JPH07323225A - Catalyst for reductive-removing nitrogen oxides in waste combustion gas - Google Patents

Catalyst for reductive-removing nitrogen oxides in waste combustion gas

Info

Publication number
JPH07323225A
JPH07323225A JP6139355A JP13935594A JPH07323225A JP H07323225 A JPH07323225 A JP H07323225A JP 6139355 A JP6139355 A JP 6139355A JP 13935594 A JP13935594 A JP 13935594A JP H07323225 A JPH07323225 A JP H07323225A
Authority
JP
Japan
Prior art keywords
catalyst
supported
activated carbon
exhaust gas
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6139355A
Other languages
Japanese (ja)
Inventor
Ataru Wakabayashi
中 若林
Yoichi Umehara
洋一 梅原
Hisanori Sonehara
尚紀 曽根原
Takashi Kimura
隆志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP6139355A priority Critical patent/JPH07323225A/en
Publication of JPH07323225A publication Critical patent/JPH07323225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To provide a reductive denitration catalyst for low temp. waste combustion gas without lowering the catalytic activity over a long period of time. CONSTITUTION:Vanadium compounds, vanadium compounds and one or more kind selected among compounds of molybdenum, tungsten and cerium, if necessary, further platinum group metal are deposited on a carbonaceous material. As the carbonaceous material, an activated carbon based carbonaceous material having >=10m<2>/g specific surface area is preferably used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼排ガス用窒素酸化
物還元除去触媒に関し、更に詳しくは、湿式脱硫後の比
較的低温の排ガスから窒素酸化物をアンモニア還元除去
できる燃焼排ガス用窒素酸化物還元除去触媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for reducing and removing nitrogen oxides for combustion exhaust gas, and more particularly to a catalyst for reducing and removing nitrogen oxides from exhaust gas at a relatively low temperature after wet desulfurization by ammonia reduction. It relates to a reduction removal catalyst.

【0002】[0002]

【従来の技術】近年、地球規模で環境汚染が問題とな
り、汚染防止のための対策が種々提案されたり、また、
排水、排ガス等の排出基準等も見直され検討されてい
る。大気汚染源となっている燃焼排ガスは、より厳しく
規制されることになる。燃焼排ガス中から窒素酸化物
(NOx)を除去する脱硝処理は、通常、排ガス中に共
存する硫黄酸化物(SOx)を除去後に行うのが望まし
い。しかし、従来から燃焼排ガスのSOx除去に広く実
施されている湿式排煙脱硫処理後の燃焼排ガスは、約5
0℃と温度が低下しており、ガス−ガス・ヒーター等で
再加熱してもせいぜい100℃程度しか昇温できず、従
来の脱硝触媒を用いる脱硝反応器を設置しても反応速度
が遅すぎて実用的でなかった。このため湿式排煙脱硫処
理後等の低温排ガスから高脱硝率で脱硝処理できる触媒
の開発が要望され、低温で脱硝活性の高い触媒の提案も
された。例えば、特開昭49−39572号公報では、
低温排ガスの脱硝処理触媒として活性炭に酸化バナジウ
ムを担持させた触媒が提案されている。
2. Description of the Related Art In recent years, environmental pollution has become a problem on a global scale, and various measures for preventing pollution have been proposed.
Emission standards for wastewater and exhaust gas have also been reviewed and studied. Combustion exhaust gas, which is a source of air pollution, will be more strictly regulated. The NOx removal treatment for removing nitrogen oxides (NOx) from the combustion exhaust gas is usually desirably performed after removing the sulfur oxides (SOx) coexisting in the exhaust gas. However, the amount of flue gas after wet flue gas desulfurization treatment, which has been widely used to remove SOx from flue gas, is about 5
The temperature is as low as 0 ° C, and even if it is reheated with a gas-gas heater, the temperature can be raised up to about 100 ° C at most, and the reaction rate is slow even if a denitration reactor using a conventional denitration catalyst is installed. It was too practical. Therefore, development of a catalyst that can perform denitration treatment with a high denitration rate from low-temperature exhaust gas after wet flue gas desulfurization treatment has been demanded, and a catalyst having high denitration activity at low temperature has also been proposed. For example, in JP-A-49-39572,
A catalyst in which vanadium oxide is supported on activated carbon has been proposed as a denitration treatment catalyst for low-temperature exhaust gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、発明者
らによれば、上記提案の酸化バナジウム担持触媒は、初
期の脱硝活性は高いものの、処理時間の経過に伴い触媒
活性が次第に低下し、長期間にわたり連続的脱硝処理す
るには問題があることが知見された。発明者らは、上記
知見に基づき、長期間の排ガス脱硝処理においても触媒
活性が低下することなく、窒素酸化物を含有する低温排
ガス、例えば湿式排煙脱硫後の排ガスから、大きな空間
速度(SV)で、且つ、長期にわたり安定した高脱硝率
で窒素酸化物を還元除去できる触媒を提供することを目
的に、担持成分等を更に検討し本発明に至った。
However, according to the inventors, although the above-mentioned proposed vanadium oxide-supported catalyst has a high denitration activity in the initial stage, the catalytic activity gradually decreases with the lapse of treatment time, and the catalyst is gradually removed for a long period of time. It was discovered that continuous denitration treatment has problems. Based on the above findings, the inventors have found that the catalyst activity does not decrease even in exhaust gas denitration treatment for a long period of time, and a low space temperature (SV ), And for the purpose of providing a catalyst capable of reducing and removing nitrogen oxides at a stable high denitration rate for a long period of time, the present invention was further studied by studying supported components and the like.

【0004】[0004]

【課題を解決するための手段】本発明によれば、炭素質
材料に、バナジウム化合物と、モリブデン、タングステ
ン及びセリウムの各化合物から選ばれた1種以上を担持
してなることを特徴とする燃焼排ガスの窒素酸化物還元
除去用触媒が提供される。また、本発明は、上記窒素酸
化物還元除去用触媒に、更に白金族金属を担持させてな
る燃焼排ガスの窒素酸化物還元除去用触媒を提供する。
According to the present invention, a carbonaceous material is loaded with a vanadium compound and at least one compound selected from molybdenum, tungsten and cerium compounds. A catalyst for reducing nitrogen oxides in exhaust gas is provided. The present invention also provides a catalyst for nitrogen oxide reduction and removal of combustion exhaust gas, which is obtained by further supporting a platinum group metal on the catalyst for nitrogen oxide reduction and removal.

【0005】[0005]

【作用】本発明は上記のように構成され、炭素質材料
に、バナジウム化合物と、モリブデン、タングステン及
びセリウムの各化合物から選ばれた1種以上を担持する
ことにより、従来提案の還元脱硝触媒に比し、低温にお
ける脱硝処理において長期間安定した還元脱硝性能を維
持することができる。また、地球温暖化防止の上から抑
制される亜酸化窒素の副生もない。また、触媒成分とし
て、更に白金族金属を担持することにより、活性向上を
図ることができる。本発明の燃焼排ガス用窒素酸化物還
元除去用触媒は、例えば、燃焼排ガスを湿式脱硫処理し
た後の約100℃以下等の低温排ガスを、アンモニアの
存在下、高空間速度で接触処理することにより、長期間
安定して高脱硝率で窒素酸化物を還元除去することがで
きる。
The present invention is configured as described above, and by supporting a vanadium compound and one or more kinds selected from molybdenum, tungsten and cerium compounds on a carbonaceous material, a conventional proposed reduction denitration catalyst can be obtained. On the contrary, it is possible to maintain stable reduction denitration performance for a long period in the denitration treatment at a low temperature. In addition, there are no nitrous oxide by-products that are suppressed in order to prevent global warming. Further, the activity can be improved by further supporting a platinum group metal as a catalyst component. The catalyst for nitrogen oxide reduction removal for combustion exhaust gas of the present invention is obtained by, for example, subjecting a low temperature exhaust gas at about 100 ° C. or lower after wet combustion desulfurization of combustion exhaust gas to contact treatment at high space velocity in the presence of ammonia. The nitrogen oxide can be reduced and removed stably with a high denitration rate for a long period of time.

【0006】以下、本発明について、更に詳細に説明す
る。本発明に使用される触媒担体である炭素質材料とし
ては、木炭、ヤシ殻等木質系活性炭、コールタールピッ
チ等石炭系活性炭、石油ピッチ等石油系活性炭等の各種
活性炭、活性コークス、活性炭素繊維等の炭素質物であ
って、その比表面積が10m2 /g以上のものであれば
よく、それらの中から任意のものを各種使用条件等に合
わせ適宜選択して使用することができる。好ましくは、
比表面積が100〜2000m2 /g、より好ましく
は、500〜1500m2 /gの活性炭系炭素質を用い
ることができる。炭素質材料の比表面積が10m2 /g
未満であると所定の触媒活性が得られない。
The present invention will be described in more detail below. Examples of the carbonaceous material that is the catalyst carrier used in the present invention include charcoal, coconut shell and other wood-based activated carbon, coal tar pitch and other coal-based activated carbon, petroleum pitch and other petroleum-based activated carbon, activated carbon, activated coke and activated carbon fiber. As long as the carbonaceous material has a specific surface area of 10 m 2 / g or more, any of them can be appropriately selected and used according to various usage conditions. Preferably,
An activated carbon-based carbonaceous material having a specific surface area of 100 to 2000 m 2 / g, and more preferably 500 to 1500 m 2 / g can be used. Specific surface area of carbonaceous material is 10m 2 / g
If it is less than the specified value, the desired catalytic activity cannot be obtained.

【0007】本発明において、触媒活性成分のバナジウ
ム(V)化合物は、3価、4価及び5価のいずれかのバ
ナジウムの酸化物、無機酸塩または有機酸塩を用いて、
上記炭素質材料に担持することができる。通常、メタバ
ナジン酸アンモニウムを蓚酸で還元したものや、硫酸バ
ナジルを好適に用いることができる。担持法としては、
スプレー法、浸漬含浸法、混練法等の公知のいずれの方
法でも使用できる。通常、スプレー法や、浸漬含浸法が
用いられる。例えば、上記バナジウム化合物を水等の可
溶溶媒に溶解し、その溶液中に上記炭素質材料を浸漬し
た後、室温〜200℃で乾燥し、その後、窒素等の不活
性気流中200〜600℃で焼成して、バナジウム担持
炭素質担体とすることができる。上記のようにして担持
したバナジウム化合物は、最終的に担体上においては、
一般に、酸化物の形態を採るものと推定される。本発明
の触媒において、Vの担持量は、V元素基準で0.1〜
20重量%、好ましくは1〜10重量%である。0.1
重量%未満であると十分な脱硝性能が得られず、20重
量%を超えて担持すると炭素質材料の比表面積が低下す
るため逆効果となり好ましくない。
In the present invention, the vanadium (V) compound as the catalytically active component is a trivalent, tetravalent or pentavalent vanadium oxide, an inorganic acid salt or an organic acid salt,
It can be supported on the above carbonaceous material. Usually, ammonium metavanadate reduced with oxalic acid and vanadyl sulfate can be preferably used. As a loading method,
Any known method such as a spray method, a dipping impregnation method, a kneading method or the like can be used. Usually, a spray method or a dip impregnation method is used. For example, the vanadium compound is dissolved in a soluble solvent such as water, the carbonaceous material is immersed in the solution, dried at room temperature to 200 ° C., and then in an inert gas stream such as nitrogen at 200 to 600 ° C. Can be calcined to obtain a vanadium-supporting carbonaceous carrier. The vanadium compound supported as described above is finally supported on the carrier,
Generally, it is presumed to take the form of oxide. In the catalyst of the present invention, the loading amount of V is 0.1 to V on the basis of V element.
It is 20% by weight, preferably 1 to 10% by weight. 0.1
If it is less than wt%, sufficient denitration performance cannot be obtained, and if it exceeds 20 wt%, the specific surface area of the carbonaceous material decreases, which is an adverse effect and is not preferable.

【0008】本発明の他の触媒活性成分のモリブデン
(Mo)、タングステン(W)及びセリウム(Ce)の
各化合物のうち、モリブデン(Mo)及びタングステン
(W)化合物としては、2価、3価、4価、5価、6価
のいずれかの酸化物、無機酸塩、または、有機酸塩を用
いて、上記炭素質材料に担持することができる。通常、
モリブデン酸アンモニウム、パラタングステン酸アンモ
ニウムが好適に用いられる。また、セリウム(Ce)化
合物としては3価または4価の酸化物、無機酸塩、有機
酸塩のいずれかを用いて担持することができる。通常、
硝酸セリウムを好適に用いることができる。炭素質材料
への担持は、上記バナジウム化合物と同様に公知のいず
れの方法でもよく、例えば、上記Mo、W、Ce化合物
の水溶液に炭素質材料を浸漬し、室温〜200℃で乾燥
した後、窒素等の不活性気流中200〜600℃で焼成
する。上記のようにして担持したMo、W、及び/また
は、Ce化合物は、最終的に担体上においては、一般
に、酸化物の形態を採るものと推定される。本発明の触
媒において、上記Mo、W、Ceの化合物の担持量は、
上記V担持量に対し、モル比で0.1〜2であり、好ま
しくは0.5〜1.5である。このモル比が0.1未満
であると十分な脱硝性能が得られず、また2を超えて担
持してもそれ以上の効果は得られない。
Among the molybdenum (Mo), tungsten (W) and cerium (Ce) compounds which are other catalytically active components of the present invention, the molybdenum (Mo) and tungsten (W) compounds are divalent and trivalent. A tetravalent, pentavalent, or hexavalent oxide, inorganic acid salt, or organic acid salt can be used to support the carbonaceous material. Normal,
Ammonium molybdate and ammonium paratungstate are preferably used. As the cerium (Ce) compound, any of a trivalent or tetravalent oxide, an inorganic acid salt, and an organic acid salt can be used for supporting. Normal,
Cerium nitrate can be preferably used. The carbonaceous material may be supported by any known method like the vanadium compound. For example, the carbonaceous material may be immersed in an aqueous solution of the Mo, W, and Ce compounds, and dried at room temperature to 200 ° C. Baking is performed at 200 to 600 ° C. in an inert gas stream such as nitrogen. It is presumed that the Mo, W, and / or Ce compound supported as described above generally takes the form of an oxide on the final support. In the catalyst of the present invention, the supported amount of the above Mo, W and Ce compounds is
The molar ratio is 0.1 to 2, and preferably 0.5 to 1.5 with respect to the amount of V supported. If this molar ratio is less than 0.1, sufficient denitration performance cannot be obtained, and even if the molar ratio exceeds 2, no further effect can be obtained.

【0009】本発明において、上記バナジウム化合物
と、モリブデン(Mo)、タングステン(W)及びセリ
ウム(Ce)の各化合物のいずれか1種以上との2触媒
成分の他に、要すれば、更に触媒成分として白金族金属
化合物、即ち、ルテニウム(Ru)、ロジウム(R
h)、パラジウム(Pd)、オスミウム(Os)、イリ
ジウム(Ir)、または、白金(Pt)の化合物を担持
することができる。白金族金属化合物は、酸化物、無機
酸塩、有機酸塩を用いて、上記炭素質材料に担持するこ
とができる。通常、無機酸塩を好適に用いることができ
る。担持法としては、スプレー法、含浸法、混練法等の
公知のいずれの方法でも使用できる。通常、スプレー法
や含浸法が用いられる。例えば、上記白金族金属化合物
を水等の可溶溶媒に溶解し、その溶液中に上記炭素質材
料を浸漬した後、室温〜200℃で乾燥し、その後、窒
素等の不活性気流中200〜600℃で焼成して、白金
族金属担持炭素質担体とすることができる。上記のよう
にして担持した白金族金属化合物は、最終的に担体上に
おいては、一般に、金属または金属酸化物の形態を採る
ものと推定される。本発明の触媒において、白金族金属
担持量は、白金族金属元素基準で0.001〜0.1重
量%、好ましくは0.01〜0.05重量%である。
0.001重量%未満であると担持した効果が殆ど得ら
れず、0.1重量%を超えて担持してもそれ以上の効果
が得られないためである。
In the present invention, in addition to the two catalyst components of the vanadium compound and any one or more of molybdenum (Mo), tungsten (W) and cerium (Ce) compounds, if necessary, a catalyst is further added. As a component, a platinum group metal compound, that is, ruthenium (Ru), rhodium (R
A compound of h), palladium (Pd), osmium (Os), iridium (Ir), or platinum (Pt) can be supported. The platinum group metal compound can be supported on the carbonaceous material using an oxide, an inorganic acid salt, or an organic acid salt. Usually, an inorganic acid salt can be preferably used. As a supporting method, any known method such as a spray method, an impregnation method, a kneading method, or the like can be used. Usually, a spray method or an impregnation method is used. For example, the platinum group metal compound is dissolved in a soluble solvent such as water, the carbonaceous material is immersed in the solution, dried at room temperature to 200 ° C., and then 200 to 200 ° C. in an inert gas stream such as nitrogen. A platinum group metal-supporting carbonaceous carrier can be obtained by firing at 600 ° C. It is presumed that the platinum group metal compound supported as described above generally takes the form of a metal or a metal oxide on the final support. In the catalyst of the present invention, the platinum group metal supported amount is 0.001 to 0.1% by weight, preferably 0.01 to 0.05% by weight, based on the platinum group metal element.
This is because if the amount is less than 0.001% by weight, the effect of supporting is hardly obtained, and if the amount exceeds 0.1% by weight, no further effect is obtained.

【0010】本発明の燃焼排ガスの窒素酸化物還元除去
用触媒は、上記のように、好ましくは活性炭系炭素質材
料へバナジウム化合物と、モリブデン(Mo)、タング
ステン(W)及びセリウム(Ce)の各化合物のいずれ
か1種以上との2成分を触媒成分として担持して形成す
ることができる。また、要すれば、より高活性を得るた
めに、上記2成分に加え、更に白金族金属化合物を触媒
成分として担持して形成することができる。上記各触媒
成分は、それぞれ別々に担持してもよいし、使用する各
触媒成分の化合物によっては、例えば浸漬含浸法であれ
ば、混合溶液を用い同時に担持することもできる。ま
た、スプレー法であれば、各成分担持を順次行い、乾
燥、焼成を共通させて一段とすることもできる。また、
スプレー法や含浸法において、担持を減圧下で行うこと
により、担持成分を炭素質材料担体に均一に担持させる
ことができ好ましい。
As described above, the catalyst for removing nitrogen oxides from flue gas according to the present invention preferably comprises a vanadium compound, a molybdenum (Mo), a tungsten (W) and a cerium (Ce). Two or more components of any one of the compounds can be supported and formed as a catalyst component. In addition, if necessary, in order to obtain higher activity, a platinum group metal compound can be further supported as a catalyst component in addition to the above two components to form the catalyst. Each of the above catalyst components may be supported separately, or depending on the compound of each catalyst component used, for example, a dipping impregnation method, a mixed solution may be simultaneously supported. Further, in the case of the spray method, it is also possible to carry out the loading of the respective components in sequence and to perform drying and baking in common so as to form a single stage. Also,
In the spray method and the impregnation method, carrying is carried out under reduced pressure, so that the carried component can be carried uniformly on the carbonaceous material carrier, which is preferable.

【0011】本発明の触媒の形状は、特に制限されな
い。例えば、粉末状や、粒状、顆粒状、球状、円柱状等
成形体等、処理条件に応じて適宜選択することができ
る。上記した本発明の燃焼排ガス用窒素酸化物還元除去
触媒は、湿式脱硫後等の低温燃焼排ガスと、アンモニア
の存在下、約1000/時以上の大きなSVで接触処理
することにより、長期間安定した高脱硝率で排ガス中の
窒素酸化物を還元除去することができる。
The shape of the catalyst of the present invention is not particularly limited. For example, a powdery, granular, granular, spherical, cylindrical, or other shaped body can be appropriately selected according to the processing conditions. The above-described nitrogen oxide reduction removal catalyst for combustion exhaust gas of the present invention is stable for a long period of time by contact treatment with low temperature combustion exhaust gas such as after wet desulfurization in the presence of ammonia at a large SV of about 1000 / hour or more. Nitrogen oxides in exhaust gas can be reduced and removed with a high denitration rate.

【0012】[0012]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例1 メタバナジン酸アンモニウムを蓚酸で還元して調製した
バナジウムイオン1モル/リットル含有水溶液100m
lに、市販粒状活性炭(武田薬品工業(株)製、商品名
GX、比表面積約1,000m2 /g) 50g を加え減
圧下で浸漬含浸しろ過分離した。次いで、得られたV含
浸活性炭を、100℃の乾燥器中で12時間乾燥した
後、窒素気流中450℃で5時間焼成し、室温まで冷却
しV担持活性炭を得た。上記のようにして得たV担持活
性炭を、Moを1モル/リットル含有するモリブデン酸
アンモニウム水溶液100mlに減圧下で浸漬した後、
ろ過分離した。ろ過分離されたMo含浸V担持活性炭
を、100℃の乾燥器中で12時間乾燥した後、窒素気
流中450℃で5時間焼成し、V−Mo担持活性炭触媒
を得た。得られたV−Mo担持活性炭触媒は、V担持量
が4.0重量%、Mo担持量が7.2重量%であった。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 1 100 m of an aqueous solution containing vanadium ion 1 mol / l prepared by reducing ammonium metavanadate with oxalic acid.
50 g of commercially available granular activated carbon (trade name: GX, manufactured by Takeda Yakuhin Kogyo Co., Ltd., specific surface area of about 1,000 m 2 / g) was added to 1 l, and the mixture was immersed and impregnated under reduced pressure, and separated by filtration. Next, the obtained V-impregnated activated carbon was dried in a drier at 100 ° C. for 12 hours, then calcined in a nitrogen stream at 450 ° C. for 5 hours, and cooled to room temperature to obtain V-supporting activated carbon. After immersing the V-supported activated carbon obtained as described above in 100 ml of an ammonium molybdate aqueous solution containing 1 mol / liter of Mo under reduced pressure,
It separated by filtration. The Mo-impregnated V-supported activated carbon separated by filtration was dried in a drier at 100 ° C. for 12 hours and then calcined in a nitrogen stream at 450 ° C. for 5 hours to obtain a V-Mo-supported activated carbon catalyst. The obtained V-Mo supported activated carbon catalyst had a V supported amount of 4.0% by weight and a Mo supported amount of 7.2% by weight.

【0013】上記で生成したV−Mo担持活性炭触媒
を、内径30mmφで高さ500mmのガラス製脱硝反
応管に212ml充填し、触媒固定床を形成した。この
反応管に、温度100℃、SV2,750/時で、酸化
窒素(NO)500ppm、酸素(O2 )5容量%、炭
酸ガス(CO2 )12容量%、水(H2 O)9.5容量
%を含有し、残部が窒素ガスからなる疑似燃焼排ガス
に、アンモニア(NH3 )500ppmを添加して、連
続して流通処理した。表1に示した各処理時間における
処理ガス組成を(株)島津製作所製化学発光式NOX
にて測定し、脱硝率を算出した。亜酸化窒素(N2 O)
の生成量は、ガスクロマトグラフィのカラムにユニビー
ズC(ジーエルサイエンス製)を充填して測定した。そ
の結果、各処理時間のいずれも1ppm以下であった。
なお、脱硝率(%)は、(NO入口濃度−NO出口濃
度)/NO入口濃度×100で算出した。その結果を、
表1に示した。また、表中の生成N2 Oの濃度(pp
m)は、処理時間を通しての値である(以下同じ)。
212 ml of the V-Mo-supported activated carbon catalyst produced above was filled in a glass denitration reaction tube having an inner diameter of 30 mmφ and a height of 500 mm to form a catalyst fixed bed. In this reaction tube, at a temperature of 100 ° C. and an SV of 2,750 / hour, 500 ppm of nitric oxide (NO), 5% by volume of oxygen (O 2 ), 12% by volume of carbon dioxide (CO 2 ) and water (H 2 O) 9. Ammonia (NH 3 ) 500 ppm was added to the pseudo-combustion exhaust gas containing 5% by volume and the balance being nitrogen gas, and continuously flow-treated. The process gas composition in each processing times shown in Table 1 (strain) was measured by Shimadzu Corporation chemiluminescent NO X meter, it was calculated NOx removal efficiency. Nitrous oxide (N 2 O)
The production amount of was measured by filling a gas chromatography column with UniBeads C (manufactured by GL Sciences). As a result, each processing time was 1 ppm or less.
The denitration rate (%) was calculated by (NO inlet concentration-NO outlet concentration) / NO inlet concentration x 100. The result is
The results are shown in Table 1. In addition, the concentration of produced N 2 O in the table (pp
m) is a value throughout the processing time (hereinafter the same).

【0014】[0014]

【表1】 [Table 1]

【0015】実施例2〜5 触媒成分のV及びMoの担持量が表1に示した値になる
ように、水溶液濃度を調整して実施例1と同様にして、
V−Mo担持活性炭触媒を得た。得られた各触媒を用
い、実施例1と同様に疑似燃焼排ガスを処理した。その
結果を表1に示した。
Examples 2 to 5 The concentration of the aqueous solution was adjusted so that the supported amounts of V and Mo of the catalyst components were the values shown in Table 1, and the same procedure as in Example 1 was carried out.
A V-Mo supported activated carbon catalyst was obtained. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0016】実施例6〜8 Vの含有濃度を変えた以外は実施例1と同様な方法で調
製したV担持活性炭に、Wを0.05モル/リットル含
有するパラタングステン酸アンモニウム水溶液200m
lに浸漬し含浸した後、エバポレータにて減圧乾燥し
た。得られたW含浸V担持活性炭を、更に、100℃の
乾燥器中で12時間乾燥した。表1に示したW担持量と
なるように、上記W含浸操作を1、2または3回と選択
して調整した。所定のW担持量を含浸し乾燥後、窒素気
流中450℃で5時間焼成し、V−W担持活性炭触媒を
得た。得られた各触媒を用い、実施例1と同様に疑似燃
焼排ガスを処理した。その結果を表1に示した。
Examples 6 to 8 200 m of an aqueous ammonium paratungstate solution containing 0.05 mol / liter of W was added to V-supported activated carbon prepared in the same manner as in Example 1 except that the concentration of V was changed.
After immersing in 1 l and impregnating, it was dried under reduced pressure by an evaporator. The W-impregnated V-supported activated carbon obtained was further dried in a dryer at 100 ° C. for 12 hours. The W impregnation operation was adjusted to one, two or three times so that the W loading amount shown in Table 1 was obtained. After impregnating with a predetermined amount of W supported and dried, it was calcined in a nitrogen stream at 450 ° C. for 5 hours to obtain a VW supported activated carbon catalyst. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0017】実施例9〜11 硫酸バナジル0.5モル/リットル及び硝酸セリウム
0.25モル/リットルを含有する混合水溶液100m
lを用いた以外は、実施例1と同様にしてV−Ce担持
活性炭触媒を調製した。(実施例9) また、硝酸セリウム濃度を0.51モル/リットル(実
施例10)、10.5モル/リットル(実施例11)と
してCeの担持量を変化させ、同様にCe−V担持活性
炭触媒を得た。得られた各触媒を用い、実施例1と同様
に疑似燃焼排ガスを処理した。その結果を表1に示し
た。
Examples 9-11 100 m of mixed aqueous solution containing 0.5 mol / l of vanadyl sulfate and 0.25 mol / l of cerium nitrate.
A V-Ce supported activated carbon catalyst was prepared in the same manner as in Example 1 except that 1 was used. (Example 9) Further, the amount of Ce supported was changed by changing the cerium nitrate concentration to 0.51 mol / liter (Example 10) and 10.5 mol / liter (Example 11). A catalyst was obtained. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0018】実施例12〜14 実施例1と同様に調製したV−Mo担持活性炭を室温ま
で冷却した後、0.0001モル/リットルの塩化白金
酸水溶液100ml中に減圧下で浸漬し、白金(Pt)
を含浸し、ろ過分離した。得られた活性炭を110℃の
乾燥器中で12時間乾燥した後、窒素気流中 450℃で5
時間焼成し、V−Mo−Pt担持活性炭触媒を得た。
(実施例12) 塩化白金酸の濃度を、0.001モル/リットル(実施
例13)、0.007モル/リットル(実施例14)と
変化させた以外は全く同様にしてV−Mo−Pt担持活
性炭触媒を得た。得られた各触媒を用い、実施例1と同
様に疑似燃焼排ガスを処理した。その結果を表1に示し
た。
Examples 12 to 14 V-Mo-supporting activated carbon prepared in the same manner as in Example 1 was cooled to room temperature and then immersed in 100 ml of a 0.0001 mol / liter chloroplatinic acid aqueous solution under reduced pressure to obtain platinum ( Pt)
Was impregnated and filtered off. The activated carbon thus obtained was dried in a dryer at 110 ° C for 12 hours, and then dried in a nitrogen stream at 450 ° C for 5 hours.
It was calcined for an hour to obtain a V-Mo-Pt-supported activated carbon catalyst.
(Example 12) V-Mo-Pt was performed in exactly the same manner except that the concentration of chloroplatinic acid was changed to 0.001 mol / liter (Example 13) and 0.007 mol / liter (Example 14). A supported activated carbon catalyst was obtained. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0019】実施例15 実施例7と同様に調整したV−W担持活性炭を室温まで
冷却した後、0.001モル/リットルの塩化白金酸水
溶液100ml中に減圧下で浸漬し、ろ過分離した。得
られた活性炭を110℃の乾燥器中で12時間乾燥した
後、窒素気流中450℃で5時間焼成し、V−W−Pt
担持活性炭を得た。得られた各触媒を用い、実施例1と
同様に疑似燃焼排ガスを処理した。その結果を表1に示
した。
Example 15 VW-supported activated carbon prepared in the same manner as in Example 7 was cooled to room temperature, then immersed in 100 ml of a 0.001 mol / liter chloroplatinic acid aqueous solution under reduced pressure, and separated by filtration. The obtained activated carbon was dried in a drier at 110 ° C. for 12 hours and then fired in a nitrogen stream at 450 ° C. for 5 hours to obtain V-W-Pt.
Supported activated carbon was obtained. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0020】実施例16 実施例10と同様に調整したV−Ce担持活性炭を室温
まで冷却した後、0.001モル/リットルの塩化白金
水溶液100ml中に減圧下で浸漬し、ろ過分離した。
得られた活性炭を110℃の乾燥器中で12時間乾燥し
た後、窒素気流中450℃で5時間焼成し、V−Ce−
Pt担持活性炭を得た。得られた各触媒を用い、実施例
1と同様に疑似燃焼排ガスを処理した。その結果を表1
に示した。
Example 16 V-Ce-supporting activated carbon prepared in the same manner as in Example 10 was cooled to room temperature, then immersed in 100 ml of a 0.001 mol / liter platinum chloride aqueous solution under reduced pressure, and separated by filtration.
The obtained activated carbon was dried in a drier at 110 ° C. for 12 hours and then calcined in a nitrogen stream at 450 ° C. for 5 hours to obtain V-Ce-
Pt-supported activated carbon was obtained. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.
It was shown to.

【0021】比較例1 実施例と同様にしてV担持活性炭触媒を得た。得られた
触媒を用い、実施例1と同様に疑似燃焼排ガスを処理し
た。その結果を表1に示した。
Comparative Example 1 A V-supported activated carbon catalyst was obtained in the same manner as in Example. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0022】上記実施例及び比較例より明らかなよう
に、本発明のV−Mo、V−W、V−Ce担持の各活性
炭触媒は、V担持活性炭触媒に比して脱硝の初期活性は
高くないが、長期間の使用においても活性が低下するこ
となく、安定して脱硝処理できることが分かる。一方、
V担持活性炭触媒は、初期活性は高いが、使用につれ活
性が低下することがわかる。また、上記V−Mo担持の
活性炭に更に白金を担持させたV−Pt−Mo担持活性
炭触媒は、高活性が得られ、且つ、活性が持続すること
が分かる。更に、本発明の触媒が、亜酸化窒素の副生が
ないことが分かる。
As is clear from the above Examples and Comparative Examples, each of the V-Mo, VW, and V-Ce supported activated carbon catalysts of the present invention has a higher denitration initial activity than the V supported activated carbon catalyst. However, it can be seen that the denitration treatment can be stably performed without lowering the activity even after long-term use. on the other hand,
It can be seen that the V-supported activated carbon catalyst has a high initial activity, but the activity decreases as it is used. Further, it can be seen that the V-Pt-Mo-supported activated carbon catalyst in which platinum is further supported on the V-Mo-supported activated carbon has high activity and sustains the activity. Further, it can be seen that the catalyst of the present invention is free of nitrous oxide by-product.

【0023】[0023]

【発明の効果】本発明の燃焼排ガスの窒素酸化物還元除
去触媒は、長期間にわたり安定して比較的低温の燃焼排
ガスを脱硝処理できる。従って、湿式排煙脱硫後の燃焼
排ガスのような低温ガスから窒素酸化物を、大きい空間
速度で、即ち、小さな反応器で長時間安定的に還元除去
することができ、環境汚染の防止上極めて利用価値が高
い。また、本発明の燃焼排ガス用窒素酸化物還元除去触
媒を用いることにより、燃焼排ガスをすでに実用化され
ている湿式排煙脱硫により大気汚染の硫黄酸化物を除去
した後、窒素酸化物を連続的にコンパクトな装置で簡
便、且つ、円滑に除去でき工業上有用である。
INDUSTRIAL APPLICABILITY The catalyst for reducing nitrogen oxides in combustion exhaust gas according to the present invention can stably denitrate combustion exhaust gas at a relatively low temperature for a long period of time. Therefore, nitrogen oxides can be stably reduced and removed from a low temperature gas such as a combustion exhaust gas after wet flue gas desulfurization at a large space velocity, that is, in a small reactor for a long time, which is extremely effective in preventing environmental pollution. High utility value. Further, by using the nitrogen oxide reduction removal catalyst for flue gas of the present invention, the flue gas is continuously put into practical use after the sulfur oxides of the air pollution are removed by the wet flue gas desulfurization which has already been put to practical use. It is industrially useful because it can be removed easily and smoothly with a very compact device.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/16 ZAB A B01D 53/36 102 H (72)発明者 曽根原 尚紀 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 木村 隆志 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical display location B01J 23/16 ZAB A B01D 53/36 102 H (72) Inventor Naoki Sonehara Tsurumi Ward, Yokohama City, Kanagawa Prefecture 2-12-1 Tsurumi Chuo Chiyoda Kakoh Construction Co., Ltd. (72) Inventor Takashi Kimura 2-12-1 Tsurumi Chuo 2-chome Tsurumi-ku, Yokohama, Kanagawa Prefecture Chiyoda Kakoh Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素質材料に、バナジウム化合物と、モ
リブデン、タングステン及びセリウムの各化合物から選
ばれた1種以上を担持してなることを特徴とする燃焼排
ガスの窒素酸化物還元除去用触媒。
1. A catalyst for reducing and removing nitrogen oxides from combustion exhaust gas, comprising a vanadium compound and one or more compounds selected from molybdenum, tungsten and cerium compounds supported on a carbonaceous material.
【請求項2】 更に白金族金属を担持させてなる請求項
1記載の燃焼排ガスの窒素酸化物還元除去用触媒。
2. The catalyst for reducing nitrogen oxides in combustion exhaust gas according to claim 1, which further carries a platinum group metal.
JP6139355A 1994-05-30 1994-05-30 Catalyst for reductive-removing nitrogen oxides in waste combustion gas Pending JPH07323225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6139355A JPH07323225A (en) 1994-05-30 1994-05-30 Catalyst for reductive-removing nitrogen oxides in waste combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6139355A JPH07323225A (en) 1994-05-30 1994-05-30 Catalyst for reductive-removing nitrogen oxides in waste combustion gas

Publications (1)

Publication Number Publication Date
JPH07323225A true JPH07323225A (en) 1995-12-12

Family

ID=15243405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6139355A Pending JPH07323225A (en) 1994-05-30 1994-05-30 Catalyst for reductive-removing nitrogen oxides in waste combustion gas

Country Status (1)

Country Link
JP (1) JPH07323225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021237A (en) * 2002-09-03 2004-03-10 재단법인 포항산업과학연구원 Method for simultaneous removing dioxins and nitrogen oxide using vanadium/activated carbon
JP2022535124A (en) * 2019-06-04 2022-08-04 トヨタ・モーター・ヨーロッパ Highly dispersed metal-supported oxides as NH3-SCR catalysts and synthesis processes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040021237A (en) * 2002-09-03 2004-03-10 재단법인 포항산업과학연구원 Method for simultaneous removing dioxins and nitrogen oxide using vanadium/activated carbon
JP2022535124A (en) * 2019-06-04 2022-08-04 トヨタ・モーター・ヨーロッパ Highly dispersed metal-supported oxides as NH3-SCR catalysts and synthesis processes

Similar Documents

Publication Publication Date Title
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
KR100336967B1 (en) A process for preparing honeycomb type monolithic catalyst
JPS594175B2 (en) Nitrogen oxide removal using coated catalysts
JP3221116B2 (en) Catalyst for decomposition of nitrous oxide
JP2009262132A (en) Catalyst for purification of exhaust gas and method of purifying exhaust gas
KR100336963B1 (en) Honeycomb type monolithic catalyst for removing VOCs
JPH06154611A (en) Catalyst for decomposition of nitrous oxide
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
JPH07323225A (en) Catalyst for reductive-removing nitrogen oxides in waste combustion gas
JP3219613B2 (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH07323227A (en) Catalyst for reduction removing nitrogen oxides in waste combustion gas
JPH0833843A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JPH07256109A (en) Nox reduction and removal catalyst for waste combustion gas
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JPH06198187A (en) Catalyst for decomposition of nitrous oxide
JP3521933B2 (en) Catalyst for removing nitrogen oxides in exhaust gas
JPH0833844A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JP3221115B2 (en) Catalyst for decomposition of nitrous oxide
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
KR100332224B1 (en) Oxidation Catalyst for Emission Control of Dioxin in Flue Gas, method of preparing and using the same
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JPH07121361B2 (en) Catalyst for catalytic reduction of nitrogen oxides
JP2004322077A (en) Exhaust gas clarification catalyst and exhaust gas clarification method
JPH09192491A (en) Catalyst for reduction and removal of nitrogen oxide in waste combustion gas
JPH0716468A (en) Catalyst for reduction of nitrogen oxide