようにしてよい。
【0054】ステップ52:データ変換 ここでは、データメモリ100から取り出された当該フ
レームの分析データ(SMSデータと音楽パラメータ)
を、ユーザーによる制御に従って、変更する処理を行な
う。例えば、所望のピッチがユーザーによって指示され
ると、それに応じて周波数データを変更する。あるい
は、ユーザーによって所望のビブラートやトレモロが指
示されると、それに応じて所定の音楽パラメータを変更
する。こうして、ユーザーは、全ての分析データに関し
て、かつ全てのフレームにわたって、所望の制御を及ぼ
すことができる。このステップ52による変換を経由し
て各ステップ53〜59に与えられるデータ名が例示的
に図5に示されている。
【0055】ステップ53:ここでは、前記正規化され
たピッチ関数を、全体平均ピッチによって演算し、正規
化を解除したピッチ関数を得る。 ステップ54:ここでは、前記正規化されたマグニチュ
ード関数を、全体平均マグニチュードによって演算し、
正規化を解除したマグニチュード関数を得る。 ステップ55:周波数付加 ここでは、正規化されたSMSデータのうち、周波数デ
ータの値を、ピッチ関数を使用して正規化解除する。
【0056】ステップ56:マグニチュード付加 ここでは、正規化されたSMSデータのうち、マグニチ
ュードデータの値を、マグニチュード関数とチルトデー
タを使用して正規化解除する。SMSデータにおいて残
差スペクトルエンベロープが正規化されている場合も、
その正規化解除をここで行なう。 ステップ57:ビブラート及びトレモロ付加 ここでは、ビブラートデータ及びトレモロデータを使用
して、SMSデータにビブラート及びトレモロを付加す
る。 ステップ58:フォルマント付加 ここでは、フォルマントデータを使用して、SMSデー
タにフォルマントを付加する。 ステップ59:アーティキュレーション付加 ここでは、発生すべきサウンドにアーティキュレーショ
ンをつけるために、SMSデータに対して適宜のデータ
処理を施す。
【0057】次に、データ補間について説明する。これ
は、発生すべきサウンドが、或る音(これを前音とい
う) から別の音(これを現在音という) に移行するとき
に、スムーズな移行を可能にするための処理である。例
えば、シンギング・ボイスを合成するときに有効であ
る。このために、現在音の発生の始まりの適当な期間の
間、前音の分析データ(SMSデータ及び各種パラメー
タ)もデータメモリ100から取り出すようにする。
【0058】ステップ61:フレーム選択 ここでは、前音に関して適当なフレームのデータ(SM
Sデータと各種パラメータ)をデータメモリ100から
取り出す。 ステップ62:データ変換 ここでは、ステップ52と同様に、当該フレームの分析
データ(SMSデータと音楽パラメータ)を、ユーザー
による制御に従って、変更する。 ステップ65〜71:補間 ここでは、SMSデータ及び各パラメータ毎に、前音の
データと現在音のデータとの間で、所定の補間特性に従
って補間を行なう。この補間特性としては、例えば、ク
ロスフェード補間のように前音のデータから現在音のデ
ータへと時間的に滑らかに変化してゆくような特性を使
用することができるが、その他の適宜の特性を使用して
もよい。補間ステップ65〜71における様々な補間演
算パラメータを、ユーザーの制御に従って変更すること
ができるようになっている。
【0059】〔各種のデータ処理機能の詳細〕次に、各
種のデータ処理機能の詳細について説明する。以下で
は、各機能別に、分析から合成に至る処理が説明され
る。分析段階での処理は、SMSデータ処理部30(図
2,図3)で実行され、合成段階での処理は再生処理部
50(図4,図5)で実行される。以下の説明では、各
データ処理機能はSMSデータを対象にして施される
が、個別の各処理機能それ自体はSMSデータに限ら
ず、その他のデータフォームからなる楽音データに適用
可能であり、すべてのデータフォーム種類の楽音データ
に対する適用がクレームされた本願発明の範囲に含まれ
る。
【0060】−フォルマント抽出及び操作− この機能は、図3のステップ36及び図5のステップ5
8における処理に対応するものである。この機能に関わ
る発明の目的は、サウンドの線スペクトル(すなわちS
MSデータにおける確定的表現物である周波数とマグニ
チュードつまり振幅のペアからなる1組の部分音成分)
から、フォルマント構造(全体的なスペクトル特性)を
抽出し、該サウンドの線スペクトルをフォルマント抽出
物と残余のスペクトルに分離することにより、分析デー
タの圧縮化を図ると共に、サウンド合成の際にフォルマ
ントの変更等の制御を極めて容易にできるようにするこ
とである。周知のように、ボーカルサウンドにおいて
は、そのボイスを特徴づけているフォルマントが存在す
るので、この機能はボーカルサウンドの分析及び合成に
おいて極めて有利である。
【0061】この機能に従うフォルマント抽出及び操作
システムの全体的なブロック図を図6に示す。入力側に
示されたSMS分析のステップと出力側に示されたSM
S合成のステップは、前述のSMS分析器20とSMS
サウンド合成器110による処理ステップに夫々対応し
ている。前述のようにSMS分析によって得られるSM
Sデータは、周波数トラジェクトリ及びマグニチュード
トラジェクトリと、ストカスティックエンベロープ(残
差スペクトルエンベロープ)とを含む。このうち、スト
カスティックエンベロープについてはこの機能に従う処
理が施されず、確定的部分の分析結果つまり線スペクト
ルデータ即ち周波数トラジェクトリ及びマグニチュード
トラジェクトリに対してこの機能に従う処理が施され
る。参考のために、フォルマントの特性を示している1
フレーム分の確定的部分の分析結果つまり線スペクトル
データの一例を図7に示し、それに対応する1フレーム
分のストカスティックエンベロープの一例を図8に示
す。
【0062】図6において、ステップ80と81の処理
は、図3のステップ36の処理に対応するものである。
ステップ80では、1フレーム分の線スペクトルデータ
からフォルマントを抽出するための処理を行なう。すな
わち、1セットの線スペクトルデータからフォルマント
の山を検出することと、検出したフォルマントの山を適
切な表現からなるパラメータで表現することとを行な
う。このパラメータ表現は、前述したフォルマントデー
タに対応するものである。そして、各フレーム毎に、こ
のフォルマント抽出を行ない、フレーム毎のパラメータ
表現つまりフォルマントデータを得る。こうして、フレ
ーム毎に時変動可能である一連のフォルマントデータ
(これをフォルマントトラジェクトリと呼ぶ)を得る。
1セットの線スペクトルの中に複数のフォルマントがあ
る場合、各フォルマント毎の連続的なフォルマントトラ
ジェクトリがある。フォルマントデータのパラメータ表
現の仕方として、指数近似を、ここではまず提案する。
【0063】通常、フォルマントは、パワースペクトル
における三角形関数又はデシベルスペクトルにおける指
数関数で記述することができる。デシベルスペクトルは
人間の感覚に近いので、これを使用することは有益であ
る。そこで、フォルマントの両側を夫々指数関数で近似
することにする。そのために、フォルマントの各側毎
に、そのスロープにフィットする最適の指数関数を見つ
け出し、見つけ出した指数関数により該フォルマントを
表現する。この最適の指数関数の見つけ出し方や、表現
法には様々なバリエーションがあるであろう。その一例
を、図9を参照して説明する。
【0064】この例では、次の4つの値によって1つの
フォルマントを表現する。ιは或る1つの時間フレーム
を特定するフレーム番号、iは或る1つのフォルマント
を特定するフォルマント番号である。 (1) 中心周波数Fi(ι):i番目のフォルマントの中
心周波数を示すパラメータ (2) ピークレベルAi(ι):i番目のフォルマントの
中心周波数位置における振幅値を示すパラメータ (3) バンド幅Bi(ι):i番目のフォルマントのバン
ド幅を示すパラメータ (4) インターセクションEi(ι):i番目のフォルマ
ントとその隣のi+1番目のフォルマントとの交点を示
すパラメータ
【0065】上記のうち最初の3つのパラメータは従来
より知られたフォルマント表現であるが、最後のインタ
ーセクションパラメータは従来知られていなかったもの
である。これは、例えば、i番目のフォルマントとその
隣のi+1番目のフォルマントとの交点に位置する1つ
の部分音成分すなわちスペクトラムの周波数を示すもの
である。ただし、最初の3つのパラメータに関しても、
その求め方は、後述するように指数近似によって求める
新規なものである。
【0066】ステップ80における処理手順を更に詳し
く説明すると次の通りである。 (1) フレームιの各線スペクトルつまり部分音成分に対
応するマグニチュードデータan(ι)の中からいくつ
かのローカル最大値を見つけ出す。ここで、前記式1の
ように、nは、n=0,1,2,...,N−1の夫々
の値をとる変数であり、Nは、そのフレームにおいて分
析された線スペクトルつまり部分音成分の数である。 (2) 見つけ出した個々のローカル最大値毎に、そのロー
カル最大値を取り囲んでいる2つのローカル最小値を、
夫々見つけ出す。こうして見つけ出された1つのローカ
ル最大値と、その両側の2つのローカル最小値は、1つ
の山を提示するものである。
【0067】(3) 各ローカル最大値とその両側の2つの
ローカル最小値とによって提示される各山から、前記パ
ラメータFi,Ai,Bi,Eiを夫々算出する。こう
して、フレームιについての各フォルマントiに対応す
るフォルマントデータFi,Ai,Bi,Eiが得られ
る。 (4) 上記で求めたフレームιについての各フォルマント
iに対応するフォルマントデータを、個別のフォルマン
トトラジェクトリに割当てる。どのフォルマントトラジ
ェクトリに割当てるかは、中心周波数が最も近いものを
探し出して決定する。これによりフォルマントの連続性
が確保される。過去のフォルマントトラジェクトリにお
いて、所定の誤差範囲内で中心周波数が近いものがない
場合は、そのフォルマントのために新たなフォルマント
トラジェクトリを割当ててもよい。
【0068】上記(3)のステップにおける各パラメータ
Fi,Ai,Bi,Eiの算出アルゴリズムにつき、次
に、説明する。上記(2)のステップにおいて1つのロー
カル最大値とその両側の2つのローカル最小値により1
つの山が特定されると、それから、これに合う2つの側
の指数関数を見つけ出さねばならない。この問題は、下
記数2に示すような式によって数学的に公式化すること
ができる。
【0069】
【数2】
【0070】ここで、FとAは未知数であり、求めるべ
きこのフォルマントにおける中心周波数とピークレベル
振幅値である。LlとLrは、2つのローカル最小値に対
応する部分音成分の次数である。fnとanは、この山の
内側にある部分音成分iの周波数と振幅(つまりマグニ
チュード)である。xは、近似に使用する指数関数の底
である。−|F−fn|が、この指数関数の指数部であ
る。eは、この指数関数と部分音成分との間の適合の誤
差である。すなわち、上記式2は最小自乗近似法による
誤差関数である。これにより、誤差eが最小となるよう
なF,A,xを見つけ出す。これは最小限に見積もって
も解くことが大変困難な問題である。しかし、本件での
適用にあたっては、それほど厳密な適合が要求されない
ので、別の簡単な解決策を講じてもよい。そこで、F,
A,xを見つけ出すための、次のような、簡単なアルゴ
リズムを提案する。
【0071】その簡単なアルゴリズムとは、フォルマン
ト周波数(F)とフォルマント振幅(A)を、ローカル
最大値を精製することにより、得るものである。これ
は、その山における3つの最も高い振幅値について放物
線的補間を行なうことによって行なう。その補間の結果
得られる最大値の位置がフォルマント周波数(F)に相
当し、その高さがフォルマント振幅(A)に相当する。
フォルマントバンド幅Bは、慣行的には、フォルマント
の先端から−3dB下がったところの帯域幅がそれに相
当する。そのような値は指数関数の底xを記述する。そ
れらは、下記式のような関係にある。
【0072】
【数3】
【0073】すべての部分音成分について最も良く適合
するバンド幅を持つフォルマント(指数関数)は次のよ
うにして見つけ出される。まず、個々の部分音成分nに
ついて下記式による指数関数の値xnを夫々求める。
【0074】
【数4】
【0075】それから、各nに対応する上記指数関数値
xnを上記数3の式のxに代入して、夫々に対応する仮
のバンド幅Bnを夫々求める。こうして求めたそのフォ
ルマントの各仮のバンド幅Bnを下記式のように平均化
する。
【0076】
【数5】
【0077】この平均バンド幅Bが、そのフォルマント
のバンド幅として使用され、フォルマントとして使用さ
れた指数関数を記述するものとなる。i番目のフォルマ
ントとその隣のi+1番目のフォルマントとの交点を示
すインターセクションパラメータEiは、そのフォルマ
ントiにおける右側のローカル最小値の周波数を用い
る。
【0078】図6に戻ると、ステップ81では、上記の
ように抽出した1フレームのフォルマントデータを使用
して、そのフレームについての1組の部分音成分からフ
ォルマント構造を引算する。フォルマント構造は、フォ
ルマントの形状を示す相対値であると考えてよい。1組
の部分音成分つまり線スペクトルからフォルマント構造
を引算することは、フォルマントによる変化分を差し引
いて、1組の部分音成分つまり確定的成分の線スペクト
ルを平坦化することである。従って、このステップ81
の処理の結果得られる、確定的成分の線スペクトルデー
タは、例えば図10のように、平坦化されたスペクトル
構造を持つものとなる。
【0079】この手法の一例を示すと、1フレームのす
べてのフォルマントデータに基づき、該フレームのすべ
てのフォルマントを記述する関数を発生し、この関数が
0平均を持つようにその振幅値を正規化する。このよう
に正規化されたフォルマント関数は、フォルマント構造
を示している。そして、そのフレームについての1組の
部分音成分における個々の部分音成分毎に、そのマグニ
チュード値からその周波数位置に対応する正規化フォル
マント関数の振幅値を引算する。勿論、その他の手法も
可能である。
【0080】ステップ82の処理は、図5のステップ5
2,62,71の処理に対応するものである。すなわ
ち、上記のように抽出されたフォルマントデータをユー
ザーの制御によって自由に変更する処理が行なわれる。
ステップ83の処理は、図5のステップ58の処理に対
応するものである。すなわち、上記のように変更が適宜
加えられたフォルマントデータを確定的成分の線スペク
トルデータに付加し、確定的成分の線スペクトルデータ
にフォルマント特性を持たせる。
【0081】このフォルマント操作によれば、ユーザー
は4つのパラメータF,A,B,Eを望みに応じて制御
することにより、フォルマントを自由に制御することが
できる。これらの4つのパラメータF,A,B,Eは、
フォルマントの特性/形状に直接対応しているので、フ
ォルマント操作/制御が非常にし易いものとなる、とい
う利点がある。また、フォルマントの分析/抽出につい
ても、上記で提案した方法は、従来知られたLPCのよ
うな自乗近似法に比べて簡単であり、計算も能率的に行
なうことができる、という利点がある。
【0082】−フォルマント抽出及び操作の別の例− 図11は、フォルマント抽出及び操作システムの別の例
を示す全体的なブロック図である。ここでは、フォルマ
ントを抽出するためのステップ80aが図6のステップ
80と相違しており、他は同じであってよい。このシス
テムでは、フォルマントは、デシベルスペクトルにおけ
る二等辺三角形関数で近似される。デシベルスペクトル
は人間の感覚に近いので、これを使用することは有益で
ある。フォルマントのスロープにフィットする最適の二
等辺三角形関数を見つけ出し、見つけ出した二等辺三角
形関数により該フォルマントを表現する。この最適の二
等辺三角形関数の見つけ出し方や、表現法には様々なバ
リエーションがあるであろう。その一例を、図12を参
照して説明する。
【0083】この例では、次の3つの値によって1つの
フォルマントを表現する。ιは或る1つの時間フレーム
を特定するフレーム番号、iは或る1つのフォルマント
を特定するフォルマント番号である。 (1) 中心周波数Fi(ι):i番目のフォルマントの中
心周波数を示すパラメータ (2) ピークレベルAi(ι):i番目のフォルマントの
中心周波数位置における振幅値を示すパラメータ (3) スロープSi(ι):i番目のフォルマントのスロ
ープ(二等辺三角形の辺の傾き)を示すパラメータ 上記のうち最初の2つのパラメータは従来より知られた
フォルマント表現であるが、最後のスロープパラメータ
は従来知られていなかったものであり、これは、従来よ
り知られたバンド幅に置き換わる新規なものである。こ
のスロープをバンド幅に変換することは容易に行なえ
る。
【0084】ステップ80aにおける処理手順を更に詳
しく説明すると次の通りである。 (1) 山の検出:フレームιの各線スペクトルつまり部分
音成分 に対応するマグニチュードデータan(ι)の中
からいくつかのローカル最大値つまりピークを見つけ出
す。また、見つけ出した個々のローカル最大値毎に、そ
のローカル最大値を取り囲んでいる2つのローカル最小
値つまり谷を、夫々見つけ出す。こうして見つけ出され
た1つのローカル最大値と、その両側の2つのローカル
最小値は、1つの山を提示するものである。このような
山検出の一例を図13に示す。 (2) 三角形適合:各ローカル最大値とその両側の2つの
ローカル最小値とによって提示される各山から、三角形
近似によって、前記パラメータFi,Ai,Siを夫々
算出する。こうして、フレームιについての各フォルマ
ントiに対応するフォルマントデータFi,Ai,Si
が得られる。
【0085】(3) 上記で求めたフレームιについての各
フォルマントiに対応するフォルマントデータを、個別
のフォルマントトラジェクトリに割当てる。どのフォル
マントトラジェクトリに割当てるかは、中心周波数が最
も近いものを探し出して決定する。これによりフォルマ
ントの連続性が確保される。前述と同様に、過去のフォ
ルマントトラジェクトリにおいて、所定の誤差範囲内で
中心周波数が近いものがない場合は、そのフォルマント
のために新たなフォルマントトラジェクトリを割当てて
もよい。図16は、フォルマントトラジェクトリの様子
を模式的に示すマップである。
【0086】上記(1)のステップにおける山検出につい
て更に説明する。一例として、隣接する3つの部分音成
分のマグニチュードつまり振幅値a-1,a0,a1が下記
式を満足するとき、その中央のマグニチュードa0に対
応する部分音成分をローカル最大値として検出するよう
にしてよい。
【0087】
【数6】
【0088】そして、ローカル最大値の両隣の谷を同じ
様な手法でローカル最小値として検出する。次に、上記
(2)のステップにおける各パラメータFi,Ai,Si
の算出アルゴリズムにつき、説明する。まず、中心周波
数Fiは、前述と同様に、その山における3つの最も高
い振幅値について放物線的補間を行なうことによって見
つけ出す。このためのアルゴリズムとしては、下記式を
用いることができる。
【0089】
【数7】
【数8】
【0090】ここで、f-1,f0,f1は、前述の各マグ
ニチュードa-1,a0,a1に対応する隣接する3つの部
分音成分の周波数である。dは、そのうち中央の周波数
f0からの中心周波数Fiの距離である。まず数7の式
によりdを求め、求めたdを数8の式に適用してFiを
求める。
【0091】次に、各部分音成分nを中心周波数Fiか
らの隔たりに応じた相対値(xn,yn)に置き換えたデ
ータセットを作成する。xnは周波数の相対値であり、
下記式で得られる。
【数9】xn =|Fi−fn| fnは各部分音成分nの周波数である。数9の式では差
の絶対値が周波数の相対値xnとなっているため、図1
4に模式的に示すように、すべてのxnがFiの片側に
くるように折り返されることになる。ynは、各相対周
波数xnに対応する部分音成分nの振幅であり、これは
下記のように各部分音成分nのマグニチュードanにそ
のまま対応している。
【0092】
【数10】yn =an
【0093】こうして、三角形適合プログラムを、単純
な線適合プログラムに変換することができる。すなわ
ち、下記のような1次関数yを用いてAiとSiを見つ
け出すことができる。
【数11】y=Ai+Si・x この数11の式のxとyに、上記データセット(xn,
yn)を夫々代入し、下記の最小自乗近似式に従い、誤
差eを最小にするようなAiとSiを見つけ出す。
【0094】
【数12】
【0095】LlとLrは、2つのローカル最小値つまり
谷に対応する部分音成分の次数である。この解Ai,S
iは下記式のように得られる。
【0096】
【数13】
【0097】ここで、各導関数Dx,Dy,Dxx,Dxyは
次の通りである。
【0098】
【数14】
【0099】こうして得られた上記関数の傾きSiは、
三角形の右側のスロープに対応するものである。その左
側のスロープは、−Siである。また、関数のオフセッ
ト値Aiは、フォルマントのピークレベルに対応する。
以上により、フォルマントに最も適合する二等辺三角形
近似を定義する3つのパラメータFi,Ai,Siを得
ることができる。図15はそのようなフォルマントの二
等辺三角形近似を示すものである。
【0100】前述のように、フォルマントのバンド幅B
iは、慣行的には、フォルマントの先端から−3dB下
がったところの帯域幅がそれに相当するので、フォルマ
ント中心周波数FiとスロープSiとに基づき、下記式
により容易に求めることができる。
【0101】
【数15】
【0102】スロープパラメータSiはそのままフォル
マント変更ステップ83に与えてもよいし、バンド幅パ
ラメータに変換してからフォルマント変更ステップ83
に与えるようにしてもよい。なお、変形例として、二等
辺三角形近似に限らず、その他の不等辺三角形近似によ
り各側のスロープを別々に近似することにより、フォル
マントの三角形近似を行なうようにすることができる。
【0103】このフォルマント操作によれば、ユーザー
は3つのパラメータF,A,Sを望みに応じて制御する
ことにより、フォルマントを自由に制御することができ
る。これらの3つのパラメータF,A,Sは、フォルマ
ントの特性/形状に直接対応しているので、フォルマン
ト操作/制御が非常にし易いものとなる、という利点が
ある。また、フォルマントの分析/抽出についても、上
記で提案した方法は、従来知られたLPCのような自乗
近似法に比べて簡単であり、計算も能率的に行なうこと
ができる、という利点がある。また、三角形近似により
フォルマントデータを抽出するので、抽出のための計算
のアルゴリズムが非常に簡単であるという利点がある。
更に、二等辺三角形近似によりフォルマントの分析/抽
出を行なうことにより、片側のスロープのみを計算すれ
ばよいことになるので、アルゴリズムを更に簡単化する
ことができるという利点を持つ。
【0104】−ビブラート分析及び操作− ビブラートは、各部分音成分毎に、その周波数トラジェ
クトリの時間関数を分析することによって検出する。図
17は、ビブラート分析システムの一例を示す全体的な
ブロック図である。これは、図3のステップ37の処理
に対応している。ビブラート分析は各部分音成分毎に行
なうので、この分析システムの入力は、或る1つの部分
音成分の周波数トラジェクトリであり、これは、各時間
フレーム毎の周波数を示す時間関数である。容易に理解
できるように、この周波数の時間関数が、ビブラートと
みなすことができる周期で時変動していれば、その時変
動成分をビブラートとして検出することができる。従っ
て、周波数トラジェクトリの時間関数における低周波数
の時変動成分を検出することによってビブラートの検出
を行なうことができる。そのために、図17では、高速
フーリエ変換技術を使用してビブラート分析を行なうよ
うにしている。
【0105】まず、ゲート90では、分析対象である1
つの周波数トラジェクトリの時間関数を入力し、ビブラ
ート分析用の所定の時間窓信号によってゲートする。こ
の時間窓信号は、隣接するフレームにおいてそのフレー
ムサイズが所定割合で(例えば3/4づつ)オーバラッ
プするように、周波数トラジェクトリの時間関数をゲー
トする。なお、ここでいうフレームとは、前述のSMS
データにおける時間フレームとは異なるものであり、そ
れよりもかなり長い時間に対応している。例えば、時間
窓信号によって設定する1つのフレームが0.4秒の時
間長を持つとすると、オーバラップ割合が3/4である
とすると、隣接するフレーム間では、0.1秒の時間差
を持つ。つまり0.1秒ごとの時間レートでビブラート
分析がなされることになる。
【0106】ゲートされた信号は、直流除去器91に入
力され、直流分を除去する。これは、例えば、そのフレ
ーム内の関数値の平均値を求め、この平均値を直流分と
して除去する、すなわち各関数値から平均値を引算す
る、ことによって行なうことができる。それから、高速
フーリエ変換器(FFT)92に入力され、そのスペク
トル分析がなされる。こうして周波数トラジェクトリの
時間関数が時間窓信号によって複数のフレームに分割さ
れ、各フレーム毎にその交流的成分についてのFFT分
析が行なわれる。FFT92による分析出力は複素スペ
クトルであるから、次の直交−極座標変換器93でマグ
ニチュードスペクトル及び位相スペクトルに変換する。
こうして得られたマグニチュードスペクトルがピーク検
出及び補間部94に与えられる。
【0107】上記マグニチュードスペクトルの一例をエ
ンベロープによって示すと図18のようである。オリジ
ナルサウンドにビブラートがある場合は、ビブラートの
可能性のある所定の周波数領域、例えば4Hz乃至12
Hzの領域に、図示のようなピークが生じる。そこで、
この領域におけるピークを検出し、その周波数位置をビ
ブラートレートとして検出する。そのための処理をピー
ク検出及び補間のためのステップ94で行なう。このピ
ーク検出及び補間のためのステップ94における処理例
は次の通りである。
【0108】(1) まず、与えられたマグニチュードスペ
クトルのうち、ビブラートの可能性のある所定の周波数
領域において振幅の最大値,つまりローカル最大値を検
出する。図20は、ビブラートの可能性のある所定の周
波数領域を拡大して示しており、kがローカル最大値の
スペクトルに相当し、k-1とk+1がその両隣のスペクト
ルに相当する。 (2) 次に、上記ローカル最大値とその両隣のスペクトル
の振幅値を通る放物線を補間する。図20におけるカー
ブPIは、この補間によって得た放物線を示す。 (3) 次に、補間によって得た放物線カーブPIにおける
最大値を特定し、この最大値に対応する周波数位置をビ
ブラートレートとして検出すると共に、この補間された
最大値をビブラート幅として検出する。音楽パラメータ
として抽出されるビブラートデータは、これらのビブラ
ートレートとビブラート幅とからなっている。このビブ
ラートデータの抽出が各フレーム毎に行なわれるので、
時変動するビブラートデータの抽出が可能であることが
理解できるであろう。
【0109】図17に戻ると、ステップ95では、直交
−極座標変換器93で得たマグニチュードスペクトルか
ら、ステップ94で検出したビブラート成分を引算する
処理を行なう。ここでは、検出したビブラートの山の両
側の境界つまり2つの谷を見つけ出し、図19に示すよ
うに、この間を直線補間してビブラート成分の山を取り
除く。図19は、このステップ95で処理されたマグニ
チュードスペクトルの一例を模式的に示している。
【0110】次に、ビブラート成分が除去されたマグニ
チュードスペクトルデータと、直交−極座標変換器93
で得た位相スペクトルデータとを、極−直交座標変換器
96に入力し、これらを複素スペクトルデータに変換す
る。それから、この複素スペクトルデータを逆FFT9
7に入力し、時間関数を発生する。この出力を直流加算
部98に与え、前記直流除去器91で除去した直流分を
再加算し、ビブラート成分が除去された1フレーム分の
周波数トラジェクトリの時間関数を生成する。こうし
て、ビブラート成分が除去された1フレーム分の周波数
トラジェクトリを各フレーム毎に連結して、その部分音
成分に対応する一連の周波数トラジェクトリを作成す
る。その際に、前述のようにオーバラップしたフレーム
の時間だけ、データを重複して連結するものとする。デ
ータ重複部分の連結の仕方としては、平均値を採用する
のがよいと思われるが、その他の適宜の補間であっても
よい。また、オーバラップ部分において或る1つのフレ
ームのデータのみ選択し、他を切り捨ててもよい。この
ようなオーバラップ部分についての処理は、前記検出し
たビブラートレート及びビブラート幅のデータについて
も適宜行なってよい。
【0111】図21は、ビブラート合成アルゴリズムの
一例を示す全体的なブロック図である。ステップ85,
86の処理は、図5のステップ52,62,69の処理
に対応するものである。すなわち、上記のように抽出さ
れたビブラートレート及びビブラート幅のデータを、ユ
ーザーの制御によって自由に変更する処理が行なわれ
る。ステップ87及び88の処理は、図5のステップ5
7の処理に対応するものである。ステップ87では、上
記のように変更が適宜加えられたビブラートレート及び
ビブラート幅のデータに基づき、ビブラート信号を例え
ば正弦波関数で発生する。ステップ88では、このビブ
ラートレートとビブラート幅に対応する正弦波関数によ
って、SMSデータにおける対応する周波数トラジェク
トリにおける周波数値を変調する演算を行なう。これに
より、ビブラート付与された周波数トラジェクトリが得
られる。
【0112】以上の説明では、各部分音成分毎に別々
に、ビブラートデータを抽出し、制御若しくは変更し、
かつ、ビブラート合成を行なうようにしている。しか
し、各部分音成分毎にビブラートレートを異ならせる必
要はないので、基本波成分から抽出したビブラートレー
ト、あるいは低次のいくつかの部分音成分から抽出した
ビブラートレートの平均値、を各部分音成分に共通に使
用するようにしてもよい。ビブラート幅についても同様
に所定のものを各部分音成分に共通に使用するようにし
てよい。
【0113】−トレモロの抽出及び操作− トレモロは、各部分音成分毎に、そのマグニチュードト
ラジェクトリの時間関数を分析することによって検出す
る。トレモロは振幅のビブラートであるといえるので、
前述したビブラートの分析及び合成のアルゴリズムと同
じものをそっくり利用することができる。ビブラートと
の違いは、トレモロにおいては分析及び合成の対象がS
MSデータにおけるマグニチュードトラジェクトリであ
る、という点だけである。すなわち、図17乃至図21
を参照して説明したのと同様の分析及び合成のアルゴリ
ズムをマグニチュードトラジェクトリに対して適用する
ことにより、トレモロの分析及び合成を行なうことがで
きる。従って、図17乃至図21における“周波数トラ
ジェクトリ”を“マグニチュードトラジェクトリ”と読
み変えることにより、トレモロの分析及び合成のための
実施例を提示することができる。トレモロデータとして
は、トレモロレートとトレモロ幅とからなるパラメータ
が得られることになる。
【0114】同様に、SMSデータにおけるストカステ
ィック成分に関しても、トレモロと同様の振幅の周期的
変動を分析し、これを制御若しくは変更し、かつ、合成
するようにすることができる。SMSデータにおけるス
トカスティック成分に対応する残差スペクトルエンベロ
ープデータの1つとして、該スペクトルエンベロープの
全体的ゲインを示すデータがあり、これをストカスティ
ックゲインと呼ぶ。各時間フレーム毎の一連のストカス
ティックゲインをストカスティックゲイントラジェクト
リと呼ぶ。ストカスティックゲイントラジェクトリはス
トカスティックゲインの時間関数である。従って、この
ストカスティックゲインの時間関数を前記ビブラート又
はトレモロの場合と同様のアルゴリズムによって分析
し、その分析結果を利用した制御と合成が可能である。
また、分析を省略し、確定的成分のマグニチュードトラ
ジェクトリの分析によって得たトレモロデータを使用し
てストカスティックゲインの制御と合成を行なってもよ
い。上述のようなビブラートあるいはトレモロの分析と
制御及び合成の手法は、SMS合成技術に限らず、他の
加算的楽音合成技術にも応用可能である。
【0115】−音楽サウンドにおけるスペクトルチルト
制御− 図22は、この実施例に従うスペクトルチルト制御のた
めの分析及び合成のアルゴリズムを示す。ステップ12
0〜123は分析アルゴリズムに対応しており、SMS
データ処理部30(図2)で実行される。ステップ12
4,125は合成アルゴリズムに対応しており、再生処
理部50(図4)で実行される。
【0116】スペクトルチルトの分析:まず、スペクト
ルチルトの分析について説明する。スペクトルチルト分
析は、確定的成分に関して行なう。図23は、確定的成
分の線スペクトル例と、そこから分析した1直線状のス
ロープからなるスペクトルチルトラインの一例を示して
いる。分析したスペクトルチルトラインは太い実線で示
している。このスペクトルチルトラインの原点は、確定
的成分の線スペクトルにおける最も低い周波数を持つ第
1の部分音成分のマグニチュードレベル値である。そし
て、残りの全ての部分音成分のマグニチュード値を概ね
近似することのできるような最適の傾きラインを見つけ
出す(ステップ120)。これはライン−フィッティン
グの問題であるから、スペクトルチルトのスロープbは
次式によって計算できる。
【0117】
【数16】
【0118】ここで、iは部分音番号、Nは部分音の合
計数、xは各部分音の周波数、yは各部分音のマグニチ
ュード値である。特定のSMS時間フレームについての
平均マグニチュードmagは次式により計算できる。
【0119】
【数17】
【0120】これらの計算により、スペクトルチルト
(b)と平均マグニチュードmagのデータペアを各S
MS時間フレーム毎に得ることができる。次に、各フレ
ーム毎の平均マグニチュードmagの平均値すなわち全
体平均マグニチュードAvgMagを計算する。そし
て、次式によってこれらの値の相関を求める(ステップ
121)。
【0121】
【数18】
【0122】ここで、iはSMS時間フレーム番号、M
はSMS時間フレームの合計数である。この相関データ
corrは、各フレームi毎の平均マグニチュードma
g iに対する全体平均マグニチュードAvgMagの差
(mag i −AvgMag)と、各フレームi毎のス
ペクトルチルトbiとの相関を示すものである。すなわ
ち、相関データcorrは、各フレーム毎のスペクトル
チルトデータbを、そのフレームの平均マグニチュード
magに対する全体平均マグニチュードAvgMagの
差(mag−AvgMag)に相関するデータとして正
規化したものである。式18から容易に理解できるよう
に、仮に、全フレームiのスペクトルチルトbiが等し
いとすると、個別サンプルmag iとそれらの平均値A
vgMagとの差(mag i −AvgMag)の合計
は0に収束するので、相関データcorrは0である。
ここから理解できることは、相関データcorrは、各
フレームのスペクトルチルトbiの相互関係を、そのフ
レームi毎の平均マグニチュードmag iに対する全体
平均マグニチュードAvgMagの差(mag i −A
vgMag)をパラメータとして、示している基準値若
しくは正規化値である、ということである。
【0123】以上によって求められた相関データcor
rが、スペクトルチルトに関する唯一の音楽パラメー
タ、つまりチルトファクターである。ユーザーは、この
チルトファクターつまり相関データcorrを変更制御
することにより、合成するサウンドの明るさ等の表情を
自由に制御することができる。なお、チルト分析にあた
っては、確定的成分における全ての部分音を考慮にいれ
る必要はなく、適宜省略してよい。例えば、上記式16
の分析式に算入する部分音成分を定義するために、或る
スレショルド値を設定し、このスレショルド値以上のマ
グニチュードを持つ部分音成分を算入して分析を行なう
ようにしてよい。また、所定の高い周波数(例えば80
00Hz)以上の高い周波数の部分音成分も上記式16
の分析式に算入しないようにし、チルト分析にあたって
の不安定要素を排除してよい。勿論、上記分析の結果得
たスロープと実際の各部分音のマグニチュードとを照合
し、あまりにもかけ離れているものがある場合は、それ
を除外して、もう一度分析をやり直すようにしてもよ
い。
【0124】スペクトルチルトによる正規化:次に、上
記のように求めたスペクトルチルト分析データを使用し
て、SMSデータの確定的成分のマグニチュード値を正
規化する処理を行なう。ここでは、各フレーム毎の確定
的成分の線スペクトルが、見掛け上共通のスペクトルチ
ルトを持つかのように、かつ、全体平均マグニチュード
AvgMagに関して、夫々の部分音のマグニチュード
値を正規化する。そのために、下記式に従って、各部分
音成分毎に差分値diffを計算する(ステップ12
2)。
【0125】
【数19】
【0126】ここで、magはそのフレームの平均マグ
ニチュード、x0はそのフレームにおける第1の部分音
の周波数、xiはこの計算の対象となっている部分音i
の周波数である。それから、各部分音毎に計算した上記
差分値diffを、対応する部分音のマグニチュード値
に加算し、正規化したマグニチュード値を求める(ステ
ップ123)。
【0127】スペクトルチルト合成:前述のように、ユ
ーザーは、分析されたチルトファクターつまり相関デー
タcorrを自由に変更制御することができる(ステッ
プ124)。サウンド合成に際しては、各部分音成分の
マグニチュード値をチルトファクターによって制御する
処理を行なう。そのために、下記式に従って、各部分音
毎に合成用の差分値diffを計算する。
【数20】
【0128】ここで、corr'はユーザーによる変更
制御処理を経たチルトファクターつまり相関データ、ne
wmagはそのフレームの平均マグニチュードであり、合成
の際に適宜の処理が施されているかもしれないもの、x
0はそのフレームにおける第1の部分音の周波数、xiは
この計算の対象となっている部分音iの周波数である。
これにより、チルトファクターcorr'を考慮に入れ
た合成用の差分値diffが各部分音毎に求められる。
この合成用の差分値diffを対応する部分音のマグニ
チュード値に加算することにより、望みの修正されたス
ペクトルチルトによって制御された線スペクトルデータ
を得る(ステップ125)。この修正された線スペクト
ルデータを含むSMSデータに基づき、後に、SMSサ
ウンド合成器110(図4)でサウンド合成がなされ
る。従って、ユーザーによるチルトファクターつまり相
関データcorrの変更制御に応じて、明るさ等の表情
が自由に制御されたサウンドが合成される。
【0129】容易に理解できるように、もし、スペクト
ルチルトが時変動しない簡略化された制御を行なう場合
は、相関corrの算出等の面倒な演算は省略できるで
あろう。つまり、分析されたスペクトルチルトデータb
をそのままユーザーによって自由に制御し、制御された
スペクトルチルトデータに基づきサウンド合成の際に線
スペクトルのチルトを制御するようにしてもよい。発明
の本質は、スペクトルのチルトを抽出し、これを制御す
ることにより合成すべきサウンドの制御を行なう点にあ
るのであるから、そのような簡略化されたチルト分析と
合成も、本発明の範囲に含まれると理解すべきである。
このスペクトルチルト制御もまた、他の制御と同様に、
SMS技術に限らず、他の部分音加算合成技術において
も適用可能である。
【0130】−サウンドの時間変更− この技術の目的は、SMS技術によって表現されたサウ
ンドの発音時間長を長くしたり又は短くしたりする制御
を行なうことである。発音時間長を長くすることは、サ
ンプラーにおけるルーピング技術で知られているよう
に、サウンドの或る部分を切り出し、これを繰返しつな
ぎ合わせることによって行なう。発音時間を短くするこ
とは、サウンドから適切に選んだセグメントを取り除く
ことによって行なう。以下で述べる例では、ループポイ
ントを設定するために、ビブラートサイクルの境界を見
つけ出すようにしたことを特徴としている。
【0131】図24は、この実施例に従う時間変更のた
めの分析及び合成のアルゴリズムを示す。ステップ13
0,131,132は分析アルゴリズムに対応してお
り、SMSデータ処理部30(図2)で実行される。ス
テップ133,134,135は合成アルゴリズムに対
応しており、再生処理部50(図4)で実行される。ス
テップ130,131,132による分析アルゴリズム
によれば、オリジナルサウンドのビブラートサイクルの
境界を見つけ出す処理を行なう。そのために、ビブラー
トの特徴が現われやすい低次の部分音成分のいくつかの
周波数トラジェクトリを対象にして分析を行なう。この
例では、第1の部分音成分すなわち基本波と第2の部分
音成分すなわち第1ハーモニックの2つの周波数トラジ
ェクトリに関して、夫々分析を行なう。
【0132】まず、ステップ130では、分析しようと
する音の中央当たりにおいて、基本波の周波数トラジェ
クトリと第1ハーモニックの周波数トラジェクトリか
ら、その周波数が最も高いローカル最大値を探し出す。
これを最初のローカル最大値とする。具体的には、分析
しようとする音の中央当たりの所定時間範囲内におい
て、基本波の周波数トラジェクトリと第1ハーモニック
の周波数トラジェクトリの夫々につき、7フレーム分の
周波数の平均値を順次に作成し、そのファイルを作成す
る(7ポイント平均値ファイルの作成)。こうして、作
成した各トラジェクトリの7ポイント平均値ファイルを
比較参照して、基本波と第1ハーモニックの両方に関し
て生じている最も高いローカル最大値を探し出す。こう
して、探し出したローカル最大値の位置と値を、最初の
ローカル最大値としてリストに入れる(最初のローカル
最大値の検出)。仮にオリジナルサウンドにビブラート
がなかったとしても、このようなローカル最大値の検出
は可能である。なお、SMS時間フレームのレートを1
00Hzとすると、そのような7ポイントつまり7フレ
ームの長さは0.07秒である。
【0133】次に、ステップ131では、上記のように
見つけ出した最初のローカル最大値の位置を基に、さら
にサーチを進め、その両側において周波数が最小である
2つのローカル最小値を探し出して、上記最初のローカ
ル最大値のリストに加える。それから、更に時間進行方
向にサーチを進め、音の終了近くまでに、いくつかのロ
ーカル最大値とローカル最小値のペアを探し出し、上記
リストに時間順に加える。こうして、探し出したすべて
のローカル最大値とローカル最小値つまり極値の値と位
置が上記リスト(つまり極値リスト)に時間順に記憶さ
れる。
【0134】具体的には、まず、上記各トラジェクトリ
の7ポイント平均値ファイルにおいて最初のローカル最
大値の位置から時間進行方向にサーチを進め、基本波と
第1ハーモニックの両方に関して生じている周波数が最
も低いローカル最小値(右のローカル最小値)を探し出
す。このとき、必要に応じて、分析対象範囲を時間進行
方向に広げて、前記7ポイント平均値ファイルにファイ
ルする各トラジェクトリの7ポイント平均値データを追
加作成する。こうして、探し出した右のローカル最小値
の位置と値を、上記極値リストにおいて最初のローカル
最大値の右隣に記憶する(右ローカル最小値検出)。
【0135】次に、上記各トラジェクトリの7ポイント
平均値ファイルにおいて最初のローカル最大値の位置か
ら時間逆行方向にサーチを進め、基本波と第1ハーモニ
ックの両方に関して生じている周波数が最も低いローカ
ル最小値(左のローカル最小値)を探し出す。このとき
も、必要に応じて、分析対象範囲を時間逆行方向に広げ
て、前記7ポイント平均値ファイルにファイルする各ト
ラジェクトリの7ポイント平均値データを追加作成す
る。こうして、探し出した左のローカル最小値の位置と
値を、上記極値リストにおいて最初のローカル最大値の
左隣に記憶する(左ローカル最小値検出)。
【0136】次に、分析対象範囲を時間進行方向に、音
の終了近くまで、広げて、前記7ポイント平均値ファイ
ルにファイルする各トラジェクトリの7ポイント平均値
データを追加作成する。それから、前述と同様に、各ト
ラジェクトリの7ポイント平均値ファイルにおいて時間
進行方向にサーチを進め、基本波と第1ハーモニックの
両方に関して生じている周波数の極値(ローカル最大値
又はローカル最小値)を順次検出し、これらの位置と値
を上記極値リストに時間順に記憶する。こうして作成さ
れた極値リストにリストされた各極値のいくつかは、ビ
ブラートサイクルのピークと谷であると推定することが
できる。なお、極値の位置データとは、時間に対応する
データである。次のステップ132では、上記ステップ
131でリストした極値データを検討し、ビブラートサ
イクルのピークと谷であると推定される極値データを残
し、他を削除するための編集処理を行なう。
【0137】具体的には、次のように処理する。まず、
リストした極値データにおいて見られるビブラートサイ
クルが、所定のビブラートレートの範囲内に納まってい
るかを調べる。すなわち、極値リストにおける或る最大
値と或る最小値の時間差が所定の時間範囲内に納まるか
を、全ての最大値と最小値のペアにつき、夫々調べる。
所定の時間範囲の一例を示すと、最大で0.15秒、最
小で0.05秒である。こうして、所定の時間範囲に納
まっていない最大値と最小値のいくつかのペアを見つけ
出すことができるであろう。これらの各ペアのうち少な
くとも一方は、ビブラートの最大値又は最小値に対応し
ていないものである。こうして、調べた結果、その時間
差が所定の時間範囲に納まっている各極値ペアを、保存
すべきものとして、マークする。ところで、上記所定時
間範囲はむしろ広めに設定してあるので、有効なビブラ
ート極値がマークされないことは有りえない。しかし、
そのために、実際のビブラートを示している極値よりも
多くの極値がマークされてしまう可能性がでてくる。な
お、ここでマークされなかった極値は、以後の処理では
全て無視される。
【0138】次に、リストに保存された各極値ペアにお
いて、最小値から最大値に向かうアップスロープの時間
間隔と、最大値から最小値に向かうダウンスロープの時
間間隔を夫々算出する(図25参照)。そして、夫々の
アップスロープ時間間隔の平均値と、夫々のダウンスロ
ープ時間間隔の平均値を計算する。それから、各極値ペ
ア毎のアップスロープ時間間隔と上記アップスロープ平
均値との関係、及び各極値ペア毎のダウンスロープ時間
間隔と上記ダウンスロープ平均値との関係、を夫々調
べ、夫々の時間間隔が平均値に対して所定の誤差限界内
に収まっているかを調べる。例えば、この誤差限界とし
ては、平均値の20%としてよい。この誤差限界内に収
まっている各極値ペアを、保存すべきものとして、マー
クする。最初と最後の極値を除く各極値は、アップスロ
ープとダウンスロープに関して合計2回の検査を受ける
ことになる。どちらかの検査が合格であれば、その極値
を保存すべきことがマークされることになる。
【0139】以上の処理を経た結果として極値リストに
保存された極値がビブラートの最大値及び最小値として
推定できるものである。ルーピングのためにつなぎ波形
として使用するセグメントは、2つの最大値又は2つの
最小値の間の波形とする。そのために、少なくとも3つ
の極値がリストに保存されていなければならない。も
し、2以下の極値しか保存されていない場合は、処理エ
ラーとして、このステップ132の極値編集処理を再実
行するようにしてもよい。その場合は、各検査における
基準値を緩和して再実行するようにしてもよい。
【0140】サウンド合成に際しては、以上のように編
集処理済みの極値リストを利用して、発音時間を長くす
る制御を行なう。図24のステップ133,134,1
35に示された合成アルゴリズムにおいて、ステップ1
33,134では発音時間を長くするためのアルゴリズ
ム、ステップ135では発音時間を短くするためのアル
ゴリズムを行なう。まず、発音時間を長くするためのア
ルゴリズムについて説明する。
【0141】ステップ133では、極値リストを参照し
て、ルーピングのためにつなぎ波形として使用するセグ
メントに対応する波形データを波形メモリから取り出
す。このセグメントは、2つの最大値又は2つの最小値
の間の波形データである。記録したオリジナルサウンド
のどの部分からルーピング用セグメント波形を取り出す
べきかは、極値リストが用意されているが故に、全く任
意に選択できる。この所望のセグメント波形の選択は、
サウンド合成プログラム内に任意にプログラムしておく
ことによってもできるし、ユーザーがマニュアル操作に
よって任意に選択するようにもできる。例えば、発生し
ようとする音の性質によって、音の中間部分に対応する
波形をループさせるのが好ましい場合や、音の終わりの
方の部分の波形をループさせた方が好ましい場合があ
る。それに限らず、どの部分をループさせるかはユーザ
ーの好みもあるであろうし、サウンド合成プログラムを
作成するものの好みもあるであろう。一般的に言って、
繰返しは音を単調にするので、サウンドの余り重要でな
い(そのサウンドをそれほど特徴づけていない)部分の
セグメントをループ用のセグメントとして取り出すのが
よいであろう。勿論、それに限らず、サウンドを特徴づ
ける部分のセグメントをループ用のセグメントとして取
り出すようにしてもよい。なお、ルーピングのために取
り出されるセグメント波形データは、SMSデータの全
ての種類、つまり周波数トラジェクトリとマグニチュー
ドトラジェクトリ及びストカスティック波形データであ
る。
【0142】ステップ134では、上記のように取り出
したセグメント波形を、合成すべきサウンド波形に挿入
するための処理を行なう。例えば、オリジナルサウンド
波形におけるルーピングを開始するまでの望みの波形
(例えばアタック部の波形、又はアタック部とそれに続
く適当な部分の波形)のSMSデータをデータメモリ1
00から取り出し、これを新しい波形データファイルと
してデータメモリ100の別の記憶位置若しくはその他
の適宜のメモリに書き込む。そして、書き込まれた先行
波形データに続いて、上記のように取り出したセグメン
ト波形のSMSデータを所望回数だけ繰返して書き込
む。セグメント波形を挿入若しくは繰り返すときに、デ
ータのスムーズな接続が行なわれるように、適当なスム
ーズ化演算を施すものとする。このスムーズ化演算は、
例えば接続部分での補間演算であってもよいし、あるい
は、先行する波形の終わりのデータと後続する波形の先
頭のデータの値が一致するようにする演算であってもよ
い。SMSデータにおいてスムーズ化演算の対象とする
のは確定的成分のデータであり、ストカスティック成分
のデータはスムーズ化演算不要である。延長したい望み
の時間分だけ、セグメント波形を繰返し挿入した後は、
オリジナル波形の残りのSMSデータを最後の部分とし
て挿入し、メモリに書き込む。この場合も、上記スムー
ズ化演算を施して、先行するデータと後続するデータの
接続がスムーズになされるようにする。
【0143】上述したステップ134の挿入処理は、サ
ウンド発生に関して非実時間的に行なうようにしてい
る。すなわち、発音時間を望みの分だけ延長した波形を
作成し、この波形データを新しい波形データファイルと
してデータメモリ100の新たな記憶位置又はその他適
宜のメモリに書き込むようにしている。このようにした
場合、サウンドを再生発音するときに、メモリからの波
形データの順次読み出しを1回だけ行なうことで、延長
した発音時間を持つサウンドを合成できる。しかし、こ
れに限らず、シンセサイザー等におけるルーピング処理
として知られているような手法で、上述したステップ1
34の挿入処理と同様な処理を、サウンド発生時に実時
間的に行なうようにしてもよい。その場合は、セグメン
ト波形を繰り返して書き込む処理は不要であり、ルーピ
ングすべきセグメント波形を指示するデータをステップ
133の処理から受け取り、オリジナルサウンド波形を
記憶したデータベースの中からこのセグメント波形のデ
ータを繰返し読み出すようにすればよい。変形例として
は、発音時間延長のために追加的に繰り返されるセグメ
ント波形は、単一のセグメントに限らず、複数セグメン
トであってもよい。また、1セグメントがビブラートの
複数サイクルに対応していてもよい。
【0144】次に、発音時間を短くするためのアルゴリ
ズムについて説明する。発音時間を短くするためのアル
ゴリズムは、サウンドのいくつかのセグメントを取り除
くことを基にしているものである。そのためにステップ
135の短縮処理において実行されるアルゴリズムは、
周波数トラジェクトリにおける2つのローカル最大値の
ペアまたは2つのローカル最小値のペアの時間間隔を夫
々調べ、取り除きたい時間に適したペアを見つけ出すこ
とからなっている。そのために、周波数トラジェクトリ
におけるローカル最大値とローカル最小値のリストを作
成し、このリストを参照して、所望の取り除きたい時間
に適した極値ペアを見つけ出すようにしてよい。このリ
ストとしては、前述の7ポイント平均値ファイルに基づ
いて作成した極値リストを用いてよく、その場合、この
極値リストは、ステップ131による編集処理を施す前
のものであってもよいし、又は施した後のものであって
もよい。
【0145】具体的には、音の中央当たりから時間進行
方向に沿って極値リストのサーチを開始し、所望の取り
除きたい時間に適した2つのローカル最大値のペアまた
は2つのローカル最小値のペアを探し出す。こうして、
取り除きたい時間に最適の極値ペアを選択する。もし、
最大の時間間隔を持つ極値ペアの時間間隔が、所望の取
り除きたい時間よりも短い場合は、その最大の時間間隔
を持つ極値ペアを、取り除くべき極値ペアとして選択す
る。次に、図26に示すように、取り除くべきことが選
択された極値ペアの間にあるSMSデータのトラジェク
トリ部分Bを、オリジナルのSMSデータトラジェクト
リA,B,C…から削除する処理を行なう。すなわち、
取り除くべきことが選択された極値ペアのうちの最初の
極値よりも前にあるSMSデータトラジェクトリ部分A
をデータメモリ100から取り出して、これを新しい波
形データファイルとしてデータメモリ100の新たな記
憶位置又はその他適宜のメモリに書き込む。それから、
取り除くべきことが選択された極値ペアのうちの2番目
の極値よりも後にあるSMSデータトラジェクトリ部分
Cをデータメモリ100から取り出して、これを新しい
波形データファイルにおけるトラジェクトリ部分Aの次
に書き込む。SMSデータトラジェクトリ部分AとCの
接続に際しては、前述と同様のスムーズ化演算を行なう
ものとする。こうして、図27に示すように、トラジェ
クトリ部分Bを除いた新しいSMSデータファイルが作
成される。勿論、削除はSMSデータの全て(周波数、
マグニチュード、位相、ストカスティック成分)につい
て行なう。また、波形を短縮すべき時間はユーザーによ
って任意に選択可能にしてよい。
【0146】上述したステップ135の短縮処理は、サ
ウンド発生に関して非実時間的に行なうようにしてい
る。すなわち、発音時間を望みの分だけ短縮した波形を
作成し、この波形データを新しい波形データファイルと
してデータメモリ100の新たな記憶位置又はその他適
宜のメモリに書き込むようにしている。しかし、これに
限らず、上述したステップ135の短縮処理と同様な処
理を、サウンド発生時に実時間的に行なうようにしても
よい。その場合は、取り除くべきセグメントは予めサー
チしておき、発音時において、トラジェクトリ部分Aの
読み出しが終了した後、取り除くべきセグメントに対応
するトラジェクトリ部分Bの読み出しを行なわずに、ト
ラジェクトリ部分Cにジャンプして読み出しを行なうよ
うにすればよい。その場合も、トラジェクトリ部分Aの
終わりとトラジェクトリ部分Cの始まりのデータのつな
がりをスムーズにするための演算処理を行なうのがよ
い。
【0147】以上述べた例では、発音時間延長用又は短
縮用の波形セグメントのサーチは、周波数トラジェクト
リにおける極値(すなわちビブラート)を利用して行な
っているが、これに限らず、マグニチュードトラジェク
トリにおける極値を利用して行なうようにしてもよい。
また、発音時間延長用又は短縮用の波形セグメントを見
つけ出すための指標としては、極値に限らず、他のもの
を使用してもよい。この時間変更制御もまた、他の制御
と同様に、SMS技術に限らず、他の類似の部分音加算
合成技術においても適用可能である。
【0148】−ピッチ分析及び合成− オリジナルのSMSデータからそのピッチを分析するこ
とは、任意の可変ピッチでサウンド合成が行なえるよう
にするために、極めて重要である。すなわち、オリジナ
ルのSMSデータのピッチが判明していれば、所望の再
生ピッチを指定し、該所望再生ピッチとオリジナルピッ
チとの比に応じてオリジナルのSMSデータの各周波数
データを制御することにより、これらのSMS周波数デ
ータを該所望の再生ピッチに対応するものに変更するこ
とができる。こうして、変更されたSMSデータは、オ
リジナルSMSデータの特徴を持つサウンドをそっくり
再生できるものでありながら、そのピッチだけがオリジ
ナルとは異なる任意の希望のピッチを持つものとなる。
従って、このことを実現可能にするピッチ分析及び合成
アルゴリズムは、SMS技術を用いた音楽シンセサイザ
ーにとって極めて重要である。以下、ピッチ分析及び合
成アルゴリズムの具体例について説明する。ピッチ分析
アルゴリズムはSMSデータ処理器30(図2)で実行
され、ピッチ合成アルゴリズムは再生処理器50(図
4)で実行される。
【0149】ピッチ分析アルゴリズム:図28はピッチ
分析アルゴリズムの一例を示すものである。まず、オリ
ジナルSMSデータの周波数トラジェクトリから各フレ
ーム毎のピッチPf(ι)を下記式に従い求める(ステ
ップ140)。
【0150】
【数21】
【0151】ここで、ιは特定のフレームを示すフレー
ム番号、Npはピッチ分析に使用する部分音の数、nは
部分音の次数を示す変数であり、n=0,1,…,Np
である。an(ι)とfn(ι)は、フレームιにおける確定
的成分中のn番目の部分音の振幅マグニチュード及び周
波数である。式21は、低次のNp個の部分音の周波数
fnを、夫々の周波数順位の逆数1/(n+1)と振幅
マグニチュードanとで重みづけし、それらの加重平均
を算出するものである。この加重平均により、ピッチP
fを比較的精度良く検出することができる。例えば、Np
=6として、低次の6部分音につき上記加重平均を計算
すると、良い結果が得られる。しかし、これに限らず、
Np=3程度であってもよい。なお、単純には、最低周
波数の部分音の周波数f0(ι)をそのフレームのピッチ
Pf(ι)として検出するようにすることも可能である。
しかし、そのような単純な方法よりも、上記のように加
重平均によってピッチを検出するようにした方がより聴
覚に合っている。
【0152】図30は、上記の加重平均演算に従うフレ
ームピッチPf(ι)の検出状態を模式的に示す図であ
る。横軸周波数に示された数字1は、検出したフレーム
ピッチPf(ι)の周波数位置、2,3,4,…は、その
2倍、3倍、4倍、…の周波数位置であり、これらは正
確な整数倍関係にある。図に示された線スペクトルは、
オリジナル周波数データfn(ι)の線スペクトル例であ
る。オリジナルサウンドの線スペクトルfn(ι)は、必
ずしも正確な整数倍の周波数関係にはなっていない。図
では、加重平均によって求めたピッチの周波数位置は、
第1部分音の周波数f0(ι)とはいくぶん相違している
ことを示している。
【0153】次に、所定のフレーム範囲にわたる各フレ
ーム毎のピッチPf(ι)の平均を下記式によって計算
し、全体平均ピッチPaを得る(ステップ141)。L
は該所定のフレーム範囲におけるフレーム数である。こ
の所定のフレーム範囲としては、オリジナルサウンドの
ピッチが安定する適当な期間を選ぶのがよい。
【0154】
【数22】
【0155】次に、下記式のように、オリジナルSMS
データにおける各フレーム毎の周波数データfn(ι)
を、そのフレームのピッチPf(ι)に対する比で表わ
したデータf'n(ι)に変換する(ステップ142)。
【数23】f'n(ι)=fn(ι)/Pf(ι) ここで、n=0,1,2,…,N−1である。次に、下
記式のように、各フレーム毎のピッチPf(ι)を全体
平均ピッチPaに対する比で表わしたデータP'f(ι)
に変換する(ステップ143)。
【数24】P'f(ι)=Pf(ι)/Pa
【0156】上記数23,24の式によるデータ変換処
理によって、SMS周波数データの圧縮化を図ることが
できると共に、後段での変更制御にあたって処理しやす
いデータ表現に変換されることになる。こうして、オリ
ジナルSMSデータにおける絶対的な周波数データfn
(ι)が、相対的な周波数データ群つまり部分音ごとの
相対周波数トラジェクトリf'n(ι)及びフレームピッ
チトラジェクトリP'f(ι)と、1つの全体平均ピッチ
データPaとに変換される。これらの変換された周波数
データ群f'n(ι)、P'f(ι)、Paが、SMS周波
数データとして、データメモリ100に記憶される。
【0157】ピッチ合成アルゴリズム:図29はピッチ
合成アルゴリズムの一例を示すものであり、サウンド合
成のためにデータメモリ100から読み出した上記変更
されたSMS周波数データ群f'n(ι)、P'f(ι)、
Paを入力し、これに関して下記のような処理を行な
う。まず、ステップ150では、合成しようとするサウ
ンドのピッチを制御するためのユーザーの操作に応じた
処理を行なう。例えば、ユーザーの操作に応じてピッチ
制御パラメータCpを発生し、このピッチ制御パラメー
タCpによって全体平均ピッチデータPaを変更制御す
る(例えば乗算する)ことによって、再生サウンドの全
体ピッチを指定するデータPdを生成する。あるいは、
再生サウンドの全体ピッチを指定するデータPdを、ユ
ーザーの操作に応じて直接的に発生するようにしてもよ
い。周知のように、ユーザーの操作に応じたピッチ指定
ファクタ又はピッチ制御ファクタには、鍵盤等による音
階音指定やピッチベンド等の制御ファクタを含んでいて
よい。
【0158】次に、ステップ151では、上記のように
確定された所望ピッチPdを分析された全体平均ピッチ
Paに置換して、下記式のように相対フレームピッチ
P'f(ι)と演算することにより、上記式24の逆算を
行ない、該所望ピッチPdに対応して決定される各フレ
ーム毎の新たなピッチPf(ι)を求める。
【数25】Pf(ι)=P'f(ι)*Pd
【0159】次に、ステップ152では、上記のように
求められた新たなフレームピッチPf(ι)とそのフレ
ームに関する各部分音の相対周波数データf'n(ι)と
を下記式のように夫々演算することにより、上記式23
の逆算を行ない、該所望ピッチPdに対応して決定され
る各フレーム毎の各部分音の絶対周波数データfn
(ι)を求める。ここで、n=0,1,2,…,N−1
である。
【数26】fn(ι)=f'n(ι)*Pf(ι)
【0160】以上により、ユーザーの所望するピッチP
dに対応する絶対周波数で表わされた周波数トラジェク
トリfn(ι)が得られる。このピッチ修正された周波
数トラジェクトリfn(ι)を含むSMSデータに基づ
きSMSサウンド合成器110でサウンド合成を行なう
ことにより、所望のピッチ制御がなされたサウンドが得
られる。この再生サウンドにおける倍音構成は、その倍
音構成に何の制御も加えられない限り、例えば図30に
示したようなオリジナルサウンドの倍音構成f0(ι),
f1(ι),f2(ι),…を忠実に模倣する(自然音特有の
微妙な周波数ずれも模倣している)高品質のものであ
る。また、各データを相対値で表現しているため、倍音
構成等を変更するための加工操作も比較的容易に行なえ
るようになっている。
【0161】なお、所望ピッチPdに応じた確定的成分
の上記制御と同時に、SMSサウンド合成に使用するス
トカスティックエンベロープを所望ピッチPdに応じて
周波数方向に圧縮又は伸長する制御を行なってもよい。
このピッチ分析及び合成技術もまた、他の制御と同様
に、SMS技術に限らず、他の類似の部分音加算合成技
術においても適用可能である。
【0162】−位相分析及び合成− SMS技術において確定的成分の位相データは必須では
ないが、位相データを考慮したサウンド合成を行なえ
ば、サウンドの品質をより一層良くすることができる。
特に、音のサステイン状態において、適正な位相制御を
行なうことは、音の品質を上げるので、望ましい。ま
た、位相を考慮しなかったとすると、ピッチの変更や時
間伸長などの変換を位相を含んで行なうことが困難であ
る。そこで、ここでは、確定的成分の位相データの新し
い分析及び合成アルゴリズムを提案する。SMS分析さ
れたデータにおける位相トラジェクトリをφn(ι)で示
す。ιはフレーム番号、nは部分音の次数である。この
位相トラジェクトリφn(ι)における位相値φnは、各部
分音n毎の初期位相の絶対値である。新しい位相分析ア
ルゴリズムにおいては、下記式に示すように、この位相
値φnを第1部分音つまり基本成分に対する相対値θn
(ι)で表現する。この演算は、SMSデータ処理部30
で行なわれる。
【0163】
【数27】
【0164】すなわち、或る部分音の相対位相値θn
(ι) は、その絶対位相値φn(ι) を、第1部分音周波
数f0(ι)に対するその部分音周波数fn(ι)の比で割っ
たものから、第1部分音の絶対位相値φ0(ι) を引いた
ものである。すなわち、高次の部分音ほどその位相の重
要度が少なくなるため、それに応じた重み付けを行なっ
てから、第1部分音の位相に対する相対値で表現するよ
うにしている。こうして、位相トラジェクトリφn(ι)
は、より小さな値からなる相対位相トラジェクトリθn
(ι)に変換され、この状態でデータメモリ100に記憶
される。従って、データ圧縮がなされた状態で位相デー
タを記憶することができる。また、第1部分音の相対位
相θ0(ι)は常に0であるから、これは特に記憶してお
く必要がない。
【0165】上記相対位相トラジェクトリθn(ι) に基
づき絶対位相トラジェクトリφn(ι)を再合成する処理
は、下記式に従って行なう。この演算は再生処理部50
で行なわれる。
【0166】
【数28】
【0167】基本的には、上記数式28は、数式27の
逆算式である。ただし、φ'0(ι)は第1部分音の絶対位
相値に相当し、ユーザー操作又は適宜の再生プログラム
によって制御可能である。例えば、φ'0(ι)=φ0(ι)
とすれば、得られる位相トラジェクトリφ'n(ι)はオリ
ジナルの位相トラジェクトリφn(ι)と同じとなる。φ'
0(ι)=0とすれば、合成されるサウンドにおける基本
成分(第1部分音)の初期位相が0となる。
【0168】この位相トラジェクトリφ'n(ι)は、SM
Sサウンド合成器110において、SMSデータの確定
的成分をシヌソイド合成するときに、各部分音に対応す
るシヌソイド波形の初期位相を設定するために利用され
る。例えば、nの各値(n=0,1,2,…,N−1)
に対応するシヌソイド波形を、 an sin [2πfn(ι)t+φ'n(ι)] と表現し、これらを加算合計してサウンドを合成するよ
うにしてよい。
【0169】なお、正確な位相の再合成計算は、3次多
項式を各部分音の各サンプル毎に計算する必要がある。
しかし、そのような計算は、時間がかかり、面倒である
という問題がある。そこで、これを簡略化し、時間のか
からない方法で比較的正確な位相の再合成計算を行なえ
るようにした手法を次に提案する。それは、位相トラジ
ェクトリを使用して周波数トラジェクトリを修正する一
種の補間演算からなる。フレームの始まりの周波数をf
s,終わりの周波数をfeとし、フレームの始まりの位相
をφs,終わりの位相をφeとする。ここで、もし、単純
に、周波数を直線補間したならば、フレームの最後での
位相φiは、次のように表わせる。
【0170】
【数29】φi =[(fs+fe)/2]*Δt+φs ここで、Δtは合成フレームの時間サイズである。(f
s+fe)/2は、始まりの周波数fsと,終わりの周波
数feの単純平均であり、これにΔtを掛けたものは、
Δtにおける周期数を示し、位相に対応している。すな
わち、時間Δtからなる1フレームにおいて進行した総
位相量に対応している。従って、φiは単純補間による
終わりの位相を示す。次に、φeとφiの単純平均を次の
ように求め、これを目標位相φtとする。
【0171】
【数30】φt =(φe+φi)/2 この目標位相φtから、下記式のように目標周波数ftを
求める。
【数31】ft =2(φt−φs)/Δt−fs ここで、φt−φsは、目標位相φtを終わりの位相とし
たときの時間Δtからなる1フレームにおいて進行する
総位相量に対応しており、(φt−φs)/Δtは、その
フレームでの周波数に相当する。この周波数が、始まり
の周波数fsと目標周波数ftとの単純平均に相当するも
のとして、ftを求めた式が上記式31である。
【0172】以上の手法で各部分音ごとの位相データを
考慮して夫々の周波数データを補間演算し、こうして求
めた補間修正済み周波数データを使用してシヌソイド合
成を行なえば、望みの位相合成を比較的正確に行なうこ
とができる。この位相分析及び合成技術もまた、他の制
御と同様に、SMS技術に限らず、他の類似の部分音加
算合成技術においても適用可能である。
【0173】−周波数及びマグニチュードのデトレンド
処理− デトレンド処理の概略は図3のステップ32に関連して
前述した通りである。ここでは、この処理についてその
一例につき更に詳しく説明する。ここで述べる例では、
周波数トラジェクトリについては各フレーム毎の基本周
波数(これは第1部分音の周波数f0(ι)若しくは前述
のようなピッチ分析によって分析したフレームピッチP
f(ι)のどちらでもよい)を対象にし、マグニチュード
トラジェクトリについては各フレーム毎の平均マグニチ
ュード(そのフレームについての確定的全部分音のマグ
ニチュードの平均値)を対象にし、ストカスティックト
ラジェクトリについては各フレーム毎のストカスティッ
クゲイン(残差スペクトルエンベロープの全体レベルを
示すゲインデータ)を対象にして、夫々処理を行なう。
これらの処理対象を以下では要素と呼ぶ。
【0174】まず、サウンドの安定状態に関して、下記
式によって、各要素についての時間的変化傾向を示すス
ロープbを夫々計算し、各要素についてその変化傾向を
見つけ出す。
【数32】b=(ye−y0)/(xe−x0) ここで、yはこの式によってその時間的変化傾向を分析
しようとする要素の値を示し、y0は安定状態の始まり
での要素の値、yeは安定状態の終わりでの要素の値で
ある。xはフレーム番号(つまり時間)を示し、x0は
安定状態の始まりのフレーム番号、xeは安定状態の終
わりのフレーム番号である。明らかなように、スロープ
bは、変化傾向を示す1次関数の傾き係数に相当する。
【0175】次に、上記スロープbから、安定状態にお
ける各フレームx0,x1,x2,…xeに対応してフレー
ム単位のデトレンド値diを下記式により計算する。
【数33】di =(xi−x0)*b ここで、xiは現在フレーム番号であり、i=0,1,
2,…,eについての変数である。
【0176】こうして求めたフレーム単位のデトレンド
値diを各要素に対応するSMSデータから引算するこ
とにより、デトレンド処理を施す。つまり、スロープb
による癖を取り除いた平坦化されたSMSデータが得ら
れる(ただし、ビブラートやトレモロあるいはその他の
微変動は残されている)。周波数要素についてのデトレ
ンド値diの引算は、次のように行なう。このデトレン
ド値diは基本周波数を基準にしているものであるか
ら、そのフレームにおける各部分音の番号n(または正
確には第1部分音周波数すなわち基本周波数に対する各
部分音周波数の比でもよい)をデトレンド値diに掛け
たものn*di(ここでn=1,2,…N)を夫々求
め、これを対応する部分音周波数から引算する。マグニ
チュード要素についてのデトレンド値diの引算は、そ
のフレームにおける各部分音のマグニチュード値からそ
の値diを夫々引算する。ストカスティックゲインにつ
いてのデトレンド値diの引算は、そのフレームにおけ
るストカスティックゲインの値からその値diを引算す
る。
【0177】デトレンド処理済みのSMSデータは、そ
のままデータメモリ100に記憶し、サウンド合成のた
めにこれが読み出されるようになっていてよい。通常
は、デトレンドしたSMSデータからサウンドを合成す
る際に、オリジナルのトレンドを再合成して付与する必
要はない。すなわち、デトレンドしたままでサウンドを
合成してよい。しかし、オリジナルのトレンドをそっく
り具備するサウンドを合成したい場合は、トレンド再合
成を適宜行なってよい。あるいは、デトレンド処理済み
のSMSデータを前述したフォルマント分析やビブラー
ト分析等の各種分析処理の対象として使用するようにし
てもよい。
【0178】このデトレンド処理は、SMS分析及び合
成にとって必須ではなく、適宜省略できる。しかし、発
音時間延長のためにルーピング処理を行なうような場
合、SMSデータにデトレンド処理を施しておくことは
不自然さのないルーピング(セグメント波形の繰返し)
を実現するので、有効である。すなわち、ルーピング用
のセグメント波形のSMSデータを作成する目的での
み、補助的にこのデトレンド処理を行なうようにしても
よい。このデトレンド処理技術もまた、SMS技術に限
らず、他のサウンド合成技術においても適用可能であ
る。
【0179】−シンギング・シンセサイザのための改良
− この実施例で説明しているシンセサイザは、既に述べ
た、フォルマントの分析及び合成(制御を含む)技術
や、ビブラートの分析及び合成(制御を含む)技術、あ
るいはノートの転移の際にデータ再生/合成ステップに
おいて行なう各種データの補間技術など、その他色々な
点で、人声音やボーカルフレーズの合成に適しているも
のである。以下では、シンギング・シンセサイザとして
の応用のために工夫した更なる改良点について説明す
る。以下で述べる改良点は、SMS分析器20(図2)
にて行なうSMS分析処理に関するものである。
【0180】ピッチに同期した分析:SMS技術を使用
したシンギング・シンセサイザの特徴の1つは、外部か
らオリジナルサウンドとして実際のシンギングボイス
(人の歌声)を入力し、これをSMS分析することによ
り、SMSデータを作成し、このSMSデータを自由に
加工してからSMS合成を行なうことにより、制御性に
富んだ自由なシンギングボイスの合成が行なえることで
ある。ここでは、オリジナルサウンドとして実際のシン
ギングボイスを入力した場合に有効な、SMS分析の改
良を提案する。
【0181】シンギングボイスの特徴の1つは、そのピ
ッチがすばやくかつ連続的に変化することである。その
ような場合に分析の精度を上げるために、SMS分析の
時間フレームサイズを入力オリジナルサウンドの現在ピ
ッチに従って変化させるようにするとよい。なお、フレ
ームレートは変化させないものとする。フレームサイズ
を変化させることは、1回のSMS分析のために取り込
む信号の時間長を変えることを意味する。そのために、
次のようなステップでSMS分析の或る部分の処理を行
なう。この或る部分の処理とは、例えばストカスティッ
ク分析のための処理である。
【0182】第1ステップ:過去のフレームの分析結果
から入力オリジナルサウンドの基本周波数を得る。 第2ステップ:最後のフレームの基本周波数に応じて現
在のフレームサイズを設定する(例えば、周期の4倍の
時間とする)。 第3ステップ:時間領域の引算によって残差信号を得
る。 第4ステップ:時間領域の残差信号からストカスティッ
ク分析を行なう。
【0183】まず、第1ステップであるが、これはSM
S分析においては容易に求まる。例えば、これは第1部
分音の周波数f0(ι)若しくは前述のようなピッチ分析
によって分析したフレームピッチPf(ι)のどちらを基
本周波数として用いてもよい。第2ステップのためは、
各フレーム毎に異なるフレームサイズを設定することが
できるようにフレキシブルな分析バッファを用意する。
こうして用意した各フレームサイズを使用して第3及び
第4ステップのストカスティック分析を行なう。第3ス
テップでは、確定的成分の信号を再生し、これをオリジ
ナル信号から引算して残差信号を得る。第4ステップで
は、この残差信号からストカスティック成分のデータを
求める。このようなストカスティック分析は、ストカス
ティック分析用のフレームサイズを、確定的成分分析用
のフレームサイズとは異ならせることができるのでよ
い。例えば、ストカスティック分析用のフレームサイズ
を、確定的成分分析用のフレームサイズよりも小さくす
ると、ストカスティック分析結果の時間分解能が良くな
り、するどい立上りにおける時間分解能がより良くな
る。
【0184】プリエンファシス処理:SMS分析の精度
を上げるために、SMS分析を行なう前に、入力音声信
号に対してプリエンファシス処理を施すとよい。それか
ら、SMS分析の最後に、プリエンファシスに対応した
デエンファシス処理を施す。このようなプリエンファシ
ス処理は、より高い周波数の部分音まで分析できるよう
にするので、好ましい。
【0185】残差信号に対するハイパスフィルタ処理:
通常、シンギングボイスのストカスティック成分は高周
波数である。200Hz以下のストカスティック信号は
極めて少ない。従って、SMS分析において、SMS分
析された確定的成分信号をオリジナルサウンド信号から
引算することによって求めた残差信号に基づきストカス
ティック分析を行なう前に、この残差信号に対してハイ
パスフィルタ処理を施すのがよい。それとは別に、オリ
ジナルサウンド信号からの確定的成分信号の引算は、音
声によくみられる早いピッチ変化のために低周波数にお
いていくつかの問題を持っている。そのためにハイパス
フィルタを使用するとよい。例えばハイパスのカットオ
フ周波数を800Hz程度に設定するとよい。このフィ
ルタリングが実際のストカスティック信号を差し引かな
いようにするための妥協策は、分析しようとするサウン
ドの部分に従属してそのカットオフ周波数を変化させる
ことである。例えば、多くの確定的成分を持つが、スト
カスティック成分は僅かしか持たないサウンドの部分に
おいては、カットオフ周波数をより高くすることができ
る。その逆に、多くのストカスティック成分を持つサウ
ンドの部分においては、カットオフ周波数をより低くし
なければならない。
【0186】−ボーカルフレーズ合成の具体例− 以上に述べたこの発明のシンセサイザを使用してボーカ
ルフレーズを合成するためには、まず、複数の音素(ph
oneme) 及び重なり音(diphone)のデータベースを作成
する。そのため、各音素及び重なり音のサウンドを入力
してSMS分析を夫々行ない、それらのSMSデータを
作成し、データメモリ100に夫々記憶することにより
それらのデータベースを作成する。こうして、作成され
たデータベースから、ユーザーの制御に基づき、所望の
ボーカルフレーズを構成するに必要な複数の音素及び/
又は重なり音のSMSデータを読み出し、これらを時系
列的に組合せて該ボーカルフレーズに対応するSMSデ
ータを作成する。作成された所望のボーカルフレーズに
対応するSMSデータの組合せは、メモリに記憶してお
き、望みのときにこれを読み出すことによりボーカルフ
レーズのサウンド合成を行なうようにしてよい。あるい
は、作成された所望のボーカルフレーズに対応するSM
Sデータの組合せに対応するサウンドを実時間的にSM
S合成することにより、該ボーカルフレーズのサウンド
合成を行なうようにしてもよい。
【0187】入力サウンドの分析にあたっては、例え
ば、入力サウンドが、単一の音素又は重なり音であると
みなしてSMS分析を行なうようにしてよい。単一の音
素又は重なり音における周波数成分は、そのサウンドの
安定状態においては、あまり変化しないので、分析がし
やすい。従って、例えば、望みの或る音素を分析しよう
とする場合、サウンドの安定状態においてその音素の特
徴が現われるサウンドを入力してやればよい。このよう
な音素又は重なり音の分析つまり人声音の分析のため
に、従来知られたSMS分析を行なうのみならず、この
明細書で説明した様々な改良(フォルマント分析やビブ
ラート分析など、その他)を併せて行なうことは、人声
音の分析及びその自由な可変的合成にとって、きわめて
有益である。
【0188】−SMSデータの対数表現− SMSデータにおける周波数データは、従来はHzまた
はラジアンに対応するリニア表現からなるものであっ
た。しかし、これに限らず、この周波数データを対数表
現で表わしてもよい。そうすると、前述した様々な演
算、例えばピッチ変更のための演算など、における周波
数データの乗算を、簡単な加算によって置き換えること
ができる。
【0189】−ストカスティックエンベロープのスムー
ズ化− 与えられたサウンドのストカスティック表現データを計
算するための方法の1つは、残差スペクトルエンベロー
プについてのラインセグメント近似によるものである。
ストカスティックデータの周波数エンベロープを一旦計
算したら、このエンベロープをローパスフィルタで処理
してスムーズにするのが良い。この処理によって、合成
されるノイズ信号はスムーズなものとなる。
【0190】−デジタルウェーブガイド技術への応用− デジタルウェーブガイド理論に従って音を合成する技術
が知られている(例えば米国特許第4,984,276号)。こ
れを極めてシンプルに示すと図31のようであり、閉鎖
されたウェーブガイドネットワーク160に、励振関数
発生器161から発生した励振関数信号を入力し、ウェ
ーブガイドネットワーク160において設定されている
パラメータに従って信号処理を行なうことにより、該パ
ラメータによって設定した所望音色の出力サウンドを得
るものである。このようなデジタルウェーブガイド理論
に従う楽音合成技術にSMS技術を応用することを考え
ると、励振関数発生器161をSMSサウンド合成シス
テムによって構成し、SMS合成したサウンド信号をウ
ェーブガイドネットワーク160に対する励振関数信号
として使用する方法が考えられる。
【0191】更に具体的に考察すると、一例として、図
32のような処理手順で、ウェーブガイドネットワーク
160に対する励振関数信号をSMS合成する方法が考
えられる。まず、ウェーブガイドネットワーク160か
ら出力したい望みのサウンドに対応するオリジナルサウ
ンドの信号を、ウェーブガイドネットワーク160で設
定するフィルタ特性とは反対の特性に設定した逆フィル
タ回路で処理する(ステップ162)。この出力が望み
の励振関数信号に対応する。次に、この望みの励振関数
信号をSMS分析器で分析し(ステップ163)、これ
に対応するSMSデータを得る。このSMSデータをデ
ータメモリに適宜記憶しておく。それから、このSMS
データをデータメモリから読み出し、ユーザーの制御に
応じて適宜変更を施し(ステップ164)、SMS合成
器でサウンド合成する(ステップ165)。こうして合
成されたサウンド信号を励振関数信号としてウェーブガ
イドネットワーク160に入力する。
【0192】このような方法の利点は、ウェーブガイド
ネットワーク160のパラメータを変えずに、SMS合
成による励振関数信号を変えることにより、望みのサウ
ンドを合成できる点であり、ウェーブガイドネットワー
クのパラメータ解析を簡単化することができる。すなわ
ち、サウンドを合成する際の所望の可変制御は、SMS
データの変更制御によってかなり実現できることにな
り、その分、ウェーブガイドネットワーク側での可変制
御のためのパラメータ解析を簡単化することができる、
ということが期待できる点である。
【0193】以上の実施例に基づき抽出されるこの出願
の発明若しくは実施態様のいくつかを要約して列挙する
と次のようである。 1.オリジナルサウンドを分析することにより、該オリ
ジナルサウンド波形を構成する複数の成分を示す分析デ
ータを提供する第1のステップと、前記分析データから
所定のサウンド要素に関する特徴を分析して、分析した
該特徴を示すデータを、前記オリジナルサウンドにおけ
る前記要素についての固有の特性を示すサウンドパラメ
ータとして抽出する第2のステップと、抽出されたサウ
ンドパラメータに対応する特徴を前記分析データから取
り除く第3のステップと、前記特徴が取り除かれた分析
データに対して、サウンドパラメータに対応する特徴を
付加する第4のステップと、この特徴が付加された分析
データに基づき、サウンド波形を合成する第5のステッ
プとを備えたサウンドを分析し合成するための方法。 2.前記第4のステップは、前記サウンドパラメータを
変更するためのステップを含み、変更されたサウンドパ
ラメータに対応する特徴を前記分析データに付加するこ
とを特徴とする前記1項の方法。 3.前記特徴が取り除かれた分析データと、前記サウン
ドパラメータとをメモリに記憶するステップを更に具え
ることを特徴とする前記1項の方法。 4.前記サウンドパラメータは、前記分析データとは異
なるデータ表現で表現されたものであることを特徴とす
る前記1項の方法。 5.前記第4のステップは、前記サウンドパラメータか
ら前記分析データのデータ表現に対応するデータ表現か
らなる付加データを再生するステップを含み、この付加
データを前記分析データに付加することを特徴とする前
記1項の方法。
【0194】6.前記第4のステップの前に、少なくと
も2つの異なるサウンド又はサウンド部分に関する前記
分析データを補間すると共に、該異なるサウンド又はサ
ウンド部分に関する前記サウンドパラメータを補間する
ステップを更に含み、前記第4のステップでは、補間さ
れた前記分析データに対して、補間された前記サウンド
パラメータに対応する特徴を付加することを特徴とする
前記1項の方法。 7.前記分析データは、オリジナルサウンド波形を構成
する部分音の周波数及びマグニチュードを示すデータを
含むことを特徴とする前記1項の方法。 8.前記分析データは、オリジナルサウンド波形を構成
する部分音の周波数及びマグニチュードを示す確定的成
分のデータと、前記オリジナルサウンド波形の前記確定
的成分に対する残差成分に対応するストカスティックデ
ータとを含むことを特徴とする前記1項の方法。 9.前記第1のステップでは、前記オリジナルサウンド
を異なる時間フレームで分析することによって得られる
各時間フレーム毎の分析データを提供し、前記第2のス
テップでは、各時間フレーム毎の分析データに基づき、
各時間フレーム毎に前記サウンドパラメータを抽出する
ことを特徴とする前記1項の方法。 10.前記第1のステップでは、前記オリジナルサウン
ドを異なる時間フレームで分析することによって得られ
る各時間フレーム毎の分析データを提供し、前記第2の
ステップでは、各時間フレーム毎の分析データに基づ
き、複数の時間フレームに共通の前記サウンドパラメー
タを抽出することを特徴とする前記1項の方法。 11.前記サウンドパラメータに対応する特徴は周波数
成分に関するものであり、前記第3のステップにおける
分析データからの該特徴の取り除きは、分析データにお
ける周波数データを変更することからなることを特徴と
する前記1項の方法。 12.前記サウンドパラメータに対応する特徴はマグニ
チュード成分に関するものであり、前記第3のステップ
における分析データからの該特徴の取り除きは、分析デ
ータにおけるマグニチュードデータを変更することから
なることを特徴とする前記1項の方法。
【0195】13.オリジナルサウンドを分析すること
により、該オリジナルサウンド波形を構成する複数の成
分を示す分析データを提供する第1のステップと、前記
分析データから所定のサウンド要素に関する特徴を分析
して、分析した該特徴を示すデータを、前記オリジナル
サウンドにおける前記要素についての固有の特性を示す
サウンドパラメータとして抽出する第2のステップと、
抽出されたサウンドパラメータに対応する特徴を前記分
析データから取り除く第3のステップとを備え、前記特
徴が取り除かれた分析データと、前記サウンドパラメー
タとの組合せによって前記オリジナルサウンド波形を表
現することを特徴とするサウンドを分析するための方
法。 14.前記特徴が取り除かれた分析データと、前記サウ
ンドパラメータとをメモリに記憶するステップを更に具
えることを特徴とする前記13項の方法。 15.前記分析データは、オリジナルサウンド波形を構
成する部分音の周波数及びマグニチュードを示す確定的
成分のデータと、前記オリジナルサウンド波形の前記確
定的成分に対する残差成分に対応するストカスティック
データとを含むことを特徴とする前記13項の方法。
【0196】16.オリジナルサウンドを分析すること
により、該オリジナルサウンド波形を構成する複数の成
分を示す分析データを提供する第1のステップと、前記
分析データから所定のサウンド要素に関する特徴を分析
して、分析した該特徴を示すデータを、前記オリジナル
サウンドにおける前記要素についての固有の特性を示す
サウンドパラメータとして抽出する第2のステップと、
前記サウンドパラメータを変更するための第3のステッ
プと、前記分析データに対して、前記サウンドパラメー
タに対応する特徴を付加する第4のステップと、この特
徴が付加された分析データに基づき、サウンド波形を合
成する第5のステップとを備えたサウンドを分析し合成
するための方法。 17.前記分析データは、オリジナルサウンド波形を構
成する部分音の周波数及びマグニチュードを示す確定的
成分のデータと、前記オリジナルサウンド波形の前記確
定的成分に対する残差成分に対応するストカスティック
データとを含むことを特徴とする前記16項の方法。
【0197】18.オリジナルサウンドの分析に基づき
該オリジナルサウンド波形を構成する複数の成分を示す
分析データを提供する分析手段と、前記分析データから
所定のサウンド要素に関する特徴を分析して、分析した
該特徴を示すデータをサウンドパラメータとして抽出す
ると共に、抽出されたサウンドパラメータに対応する特
徴を前記分析データから取り除くデータ処理手段と、前
記特徴が取り除かれた分析データと前記サウンドパラメ
ータとを記憶する記憶手段と、前記分析データとサウン
ドパラメータを前記記憶手段から読み出し、読み出した
分析データに対して該サウンドパラメータに対応する特
徴を付加するデータ再生手段と、データ再生手段で再生
された分析データに基づき、サウンド波形を合成するサ
ウンド合成手段とを備えたサウンド波形合成装置。 19.前記サウンドパラメータを変更するための変更手
段を更に具え、前記データ再生手段では変更されたサウ
ンドパラメータに対応する特徴を前記分析データに対し
て付加し、これにより、合成するサウンドを制御するこ
とができることを特徴とする前記18項のサウンド波形
合成装置。 20.前記変更手段は、ユーザーの操作に応じて前記サ
ウンドパラメータを変更できるものであることを特徴と
する前記19項のサウンド波形合成装置。 21.前記データ再生手段は、少なくとも2つの異なる
サウンド又はサウンド部分に関する前記分析データを補
間すると共に、該異なるサウンド又はサウンド部分に関
する前記サウンドパラメータを補間する補間手段を含
み、補間された分析データに対して補間されたサウンド
パラメータに対応する特徴を付加することを特徴とする
前記18項のサウンド波形合成装置。 22.前記分析データは、オリジナルサウンド波形を構
成する部分音の周波数及びマグニチュードを示す確定的
成分のデータと、前記オリジナルサウンドの前記確定的
成分に対する残差成分に対応するストカスティックデー
タとを含むことを特徴とする前記18項のサウンド波形
合成装置。
【0198】23.部分音を示すデータを含む波形分析
データと、オリジナルサウンドから抽出された所定のサ
ウンド要素に関する特徴を示すサウンドパラメータとを
記憶している記憶手段と、前記波形分析データとサウン
ドパラメータを前記記憶手段から読み出す読出し手段
と、読み出されたサウンドパラメータを変更するための
制御を行なう制御手段と、前記読み出した波形分析デー
タを、前記制御されたサウンドパラメータによって変更
するデータ変更手段と、データ変更手段で変更された波
形分析データに基づき、サウンド波形を合成するサウン
ド合成手段とを備えたサウンド波形合成装置。 24.前記記憶手段に記憶される前記波形分析データ
は、更にスペクトルエンベロープデータを含んでおり、
前記サウンド合成手段は、前記波形分析データに含まれ
る前記部分音を示すデータに基づき各部分音の波形を発
生する確定的波形発生手段と、前記波形分析データに含
まれるスペクトルエンベロープデータに基づいて定まる
スペクトルマグニチュードを持つストカスティックなス
ペクトル構成からなるストカスティック波形を発生する
ストカスティック波形発生手段と、前記各部分音の波形
とストカスティック波形とを組み合わせることによりサ
ウンド波形を合成する手段とを具えることを特徴とする
前記23項のサウンド波形合成装置。
【0199】25.オリジナルサウンドをスペクトル分
析したデータを提供する第1の手段と、前記スペクトル
分析されたデータからフォルマント構造を検出し、検出
したフォルマントを記述するパラメータを生成する第2
の手段と、前記スペクトル分析されたデータから前記検
出されたフォルマント構造を差引き、残余のスペクトル
データを生成する第3の手段とを備え、前記残余のスペ
クトルデータと前記パラメータとの組合せによって前記
オリジナルサウンド波形を表現することを特徴とするサ
ウンド波形合成装置。 26.前記フォルマントを制御するために前記パラメー
タを可変制御する第4の手段と、前記パラメータに基づ
きフォルマント構造を再生し、再生されたフォルマント
構造を前記残余のスペクトルデータに付加し、制御され
たフォルマント構造を有するスペクトルデータを作成す
る第5の手段とを更に備えたことを特徴とする前記25
項のサウンド波形合成装置 27.前記第5の手段で作成されたスペクトルデータに
基づきサウンド波形を合成するサウンド合成手段を更に
備えたことを特徴とする前記26項のサウンド波形合成
装置。
【0200】28.前記第1の手段は、前記オリジナル
サウンドを異なる時間フレームで分析することによって
得られた各時間フレーム毎のスペクトル分析データを提
供するものであり、前記第2の手段は、各時間フレーム
毎のスペクトル分析データに基づき、各時間フレーム毎
にフォルマント構造をそれぞれ検出し、検出したフォル
マントを記述するパラメータを生成するものであり、前
記第3の手段は、各時間フレーム毎のスペクトル分析デ
ータから前記各時間フレーム毎に検出されたフォルマン
ト構造を差引き、残余のスペクトルデータを各時間フレ
ーム毎に生成することを特徴とする前記25項のサウン
ド波形合成装置。 29.前記第2の手段は、前記スペクトル分析データに
おける各線スペクトルのマグニチュードに基づき、2つ
のローカル最小値とそれによって囲まれた1つのローカ
ル最大値とからフォルマントと推定される1又は複数の
山を検出する手段と、検出した各山毎に所定の関数近似
によりフォルマントエンベロープを近似し、この近似に
より少なくともフォルマント中心周波数とそのピークレ
ベルを記述するデータを含むフォルマントパラメータを
求める手段とを有することを特徴とする前記25項のサ
ウンド波形合成装置。 30.前記フォルマントエンベロープの近似は、指数関
数近似によって行なうことを特徴とする前記29項のサ
ウンド波形合成装置。 31.前記フォルマントエンベロープの近似は、二等辺
三角形関数近似によって行なうことを特徴とする前記2
9項のサウンド波形合成装置。
【0201】32.オリジナルサウンドの分析によって
得た複数のサウンド部分を示す部分音データのセットを
提供するものであり、各部分音データは周波数データを
含み、前記部分音データのセットを時間関数で提供する
第1の手段と、前記部分音データにおける周波数データ
の時間関数からオリジナルサウンドにおけるビブラート
を検出し、検出したビブラートを記述するパラメータを
生成する第2の手段と、前記部分音データにおける周波
数データの時間関数から前記検出されたビブラートの特
徴を取り除き、修正された周波数データの時間関数を生
成する第3の手段とを備え、前記修正された周波数デー
タの時間関数を含む前記部分音データと前記パラメータ
との組合せによって時間的に変化する前記オリジナルサ
ウンド波形を表現することを特徴とするサウンド波形合
成装置。 33.ビブラートを制御するために前記パラメータを可
変制御する第4の手段と、前記パラメータに基づきビブ
ラート関数を発生し、発生されたビブラート関数によっ
て前記修正された周波数データの時間関数にビブラート
を付与する第5の手段と、ビブラート付与された周波数
データの時間関数を含む前記部分音データに基づきサウ
ンド波形を合成するサウンド合成手段とを更に備えたこ
とを特徴とする前記32項のサウンド波形合成装置。 34.前記第2の手段は、前記周波数データの時間関数
をスペクトル解析することにより、ビブラートを検出す
るものであり、前記第3の手段は、解析された前記周波
数データの時間関数のスペクトルデータから、検出され
たビブラートの成分を除去し、その結果たる時間関数の
スペクトルデータを逆フーリエ変換することにより、修
正された周波数データの時間関数を生成することを特徴
とする前記32項のサウンド波形合成装置。 35.前記第2の手段は、所定の1又は複数の低次の部
分音の周波数データの時間関数について前記スペクトル
解析を行なうことにより、ビブラートを検出することを
特徴とする前記34項のサウンド波形合成装置。
【0202】36.オリジナルサウンドの分析によって
得た複数のサウンド部分を示す部分音データのセットを
提供するものであり、各部分音データはマグニチュード
データを含み、前記部分音データのセットを時間関数で
提供する第1の手段と、前記部分音データにおけるマグ
ニチュードデータの時間関数からオリジナルサウンドに
おけるトレモロを検出し、検出したトレモロを記述する
パラメータを生成する第2の手段と、前記部分音データ
におけるマグニチュードデータの時間関数から前記検出
されたトレモロの特徴を取り除き、修正されたマグニチ
ュードデータの時間関数を生成する第3の手段とを備
え、前記修正されたマグニチュードデータの時間関数を
含む前記部分音データと前記パラメータとの組合せによ
って時間的に変化する前記オリジナルサウンド波形を表
現することを特徴とするサウンド波形合成装置。 37.トレモロを制御するために前記パラメータを可変
制御する第4の手段と、前記パラメータに基づきトレモ
ロ関数を発生し、発生されたトレモロ関数によって前記
修正されたマグニチュードデータの時間関数にトレモロ
を付与する第5の手段と、トレモロ付与されたマグニチ
ュードデータの時間関数を含む前記部分音データに基づ
きサウンド波形を合成するサウンド合成手段とを更に備
えたことを特徴とする前記36項のサウンド波形合成装
置。
【0203】38.オリジナルサウンドのスペクトル構
造を示すスペクトルデータを提供する第1の手段と、前
記スペクトルデータに基づき、そのスペクトルエンベロ
ープに概ね適合しているただ1本のチルトラインを検出
し、検出したチルトラインを記述するチルトパラメータ
を生成する第2の手段と、スペクトルの傾きを制御する
ために、前記チルトパラメータを可変制御する第3の手
段と、制御されたチルトパラメータに基づき前記スペク
トルデータのスペクトル構造を制御する第4の手段と、
制御されたスペクトルデータに基づきサウンド波形を合
成するサウンド合成手段とを備えたサウンド波形合成装
置。 39.前記第1の手段は、前記オリジナルサウンドを異
なる時間フレームで分析することによって得られた各時
間フレーム毎のスペクトルデータを提供するものであ
り、前記第2の手段は、各時間フレーム毎のスペクトル
データに基づき、各時間フレーム毎のチルトラインを検
出し、これらのチルトラインを示すデータに基づきこれ
らの相関を示すただ1つの前記チルトパラメータを生成
するものであり、更に、前記各時間フレーム毎のスペク
トルデータを、前記チルトパラメータを使用して正規化
する第5の手段を具備し、かつ、前記第4の手段は、制
御されたチルトパラメータに基づき前記正規化されたス
ペクトルデータの正規化を解除することを特徴とする前
記38項のサウンド波形合成装置。
【0204】40.オリジナルサウンドを構成する部分
音のスペクトルデータを複数の時間フレームに対応して
提供する第1の手段と、一連の時間フレームにおける前
記部分音スペクトルデータにおける周波数データに基づ
き前記オリジナルサウンドの平均ピッチを検出し、ピッ
チデータを生成する第2の手段と、前記ピッチデータを
可変制御するための第3の手段と、制御されたピッチデ
ータに応じて前記部分音スペクトルデータにおける周波
数データを修正する第4の手段と、前記修正された周波
数データを含む前記部分音スペクトルデータに基づき、
可変制御されたピッチを持つサウンド波形を合成するサ
ウンド合成手段とを備えたサウンド波形合成装置。 41.前記第1の手段は、更に、前記部分音スペクトル
データに対応する確定的成分波形を前記オリジナルサウ
ンドから引いた残りである残差成分波形に対応するスト
カスティックデータを提供するものであり,前記第4の
手段は、更に、制御されたピッチデータに応じて前記ス
トカスティックデータの周波数特性を制御することを特
徴とする前記40項のサウンド波形合成装置。 42.前記部分音スペクトルデータにおける周波数デー
タを前記検出した平均ピッチを基にした相対値に変換す
る手段を更に備え、前記第4の手段は、制御されたピッ
チデータに応じて前記相対値を絶対値に変換し、前記修
正された周波数データを得ることを特徴とする前記40
項のサウンド波形合成装置。 43.前記第2の手段は、各時間フレーム毎に、所定の
複数の低次の部分音の周波数をそのマグニチュードに応
じて重みづけして平均化することによりフレームピッチ
をそれぞれ求め、各フレームピッチを平均化することに
より平均ピッチを検出することを特徴とする前記40項
のサウンド波形合成装置。
【0205】44.オリジナルサウンドを構成する部分
音のスペクトルデータと、前記部分音スペクトルデータ
に対応する確定的成分波形を前記オリジナルサウンドか
ら引いた残りである残差成分波形に対応するストカステ
ィックデータと、前記オリジナルサウンドの特定された
ピッチを示すピッチデータとを記憶するものであり、前
記部分音スペクトルデータにおける各周波数データを、
前記ピッチデータが示す特定の周波数を基にした相対値
で表わしたデータで記憶している記憶手段と、前記記憶
手段に記憶したデータを読み出すための手段と、前記記
憶手段から読み出された前記ピッチデータを可変制御す
るための制御手段と、前記記憶手段から読み出された前
記部分音スペクトルデータにおける周波数データの相対
値を、前記制御されたピッチデータに応じて絶対値に変
換する演算手段と、変換された周波数データと前記記憶
手段から読み出された前記部分音スペクトルデータにお
けるマグニチュードデータとに基づき部分音波形を合成
し、かつ、前記記憶手段から読み出された前記ストカス
ティックデータに基づき前記残差成分波形を合成し、前
記部分音波形と前記残差成分波形を組み合わせたサウン
ド波形を合成するサウンド合成手段とを備えたサウンド
波形合成装置。 45.前記記憶手段に記憶する前記部分音スペクトルデ
ータには位相データが含まれており、この位相データ
は、各部分音の位相を基本の部分音の位相を基準にした
相対値で表わされており、更に、前記記憶手段から読み
出された前記部分音スペクトルデータにおける位相デー
タの相対値を絶対値に変換する手段を具備し、前記サウ
ンド合成手段では、変換された位相データと前記周波数
データ及びマグニチュードデータとに基づき前記部分音
波形を合成することを特徴とする前記44項のサウンド
波形合成装置。
【0206】46.ウェーブガイドをモデルした閉鎖ネ
ットワークであって、振動関数信号を該閉鎖ネットワー
ク内に導入し、前記ウェーブガイドにおける信号の遅延
と散乱をシミュレートするパラメータによって決定され
る処理を該信号に対して施すことにより、サウンド信号
を合成する閉鎖型ウェーブガイドネットワーク手段と、
前記振動関数信号を発生するための振動関数発生手段と
を具備し、前記振動関数発生手段は、オリジナル信号波
形を構成する部分音のスペクトルデータと、前記部分音
スペクトルデータに対応する確定的成分波形を前記オリ
ジナル信号波形から引いた残りである残差成分波形に対
応するストカスティックデータとを記憶している記憶手
段と、前記記憶手段に記憶したデータを読み出すための
手段と、前記記憶手段から読み出されたデータを可変制
御するための制御手段と、前記部分音スペクトルデータ
に基づき部分音波形を合成し、かつ、前記ストカスティ
ックデータに基づき前記残差成分波形を合成し、前記部
分音波形と前記残差成分波形を組み合わせた波形信号を
合成する波形合成手段とを有しており、合成された波形
信号を前記振動関数信号として前記ウェーブガイドネッ
トワークに与えるようにしたことを特徴とするサウンド
波形合成装置。 47.前記記憶手段は、所定の音楽要素に関する特徴を
示すパラメータを更に記憶しており、前記制御手段は、
前記パラメータを可変制御すると共に、制御されたパラ
メータによって前記部分音スペクトルデータ及びストカ
スティックデータを可変制御することを特徴とする前記
46項のサウンド波形合成装置
【0207】48.オリジナル波形を構成する部分音の
スペクトルデータを、複数の時間フレームに対応して順
次に提供するステップと、前記複数の時間フレームのス
ペクトルデータ列から前記オリジナル波形におけるビブ
ラート変動を検出し、この変動の少なくとも1サイクル
に対応する長さを持つ1又は複数の波形セグメントを指
摘するデータリストを作成するステップと、前記データ
リストを参照して、任意の波形セグメントを選択するス
テップと、選択した波形セグメントに対応する前記スペ
クトルデータ列を前記オリジナル波形のスペクトルデー
タ列から抜き出すステップと、抜き出したスペクトルデ
ータ列を繰り返すことにより前記波形セグメントの繰り
返しに対応するスペクトルデータ列を作成するステップ
と、前記繰り返しに対応するスペクトルデータ列を使用
して、延長された長さを持つサウンド波形を合成するス
テップとを備えたサウンドを分析し合成する方法。 49.前記部分音スペクトルデータに対応する確定的成
分波形を前記オリジナル波形から引いた残りである残差
成分波形に対応するストカスティックデータを、複数の
時間フレームに対応して順次に提供するステップと、前
記選択した波形セグメントに対応する前記ストカスティ
ックデータ列を前記オリジナル波形のストカスティック
データ列から抜き出すステップと、抜き出したストカス
ティックデータ列を繰り返すことにより前記波形セグメ
ントの繰り返しに対応するストカスティックデータ列を
作成するステップと、前記繰り返しに対応するストカス
ティックデータ列を使用して、延長された長さを持つス
トカスティック波形を合成し、これを前記サウンド波形
に組み込むステップとを更に備えたことを特徴とする前
記48項の方法。
【0208】50.オリジナル波形を構成する部分音の
スペクトルデータを、複数の時間フレームに対応して順
次に提供するステップと、前記複数の時間フレームのス
ペクトルデータ列から前記オリジナル波形におけるビブ
ラート変動を検出し、この変動の少なくとも1サイクル
に対応する長さを持つ1又は複数の波形セグメントを指
摘するデータリストを作成するステップと、前記データ
リストを参照して、任意の波形セグメントを選択するス
テップと、選択した波形セグメントに対応する前記スペ
クトルデータ列を前記オリジナル波形のスペクトルデー
タ列から取り去り、その前後で残された2つのスペクト
ルデータ列を接続し、短縮されたスペクトルデータ列を
作成するステップと、前記短縮されたスペクトルデータ
列を使用して、短縮された長さを持つサウンド波形を合
成するステップとを備えたサウンドを分析し合成する方
法。 51.前記部分音スペクトルデータに対応する確定的成
分波形を前記オリジナル波形から引いた残りである残差
成分波形に対応するストカスティックデータを、複数の
時間フレームに対応して順次に提供するステップと、前
記選択した波形セグメントに対応する前記ストカスティ
ックデータ列を前記オリジナル波形のストカスティック
データ列から取り去り、その前後で残された2つのスト
カスティックデータ列を接続し、短縮されたストカステ
ィックデータ列を作成するステップと、前記短縮された
ストカスティックデータ列を使用して短縮された長さを
持つストカスティック波形を合成し、これを前記サウン
ド波形に組み込むステップとを更に備えた前記50項の
方法。
【0209】
【発明の効果】以上の通り、この発明によれば、オリジ
ナルサウンドの分析データから所定のサウンド要素に関
する特徴を分析し、分析した該特徴を示すデータをサウ
ンドパラメータとして抽出するようにしたので、例えば
フォルマントやビブラートなどのような様々なサウンド
要素に関して、オリジナルの特徴を示している品質のよ
いサウンドパラメータを得ることができる。従って、こ
のパラメータをサウンド波形合成に際して利用すれば、
品質のよい各種音楽的特徴の合成を行なうことができ
る。しかも、サウンドパラメータとして分析データから
分離抽出されているため、その可変制御が容易であり、
ユーザーによる自由な音楽制御に適したものである。ま
た、抽出されたサウンドパラメータに対応する特徴を前
記分析データから取り除くようにしているため、分析デ
ータの構造が簡単化され、データ圧縮が期待できるもの
である。このように、サウンドパラメータを分析データ
から抽出分離し、該サウンドパラメータに対応する特徴
が取り除かれた分析データとサウンドパラメータの組み
合わせによってオリジナルサウンド波形を表現するデー
タを提供し、これに基づきサウンド波形を合成する技術
は、種々の効果が期待できるものである。
【図面の簡単な説明】
【図1】この発明の一実施例に係る音楽シンセサイザの
全体を示すブロック図。
【図2】図1における分析部の一実施例を示すブロック
図。
【図3】図2におけるSMSデータ処理部の一実施例を
示すブロック図。
【図4】図1における合成部の一実施例を示すブロック
図。
【図5】図4における再生処理部の一実施例を示すブロ
ック図。
【図6】この発明に従うフォルマント抽出及び操作シス
テムの一実施例を示すブロック図。
【図7】図6に入力されるSMS分析されたデータのう
ち1フレーム分の確定的部分のデータすなわち線スペク
トルデータの一例を示す線スペクトル図。
【図8】図6に入力されるSMS分析されたデータのう
ち1フレーム分のストカスティックエンベロープの一例
を示すスペクトルエンベロープ図。
【図9】図6の実施例に従って、線スペクトルにおける
フォルマントを指数関数近似によって検出する状態を説
明するための図。
【図10】検出したフォルマントの特徴を差し引いて平
坦化された線スペクトル構造の一例を示す図。
【図11】この発明に従うフォルマント抽出及び操作シ
ステムの別の実施例を示すブロック図。
【図12】図11の実施例に従って、線スペクトルにお
けるフォルマントを三角形関数近似によって検出する状
態を説明するための図。
【図13】フォルマントの三角形関数近似の第1ステッ
プとして、フォルマントの山を検出する状態を説明する
ための図。
【図14】フォルマントの三角形関数近似の第2ステッ
プとして、二等辺三角形近似のために、フォルマント中
心周波数の位置で線スペクトルを折り返した状態を模式
的に示す図。
【図15】フォルマントの三角形関数近似の第3ステッ
プとして、二等辺三角形近似が達成できた状態を示す
図。
【図16】検出したフォルマントをトラジェクトリに割
当てる様子を模式的に示す図。
【図17】この発明に従うビブラート分析システムの一
実施例を示すブロック図。
【図18】図17の実施例において、周波数トラジェク
トリの時間関数をフーリエ変換することにより求められ
るスペクトルエンベロープの一例を示す図。
【図19】図18のスペクトルからビブラート成分を取
り除いた状態を示すスペクトルエンベロープの一例を示
す図。
【図20】図17の実施例において、図18のようなス
ペクトル特性からビブラートレートを放物線近似によっ
て計算する一例を拡大して示す図。
【図21】この発明に従うビブラート合成アルゴリズム
の一実施例を示すブロック図。
【図22】この発明に従うスペクトルチルトの分析及び
合成アルゴリズムの一実施例を示すブロック図。
【図23】図22の実施例に従って、SMS分析された
データのうち1フレーム分の確定的部分のデータすなわ
ち線スペクトルから分析されるチルトの一例を示す図。
【図24】この発明に従う発音時間変更アルゴリズムの
一実施例を示すブロック図。
【図25】図24の実施例に従って分析されるビブラー
ト極値とスロープの一例を示す図。。
【図26】図24の実施例における、発音時間短縮のた
めの取り除き部分の分析例を示す図。
【図27】図25の例において、分析した取り除き部分
を波形データから取り除いて発音時間を短縮したデータ
の例を示す図。
【図28】この発明に従うピッチ分析アルゴリズムの一
実施例を示すブロック図。
【図29】この発明に従うピッチ合成アルゴリズムの一
実施例を示すブロック図。
【図30】図28のピッチ分析アルゴリズムにおける1
フレームについてのピッチ検出を説明するためのスペク
トル図。
【図31】この発明に従うSMS技術をデジタルウェー
ブガイド理論による楽音合成技術に適用する一実施例を
示すブロック図。
【図32】図31における励振関数発生器に対するSM
S分析及び合成技術の適用例を示すブロック図。
【符号の説明】
10 分析部 11 合成部 13 編集機器群 14 音楽コントローラ群 15 音楽パラメータインターフェース部 20 SMS分析器 30 SMSデータ処理部 50 再生処理部 100 データメモリ 110 SMSサウンド合成器
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G10L 9/14 N (72)発明者 ロバート グロス アメリカ合衆国,ノースカロライナ 27615,ローリー,サウスフィールド ド ライブ 8509 (72)発明者 アーリング ウォルド アメリカ合衆国,カリフォルニア 94530, エルサーリト,ルドウィグ アベニュー 5618

Claims (12)

    【特許請求の範囲】
  1. 【請求項1】 オリジナルサウンドを分析することによ
    り、該オリジナルサウンド波形を構成する複数の成分を
    示す分析データを提供する第1のステップと、 前記分析データから所定のサウンド要素に関する特徴を
    分析して、分析した該特徴を示すデータを、前記オリジ
    ナルサウンドにおける前記要素についての固有の特性を
    示すサウンドパラメータとして抽出する第2のステップ
    と、 抽出されたサウンドパラメータに対応する特徴を前記分
    析データから取り除く第3のステップと、 前記特徴が取り除かれた分析データに対して、サウンド
    パラメータに対応する特徴を付加する第4のステップ
    と、 この特徴が付加された分析データに基づき、サウンド波
    形を合成する第5のステップとを備えたサウンドを分析
    し合成するための方法。
  2. 【請求項2】 オリジナルサウンドを分析することによ
    り、該オリジナルサウンド波形を構成する複数の成分を
    示す分析データを提供する第1のステップと、 前記分析データから所定のサウンド要素に関する特徴を
    分析して、分析した該特徴を示すデータを、前記オリジ
    ナルサウンドにおける前記要素についての固有の特性を
    示すサウンドパラメータとして抽出する第2のステップ
    と、 抽出されたサウンドパラメータに対応する特徴を前記分
    析データから取り除く第3のステップとを備え、前記特
    徴が取り除かれた分析データと、前記サウンドパラメー
    タとの組合せによって前記オリジナルサウンド波形を表
    現することを特徴とするサウンドを分析するための方
    法。
  3. 【請求項3】 オリジナルサウンドを分析することによ
    り、該オリジナルサウンド波形を構成する複数の成分を
    示す分析データを提供する第1のステップと、 前記分析データから所定のサウンド要素に関する特徴を
    分析して、分析した該特徴を示すデータを、前記オリジ
    ナルサウンドにおける前記要素についての固有の特性を
    示すサウンドパラメータとして抽出する第2のステップ
    と、 前記サウンドパラメータを変更するための第3のステッ
    プと、 前記分析データに対して、前記サウンドパラメータに対
    応する特徴を付加する第4のステップと、 この特徴が付加された分析データに基づき、サウンド波
    形を合成する第5のステップとを備えたサウンドを分析
    し合成するための方法。
  4. 【請求項4】 オリジナルサウンドの分析に基づき該オ
    リジナルサウンド波形を構成する複数の成分を示す分析
    データを提供する分析手段と、 前記分析データから所定のサウンド要素に関する特徴を
    分析して、分析した該特徴を示すデータをサウンドパラ
    メータとして抽出すると共に、抽出されたサウンドパラ
    メータに対応する特徴を前記分析データから取り除くデ
    ータ処理手段と、 前記特徴が取り除かれた分析データと前記サウンドパラ
    メータとを記憶する記憶手段と、 前記分析データとサウンドパラメータを前記記憶手段か
    ら読み出し、読み出した分析データに対して該サウンド
    パラメータに対応する特徴を付加するデータ再生手段
    と、 データ再生手段で再生された分析データに基づき、サウ
    ンド波形を合成するサウンド合成手段とを備えたサウン
    ド波形合成装置。
  5. 【請求項5】 部分音を示すデータを含む波形分析デー
    タと、オリジナルサウンドから抽出された所定のサウン
    ド要素に関する特徴を示すサウンドパラメータとを記憶
    している記憶手段と、 前記波形分析データとサウンドパラメータを前記記憶手
    段から読み出す読出し手段と、 読み出されたサウンドパラメータを変更するための制御
    を行なう制御手段と、 前記読み出した波形分析データを、前記制御されたサウ
    ンドパラメータによって変更するデータ変更手段と、 データ変更手段で変更された波形分析データに基づき、
    サウンド波形を合成するサウンド合成手段とを備えたサ
    ウンド波形合成装置。
  6. 【請求項6】 オリジナルサウンドをスペクトル分析し
    たデータを提供する第1の手段と、 前記スペクトル分析されたデータからフォルマント構造
    を検出し、検出したフォルマントを記述するパラメータ
    を生成する第2の手段と、 前記スペクトル分析されたデータから前記検出されたフ
    ォルマント構造を差引き、残余のスペクトルデータを生
    成する第3の手段とを備え、前記残余のスペクトルデー
    タと前記パラメータとの組合せによって前記オリジナル
    サウンド波形を表現することを特徴とするサウンド波形
    合成装置。
  7. 【請求項7】 オリジナルサウンドの分析によって得た
    複数のサウンド部分を示す部分音データのセットを提供
    するものであり、各部分音データは周波数データを含
    み、前記部分音データのセットを時間関数で提供する第
    1の手段と、 前記部分音データにおける周波数データの時間関数から
    オリジナルサウンドにおけるビブラートを検出し、検出
    したビブラートを記述するパラメータを生成する第2の
    手段と、 前記部分音データにおける周波数データの時間関数から
    前記検出されたビブラートの特徴を取り除き、修正され
    た周波数データの時間関数を生成する第3の手段とを備
    え、前記修正された周波数データの時間関数を含む前記
    部分音データと前記パラメータとの組合せによって時間
    的に変化する前記オリジナルサウンド波形を表現するこ
    とを特徴とするサウンド波形合成装置。
  8. 【請求項8】 オリジナルサウンドの分析によって得た
    複数のサウンド部分を示す部分音データのセットを提供
    するものであり、各部分音データはマグニチュードデー
    タを含み、前記部分音データのセットを時間関数で提供
    する第1の手段と、 前記部分音データにおけるマグニチュードデータの時間
    関数からオリジナルサウンドにおけるトレモロを検出
    し、検出したトレモロを記述するパラメータを生成する
    第2の手段と、 前記部分音データにおけるマグニチュードデータの時間
    関数から前記検出されたトレモロの特徴を取り除き、修
    正されたマグニチュードデータの時間関数を生成する第
    3の手段とを備え、前記修正されたマグニチュードデー
    タの時間関数を含む前記部分音データと前記パラメータ
    との組合せによって時間的に変化する前記オリジナルサ
    ウンド波形を表現することを特徴とするサウンド波形合
    成装置。
  9. 【請求項9】 オリジナルサウンドのスペクトル構造を
    示すスペクトルデータを提供する第1の手段と、 前記スペクトルデータに基づき、そのスペクトルエンベ
    ロープに概ね適合しているただ1本のチルトラインを検
    出し、検出したチルトラインを記述するチルトパラメー
    タを生成する第2の手段と、 スペクトルの傾きを制御するために、前記チルトパラメ
    ータを可変制御する第3の手段と、 制御されたチルトパラメータに基づき前記スペクトルデ
    ータのスペクトル構造を制御する第4の手段と、 制御されたスペクトルデータに基づきサウンド波形を合
    成するサウンド合成手段とを備えたサウンド波形合成装
    置。
  10. 【請求項10】 オリジナルサウンドを構成する部分音
    のスペクトルデータを複数の時間フレームに対応して提
    供する第1の手段と、 一連の時間フレームにおける前記部分音スペクトルデー
    タにおける周波数データに基づき前記オリジナルサウン
    ドの平均ピッチを検出し、ピッチデータを生成する第2
    の手段と、 前記ピッチデータを可変制御するための第3の手段と、 制御されたピッチデータに応じて前記部分音スペクトル
    データにおける周波数データを修正する第4の手段と、 前記修正された周波数データを含む前記部分音スペクト
    ルデータに基づき、可変制御されたピッチを持つサウン
    ド波形を合成するサウンド合成手段とを備えたサウンド
    波形合成装置。
  11. 【請求項11】 オリジナル波形を構成する部分音のス
    ペクトルデータを、複数の時間フレームに対応して順次
    に提供するステップと、 前記複数の時間フレームのスペクトルデータ列から前記
    オリジナル波形におけるビブラート変動を検出し、この
    変動の少なくとも1サイクルに対応する長さを持つ1又
    は複数の波形セグメントを指摘するデータリストを作成
    するステップと、 前記データリストを参照して、任意の波形セグメントを
    選択するステップと、 選択した波形セグメントに対応する前記スペクトルデー
    タ列を前記オリジナル波形のスペクトルデータ列から抜
    き出すステップと、 抜き出したスペクトルデータ列を繰り返すことにより前
    記波形セグメントの繰り返しに対応するスペクトルデー
    タ列を作成するステップと、 前記繰り返しに対応するスペクトルデータ列を使用し
    て、延長された長さを持つサウンド波形を合成するステ
    ップとを備えたサウンドを分析し合成する方法。
  12. 【請求項12】 オリジナル波形を構成する部分音のス
    ペクトルデータを、複数の時間フレームに対応して順次
    に提供するステップと、 前記複数の時間フレームのスペクトルデータ列から前記
    オリジナル波形におけるビブラート変動を検出し、この
    変動の少なくとも1サイクルに対応する長さを持つ1又
    は複数の波形セグメントを指摘するデータリストを作成
    するステップと、 前記データリストを参照して、任意の波形セグメントを
    選択するステップと、 選択した波形セグメントに対応する前記スペクトルデー
    タ列を前記オリジナル波形のスペクトルデータ列から取
    り去り、その前後で残された2つのスペクトルデータ列
    を接続し、短縮されたスペクトルデータ列を作成するス
    テップと、 前記短縮されたスペクトルデータ列を使用して、短縮さ
    れた長さを持つサウンド波形を合成するステップとを備
    えたサウンドを分析し合成する方法。
JP5349245A 1993-04-14 1993-12-28 サウンドの分析及び合成方法並びに装置 Expired - Fee Related JP2906970B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/048,261 1993-04-14
US08/048,261 US5536902A (en) 1993-04-14 1993-04-14 Method of and apparatus for analyzing and synthesizing a sound by extracting and controlling a sound parameter

Publications (2)

Publication Number Publication Date
JPH07325583A true JPH07325583A (ja) 1995-12-12
JP2906970B2 JP2906970B2 (ja) 1999-06-21

Family

ID=21953576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5349245A Expired - Fee Related JP2906970B2 (ja) 1993-04-14 1993-12-28 サウンドの分析及び合成方法並びに装置

Country Status (2)

Country Link
US (1) US5536902A (ja)
JP (1) JP2906970B2 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116088A (ja) * 1996-10-14 1998-05-06 Roland Corp 効果付与装置
US6842731B2 (en) 2001-05-18 2005-01-11 Kabushiki Kaisha Toshiba Prediction parameter analysis apparatus and a prediction parameter analysis method
US7016841B2 (en) 2000-12-28 2006-03-21 Yamaha Corporation Singing voice synthesizing apparatus, singing voice synthesizing method, and program for realizing singing voice synthesizing method
JP2006287851A (ja) * 2005-04-05 2006-10-19 Roland Corp ハウリング防止装置
US7149682B2 (en) 1998-06-15 2006-12-12 Yamaha Corporation Voice converter with extraction and modification of attribute data
JP2007248519A (ja) * 2006-03-13 2007-09-27 Yamaha Corp 波形編集装置
US7366661B2 (en) 2000-12-14 2008-04-29 Sony Corporation Information extracting device
US7389231B2 (en) 2001-09-03 2008-06-17 Yamaha Corporation Voice synthesizing apparatus capable of adding vibrato effect to synthesized voice
JPWO2007029536A1 (ja) * 2005-09-02 2009-03-19 日本電気株式会社 雑音抑圧の方法及び装置並びにコンピュータプログラム
EP2355092A1 (en) 2009-12-04 2011-08-10 Yamaha Corporation Audio processing apparatus and method
JP2013045084A (ja) * 2011-08-26 2013-03-04 Yamaha Corp 信号処理装置
WO2018055892A1 (ja) * 2016-09-21 2018-03-29 ローランド株式会社 電子打楽器の音源

Families Citing this family (226)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5627334A (en) * 1993-09-27 1997-05-06 Kawai Musical Inst. Mfg. Co., Ltd. Apparatus for and method of generating musical tones
US6362409B1 (en) * 1998-12-02 2002-03-26 Imms, Inc. Customizable software-based digital wavetable synthesizer
JP3321971B2 (ja) * 1994-03-10 2002-09-09 ソニー株式会社 音声信号処理方法
TW279219B (ja) * 1994-03-31 1996-06-21 Yamaha Corp
US6046395A (en) * 1995-01-18 2000-04-04 Ivl Technologies Ltd. Method and apparatus for changing the timbre and/or pitch of audio signals
US5567901A (en) * 1995-01-18 1996-10-22 Ivl Technologies Ltd. Method and apparatus for changing the timbre and/or pitch of audio signals
US6418406B1 (en) * 1995-08-14 2002-07-09 Texas Instruments Incorporated Synthesis of high-pitched sounds
JP3102335B2 (ja) * 1996-01-18 2000-10-23 ヤマハ株式会社 フォルマント変換装置およびカラオケ装置
US5870704A (en) * 1996-11-07 1999-02-09 Creative Technology Ltd. Frequency-domain spectral envelope estimation for monophonic and polyphonic signals
DE69724919T2 (de) * 1996-11-27 2004-07-22 Yamaha Corp., Hamamatsu Verfahren zur Erzeugung von Musiktönen
US7228280B1 (en) 1997-04-15 2007-06-05 Gracenote, Inc. Finding database match for file based on file characteristics
US6336092B1 (en) * 1997-04-28 2002-01-01 Ivl Technologies Ltd Targeted vocal transformation
US6150598A (en) * 1997-09-30 2000-11-21 Yamaha Corporation Tone data making method and device and recording medium
JP3502247B2 (ja) * 1997-10-28 2004-03-02 ヤマハ株式会社 音声変換装置
US6064960A (en) 1997-12-18 2000-05-16 Apple Computer, Inc. Method and apparatus for improved duration modeling of phonemes
US6054646A (en) * 1998-03-27 2000-04-25 Interval Research Corporation Sound-based event control using timbral analysis
US6201176B1 (en) * 1998-05-07 2001-03-13 Canon Kabushiki Kaisha System and method for querying a music database
US6182042B1 (en) 1998-07-07 2001-01-30 Creative Technology Ltd. Sound modification employing spectral warping techniques
US6208969B1 (en) 1998-07-24 2001-03-27 Lucent Technologies Inc. Electronic data processing apparatus and method for sound synthesis using transfer functions of sound samples
US7096186B2 (en) * 1998-09-01 2006-08-22 Yamaha Corporation Device and method for analyzing and representing sound signals in the musical notation
EP0986046A1 (en) * 1998-09-10 2000-03-15 Lucent Technologies Inc. System and method for recording and synthesizing sound and infrastructure for distributing recordings for remote playback
ID29029A (id) * 1998-10-29 2001-07-26 Smith Paul Reed Guitars Ltd Metode untuk menemukan fundamental dengan cepat
US7003120B1 (en) 1998-10-29 2006-02-21 Paul Reed Smith Guitars, Inc. Method of modifying harmonic content of a complex waveform
US6766288B1 (en) * 1998-10-29 2004-07-20 Paul Reed Smith Guitars Fast find fundamental method
US6144939A (en) * 1998-11-25 2000-11-07 Matsushita Electric Industrial Co., Ltd. Formant-based speech synthesizer employing demi-syllable concatenation with independent cross fade in the filter parameter and source domains
US6138089A (en) * 1999-03-10 2000-10-24 Infolio, Inc. Apparatus system and method for speech compression and decompression
US6311158B1 (en) * 1999-03-16 2001-10-30 Creative Technology Ltd. Synthesis of time-domain signals using non-overlapping transforms
US6504905B1 (en) * 1999-04-09 2003-01-07 Qwest Communications International Inc. System and method of testing voice signals in a telecommunication system
US6392135B1 (en) * 1999-07-07 2002-05-21 Yamaha Corporation Musical sound modification apparatus and method
US8326584B1 (en) 1999-09-14 2012-12-04 Gracenote, Inc. Music searching methods based on human perception
US8645137B2 (en) 2000-03-16 2014-02-04 Apple Inc. Fast, language-independent method for user authentication by voice
US6674452B1 (en) 2000-04-05 2004-01-06 International Business Machines Corporation Graphical user interface to query music by examples
US6466903B1 (en) * 2000-05-04 2002-10-15 At&T Corp. Simple and fast way for generating a harmonic signal
US6453252B1 (en) * 2000-05-15 2002-09-17 Creative Technology Ltd. Process for identifying audio content
US6910035B2 (en) * 2000-07-06 2005-06-21 Microsoft Corporation System and methods for providing automatic classification of media entities according to consonance properties
US7035873B2 (en) * 2001-08-20 2006-04-25 Microsoft Corporation System and methods for providing adaptive media property classification
JP3879402B2 (ja) * 2000-12-28 2007-02-14 ヤマハ株式会社 歌唱合成方法と装置及び記録媒体
EP1244093B1 (en) * 2001-03-22 2010-10-06 Panasonic Corporation Sound features extracting apparatus, sound data registering apparatus, sound data retrieving apparatus and methods and programs for implementing the same
AU2002346116A1 (en) * 2001-07-20 2003-03-03 Gracenote, Inc. Automatic identification of sound recordings
ITFI20010199A1 (it) 2001-10-22 2003-04-22 Riccardo Vieri Sistema e metodo per trasformare in voce comunicazioni testuali ed inviarle con una connessione internet a qualsiasi apparato telefonico
FR2834363B1 (fr) * 2001-12-27 2004-02-27 France Telecom Procede de caracterisation d'un signal sonore
CN1430204A (zh) * 2001-12-31 2003-07-16 佳能株式会社 波形信号分析、基音探测以及句子探测的方法和设备
JP3815347B2 (ja) * 2002-02-27 2006-08-30 ヤマハ株式会社 歌唱合成方法と装置及び記録媒体
JP4153220B2 (ja) * 2002-02-28 2008-09-24 ヤマハ株式会社 歌唱合成装置、歌唱合成方法及び歌唱合成用プログラム
JP2003255993A (ja) * 2002-03-04 2003-09-10 Ntt Docomo Inc 音声認識システム、音声認識方法、音声認識プログラム、音声合成システム、音声合成方法、音声合成プログラム
DE10232916B4 (de) * 2002-07-19 2008-08-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Charakterisieren eines Informationssignals
JP3963850B2 (ja) * 2003-03-11 2007-08-22 富士通株式会社 音声区間検出装置
US7567631B2 (en) * 2003-09-12 2009-07-28 Neil Birkett Method for amplitude insensitive packet detection
SG120121A1 (en) * 2003-09-26 2006-03-28 St Microelectronics Asia Pitch detection of speech signals
JP4612329B2 (ja) * 2004-04-28 2011-01-12 株式会社テクノフェイス 情報処理装置およびプログラム
JP3827317B2 (ja) * 2004-06-03 2006-09-27 任天堂株式会社 コマンド処理装置
JP4649888B2 (ja) * 2004-06-24 2011-03-16 ヤマハ株式会社 音声効果付与装置及び音声効果付与プログラム
EP1646035B1 (en) * 2004-10-05 2013-06-19 Sony Europe Limited Mapped meta-data sound-playback device and audio-sampling/sample processing system useable therewith
US7211721B2 (en) * 2004-10-13 2007-05-01 Motorola, Inc. System and methods for memory-constrained sound synthesis using harmonic coding
JP4218624B2 (ja) * 2004-10-18 2009-02-04 ヤマハ株式会社 楽音データ生成方法及び装置
JP4645241B2 (ja) * 2005-03-10 2011-03-09 ヤマハ株式会社 音声処理装置およびプログラム
CN1835072B (zh) * 2005-03-17 2010-04-28 佳能株式会社 根据波三角变换检测语音的方法和装置
US8677377B2 (en) 2005-09-08 2014-03-18 Apple Inc. Method and apparatus for building an intelligent automated assistant
US7633076B2 (en) 2005-09-30 2009-12-15 Apple Inc. Automated response to and sensing of user activity in portable devices
WO2007088500A2 (en) * 2006-01-31 2007-08-09 Koninklijke Philips Electronics N.V. Component based sound synthesizer
US9318108B2 (en) 2010-01-18 2016-04-19 Apple Inc. Intelligent automated assistant
JP4548424B2 (ja) * 2007-01-09 2010-09-22 ヤマハ株式会社 楽音処理装置およびプログラム
US8977255B2 (en) 2007-04-03 2015-03-10 Apple Inc. Method and system for operating a multi-function portable electronic device using voice-activation
US20080256136A1 (en) * 2007-04-14 2008-10-16 Jerremy Holland Techniques and tools for managing attributes of media content
US8751022B2 (en) * 2007-04-14 2014-06-10 Apple Inc. Multi-take compositing of digital media assets
US7674970B2 (en) * 2007-05-17 2010-03-09 Brian Siu-Fung Ma Multifunctional digital music display device
JP5130809B2 (ja) * 2007-07-13 2013-01-30 ヤマハ株式会社 楽曲を制作するための装置およびプログラム
JP5275612B2 (ja) * 2007-07-18 2013-08-28 国立大学法人 和歌山大学 周期信号処理方法、周期信号変換方法および周期信号処理装置ならびに周期信号の分析方法
US8706496B2 (en) * 2007-09-13 2014-04-22 Universitat Pompeu Fabra Audio signal transforming by utilizing a computational cost function
US20090088246A1 (en) * 2007-09-28 2009-04-02 Ati Technologies Ulc Interactive sound synthesis
US9053089B2 (en) 2007-10-02 2015-06-09 Apple Inc. Part-of-speech tagging using latent analogy
WO2009059300A2 (en) * 2007-11-02 2009-05-07 Melodis Corporation Pitch selection, voicing detection and vibrato detection modules in a system for automatic transcription of sung or hummed melodies
US8620662B2 (en) 2007-11-20 2013-12-31 Apple Inc. Context-aware unit selection
US10002189B2 (en) 2007-12-20 2018-06-19 Apple Inc. Method and apparatus for searching using an active ontology
US9330720B2 (en) 2008-01-03 2016-05-03 Apple Inc. Methods and apparatus for altering audio output signals
US8065143B2 (en) 2008-02-22 2011-11-22 Apple Inc. Providing text input using speech data and non-speech data
DE102008013172B4 (de) * 2008-03-07 2010-07-08 Neubäcker, Peter Verfahren zur klangobjektorientierten Analyse und zur notenobjektorientierten Bearbeitung polyphoner Klangaufnahmen
US8996376B2 (en) 2008-04-05 2015-03-31 Apple Inc. Intelligent text-to-speech conversion
US10496753B2 (en) 2010-01-18 2019-12-03 Apple Inc. Automatically adapting user interfaces for hands-free interaction
US8464150B2 (en) 2008-06-07 2013-06-11 Apple Inc. Automatic language identification for dynamic text processing
JP5262324B2 (ja) * 2008-06-11 2013-08-14 ヤマハ株式会社 音声合成装置およびプログラム
US20100030549A1 (en) 2008-07-31 2010-02-04 Lee Michael M Mobile device having human language translation capability with positional feedback
US8768702B2 (en) 2008-09-05 2014-07-01 Apple Inc. Multi-tiered voice feedback in an electronic device
US8898568B2 (en) 2008-09-09 2014-11-25 Apple Inc. Audio user interface
US8583418B2 (en) 2008-09-29 2013-11-12 Apple Inc. Systems and methods of detecting language and natural language strings for text to speech synthesis
US8712776B2 (en) 2008-09-29 2014-04-29 Apple Inc. Systems and methods for selective text to speech synthesis
US8676904B2 (en) 2008-10-02 2014-03-18 Apple Inc. Electronic devices with voice command and contextual data processing capabilities
WO2010067118A1 (en) 2008-12-11 2010-06-17 Novauris Technologies Limited Speech recognition involving a mobile device
US8862252B2 (en) 2009-01-30 2014-10-14 Apple Inc. Audio user interface for displayless electronic device
JP5283289B2 (ja) * 2009-02-17 2013-09-04 国立大学法人京都大学 音楽音響信号生成システム
US8380507B2 (en) 2009-03-09 2013-02-19 Apple Inc. Systems and methods for determining the language to use for speech generated by a text to speech engine
US9858925B2 (en) 2009-06-05 2018-01-02 Apple Inc. Using context information to facilitate processing of commands in a virtual assistant
US10540976B2 (en) 2009-06-05 2020-01-21 Apple Inc. Contextual voice commands
US10241644B2 (en) 2011-06-03 2019-03-26 Apple Inc. Actionable reminder entries
US10706373B2 (en) * 2011-06-03 2020-07-07 Apple Inc. Performing actions associated with task items that represent tasks to perform
US10241752B2 (en) 2011-09-30 2019-03-26 Apple Inc. Interface for a virtual digital assistant
US9431006B2 (en) 2009-07-02 2016-08-30 Apple Inc. Methods and apparatuses for automatic speech recognition
DE102009029615B4 (de) 2009-09-18 2018-03-29 Native Instruments Gmbh Verfahren und Anordnung zur Verarbeitung von Audiodaten sowie ein entsprechendes Computerprogramm und ein entsprechendes computer-lesbares Speichermedium
US8682649B2 (en) 2009-11-12 2014-03-25 Apple Inc. Sentiment prediction from textual data
US8600743B2 (en) 2010-01-06 2013-12-03 Apple Inc. Noise profile determination for voice-related feature
US8311838B2 (en) 2010-01-13 2012-11-13 Apple Inc. Devices and methods for identifying a prompt corresponding to a voice input in a sequence of prompts
US8381107B2 (en) 2010-01-13 2013-02-19 Apple Inc. Adaptive audio feedback system and method
US10553209B2 (en) 2010-01-18 2020-02-04 Apple Inc. Systems and methods for hands-free notification summaries
US10679605B2 (en) 2010-01-18 2020-06-09 Apple Inc. Hands-free list-reading by intelligent automated assistant
US10276170B2 (en) 2010-01-18 2019-04-30 Apple Inc. Intelligent automated assistant
US10705794B2 (en) 2010-01-18 2020-07-07 Apple Inc. Automatically adapting user interfaces for hands-free interaction
DE202011111062U1 (de) 2010-01-25 2019-02-19 Newvaluexchange Ltd. Vorrichtung und System für eine Digitalkonversationsmanagementplattform
US8682667B2 (en) 2010-02-25 2014-03-25 Apple Inc. User profiling for selecting user specific voice input processing information
EP2362375A1 (en) * 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Apparatus and method for modifying an audio signal using harmonic locking
US8713021B2 (en) 2010-07-07 2014-04-29 Apple Inc. Unsupervised document clustering using latent semantic density analysis
US8719006B2 (en) 2010-08-27 2014-05-06 Apple Inc. Combined statistical and rule-based part-of-speech tagging for text-to-speech synthesis
US8719014B2 (en) 2010-09-27 2014-05-06 Apple Inc. Electronic device with text error correction based on voice recognition data
US10515147B2 (en) 2010-12-22 2019-12-24 Apple Inc. Using statistical language models for contextual lookup
US10762293B2 (en) 2010-12-22 2020-09-01 Apple Inc. Using parts-of-speech tagging and named entity recognition for spelling correction
US8781836B2 (en) 2011-02-22 2014-07-15 Apple Inc. Hearing assistance system for providing consistent human speech
US9262612B2 (en) 2011-03-21 2016-02-16 Apple Inc. Device access using voice authentication
US10672399B2 (en) 2011-06-03 2020-06-02 Apple Inc. Switching between text data and audio data based on a mapping
US10057736B2 (en) 2011-06-03 2018-08-21 Apple Inc. Active transport based notifications
JP6011039B2 (ja) * 2011-06-07 2016-10-19 ヤマハ株式会社 音声合成装置および音声合成方法
US8812294B2 (en) 2011-06-21 2014-08-19 Apple Inc. Translating phrases from one language into another using an order-based set of declarative rules
US10860946B2 (en) 2011-08-10 2020-12-08 Konlanbi Dynamic data structures for data-driven modeling
US9147166B1 (en) 2011-08-10 2015-09-29 Konlanbi Generating dynamically controllable composite data structures from a plurality of data segments
US8706472B2 (en) 2011-08-11 2014-04-22 Apple Inc. Method for disambiguating multiple readings in language conversion
US8994660B2 (en) 2011-08-29 2015-03-31 Apple Inc. Text correction processing
US8762156B2 (en) 2011-09-28 2014-06-24 Apple Inc. Speech recognition repair using contextual information
US10134385B2 (en) 2012-03-02 2018-11-20 Apple Inc. Systems and methods for name pronunciation
US9483461B2 (en) 2012-03-06 2016-11-01 Apple Inc. Handling speech synthesis of content for multiple languages
US9280610B2 (en) 2012-05-14 2016-03-08 Apple Inc. Crowd sourcing information to fulfill user requests
US10417037B2 (en) 2012-05-15 2019-09-17 Apple Inc. Systems and methods for integrating third party services with a digital assistant
US8775442B2 (en) 2012-05-15 2014-07-08 Apple Inc. Semantic search using a single-source semantic model
US10019994B2 (en) 2012-06-08 2018-07-10 Apple Inc. Systems and methods for recognizing textual identifiers within a plurality of words
US9721563B2 (en) 2012-06-08 2017-08-01 Apple Inc. Name recognition system
TW201401270A (zh) * 2012-06-22 2014-01-01 Tracy Kwei-Liang Ho 視覺式量化抖音分析方法及系統
US9495129B2 (en) 2012-06-29 2016-11-15 Apple Inc. Device, method, and user interface for voice-activated navigation and browsing of a document
US9576574B2 (en) 2012-09-10 2017-02-21 Apple Inc. Context-sensitive handling of interruptions by intelligent digital assistant
US9547647B2 (en) 2012-09-19 2017-01-17 Apple Inc. Voice-based media searching
US8935167B2 (en) 2012-09-25 2015-01-13 Apple Inc. Exemplar-based latent perceptual modeling for automatic speech recognition
KR20240132105A (ko) 2013-02-07 2024-09-02 애플 인크. 디지털 어시스턴트를 위한 음성 트리거
US10652394B2 (en) 2013-03-14 2020-05-12 Apple Inc. System and method for processing voicemail
US9733821B2 (en) 2013-03-14 2017-08-15 Apple Inc. Voice control to diagnose inadvertent activation of accessibility features
US9977779B2 (en) 2013-03-14 2018-05-22 Apple Inc. Automatic supplementation of word correction dictionaries
US10642574B2 (en) 2013-03-14 2020-05-05 Apple Inc. Device, method, and graphical user interface for outputting captions
US9368114B2 (en) 2013-03-14 2016-06-14 Apple Inc. Context-sensitive handling of interruptions
US10572476B2 (en) 2013-03-14 2020-02-25 Apple Inc. Refining a search based on schedule items
US9099066B2 (en) * 2013-03-14 2015-08-04 Stephen Welch Musical instrument pickup signal processor
US10748529B1 (en) 2013-03-15 2020-08-18 Apple Inc. Voice activated device for use with a voice-based digital assistant
WO2014144579A1 (en) 2013-03-15 2014-09-18 Apple Inc. System and method for updating an adaptive speech recognition model
CN105190607B (zh) 2013-03-15 2018-11-30 苹果公司 通过智能数字助理的用户培训
AU2014233517B2 (en) 2013-03-15 2017-05-25 Apple Inc. Training an at least partial voice command system
CN112230878B (zh) 2013-03-15 2024-09-27 苹果公司 对中断进行上下文相关处理
US9582608B2 (en) 2013-06-07 2017-02-28 Apple Inc. Unified ranking with entropy-weighted information for phrase-based semantic auto-completion
WO2014197334A2 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for user-specified pronunciation of words for speech synthesis and recognition
WO2014197336A1 (en) 2013-06-07 2014-12-11 Apple Inc. System and method for detecting errors in interactions with a voice-based digital assistant
WO2014197335A1 (en) 2013-06-08 2014-12-11 Apple Inc. Interpreting and acting upon commands that involve sharing information with remote devices
US10176167B2 (en) 2013-06-09 2019-01-08 Apple Inc. System and method for inferring user intent from speech inputs
KR101772152B1 (ko) 2013-06-09 2017-08-28 애플 인크. 디지털 어시스턴트의 둘 이상의 인스턴스들에 걸친 대화 지속성을 가능하게 하기 위한 디바이스, 방법 및 그래픽 사용자 인터페이스
EP3008964B1 (en) 2013-06-13 2019-09-25 Apple Inc. System and method for emergency calls initiated by voice command
DE112014003653B4 (de) 2013-08-06 2024-04-18 Apple Inc. Automatisch aktivierende intelligente Antworten auf der Grundlage von Aktivitäten von entfernt angeordneten Vorrichtungen
US10296160B2 (en) 2013-12-06 2019-05-21 Apple Inc. Method for extracting salient dialog usage from live data
US9620105B2 (en) 2014-05-15 2017-04-11 Apple Inc. Analyzing audio input for efficient speech and music recognition
US10592095B2 (en) 2014-05-23 2020-03-17 Apple Inc. Instantaneous speaking of content on touch devices
US9502031B2 (en) 2014-05-27 2016-11-22 Apple Inc. Method for supporting dynamic grammars in WFST-based ASR
US9715875B2 (en) 2014-05-30 2017-07-25 Apple Inc. Reducing the need for manual start/end-pointing and trigger phrases
US9842101B2 (en) 2014-05-30 2017-12-12 Apple Inc. Predictive conversion of language input
US9760559B2 (en) 2014-05-30 2017-09-12 Apple Inc. Predictive text input
US10078631B2 (en) 2014-05-30 2018-09-18 Apple Inc. Entropy-guided text prediction using combined word and character n-gram language models
US9734193B2 (en) 2014-05-30 2017-08-15 Apple Inc. Determining domain salience ranking from ambiguous words in natural speech
US10170123B2 (en) 2014-05-30 2019-01-01 Apple Inc. Intelligent assistant for home automation
US9633004B2 (en) 2014-05-30 2017-04-25 Apple Inc. Better resolution when referencing to concepts
US10289433B2 (en) 2014-05-30 2019-05-14 Apple Inc. Domain specific language for encoding assistant dialog
CN110797019B (zh) 2014-05-30 2023-08-29 苹果公司 多命令单一话语输入方法
US9430463B2 (en) 2014-05-30 2016-08-30 Apple Inc. Exemplar-based natural language processing
US9785630B2 (en) 2014-05-30 2017-10-10 Apple Inc. Text prediction using combined word N-gram and unigram language models
US10659851B2 (en) 2014-06-30 2020-05-19 Apple Inc. Real-time digital assistant knowledge updates
US9338493B2 (en) 2014-06-30 2016-05-10 Apple Inc. Intelligent automated assistant for TV user interactions
US10446141B2 (en) 2014-08-28 2019-10-15 Apple Inc. Automatic speech recognition based on user feedback
US9818400B2 (en) 2014-09-11 2017-11-14 Apple Inc. Method and apparatus for discovering trending terms in speech requests
US10789041B2 (en) 2014-09-12 2020-09-29 Apple Inc. Dynamic thresholds for always listening speech trigger
US9886432B2 (en) 2014-09-30 2018-02-06 Apple Inc. Parsimonious handling of word inflection via categorical stem + suffix N-gram language models
US9668121B2 (en) 2014-09-30 2017-05-30 Apple Inc. Social reminders
US9646609B2 (en) 2014-09-30 2017-05-09 Apple Inc. Caching apparatus for serving phonetic pronunciations
US10127911B2 (en) 2014-09-30 2018-11-13 Apple Inc. Speaker identification and unsupervised speaker adaptation techniques
US10074360B2 (en) 2014-09-30 2018-09-11 Apple Inc. Providing an indication of the suitability of speech recognition
US10552013B2 (en) 2014-12-02 2020-02-04 Apple Inc. Data detection
US9711141B2 (en) 2014-12-09 2017-07-18 Apple Inc. Disambiguating heteronyms in speech synthesis
US9865280B2 (en) 2015-03-06 2018-01-09 Apple Inc. Structured dictation using intelligent automated assistants
US9721566B2 (en) 2015-03-08 2017-08-01 Apple Inc. Competing devices responding to voice triggers
US9886953B2 (en) 2015-03-08 2018-02-06 Apple Inc. Virtual assistant activation
US10567477B2 (en) 2015-03-08 2020-02-18 Apple Inc. Virtual assistant continuity
US9899019B2 (en) 2015-03-18 2018-02-20 Apple Inc. Systems and methods for structured stem and suffix language models
US9842105B2 (en) 2015-04-16 2017-12-12 Apple Inc. Parsimonious continuous-space phrase representations for natural language processing
US10083688B2 (en) 2015-05-27 2018-09-25 Apple Inc. Device voice control for selecting a displayed affordance
US10127220B2 (en) 2015-06-04 2018-11-13 Apple Inc. Language identification from short strings
US10101822B2 (en) 2015-06-05 2018-10-16 Apple Inc. Language input correction
US11025565B2 (en) 2015-06-07 2021-06-01 Apple Inc. Personalized prediction of responses for instant messaging
US10186254B2 (en) 2015-06-07 2019-01-22 Apple Inc. Context-based endpoint detection
US10255907B2 (en) 2015-06-07 2019-04-09 Apple Inc. Automatic accent detection using acoustic models
US10671428B2 (en) 2015-09-08 2020-06-02 Apple Inc. Distributed personal assistant
US10747498B2 (en) 2015-09-08 2020-08-18 Apple Inc. Zero latency digital assistant
US9697820B2 (en) 2015-09-24 2017-07-04 Apple Inc. Unit-selection text-to-speech synthesis using concatenation-sensitive neural networks
US11010550B2 (en) 2015-09-29 2021-05-18 Apple Inc. Unified language modeling framework for word prediction, auto-completion and auto-correction
US10366158B2 (en) 2015-09-29 2019-07-30 Apple Inc. Efficient word encoding for recurrent neural network language models
US11587559B2 (en) 2015-09-30 2023-02-21 Apple Inc. Intelligent device identification
WO2017064264A1 (en) * 2015-10-15 2017-04-20 Huawei Technologies Co., Ltd. Method and appratus for sinusoidal encoding and decoding
US10691473B2 (en) 2015-11-06 2020-06-23 Apple Inc. Intelligent automated assistant in a messaging environment
US10049668B2 (en) 2015-12-02 2018-08-14 Apple Inc. Applying neural network language models to weighted finite state transducers for automatic speech recognition
US10223066B2 (en) 2015-12-23 2019-03-05 Apple Inc. Proactive assistance based on dialog communication between devices
US10446143B2 (en) 2016-03-14 2019-10-15 Apple Inc. Identification of voice inputs providing credentials
US9934775B2 (en) 2016-05-26 2018-04-03 Apple Inc. Unit-selection text-to-speech synthesis based on predicted concatenation parameters
US9972304B2 (en) 2016-06-03 2018-05-15 Apple Inc. Privacy preserving distributed evaluation framework for embedded personalized systems
US10249300B2 (en) 2016-06-06 2019-04-02 Apple Inc. Intelligent list reading
US10049663B2 (en) 2016-06-08 2018-08-14 Apple, Inc. Intelligent automated assistant for media exploration
DK179588B1 (en) 2016-06-09 2019-02-22 Apple Inc. INTELLIGENT AUTOMATED ASSISTANT IN A HOME ENVIRONMENT
US10509862B2 (en) 2016-06-10 2019-12-17 Apple Inc. Dynamic phrase expansion of language input
US10586535B2 (en) 2016-06-10 2020-03-10 Apple Inc. Intelligent digital assistant in a multi-tasking environment
US10067938B2 (en) 2016-06-10 2018-09-04 Apple Inc. Multilingual word prediction
US10192552B2 (en) 2016-06-10 2019-01-29 Apple Inc. Digital assistant providing whispered speech
US10490187B2 (en) 2016-06-10 2019-11-26 Apple Inc. Digital assistant providing automated status report
DK179049B1 (en) 2016-06-11 2017-09-18 Apple Inc Data driven natural language event detection and classification
DK179343B1 (en) 2016-06-11 2018-05-14 Apple Inc Intelligent task discovery
DK201670540A1 (en) 2016-06-11 2018-01-08 Apple Inc Application integration with a digital assistant
DK179415B1 (en) 2016-06-11 2018-06-14 Apple Inc Intelligent device arbitration and control
US10593346B2 (en) 2016-12-22 2020-03-17 Apple Inc. Rank-reduced token representation for automatic speech recognition
JP6724828B2 (ja) * 2017-03-15 2020-07-15 カシオ計算機株式会社 フィルタ演算処理装置、フィルタ演算方法、及び効果付与装置
DK179745B1 (en) 2017-05-12 2019-05-01 Apple Inc. SYNCHRONIZATION AND TASK DELEGATION OF A DIGITAL ASSISTANT
DK201770431A1 (en) 2017-05-15 2018-12-20 Apple Inc. Optimizing dialogue policy decisions for digital assistants using implicit feedback

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4446770A (en) * 1980-09-25 1984-05-08 Kimball International, Inc. Digital tone generation system utilizing fixed duration time functions
US4611522A (en) * 1984-04-10 1986-09-16 Nippon Gakki Seizo Kabushiki Kaisha Tone wave synthesizing apparatus
US5210366A (en) * 1991-06-10 1993-05-11 Sykes Jr Richard O Method and device for detecting and separating voices in a complex musical composition
FR2679689B1 (fr) * 1991-07-26 1994-02-25 Etat Francais Procede de synthese de sons.
US5412152A (en) * 1991-10-18 1995-05-02 Yamaha Corporation Device for forming tone source data using analyzed parameters

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10116088A (ja) * 1996-10-14 1998-05-06 Roland Corp 効果付与装置
EP2450887A1 (en) 1998-06-15 2012-05-09 Yamaha Corporation Voice converter with extraction and modification of attribute data
EP2264696A1 (en) 1998-06-15 2010-12-22 Yamaha Corporation Voice converter with extraction and modification of attribute data
US7606709B2 (en) 1998-06-15 2009-10-20 Yamaha Corporation Voice converter with extraction and modification of attribute data
US7149682B2 (en) 1998-06-15 2006-12-12 Yamaha Corporation Voice converter with extraction and modification of attribute data
US7366661B2 (en) 2000-12-14 2008-04-29 Sony Corporation Information extracting device
US7016841B2 (en) 2000-12-28 2006-03-21 Yamaha Corporation Singing voice synthesizing apparatus, singing voice synthesizing method, and program for realizing singing voice synthesizing method
US6842731B2 (en) 2001-05-18 2005-01-11 Kabushiki Kaisha Toshiba Prediction parameter analysis apparatus and a prediction parameter analysis method
US7389231B2 (en) 2001-09-03 2008-06-17 Yamaha Corporation Voice synthesizing apparatus capable of adding vibrato effect to synthesized voice
JP2006287851A (ja) * 2005-04-05 2006-10-19 Roland Corp ハウリング防止装置
US8477963B2 (en) 2005-09-02 2013-07-02 Nec Corporation Method, apparatus, and computer program for suppressing noise
JPWO2007029536A1 (ja) * 2005-09-02 2009-03-19 日本電気株式会社 雑音抑圧の方法及び装置並びにコンピュータプログラム
US8489394B2 (en) 2005-09-02 2013-07-16 Nec Corporation Method, apparatus, and computer program for suppressing noise
US8233636B2 (en) 2005-09-02 2012-07-31 Nec Corporation Method, apparatus, and computer program for suppressing noise
JP5092748B2 (ja) * 2005-09-02 2012-12-05 日本電気株式会社 雑音抑圧の方法及び装置並びにコンピュータプログラム
JP2007248519A (ja) * 2006-03-13 2007-09-27 Yamaha Corp 波形編集装置
EP2355092A1 (en) 2009-12-04 2011-08-10 Yamaha Corporation Audio processing apparatus and method
US8492639B2 (en) 2009-12-04 2013-07-23 Yamaha Corporation Audio processing apparatus and method
JP2013045084A (ja) * 2011-08-26 2013-03-04 Yamaha Corp 信号処理装置
WO2018055892A1 (ja) * 2016-09-21 2018-03-29 ローランド株式会社 電子打楽器の音源
US11127387B2 (en) 2016-09-21 2021-09-21 Roland Corporation Sound source for electronic percussion instrument and sound production control method thereof

Also Published As

Publication number Publication date
US5536902A (en) 1996-07-16
JP2906970B2 (ja) 1999-06-21

Similar Documents

Publication Publication Date Title
JP2906970B2 (ja) サウンドの分析及び合成方法並びに装置
JP3985814B2 (ja) 歌唱合成装置
Bonada et al. Synthesis of the singing voice by performance sampling and spectral models
JP6791258B2 (ja) 音声合成方法、音声合成装置およびプログラム
JP4839891B2 (ja) 歌唱合成装置および歌唱合成プログラム
US20070137466A1 (en) Sound synthesis by combining a slowly varying underlying spectrum, pitch and loudness with quicker varying spectral, pitch and loudness fluctuations
Penttinen et al. Model-based sound synthesis of the guqin
Carrillo et al. Performance control driven violin timbre model based on neural networks
Jensen The timbre model
Rodet et al. The Diphone program: New features, new synthesis methods and experience of musical use.
JP2018077283A (ja) 音声合成方法
Wright et al. Analysis/synthesis comparison
JP2003345400A (ja) ピッチ変換装置、ピッチ変換方法及びプログラム
JP3706249B2 (ja) 音声変換装置、音声変換方法、および音声変換プログラムを記録した記録媒体
JP6834370B2 (ja) 音声合成方法
JP4565846B2 (ja) ピッチ変換装置
JP2003076387A (ja) 音声合成装置、方法、及びプログラム
JP2018077280A (ja) 音声合成方法
JP3540609B2 (ja) 音声変換装置及び音声変換方法
JP6822075B2 (ja) 音声合成方法
JP2003255951A (ja) 波形処理方法および装置
JP3447220B2 (ja) 音声変換装置及び音声変換方法
JP3907027B2 (ja) 音声変換装置および音声変換方法
TWI385644B (zh) 歌唱聲合成方法
Pierucci et al. Singing Voice Analysis and Synthesis System through Glottal Excited Formant Resonators.

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees