JPWO2007029536A1 - 雑音抑圧の方法及び装置並びにコンピュータプログラム - Google Patents

雑音抑圧の方法及び装置並びにコンピュータプログラム Download PDF

Info

Publication number
JPWO2007029536A1
JPWO2007029536A1 JP2007534337A JP2007534337A JPWO2007029536A1 JP WO2007029536 A1 JPWO2007029536 A1 JP WO2007029536A1 JP 2007534337 A JP2007534337 A JP 2007534337A JP 2007534337 A JP2007534337 A JP 2007534337A JP WO2007029536 A1 JPWO2007029536 A1 JP WO2007029536A1
Authority
JP
Japan
Prior art keywords
signal
unit
noise
frequency
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007534337A
Other languages
English (en)
Other versions
JP5092748B2 (ja
Inventor
昭彦 杉山
昭彦 杉山
正徳 加藤
正徳 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2007534337A priority Critical patent/JP5092748B2/ja
Publication of JPWO2007029536A1 publication Critical patent/JPWO2007029536A1/ja
Application granted granted Critical
Publication of JP5092748B2 publication Critical patent/JP5092748B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Noise Elimination (AREA)
  • Telephone Function (AREA)

Abstract

少ない演算量で低域成分を抑圧し、高品質な雑音抑圧を達成することのできる雑音抑圧の方法及び装置並びにコンピュータプログラムを提供する。入力信号を周波数領域信号に変換し、該周波数領域信号の振幅を補正して振幅補正信号を求め、該振幅補正信号を用いて推定雑音を求め、該推定雑音と前記振幅補正信号を用いて抑圧係数を定め、該抑圧係数で前記振幅補正信号を重みづけすることによって、入力信号中の所望信号に重畳されている雑音を抑圧する。

Description

本発明は、所望の音声信号に重畳されている雑音を抑圧するための雑音抑圧の方法及び装置並びに雑音抑圧に用いるコンピュータプログラムに関する。
ノイズサプレッサ(雑音抑圧システム)は、所望の音声信号に重畳されている雑音(ノイズ)を抑圧するシステムであり、一般的に、周波数領域に変換した入力信号を用いて雑音成分のパワースペクトルを推定し、この推定パワースペクトルを入力信号から差し引くことにより、所望の音声信号に混在する雑音を抑圧するように動作する。雑音成分のパワースペクトルを継続的に推定することにより、非定常な雑音の抑圧にも適用することができる。ノイズサプレッサとしては、例えば、北米携帯電話で標準として採用されている非特許文献1(1996年1月、テクニカル・リクワイアメント、TIA/EIA/IS-127-1 (Technical Requirements (TR45). ENHANCED VARIABLE RATE CODEC, SPEECH SERVICE OPTION 3 FORWIDEBAND SPREAD SPECTRUM DIGITAL SYSTEMS, TIA/EIA/IS-127-1, SEP, 1996))及び特許文献1(特開2002-204175号公報)に記載されている方式がある。
通常、音波を収集するマイクロフォンの出力信号をアナログ−ディジタル(AD)変換したディジタル信号が、入力信号としてノイズサプレッサに供給される。主として、マクロフォンにおける集音やAD変換の際に付加される低周波成分を抑圧する目的で、一般的に、高域通過フィルタがAD変換とノイズサプレッサの間に配置される。このような構成の例は、例えば特許文献2(米国特許5,659,622号)に開示されている。
図1に、特許文献1のノイズサプレッサに特許文献2の高域通過フィルタを組み合せた構造を示す。
入力端子11には、劣化音声信号(所望音声信号と雑音の混在する信号)が、サンプル値系列として供給される。劣化音声信号サンプルは、高域通過フィルタ17に供給され、低域成分を抑圧された後、フレーム分割部1に供給される。低域成分の抑圧は、入力される劣化音声の線形性を保ち、十分な信号処理性能を発揮するためには、実用上不可欠である。フレーム分割部1は、劣化音声信号サンプルを特定の数を単位としたフレームに分割し、窓掛け処理部2へ伝達する。窓掛け処理部2は、フレームに分割された劣化音声サンプルと窓関数を乗算し、その結果をフーリエ変換部3へ伝達する。
フーリエ変換部3は、窓掛けされた劣化音声サンプルにフーリエ変換を施して複数の周波数成分に分割し、振幅値を多重化して、推定雑音計算部52、雑音抑圧係数生成部82、及び多重乗算部16へ供給する。位相は、逆フーリエ変換部9に伝達する。推定雑音計算部52は、供給された複数の周波数成分それぞれに対して雑音を推定し、雑音抑圧係数生成部82へ伝達する。雑音推定の方式の一例としては、過去の信号対雑音比で劣化音声を重み付けて雑音成分とする方式があり、その詳細は特許文献1に記載されている。
雑音抑圧係数生成部82では、推定した雑音を劣化音声に乗算することにより、雑音が抑圧された強調音声を求めるための雑音抑圧係数を複数の周波数成分それぞれに対して生成する。雑音抑圧係数生成の一例としては、強調音声の平均二乗パワーを最小化する最小平均二乗短時間スペクトル振幅法が広く用いられており、その詳細は特許文献1に記載されている。
周波数別に生成した雑音抑圧係数は多重乗算部16に供給される。多重乗算部16は、フーリエ変換部3から供給された劣化音声と雑音抑圧係数生成部82から供給された雑音抑圧係数を、周波数毎に乗算し、その積を強調音声の振幅として逆フーリエ変換部9に伝達する。逆フーリエ変換部9は、多重乗算部16から供給された強調音声振幅とフーリエ変換部3から供給された劣化音声の位相を合わせて逆フーリエ変換を行い、強調音声信号サンプルとしてフレーム合成部10に供給する。フレーム合成部10では、隣接フレームの強調音声サンプルを用いて当該フレームの出力音声サンプルを合成して出力端子12に供給する。
高域通過フィルタ17は、直流近傍の周波数成分を抑圧するものであり、通常、100Hzから120Hzの周波数以上の成分は抑圧させずにそのまま通過させる。高域通過フィルタ17の構成は、有限インパルス応答(FIR)型または無限インパルス応答(IIR)型のフィルタとすることができるが、鋭い通過帯域端特性が必要であるために、通常は後者を用いる。IIR型フィルタは、その伝達関数が有利関数で表され、分母係数の感度が極めて高いことが知られている。従って、高域通過フィルタ17を有限語長演算で実現する際には、十分な精度を達成するために、倍精度演算を多用しなければならず、演算量が多くなるという問題があった。一方、演算量低減のために高域通過フィルタ17を除去すると、入力信号の線形性を保つことが困難となり、高品質な雑音抑圧が不可能になる。
本発明の目的は、少ない演算量で低域成分を抑圧し、高品質な雑音抑圧を達成することのできる雑音抑圧の方法及び装置を提供することである。
本発明に係る雑音抑圧方法は、入力信号を周波数領域信号に変換し、該周波数領域信号の振幅を補正して振幅補正信号を求め、該振幅補正信号を用いて推定雑音を求め、該推定雑音と前記振幅補正信号を用いて抑圧係数を定め、該抑圧係数で前記振幅補正信号を重みづけしている。
一方、本発明に係る雑音抑圧装置は、入力信号を周波数領域信号に変換する変換部と、該周波数領域信号の振幅を補正して振幅補正信号を求める振幅補正部と、該振幅補正信号を用いて推定雑音を求める雑音推定部と、該推定雑音と前記振幅補正信号を用いて抑圧係数を定める抑圧係数生成部と、該抑圧係数で前記振幅補正信号を重みづけする乗算部とを備えている。
更に、本発明に係る雑音抑圧の信号処理を行なうコンピュータプログラムは、前記入力信号を周波数領域信号に変換する処理と、該周波数領域信号の振幅を補正して振幅補正信号を求める処理と、該振幅補正信号を用いて推定雑音を求める処理と、該推定雑音と前記振幅補正信号を用いて抑圧係数を定める処理と、該抑圧係数で前記振幅補正信号を重みづけする処理とを有している。
特に、本発明に係る雑音抑圧の方法及び装置は、低域成分の抑圧をフーリエ変換後の信号に対して実行することを特徴とする。より具体的には、フーリエ変換出力の振幅に対して低域成分を抑圧するための振幅補正部と、フーリエ変換出力の位相に対して低域成分の振幅変形に対応した位相補正を行う位相補正部とを備えていることを特徴とする。
本発明によれば、周波数領域に変換された信号の振幅に定数を乗算し、位相に定数を加算するので、単精度演算による実現が可能となり、少ない演算量で高品質な雑音抑圧を達成することができる。
従来の雑音抑圧装置の構成例を示すブロック図である。 本発明の第1の実施の形態を示すブロック図である。 本発明の第1の実施の形態に含まれる振幅補正部の構成を示すブロック図である。 図3に含まれる音声存在確率計算部の構成を示すブロック図である。 本発明の第2の実施の形態を示すブロック図である。 本発明の第3の実施の形態を示すブロック図である。 本発明の第3の実施の形態に含まれる多重乗算部の構成を示すブロック図である。 本発明の第3の実施の形態に含まれる重みつき劣化音声計算部の構成を示すブロック図である。 図8に含まれる周波数別SNR計算部の構成を示すブロック図である。 図8に含まれる多重非線形処理部の構成を示すブロック図である。 非線形処理部における非線形関数の一例を示す図である。 本発明の第3の実施の形態に含まれる推定雑音計算部の構成を示すブロック図である。 図12に含まれる周波数別推定雑音計算部の構成を示すブロック図である。 図13に含まれる更新判定部の構成を示すブロック図である。 本発明の第3の実施の形態に含まれる推定先天的SNR計算部の構成を示すブロック図である。 図15に含まれる多重値域限定処理部の構成を示すブロック図である。 図15に含まれる多重重みつき加算部の構成を示すブロック図である。 図17に含まれる重みつき加算部の構成を示すブロック図である。 本発明の第3の実施の形態に含まれる雑音抑圧係数生成部の構成を示すブロック図である。 本発明の第3の実施の形態に含まれる抑圧係数補正部の構成を示すブロック図である。 図20に含まれる周波数別抑圧係数補正部の構成を示すブロック図である。
符号の説明
1 フレーム分割部
2,20 窓がけ処理部
3 フーリエ変換部
4,5049 カウンタ
5,52 推定雑音計算部
6,1402 周波数別SNR計算部
7 推定先天的SNR計算部
8,82 雑音抑圧係数生成部
9 逆フーリエ変換部
10 フレーム合成部
11 入力端子
12 出力端子
13,16,704,705,1404 多重乗算部
14 重みつき劣化音声計算部
15 抑圧係数補正部
17 高域通過フィルタ
18 振幅補正部
19 位相補正部
21 音声非存在確率記憶部
22 オフセット除去部
501,502,1302,1303,1422,1423,1495,1502,1503,1801,1901,7013,7072,7074 分離部
503,1304,1424,1475,1504,1803,1903,7014,7075 多重化部
5040〜504K-1 周波数別推定雑音計算部
520 更新判定部
701 多重値域限定処理部
702 後天的SNR記憶部
703 抑圧係数記憶部
706 重み記憶部
707 多重重みつき加算部
708,5046,7092,7094 加算器
811 MMSE STSA ゲイン関数値計算部
812 一般化尤度比計算部
814 抑圧係数計算部
921 瞬時推定SNR
9210〜921K-1 周波数別瞬時推定SNR
922 過去の推定SNR
9220〜922K-1 過去の周波数別推定SNR
923 重み
924 推定先天的SNR
9240〜924K-1 周波数別推定先天的SNR
13010〜1301K-1,1597,7091,7093 乗算器
1401,5042 推定雑音記憶部
1405 多重非線形処理部
14210〜1421K-1,5048 除算部
14850〜1485K-1 非線形処理部
15010〜1501K-1 周波数別抑圧係数補正部
1591,70120〜7012K-1 最大値選択部
1592 抑圧係数下限値記憶部
1593,5204,5206 閾値記憶部
1594,5203,5205 比較部
1595,5044 スイッチ
1596 修正値記憶部
18020〜1802K-1 重み付け処理部
19020〜1902K-1 位相回転部
5041 レジスタ長記憶部
5045 シフトレジスタ
5047 最小値選択部
5201 論理和計算部
5207 閾値計算部
7011 定数記憶部
70710〜7071K-1 重みつき加算部
7095 定数乗算器
図2は、本発明の第1の形態を示すブロック図である。図2の構成と従来例である図1の構成とは、高域通過フィルタ17、振幅補正部18、位相補正部19、窓がけ処理部20を除いて同一である。以下、これらの相違点を中心に詳細な動作を説明する。
図2では、図1の高域通過フィルタ17が削除され、その代わりに振幅補正部18と位相補正部19と窓がけ処理部20とが設けられている。振幅補正部18と位相補正部19は、高域通過フィルタの周波数応答を周波数領域に変換した信号に対して適用するために設けられている。高域通過フィルタ17の伝達関数にz=exp(j・2πf)を適用して得られるfの関数の絶対値(振幅周波数応答)を振幅補正部18で入力信号に適用し、位相(位相周波数応答)を位相補正部19で入力信号に適用する。
これらの操作で、高域通過フィルタ17を入力信号に適用したときと同等の効果を得られる。すなわち、高域通過フィルタ17の伝達関数を時間領域で入力信号と畳み込む代わりに、フーリエ変換部3で周波数領域信号に変換された後に周波数応答を乗算することになる。
振幅補正部18の出力は推定雑音計算部52、雑音抑圧係数生成部82、及び多重乗算部16に供給される。位相補正部19の出力は逆フーリエ変換部9に伝達される。
これ以降の動作は、図1を用いて説明した通りである。窓がけ処理部20は、特許文献3(特開2003-131689号公報)に開示されているように、フレーム境界における断続音を抑圧するために設けられている。
図3に、振幅補正部18の構成例を示す。フーリエ変換部3から供給された多重化劣化音声振幅スペクトルは、分離部1801に伝達される。分離部1801は、多重化された劣化音声振幅スペクトルを各周波数成分に分解して、重み付け処理部18020〜1802K-1に伝達する。重み付け処理部18020〜1802K-1はそれぞれ、各周波数成分に分解された劣化音声振幅スペクトルを対応する振幅周波数応答で重み付けし、多重化部1803に伝達する。多重化部1803は、重み付け処理部18020〜1802K-1から伝達された信号を多重化して補正劣化音声振幅スペクトルとして出力する。
図4に、位相補正部19の構成例を示す。フーリエ変換部3から供給された多重化劣化音声位相スペクトルは、分離部1901に伝達される。分離部1901は、多重化された劣化音声位相スペクトルを各周波数成分に分解してそれぞれ位相回転部19020〜1902K-1に伝達する。位相回転部19020〜1902K-1はそれぞれ、各周波数成分に分解された劣化音声位相スペクトルを対応する位相周波数応答に応じて回転させて多重化部1903に伝達する。多重化部1903は、位相回転部19020〜1902K-1から伝達された信号を多重化して、補正劣化音声位相スペクトルとして出力する。位相補正部19の存在は、振幅補正部18ほど重要ではなく、省略することもできる。これは、位相補正部19の有無が出力信号の位相にしか影響を与えず、また、位相情報は音声の内容理解において、振幅情報よりもはるかに重要性が低いことが知られているからである。
図5は、本発明の第2の実施の形態を示すブロック図である。図5の構成と、第1の実施の形態である図2の構成との違いは、オフセット除去部22である。オフセット除去部22は、窓がけ処理された劣化音声に対してオフセットを除去して出力する。オフセット除去の最も簡単な方式は、フレーム毎に劣化音声の平均値を求めてオフセットとし、これを当該フレーム内の全サンプルから差し引くことである。また、フレーム毎の平均値を複数フレームに渡って平均化し、その平均値をオフセットとして差し引いてもよい。オフセット除去によって、次に続くフーリエ変換部3における変換精度が向上し、出力における強調音声の音質を改善することができる。
図6は、本発明の第3の実施の形態を示すブロック図である。入力端子11には、劣化音声信号(所望音声信号と雑音の混在する信号)が、サンプル値系列として供給される。劣化音声信号サンプルは、フレーム分割部1に供給されてK/2サンプル毎のフレームに分割される。ここで、Kは偶数とする。フレームに分割された劣化音声信号サンプルは、窓がけ処理部2に供給され、窓関数w(t)との乗算が行なわれる。第nフレームの入力信号yn(t) (t=0, 1, ..., K/2-1) に対するw(t)で窓がけされた信号yn(t)バーは、次式で与えられる。
Figure 2007029536
また、連続する2フレームの一部を重ね合わせ(オーバラップ)して窓がけすることも広く行なわれている。オーバラップ長としてフレーム長の50%を仮定すれば、t=0, 1, ..., K/2-1 に対して、

Figure 2007029536
で得られるyn(t)バー (t=0, 1, ..., K-1)が、窓がけ処理部2の出力となる。実数信号に対しては、左右対称窓関数が用いられる。また、窓関数は、抑圧係数を1に設定したときの入力信号と出力信号が計算誤差を除いて一致するように設計される。これは、w(t)+w(t+K/2)=1となることを意味する。
以後、連続する2フレームの50%をオーバラップして窓がけする場合を例として説明を続ける。w(t)としては、例えば次式に示すハニング窓を用いることができる。
Figure 2007029536
このほかにも、ハミング窓、ケイザー窓、ブラックマン窓など、様々な窓関数が知られている。窓がけされた出力yn(t)バーは、オフセット除去部22に供給されて、オフセットを除去される。オフセット除去の詳細に関しては、図5を用いて説明した通りである。
オフセット除去後の信号はフーリエ変換部3に供給され、劣化音声スペクトルYn(k)に変換される。劣化音声スペクトルYn(k)は位相と振幅に分離され、劣化音声位相スペクトル arg Yn(k)は、位相補正部19を経て、逆フーリエ変換部9に、劣化音声振幅スペクトル|Yn(k)|は、振幅補正部18を経て、多重乗算部13と多重乗算部16に供給される。位相補正部19と振幅補正部18の動作については、図2を用いて説明した通りである。
多重乗算部13は、振幅補正された劣化音声振幅スペクトルを用いて劣化音声パワースペクトルを計算し、推定雑音計算部5、周波数別SNR(信号対雑音比)計算部6、及び重みつき劣化音声計算部14に伝達する。重みつき劣化音声計算部14は、多重乗算部13から供給された劣化音声パワースペクトルを用いて重みつき劣化音声パワースペクトルを計算し、推定雑音計算部5に伝達する。
推定雑音計算部5は、劣化音声パワースペクトル、重みつき劣化音声パワースペクトル、及びカウンタ4から供給されるカウント値を用いて雑音のパワースペクトルを推定し、推定雑音パワースペクトルとして周波数別SNR計算部6に伝達する。周波数別SNR計算部6は、入力された劣化音声パワースペクトルと推定雑音パワースペクトルを用いて周波数別にSNRを計算し、後天的SNRとして推定先天的SNR計算部7と雑音抑圧係数生成部8に供給する。
推定先天的SNR計算部7は、入力された後天的SNR、及び抑圧係数補正部15から供給された補正抑圧係数を用いて先天的SNRを推定し、推定先天的SNRとして、雑音抑圧係数生成部8に伝達する。雑音抑圧係数生成部8は、入力として供給された後天的SNR、推定先天的SNR及び音声非存在確率記憶部21から供給される音声非存在確率を用いて雑音抑圧係数を生成し、抑圧係数として抑圧係数補正部15に伝達する。抑圧係数補正部15は、入力された推定先天的SNRと抑圧係数を用いて抑圧係数を補正し、補正抑圧係数Gn(k)バーとして多重乗算部16に供給する。多重乗算部16は、フーリエ変換部3から振幅補正部18を経て供給された補正劣化音声振幅スペクトルを、抑圧係数補正部15から供給された補正抑圧係数Gn(k)バーで重み付けすることによって強調音声振幅スペクトル|Xn(k)|バーを求め、逆フーリエ変換部9に伝達する。
|Xn(k)|バーは、次式で与えられる。
Figure 2007029536
ここで、Hn(k)は、振幅補正部18における補正利得であり、図1の高域通過フィルタの振幅周波数応答として得られる。
逆フーリエ変換部9は、多重乗算部16から供給された強調音声振幅スペクトル|Xn(k)|バーとフーリエ変換部3から位相補正部19を経て供給された補正劣化音声位相スペクトル arg Yn(k) + arg Hn(k)を乗算して、強調音声Xn(k)バーを求める。すなわち、
Figure 2007029536
を実行する。ここで、arg Hn(k)は、位相補正部19における補正位相であり、図1の高域通過フィルタの位相周波数応答として得られる。
逆フーリエ変換部9は、得られた強調音声Xn(k)バーに逆フーリエ変換を施し、1フレームがKサンプルから構成される時間領域サンプル値系列xn(t)バー(t=0, 1, ..., K-1)として窓がけ処理部20に供給する。窓がけ処理部20では、逆フーリエ変換部9から供給された時間領域サンプル値系列xn(t)バーと窓関数w(t)との乗算が行なわれる。第nフレームの入力信号xn(t)(t=0, 1, ..., K/2-1)に対するw(t)で窓がけされた信号xn(t)バーは、次式で与えられる。
Figure 2007029536
また、連続する2フレームの一部を重ね合わせ(オーバラップ)して窓がけすることも広く行なわれている。オーバラップ長としてフレーム長の50%を仮定すれば、t=0, 1, ..., K/2-1に対して、
Figure 2007029536
で得られるyn(t)バー(t=0, 1, ..., K-1)が、窓がけ処理部20の出力となり、フレーム合成部10に伝達される。
フレーム合成部10は、xn(t)バーの隣接する2フレームからK/2サンプルずつを取り出して重ね合わせ、
Figure 2007029536
によって、強調音声xn(t)ハットを得る。得られた強調音声xn(t)ハット (t=0, 1, ..., K-1)が、フレーム合成部10の出力として、出力端子12に伝達される。
図7は、図6に示した多重乗算部13の構成を示すブロック図である。多重乗算部13は、乗算器13010〜1301K-1、分離部1302及び1303、多重化部1304を有する。多重化された状態で図6の振幅補正部18から供給された補正劣化音声振幅スペクトルは、分離部1302及び1303において周波数別のKサンプルに分離され、それぞれ乗算器13010〜1301K-1に供給される。乗算器13010〜1301K-1は、それぞれ入力された信号を2乗し、多重化部1304に伝達する。多重化部1304は、入力された信号を多重化し、劣化音声パワースペクトルとして出力する。
図8は重みつき劣化音声計算部14の構成を示すブロック図である。重みつき劣化音声計算部14は、推定雑音記憶部1401、周波数別SNR計算部1402、多重非線形処理部1405、及び多重乗算部1404を有する。推定雑音記憶部1401は、図6の推定雑音計算部5から供給される推定雑音パワースペクトルを記憶し、1フレーム前に記憶された推定雑音パワースペクトルを周波数別SNR計算部1402へ出力する。
周波数別SNR計算部1402は、推定雑音記憶部1401から供給される推定雑音パワースペクトルと図6の多重乗算部13から供給される劣化音声パワースペクトルを用いてSNRを各周波数毎に求め、多重非線形処理部1405に出力する。多重非線形処理部1405は、周波数別SNR計算部1402から供給されるSNRを用いて重み係数ベクトルを計算し、重み係数ベクトルを多重乗算部 1404に出力する。
多重乗算部1404は、図6の多重乗算部13から供給される劣化音声パワースペクトルと、多重非線形処理部1405から供給される重み係数ベクトルの積を周波数毎に計算し、重みつき劣化音声パワースペクトルを図6の推定雑音記憶部5に出力する。多重乗算部1404の構成は、既に図7を用いて説明した多重乗算部13に等しいので、詳細な説明は省略する。
図9は、図8に含まれる周波数別SNR計算部1402の構成を示すブロック図である。周波数別SNR計算部1402は、除算部14210〜1421K-1、分離部1422及び1423、多重化部1424を有する。図6の多重乗算部13から供給される劣化音声パワースペクトルは、分離部1422に伝達される。図8の推定雑音記憶部1401から供給される推定雑音パワースペクトルは、分離部1423に伝達される。劣化音声パワースペクトルは分離部1422において、推定雑音パワースペクトルは分離部1423において、それぞれ周波数成分に対応したKサンプルに分離され、それぞれ除算部14210〜1421K-1に供給される。
除算部14210〜1421K-1では、次式に従って、供給された劣化音声パワースペクトルを推定雑音パワースペクトルで除算して周波数別SNR γn(k)ハットを求め、多重化部1424に伝達する。
Figure 2007029536
ここで、λn-1(k)は1フレーム前に記憶された推定雑音パワースペクトルである。多重化部1424は、伝達されたK個の周波数別SNRを多重化して、図8の多重非線形処理部1405へ伝達する。
次に、図10を参照しながら、図8の多重非線形処理部1405の構成と動作について詳しく説明する。図10は、重みつき劣化音声計算部14に含まれる多重非線形処理部1405の構成を示すブロック図である。多重非線形処理部1405は、分離部1495、非線形処理部14850〜1485K-1、及び多重化部1475を有する。分離部1495は、図8の周波数別SNR計算部1402から供給されるSNRを周波数別のSNRに分離し、非線形処理部14850〜1485K-1に出力する。非線形処理部14850〜1485K-1は、それぞれ入力値に応じた実数値を出力する非線形関数を有する。
図11に、非線形関数の例を示す。f1を入力値としたとき、図11に示される非線形関数の出力値f2は、
Figure 2007029536
で与えられる。但し、aとbは任意の実数である。
図10に戻って、非線形処理部14850〜1485K-1は、分離部1495から供給される周波数別SNRを非線形関数によって処理して重み係数を求め、多重化部1475に出力する。すなわち、非線形処理部14850〜1485K-1はSNRに応じた1から0までの重み係数を出力する。SNRが小さい時は1を、大きい時は0を出力する。多重化部1475は、非線形処理部14850〜1485K-1から出力された重み係数を多重化し、重み係数ベクトルとして多重乗算部1404に出力する。
図8の多重乗算部1404で劣化音声パワースペクトルと乗算される重み係数は、SNRに応じた値になっており、SNRが大きい程、すなわち劣化音声に含まれる音声成分が大きい程、重み係数の値は小さくなる。推定雑音の更新には一般に劣化音声パワースペクトルが用いられるが、推定雑音の更新に用いる劣化音声パワースペクトルに対して、SNRに応じた重みづけを行うことで、劣化音声パワースペクトルに含まれる音声成分の影響を小さくすることができ、より精度の高い雑音推定を行うことができる。なお、重み係数の計算に非線形関数を用いた例を示したが、非線形関数以外にも線形関数や高次多項式など、他の形で表されるSNRの関数を用いる事も可能である。
図12は、図6に示した推定雑音計算部5の構成を示すブロック図である。雑音推定計算部5は、分離部501、502、多重化部503、及び周波数別推定雑音計算部5040〜504K-1を有する。
図12において、分離部501は、図6の重みつき劣化音声計算部14から供給される重みつき劣化音声パワースペクトルを周波数別の重みつき劣化音声パワースペクトルに分離し、周波数別推定雑音計算部5040〜504K-1にそれぞれ供給する。分離部502は、図6の多重乗算部13から供給される劣化音声パワースペクトルを周波数別の劣化音声パワースペクトルに分離し、周波数別推定雑音計算部5040〜504K-1にそれぞれ出力する。
周波数別推定雑音計算部5040〜504K-1は、分離部501から供給される周波数別重みつき劣化音声パワースペクトル、分離部502から供給される周波数別劣化音声パワースペクトル、及び図6のカウンタ4から供給されるカウント値から周波数別推定雑音パワースペクトルを計算し、多重化部503へ出力する。多重化部503は、周波数別推定雑音計算部5040〜504K-1から供給される周波数別推定雑音パワースペクトルを多重化し、推定雑音パワースペクトルを図6の周波数別SNR計算部6と重みつき劣化音声計算部14へ出力する。周波数別推定雑音計算部5040〜504K-1の構成と動作の詳細な説明は、図13を参照しながら行う。
図13は、図12に示した周波数別推定雑音計算部5040〜504K-1の構成を示すブロック図である。周波数別推定雑音計算部504は、更新判定部520、レジスタ長記憶部5041、推定雑音記憶部5042、スイッチ5044、シフトレジスタ5045、加算器5046、最小値選択部5047、除算部5048、カウンタ5049を有する。
スイッチ5044には、図12の分離部501から、周波数別重みつき劣化音声パワースペクトルが供給されている。スイッチ5044が回路を閉じたときに、周波数別重みつき劣化音声パワースペクトルは、シフトレジスタ5045に伝達される。シフトレジスタ5045は、更新判定部520から供給される制御信号に応じて、内部レジスタの記憶値を隣接レジスタにシフトする。シフトレジスタ長は、後述するレジスタ長記憶部5041に記憶されている値に等しい。シフトレジスタ5045の全レジスタ出力は、加算器5046に供給される。加算器5046は、供給された全レジスタ出力を加算して、加算結果を除算部5048に伝達する。
一方、更新判定部520には、カウント値、周波数別劣化音声パワースペクトル及び周波数別推定雑音パワースペクトルが供給されている。更新判定部520は、カウント値が予め設定された値に到達するまでは常に“1”を、到達した後は入力された劣化音声信号が雑音であると判定されたときに“1”を、それ以外のときに“0”を出力する。更新判定部520の出力は、カウンタ5049、スイッチ5044、及びシフトレジスタ5045に伝達される。
スイッチ5044は、更新判定部520から供給された信号が“1”のときに回路を閉じ、“0”のときに開く。カウンタ5049は、更新判定部520から供給された信号が“1”のときにカウント値を増加し、“0”のときには変更しない。シフトレジスタ5045は、更新判定部520から供給された信号が“1”のときにスイッチ5044から供給される信号サンプルを1サンプル取り込むと同時に、内部レジスタの記憶値を隣接レジスタにシフトする。最小値選択部5047には、カウンタ5049の出力とレジスタ長記憶部5041の出力が供給されている。
最小値選択部5047は、供給されたカウント値とレジスタ長のうち、小さい方を選択して、除算部5048に伝達する。除算部5048は、加算器5046から供給された周波数別劣化音声パワースペクトルの加算値をカウント値又はレジスタ長の小さい方の値で除算し、商を周波数別推定雑音パワースペクトルλn(k)として出力する。Bn(k)(n=0,1, ..., N-1)をシフトレジスタ5045に保存されている劣化音声パワースペクトルのサンプル値とすると、λn(k)は、
Figure 2007029536
で与えられる。
ただし、Nはカウント値とレジスタ長のうち、小さい方の値である。カウント値はゼロから始まって単調に増加するので、最初はカウント値で除算が行なわれ、後にはレジスタ長で除算が行なわれる。レジスタ長で除算が行なわれることは、シフトレジスタに格納された値の平均値を求めることになる。最初は、シフトレジスタ5045に十分多くの値が記憶されていないために、実際に値が記憶されているレジスタの数で除算する。実際に値が記憶されているレジスタの数は、カウント値がレジスタ長より小さいときはカウント値に等しく、カウント値がレジスタ長より大きくなるとレジスタ長と等しくなる。
図14は、図13に示した更新判定部520の構成を示すブロック図である。更新判定部520は、論理和計算部5201、比較部5203、5205、閾値記憶部5204、5206、閾値計算部5207を有する。
図6のカウンタ4から供給されるカウント値は、比較部5203に伝達される。閾値記憶部5204の出力である閾値も、比較部5203に伝達される。比較部5203は、供給されたカウント値と閾値を比較し、カウント値が閾値より小さいときに“1”を、カウント値が閾値より大きいときに“0”を、論理和計算部5201に伝達する。一方、閾値計算5207は、図13の推定雑音記憶部5042から供給される周波数別推定雑音パワースペクトルに応じた値を計算し、閾値として閾値記憶部5206に出力する。最も簡単な閾値の計算方法は、周波数別推定雑音パワースペクトルの定数倍である。その他に、高次多項式や非線形関数を用いて閾値を計算することも可能である。
閾値記憶部5206は、閾値計算部5207から出力された閾値を記憶し、1フレーム前に記憶された閾値を比較部5205へ出力する。比較部5205は、閾値記憶部5206から供給される閾値と図12の分離部502から供給される周波数別劣化音声パワースペクトルを比較し、周波数別劣化音声パワースペクトルが閾値よりも小さければ“1”を、大きければ“0”を論理和計算部5201に出力する。すなわち、推定雑音パワースペクトルの大きさをもとに、劣化音声信号が雑音であるか否かを判別している。論理和計算部5201は、比較部5203の出力値と比較部5205の出力値との論理和を計算し、計算結果を図13のスイッチ5044、シフトレジスタ5045及びカウンタ5049に出力する。
このように、初期状態や無音区間だけでなく、有音区間でも劣化音声パワーが小さい場合には、更新判定部520は“1”を出力する。すなわち、推定雑音の更新が行われる。閾値の計算は各周波数毎に行われるため、周波数毎に推定雑音の更新を行うことができる。
図15は、図6に示した推定先天的SNR計算部7の構成を示すブロック図である。推定先天的SNR計算部7は、多重値域限定処理部701、後天的SNR記憶部702、抑圧係数記憶部703、多重乗算部704、705、重み記憶部706、多重重みつき加算部707、加算器708を有する。
図6の周波数別SNR計算部6から供給される後天的SNR γn(k)(k=0,1, ..., K-1)は、後天的SNR記憶部702と加算器708に伝達される。後天的SNR記憶部702は、第nフレームにおける後天的SNR γn(k)を記憶すると共に、第n-1フレームにおける後天的SNR γn-1(k)を多重乗算部705に伝達する。図6の抑圧係数補正部15から供給される補正抑圧係数Gn(k)バー(k=0, 1, ..., K-1)は、抑圧係数記憶部703に伝達される。抑圧係数記憶部703は、第nフレームにおける補正抑圧係数Gn(k)バーを記憶すると共に、第n-1フレームにおける補正抑圧係数Gn-1(k)バーを多重乗算部704に伝達する。
多重乗算部704は、供給されたGn(k)バーを2乗してG2n-1(k)バーを求め、多重乗算部705に伝達する。多重乗算部705は、G2n-1(k)バーとγn-1(k)をk=0, 1,..., K-1に対して乗算してG2n-1(k)バーγn-1(k)を求め、結果を多重重みつき加算部707に過去の推定SNR 922として伝達する。多重乗算部704及び705の構成は、既に図7を用いて説明した多重乗算部13に等しいので、詳細な説明は省略する。
加算器708の他方の端子には-1が供給されており、加算結果γn(k)-1が多重値域限定処理部701に伝達される。多重値域限定処理部701は、加算器708から供給された加算結果γn(k)-1に値域限定演算子P[・]による演算を施し、結果であるP[γn(k)-1]を多重重みつき加算部707に瞬時推定SNR 921として伝達する。ただし、P[x]は次式で定められる。
Figure 2007029536
多重重みつき加算部707には、また、重み記憶部706から重み923が供給されている。多重重みつき加算部707は、これらの供給された瞬時推定SNR 921、過去の推定SNR 922、重み923を用いて推定先天的SNR 924を求める。重み923をαとし、ξn(k)ハットを推定先天的SNRとすると、ξn(k)ハットは、次式によって計算される。
Figure 2007029536
ここで、G2-1(k)γ-1(k)バー=1とする。
図16は、図15に示した多重値域限定処理部701の構成を示すブロック図である。多重値域限定処理部701は、定数記憶部7011、最大値選択部70120〜7012K-1、分離部7013、多重化部7014を有する。分離部7013には、図15の加算器708から、γn(k)-1が供給される。分離部7013は、供給されたγn(k)-1をK個の周波数別成分に分離し、最大値選択部70120〜7012K-1に供給する。最大値選択部70120〜7012K-1の他方の入力には、定数記憶部7011からゼロが供給されている。最大値選択部70120〜7012K-1は、γn(k)-1をゼロと比較し、大きい方の値を多重化部7014へ伝達する。この最大値選択演算は、上述の式12を実行することに相当する。多重化部7014は、これらの値を多重化して出力する。
図17は、図15に示した多重重みつき加算部707の構成を示すブロック図である。多重重みつき加算部707は、重みつき加算部70710〜7071K-1、分離部7072、7074、多重化部7075を有する。分離部7072には、図15の多重値域限定処理部701から、P[γn(k)-1]が瞬時推定SNR 921として供給される。分離部7072は、P[γn(k)-1]をK個の周波数別成分に分離し、周波数別瞬時推定SNR 9210〜921K-1として、重みつき加算部70710〜7071K-1に伝達する。分離部7074には、図15の多重乗算部705から、G2n-1(k)バーγn-1(k)が過去の推定SNR 922として供給される。
分離部7074は、G2n-1(k)バーγn-1(k)をK個の周波数別成分に分離し、過去の周波数別推定SNR 9220〜922K-1として、重みつき加算部70710〜7071K-1に伝達する。一方、重みつき加算部70710〜7071K-1には、重み923も供給される。重みつき加算部70710〜7071K-1は、上述の式13によって表される重みつき加算を実行し、周波数別推定先天的SNR 9240〜924K-1を多重化部7075に伝達する。多重化部7075は、周波数別推定先天的SNR 9240〜924K-1を多重化し、推定先天的SNR 924として出力する。重みつき加算部70710〜7071K-1の動作と構成については、次に図18を参照しながら説明する。
図18は、図17に示した重みつき加算部7071の構成を示すブロック図である。重みつき加算部7071は、乗算器7091、7093、定数乗算器7095、加算器7092、7094を有する。図16の分離部7072から周波数別瞬時推定SNR 921が、図17の分離部7074から過去の周波数別SNR 922が、図15の重み記憶部706から重み923が、それぞれ入力として供給される。値αを有する重み923は、定数乗算器7095と乗算器7093に伝達される。定数乗算器7095は入力信号を-1倍して得られた-αを、加算器7094に伝達する。
加算器7094のもう一方の入力としては1が供給されており、加算器7094の出力は両者の和である1-αとなる。1-αは乗算器7091に供給されて、もう一方の入力である周波数別瞬時推定SNR P[γn(k)-1]と乗算され、積である(1-α)P[γn(k)-1]が加算器7092に伝達される。一方、乗算器7093では、重み923として供給されたαと過去の推定SNR 922が乗算され、積であるαG2n-1(k)バーγn-1(k)が加算器7092に伝達される。加算器7092は、(1-α)P[γn(k)-1]とαG2n-1(k)バーγn-1(k)の和を、周波数別推定先天的SNR 904として、出力する。
図19は、図6に示した雑音抑圧係数生成部8の構成を示すブロック図である。雑音抑圧係数生成部8は、MMSE STSA ゲイン関数値計算部811、一般化尤度比計算部812、及び抑圧係数計算部814を有する。以下、非特許文献2(1984年12月、アイ・イー・イー・イー・トランザクションズ・オン・アクースティクス・スピーチ・アンド・シグナル・プロセシング、第32巻、第6号(IEEETRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING,VOL.32, NO.6,PP.1109-1121, DEC, 1984)、1109〜1121ページ)に記載されている計算式をもとに、抑圧係数の計算方法を説明する。
フレーム番号をn、周波数番号をkとし、γn(k)を図6の周波数別SNR計算部6から供給される周波数別後天的SNR、ξn(k)ハットを図6の推定先天的SNR計算部7から供給される周波数別推定先天的SNR、qを図6の音声非存在確率記憶部21から供給される音声非存在確率とする。また、
ηn(k)= ξn(k)ハット/(1-q)、
vn(k) = (ηn(k)γn(k))/(1+ηn(k))
とする。MMSE STSA ゲイン関数値計算部811は、図6の周波数別SNR計算部6から供給される後天的SNR γn(k)、図6の推定先天的SNR計算部7から供給される推定先天的SNR ξn(k)ハット、及び図6の音声非存在確率記憶部21から供給される音声非存在確率qをもとに、各周波数毎にMMSE STSAゲイン関数値を計算し、抑圧係数計算部814に出力する。
各周波数毎のMMSE STSAゲイン関数値Gn(k)は、
Figure 2007029536
で与えられる。ここで、I0(z)は0次変形ベッセル関数、I1(z)は1次変形ベッセル関数である。変形ベッセル関数については、非特許文献3(1985年、数学辞典、岩波書店、374.Gページ)に記載されている。
一般化尤度比計算部812は、図6の周波数別SNR計算部6から供給される後天的SNR γn(k)、図6の推定先天的SNR計算部7から供給される推定先天的SNR ξn(k)ハット、及び図6の音声非存在確率記憶部21から供給される音声非存在確率qをもとに、周波数毎に一般化尤度比を計算し、抑圧係数計算部814に出力する。
周波数毎の一般化尤度比Λn(k)は、
Figure 2007029536
で与えられる。
抑圧係数計算部814は、MMSE STSA ゲイン関数値計算部811から供給される MMSE STSAゲイン関数値Gn(k)と一般化尤度比計算部812から供給される一般化尤度比Λn(k)から周波数毎に抑圧係数を計算し、図6の抑圧係数補正部15へ出力する。周波数毎の抑圧係数Gn(k)バーは、
Figure 2007029536
で与えられる。周波数別にSNRを計算する代わりに、複数の周波数から構成される帯域に共通なSNRを求めて、これを用いることも可能である。
図20は、図6に示した抑圧係数補正部15の構成を示すブロック図である。抑圧係数補正部15は、周波数別抑圧係数補正部15010〜1501K-1、分離部1502、1503及び多重化部1504を有する。
分離部1502は、図6の推定先天的SNR計算部7から供給される推定先天的SNRを周波数別成分に分離し、それぞれ周波数別抑圧係数補正部15010〜1501K-1に出力する。分離部1503は、図6の抑圧係数生成部8から供給される抑圧係数を周波数別成分に分離し、それぞれ周波数別抑圧係数補正部15010〜1501K-1に出力する。
周波数別抑圧係数補正部15010〜1501K-1は、分離部1502から供給される周波数別推定先天的SNRと、分離部1503から供給される周波数別抑圧係数から、周波数別補正抑圧係数を計算し、多重化部1504へ出力する。多重化部1504は、周波数別抑圧係数補正部15010〜1501K-1から供給される周波数別補正抑圧係数を多重化し、補正抑圧係数として図6の多重乗算部16と推定先天的SNR計算部7へ出力する。
次に、図21を参照しながら、周波数別抑圧係数補正部15010〜1501K-1の構成と動作について詳細に説明する。
図21は、抑圧係数補正部15に含まれる周波数別抑圧係数補正部15010〜1501K-1の構成を示すブロック図である。周波数別抑圧係数補正部1501は、最大値選択部1591、抑圧係数下限値記憶部1592、閾値記憶部1593、比較部1594、スイッチ1595、修正値記憶部1596及び乗算器1597を有する。
比較部1594は、閾値記憶部1593から供給される閾値と、図20の分離部1502から供給される周波数別推定先天的SNRを比較し、周波数別推定先天的SNRが閾値よりも大きければ“0”を、小さければ“1”をスイッチ1595に供給する。スイッチ1595は、図20の分離部1503から供給される周波数別抑圧係数を、比較部1594の出力値が“1”のときに乗算器1597に出力し、“0”のときに最大値選択部1591に出力する。すなわち、周波数別推定先天的SNRが閾値よりも小さいときに、抑圧係数の補正が行われる。乗算器1597は、スイッチ1595の出力値と修正値記憶部1596の出力値との積を計算し、最大値選択部1591に出力する。
一方、抑圧係数下限値記憶部1592は、記憶している抑圧係数の下限値を、最大値選択部1591に供給する。最大値選択部1591は、図20の分離部1503から供給される周波数別抑圧係数、又は乗算器1597で計算された積と、抑圧係数下限値記憶部1592から供給される抑圧係数下限値とを比較し、大きい方の値を図20の多重化部1504に出力する。すなわち、抑圧係数は抑圧係数下限値記憶部1592が記憶する下限値よりも必ず大きい値になる。
これまで説明した全ての実施の形態では、雑音抑圧の方式として、最小平均2乗誤差短時間スペクトル振幅法を仮定してきたが、その他の方法にも適用することができる。このような方法の例として、非特許文献4(1979年12月、プロシーディングス・オブ・ザ・アイ・イー・イー・イー、第67巻、第12号(PROCEEDINGSOF THE IEEE, VOL.67, NO.12, PP.1586-1604, DEC, 1979)、1586〜1604ページ)に開示されているウィーナーフィルタ法や、非特許文献5(1979年4月、アイ・イー・イー・イー・トランザクションズ・オン・アコースティクス・スピーチ・アンド・シグナル・プロセシング、第27巻、第2号(IEEETRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING,VOL.27, NO.2,PP.113-120, APR, 1979)、113〜120ページ)に開示されているスペクトル減算法などがあるが、これらの詳細な構成例については説明を省略する。
また、上述した各実施形態の雑音抑圧装置は、プログラムなどを蓄積する記憶装置、入力用のキーやスイッチが配置された操作部、LCDなどの表示装置、操作部からの入力を受け付けて各部の動作を制御する制御装置から構成されるコンピュータ装置によって構成することができる。前述した各実施形態の雑音抑圧装置における動作は、制御装置が記憶装置に格納されたプログラムを実行することで実現される。プログラムは、予め記憶部に格納されていてもよく、また、CD-ROMなどの記録媒体に書き込まれた状態でユーザに提供されてもよい。また、ネットワークを通じて、プログラムを提供することも可能である。
【0001】
技術分野
[0001]
本発明は、所望の音声信号に重畳されている雑音を抑圧するための雑音抑圧の方法及び装置並びに雑音抑圧に用いるコンピュータプログラムに関する。
背景技術
[0002]
ノイズサプレッサ(雑音抑圧システム)は、所望の音声信号に重畳されている雑音(ノイズ)を抑圧するシステムであり、一般的に、周波数領域に変換した入力信号を用いて雑音成分のパワースペクトルを推定し、この推定パワースペクトルを入力信号から差し引くことにより、所望の音声信号に混在する雑音を抑圧するように動作する。雑音成分のパワースペクトルを継続的に推定することにより、非定常な雑音の抑圧にも適用することができる。ノイズサプレッサとしては、例えば、北米携帯電話で標準として採用されている非特許文献1(1996年1月、テクニカル・リクワイアメント、TIA/EIA/IS−127−1(Technical Requirements(TR45).ENHANCED VARIABLE RATE CODEC,SPEECH SERVICE OPTION 3 FORWIDEBAND SPREAD SPECTRUM DIGITAL SYSTEMS,TIA/EIA/IS−127−1,SEP,1996))及び特許文献1(特開2002−204175号公報)に記載されている方式がある。
[0003]
通常、音波を収集するマイクロフォンの出力信号をアナログ−ディジタル(AD)変換したディジタル信号が、入力信号としてノイズサプレッサに供給される。主として、マイクロフォンにおける集音やAD変換の際に付加される低周波成分を抑圧する目的で、一般的に、高域通過フィルタがAD変換とノイズサプレッサの間に配置される。このような構成の例は、例えば特許文献2(米国特許5,659,622号)に開示されている。
[0004]
図1に、特許文献1のノイズサプレッサに特許文献2の高域通過フィルタを組み合せた構造を示す。
[0005]
入力端子11には、劣化音声信号(所望音声信号と雑音の混在する信号)が、サンプル値系列として供給される。劣化音声信号サンプルは、高域通過フィルタ17に供給され、低域成分を抑圧された後、フレーム分割部1に供給される。低域成分の抑圧は、
【0003】
ィルタ17の構成は、有限インパルス応答(FIR)型または無限インパルス応答(IIR)型のフィルタとすることができるが、鋭い通過帯域端特性が必要であるために、通常は後者を用いる。IIR型フィルタは、その伝達関数が有理関数で表され、分母係数の感度が極めて高いことが知られている。従って、高域通過フィルタ17を有限語長演算で実現する際には、十分な精度を達成するために、倍精度演算を多用しなければならず、演算量が多くなるという問題があった。一方、演算量低減のために高域通過フィルタ17を除去すると、入力信号の線形性を保つことが困難となり、高品質な雑音抑圧が不可能になる。
[0010]
本発明の目的は、少ない演算量で低域成分を抑圧し、高品質な雑音抑圧を達成することのできる雑音抑圧の方法及び装置を提供することである。
[0011]
本発明に係る雑音抑圧方法は、入力信号を周波数領域信号に変換し、該周波数領域信号の振幅を補正して振幅補正信号を求め、該振幅補正信号を用いて推定雑音を求め、該推定雑音と前記振幅補正信号を用いて抑圧係数を定め、該抑圧係数で前記振幅補正信号を重みづけしている。
[0012]
一方、本発明に係る雑音抑圧装置は、入力信号を周波数領域信号に変換する変換部と、該周波数領域信号の振幅を補正して振幅補正信号を求める振幅補正部と、該振幅補正信号を用いて推定雑音を求める雑音推定部と、該推定雑音と前記振幅補正信号を用いて抑圧係数を定める抑圧係数生成部と、該抑圧係数で前記振幅補正信号を重みづけする乗算部とを備えている。
[0013]
更に、本発明に係る雑音抑圧の信号処理を行なうコンピュータプログラムは、前記入力信号を周波数領域信号に変換する処理と、該周波数領域信号の振幅を補正して振幅補正信号を求める処理と、該振幅補正信号を用いて推定雑音を求める処理と、該推定雑音と前記振幅補正信号を用いて抑圧係数を定める処理と、該抑圧係数で前記振幅補正信号を重みづけする処理とを有している。
[0014]
特に、本発明に係る雑音抑圧の方法及び装置は、低域成分の抑圧をフーリエ変換後の信号に対して実行することを特徴とする。より具体的には、フーリエ変換出力の振幅に対して低域成分を抑圧するための振幅補正部と、フーリエ変換出力の位相に対して低域成分の振幅変形に対応した位相補正を行う位相補正部とを備えているこ

Claims (9)

  1. 入力信号に含まれている雑音を抑圧する方法であって、
    入力信号を周波数領域信号に変換し、
    該周波数領域信号の振幅を補正して振幅補正信号を求め、
    該振幅補正信号を用いて推定雑音を求め、
    該推定雑音と前記振幅補正信号を用いて抑圧係数を定め、
    該抑圧係数で前記振幅補正信号を重みづけする、
    ことを特徴とする雑音抑圧の方法。
  2. 前記周波数領域信号の位相を補正して位相補正信号を求め、
    前記抑圧係数で前記振幅補正信号を重みづけした結果と前記位相補正信号を時間領域信号に変換する、
    ことを特徴とする請求の範囲1に記載の雑音抑圧の方法。
  3. 入力信号のオフセットを除去してオフセット除去信号を求め、
    該オフセット除去信号を周波数領域信号に変換する、
    ことを特徴とする請求の範囲1または2に記載の雑音抑圧の方法。
  4. 入力信号に含まれている雑音を抑圧する装置であって、
    入力信号を周波数領域信号に変換する変換部と、
    該周波数領域信号の振幅を補正して振幅補正信号を求める振幅補正部と、
    該振幅補正信号を用いて推定雑音を求める雑音推定部と、
    該推定雑音と前記振幅補正信号を用いて抑圧係数を定める抑圧係数生成部と、
    該抑圧係数で前記振幅補正信号を重みづけする乗算部と、
    を有することを特徴とする雑音抑圧の装置。
  5. 前記周波数領域信号の位相を補正して位相補正信号を求める位相補正部と、
    前記抑圧係数で前記振幅補正信号を重みづけした結果と前記位相補正信号を時間領域信号に変換する逆変換部と、
    を有することを特徴とする請求の範囲4に記載の雑音抑圧の装置。
  6. 入力信号のオフセットを除去してオフセット除去信号を求めるオフセット除去部と、
    該オフセット除去信号を周波数領域信号に変換する変換部と、
    を有することを特徴とする請求の範囲4または5に記載の雑音抑圧の装置。
  7. 入力信号に含まれている雑音を抑圧する信号処理を行なうコンピュータプログラムであって、
    前記入力信号を周波数領域信号に変換する処理と、
    該周波数領域信号の振幅を補正して振幅補正信号を求める処理と、
    該振幅補正信号を用いて推定雑音を求める処理と、
    該推定雑音と前記振幅補正信号を用いて抑圧係数を定める処理と、
    該抑圧係数で前記振幅補正信号を重みづけする処理と、
    をコンピュータに実行させるコンピュータプログラム。
  8. 前記周波数領域信号の位相を補正して位相補正信号を求める処理と、
    前記抑圧係数で前記振幅補正信号を重みづけした結果と前記位相補正信号を時間領域信
    号に変換する処理と、
    をさらにコンピュータに実行させる、請求の範囲7に記載のコンピュータプログラム。
  9. 前記入力信号のオフセットを除去してオフセット除去信号を求める処理と、
    該オフセット除去信号を周波数領域信号に変換する処理と、
    をさらにコンピュータに実行させる、請求の範囲7または8に記載のコンピュータプログラム。
JP2007534337A 2005-09-02 2006-08-28 雑音抑圧の方法及び装置並びにコンピュータプログラム Expired - Fee Related JP5092748B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007534337A JP5092748B2 (ja) 2005-09-02 2006-08-28 雑音抑圧の方法及び装置並びにコンピュータプログラム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005255669 2005-09-02
JP2005255669 2005-09-02
PCT/JP2006/316849 WO2007029536A1 (ja) 2005-09-02 2006-08-28 雑音抑圧の方法及び装置並びにコンピュータプログラム
JP2007534337A JP5092748B2 (ja) 2005-09-02 2006-08-28 雑音抑圧の方法及び装置並びにコンピュータプログラム

Publications (2)

Publication Number Publication Date
JPWO2007029536A1 true JPWO2007029536A1 (ja) 2009-03-19
JP5092748B2 JP5092748B2 (ja) 2012-12-05

Family

ID=37835657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007534337A Expired - Fee Related JP5092748B2 (ja) 2005-09-02 2006-08-28 雑音抑圧の方法及び装置並びにコンピュータプログラム

Country Status (6)

Country Link
US (3) US8233636B2 (ja)
EP (1) EP1930880B1 (ja)
JP (1) JP5092748B2 (ja)
KR (1) KR101052445B1 (ja)
CN (1) CN101300623B (ja)
WO (1) WO2007029536A1 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1982324B1 (en) * 2006-02-10 2014-09-24 Telefonaktiebolaget LM Ericsson (publ) A voice detector and a method for suppressing sub-bands in a voice detector
JP4827661B2 (ja) * 2006-08-30 2011-11-30 富士通株式会社 信号処理方法及び装置
JP5147730B2 (ja) * 2007-01-12 2013-02-20 パナソニック株式会社 受信装置及び受信方法
JP5668923B2 (ja) * 2008-03-14 2015-02-12 日本電気株式会社 信号分析制御システム及びその方法と、信号制御装置及びその方法と、プログラム
CN101770775B (zh) * 2008-12-31 2011-06-22 华为技术有限公司 信号处理方法及装置
TWI459828B (zh) * 2010-03-08 2014-11-01 Dolby Lab Licensing Corp 在多頻道音訊中決定語音相關頻道的音量降低比例的方法及系統
CN102576543B (zh) * 2010-07-26 2014-09-10 松下电器产业株式会社 多输入噪声抑制装置、多输入噪声抑制方法以及集成电路
WO2012070671A1 (ja) * 2010-11-24 2012-05-31 日本電気株式会社 信号処理装置、信号処理方法、及び信号処理プログラム
US8724828B2 (en) * 2011-01-19 2014-05-13 Mitsubishi Electric Corporation Noise suppression device
JP6070953B2 (ja) 2011-02-26 2017-02-01 日本電気株式会社 信号処理装置、信号処理方法、及び記憶媒体
GB2493327B (en) 2011-07-05 2018-06-06 Skype Processing audio signals
GB2495472B (en) 2011-09-30 2019-07-03 Skype Processing audio signals
GB2495131A (en) 2011-09-30 2013-04-03 Skype A mobile device includes a received-signal beamformer that adapts to motion of the mobile device
GB2495128B (en) 2011-09-30 2018-04-04 Skype Processing signals
GB2495129B (en) 2011-09-30 2017-07-19 Skype Processing signals
GB2496660B (en) 2011-11-18 2014-06-04 Skype Processing audio signals
GB201120392D0 (en) 2011-11-25 2012-01-11 Skype Ltd Processing signals
CN102984323A (zh) * 2011-12-08 2013-03-20 斯凯普公司 处理音频信号
GB2497343B (en) 2011-12-08 2014-11-26 Skype Processing audio signals
WO2014084000A1 (ja) * 2012-11-27 2014-06-05 日本電気株式会社 信号処理装置、信号処理方法、および信号処理プログラム
US10447516B2 (en) 2012-11-27 2019-10-15 Nec Corporation Signal processing apparatus, signal processing method, and signal processing program
JP6432597B2 (ja) 2014-03-17 2018-12-05 日本電気株式会社 信号処理装置、信号処理方法、および信号処理プログラム
US10149047B2 (en) * 2014-06-18 2018-12-04 Cirrus Logic Inc. Multi-aural MMSE analysis techniques for clarifying audio signals
CN104134444B (zh) * 2014-07-11 2017-03-15 福建星网视易信息系统有限公司 一种基于mmse的歌曲去伴奏方法和装置
JP6520276B2 (ja) 2015-03-24 2019-05-29 富士通株式会社 雑音抑圧装置、雑音抑圧方法、及び、プログラム
CN106161125B (zh) * 2015-03-31 2019-05-17 富士通株式会社 非线性特性的估计装置及方法
US11303346B2 (en) 2015-08-25 2022-04-12 Cellium Technologies, Ltd. Systems and methods for transporting signals inside vehicles
US10027374B1 (en) * 2015-08-25 2018-07-17 Cellium Technologies, Ltd. Systems and methods for wireless communication using a wire-based medium
CN106910511B (zh) * 2016-06-28 2020-08-14 阿里巴巴集团控股有限公司 一种语音去噪方法和装置
CN107170461B (zh) * 2017-07-24 2020-10-09 歌尔科技有限公司 语音信号处理方法及装置
CN114360559B (zh) * 2021-12-17 2022-09-27 北京百度网讯科技有限公司 语音合成方法、装置、电子设备和存储介质
CN114333882B (zh) * 2022-03-09 2022-08-19 深圳市友杰智新科技有限公司 基于幅度谱的语音降噪方法、装置、设备及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272499A (ja) * 1989-04-13 1990-11-07 Ricoh Co Ltd 音声認識装置
JPH07325583A (ja) * 1993-04-14 1995-12-12 Yamaha Corp サウンドの分析及び合成方法並びに装置
JPH11133996A (ja) * 1997-10-30 1999-05-21 Victor Co Of Japan Ltd 音程変換装置
JP2001350498A (ja) * 2000-04-08 2001-12-21 Alcatel 時間領域雑音抑圧
JP2002204175A (ja) * 2000-12-28 2002-07-19 Nec Corp ノイズ除去の方法及び装置
JP2003131689A (ja) * 2001-10-25 2003-05-09 Nec Corp ノイズ除去方法及び装置
JP2003140700A (ja) * 2001-11-05 2003-05-16 Nec Corp ノイズ除去方法及び装置
JP2003339709A (ja) * 2002-05-22 2003-12-02 Ge Medical Systems Global Technology Co Llc ドップラ信号処理装置および超音波診断装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5680508A (en) 1991-05-03 1997-10-21 Itt Corporation Enhancement of speech coding in background noise for low-rate speech coder
JP3277398B2 (ja) 1992-04-15 2002-04-22 ソニー株式会社 有声音判別方法
JP3338573B2 (ja) 1994-11-01 2002-10-28 ユナイテッド・モジュール・コーポレーション サブバンド分割演算回路
US5706395A (en) * 1995-04-19 1998-01-06 Texas Instruments Incorporated Adaptive weiner filtering using a dynamic suppression factor
US5659622A (en) 1995-11-13 1997-08-19 Motorola, Inc. Method and apparatus for suppressing noise in a communication system
JPH11289312A (ja) 1998-04-01 1999-10-19 Toshiba Tec Corp マルチキャリア無線通信装置
US6088668A (en) * 1998-06-22 2000-07-11 D.S.P.C. Technologies Ltd. Noise suppressor having weighted gain smoothing
JP4308345B2 (ja) 1998-08-21 2009-08-05 パナソニック株式会社 マルチモード音声符号化装置及び復号化装置
US6366880B1 (en) 1999-11-30 2002-04-02 Motorola, Inc. Method and apparatus for suppressing acoustic background noise in a communication system by equaliztion of pre-and post-comb-filtered subband spectral energies
WO2001080423A2 (en) * 2000-04-14 2001-10-25 Harman International Industries, Incorporated Method and apparatus for dynamic sound optimization
DE10020756B4 (de) * 2000-04-27 2004-08-05 Harman Becker Automotive Systems (Becker Division) Gmbh Vorrichtung und Verfahren zum geräuschabhängigen Anpassen eines akustischen Nutzsignals
EP2239733B1 (en) 2001-03-28 2019-08-21 Mitsubishi Denki Kabushiki Kaisha Noise suppression method
US7343283B2 (en) * 2002-10-23 2008-03-11 Motorola, Inc. Method and apparatus for coding a noise-suppressed audio signal
JP4608650B2 (ja) * 2003-05-30 2011-01-12 独立行政法人産業技術総合研究所 既知音響信号除去方法及び装置
US7970150B2 (en) * 2005-04-29 2011-06-28 Lifesize Communications, Inc. Tracking talkers using virtual broadside scan and directed beams
US8126161B2 (en) * 2006-11-02 2012-02-28 Hitachi, Ltd. Acoustic echo canceller system
BRPI0721079A2 (pt) 2006-12-13 2014-07-01 Panasonic Corp Dispositivo de codificação, dispositivo de decodificação e método dos mesmos
US7873114B2 (en) * 2007-03-29 2011-01-18 Motorola Mobility, Inc. Method and apparatus for quickly detecting a presence of abrupt noise and updating a noise estimate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272499A (ja) * 1989-04-13 1990-11-07 Ricoh Co Ltd 音声認識装置
JPH07325583A (ja) * 1993-04-14 1995-12-12 Yamaha Corp サウンドの分析及び合成方法並びに装置
JPH11133996A (ja) * 1997-10-30 1999-05-21 Victor Co Of Japan Ltd 音程変換装置
JP2001350498A (ja) * 2000-04-08 2001-12-21 Alcatel 時間領域雑音抑圧
JP2002204175A (ja) * 2000-12-28 2002-07-19 Nec Corp ノイズ除去の方法及び装置
JP2003131689A (ja) * 2001-10-25 2003-05-09 Nec Corp ノイズ除去方法及び装置
JP2003140700A (ja) * 2001-11-05 2003-05-16 Nec Corp ノイズ除去方法及び装置
JP2003339709A (ja) * 2002-05-22 2003-12-02 Ge Medical Systems Global Technology Co Llc ドップラ信号処理装置および超音波診断装置

Also Published As

Publication number Publication date
US8233636B2 (en) 2012-07-31
EP1930880B1 (en) 2019-09-25
US8477963B2 (en) 2013-07-02
JP5092748B2 (ja) 2012-12-05
US8489394B2 (en) 2013-07-16
KR20080042166A (ko) 2008-05-14
CN101300623A (zh) 2008-11-05
CN101300623B (zh) 2011-07-27
US20090196434A1 (en) 2009-08-06
US20120288115A1 (en) 2012-11-15
EP1930880A1 (en) 2008-06-11
WO2007029536A1 (ja) 2007-03-15
US20120290296A1 (en) 2012-11-15
EP1930880A4 (en) 2009-08-26
KR101052445B1 (ko) 2011-07-28

Similar Documents

Publication Publication Date Title
JP5092748B2 (ja) 雑音抑圧の方法及び装置並びにコンピュータプログラム
JP4172530B2 (ja) 雑音抑圧の方法及び装置並びにコンピュータプログラム
JP4282227B2 (ja) ノイズ除去の方法及び装置
JP4670483B2 (ja) 雑音抑圧の方法及び装置
JP5435204B2 (ja) 雑音抑圧の方法、装置、及びプログラム
JP5528538B2 (ja) 雑音抑圧装置
WO2012070670A1 (ja) 信号処理装置、信号処理方法、及び信号処理プログラム
JP3858668B2 (ja) ノイズ除去方法及び装置
JP2007006525A (ja) ノイズ除去の方法及び装置
JP6064600B2 (ja) 信号処理装置、信号処理方法、及び信号処理プログラム
JP2008216721A (ja) 雑音抑圧の方法、装置、及びプログラム
JP4395772B2 (ja) ノイズ除去方法及び装置
JP5413575B2 (ja) 雑音抑圧の方法、装置、及びプログラム
JP2002175099A (ja) 雑音抑制方法および雑音抑制装置
JP2003131689A (ja) ノイズ除去方法及び装置
JP4968355B2 (ja) 雑音抑圧の方法及び装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120903

R150 Certificate of patent or registration of utility model

Ref document number: 5092748

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees