JP2009262132A - Catalyst for purification of exhaust gas and method of purifying exhaust gas - Google Patents

Catalyst for purification of exhaust gas and method of purifying exhaust gas Download PDF

Info

Publication number
JP2009262132A
JP2009262132A JP2009067467A JP2009067467A JP2009262132A JP 2009262132 A JP2009262132 A JP 2009262132A JP 2009067467 A JP2009067467 A JP 2009067467A JP 2009067467 A JP2009067467 A JP 2009067467A JP 2009262132 A JP2009262132 A JP 2009262132A
Authority
JP
Japan
Prior art keywords
catalyst
titanium oxide
exhaust gas
methane
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009067467A
Other languages
Japanese (ja)
Other versions
JP5541874B2 (en
Inventor
Tetsuya Takemoto
哲也 竹本
Hirofumi Otsuka
浩文 大塚
Taketoku Hirano
竹徳 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2009067467A priority Critical patent/JP5541874B2/en
Publication of JP2009262132A publication Critical patent/JP2009262132A/en
Application granted granted Critical
Publication of JP5541874B2 publication Critical patent/JP5541874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst which exerts a high methane decomposition capability even at low temperatures in oxidation removal of methane in a combustion exhaust gas containing methane, sulfur oxides and excessive oxygen and a method of oxidation removal of methane in exhaust gas by using it. <P>SOLUTION: The catalyst is for oxidation removal of methane in a combustion exhaust gas containing methane, sulfur oxides and excessive oxygen and includes platinum (a first ingredient), iridium (a second ingredient) and at least one of niobium, tungsten and antimony (a third ingredient) supported in a titanium oxide support. The method is for oxidation removal of methane in a combustion exhaust gas containing methane, sulfur oxides and excessive oxygen and comprises bringing the exhaust gas into contact with the catalyst at 300-500°C. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、メタン、硫黄酸化物および過剰の酸素を含む燃焼排ガス中のメタンの酸化除去用触媒および酸化除去方法に関する。   The present invention relates to a catalyst for oxidation removal of methane in combustion exhaust gas containing methane, sulfur oxides and excess oxygen, and a method for oxidation removal.

本明細書において、「過剰の酸素を含む」とは、本発明の触媒に接触させる被処理ガス(燃焼排ガス)が、そこに含まれる炭化水素、一酸化炭素などの還元性成分を完全に酸化するのに必要な量以上に、酸素、窒素酸化物などの酸化性成分を含んでいることを意味する。   In the present specification, “containing excess oxygen” means that the gas to be treated (combustion exhaust gas) brought into contact with the catalyst of the present invention completely oxidizes reducing components such as hydrocarbons and carbon monoxide contained therein. It means that an oxidizing component such as oxygen and nitrogen oxide is contained in an amount more than that required for the purpose.

排ガス中の炭化水素の酸化除去触媒として、白金、パラジウムなどの白金族金属を担持した触媒が高い性能を示すことが知られている。例えば、アルミナ担体に白金とパラジウムとを担持した排ガス浄化用触媒が開示されている(特許文献1参照)。しかしながら、このような触媒を用いても、メタン発酵ガスや天然ガスの燃焼排ガスのように、排ガス中の炭化水素の主成分がメタンである場合には、メタンが高い化学的安定性を有するために、十分なメタン除去率が達成されないという問題がある。   As a catalyst for removing oxidation of hydrocarbons in exhaust gas, it is known that a catalyst supporting a platinum group metal such as platinum or palladium exhibits high performance. For example, an exhaust gas purifying catalyst having platinum and palladium supported on an alumina carrier is disclosed (see Patent Document 1). However, even if such a catalyst is used, methane has high chemical stability when the main component of hydrocarbons in the exhaust gas is methane, such as methane fermentation gas or natural gas combustion exhaust gas. In addition, there is a problem that a sufficient methane removal rate is not achieved.

さらに、燃焼排ガスには、燃料中に含まれている硫黄化合物に由来する硫黄酸化物などの反応阻害物質が必然的に含まれているので、触媒表面に反応阻害物質が析出することにより、触媒活性が経時的に著しく低下することは避けがたい。   Furthermore, since the combustion exhaust gas necessarily contains a reaction inhibiting substance such as a sulfur oxide derived from the sulfur compound contained in the fuel, the reaction inhibiting substance is deposited on the catalyst surface, so that the catalyst It is inevitable that the activity decreases significantly with time.

例えば、ランパートら(Lampert et al.)は、パラジウム触媒を用いてメタン酸化を行った場合に、わずかに0.1ppmの二酸化硫黄が存在するだけで、数時間内にその触媒活性がほとんど失われることを示して、硫黄酸化物の存在が触媒活性に著しい悪影響を与えることを明らかにしている(非特許文献1参照)。   For example, Lampert et al. Show that when methane oxidation is carried out using a palladium catalyst, only 0.1 ppm of sulfur dioxide is present and its catalytic activity is almost lost within a few hours. It has been clarified that the presence of sulfur oxide has a significant adverse effect on the catalytic activity (see Non-Patent Document 1).

さらに、過剰量の酸素が存在する排ガスに含まれる低濃度炭化水素の酸化用触媒として、ハニカム基材上にアルミナ担体を介して7g/l以上のパラジウムおよび3〜20g/lの白金を担持した触媒も開示されている(特許文献2参照)。しかしながら、この触媒を用いても、長期にわたる耐久性は十分ではなく、硫黄酸化物が共存する条件下では、触媒活性の経時的な劣化が避けられない。   Furthermore, 7 g / l or more of palladium and 3 to 20 g / l of platinum were supported on the honeycomb base material via an alumina carrier as a catalyst for oxidizing low-concentration hydrocarbons contained in exhaust gas in which an excessive amount of oxygen was present. A catalyst is also disclosed (see Patent Document 2). However, even if this catalyst is used, long-term durability is not sufficient, and deterioration of the catalyst activity over time is unavoidable under conditions where sulfur oxides coexist.

このように、従来技術の大きな問題点は、メタンに対して高い除去率が得られないこと、さらに硫黄酸化物が共存する条件下では除去率が大きく低下することである。   Thus, the big problem of the prior art is that a high removal rate cannot be obtained with respect to methane, and further, the removal rate is greatly reduced under the condition where sulfur oxides coexist.

このような実状に鑑みて、酸化ジルコニウム担体にパラジウムまたはパラジウムと白金とを担持させた触媒が、硫黄酸化物共存下でも高いメタン酸化活性を維持し続けることが開示されている(特許文献3参照)。しかしながら、この触媒は、特に約400℃以下の低温域でのメタン酸化活性が低いため、低温で十分な性能を確保するには多量の触媒を必要とする。   In view of such a situation, it is disclosed that a catalyst in which palladium or palladium and platinum are supported on a zirconium oxide support continues to maintain high methane oxidation activity even in the presence of sulfur oxide (see Patent Document 3). ). However, since this catalyst has a low methane oxidation activity particularly in a low temperature range of about 400 ° C. or less, a large amount of catalyst is required to ensure sufficient performance at a low temperature.

また、酸化チタン担体に白金とパラジウムとを担持させてなる排ガス中の未燃炭化水素酸化触媒も提案されている(特許文献4参照)が、この触媒も、特に約400℃以下の低温域ではメタン酸化活性が十分ではない。   In addition, an unburned hydrocarbon oxidation catalyst in exhaust gas in which platinum and palladium are supported on a titanium oxide support has been proposed (see Patent Document 4), but this catalyst is also particularly in a low temperature range of about 400 ° C. or lower. Methane oxidation activity is not enough.

メタンの酸化には、パラジウムが有効であるというのが定説であった(非特許文献2、非特許文献3参照)のに対し、パラジウムを含まず、白金のみを酸化スズからなる担体に担持した触媒が、燃焼排ガス中のメタンの酸化除去に活性を示すことが示されている文献もある(特許文献5参照)。しかしながら、この触媒でも400℃以下でのメタン除去性能は十分とは言えない上に、高価な白金を多量に必要とする点も実用上の課題となる。   While it was theorized that palladium is effective for the oxidation of methane (see Non-Patent Document 2 and Non-Patent Document 3), it does not contain palladium and only platinum is supported on a support made of tin oxide. There is also a document showing that the catalyst is active in removing methane from combustion exhaust gas by oxidation (see Patent Document 5). However, this catalyst does not have sufficient methane removal performance at 400 ° C. or lower, and requires a large amount of expensive platinum.

メタンを含有し酸素を過剰に含む燃焼排ガス中の炭化水素の浄化用触媒であって、酸化ジルコニウムに、白金、パラジウム、ロジウムおよびルテニウムからなる群より選択される少なくとも1種ならびにイリジウムを担持してなり、比表面積が2〜60m2/gである触媒が、硫黄酸化物共存下で、400℃程度という低い温度であっても高いメタン酸化活性を維持し続けることも開示されている(特許文献6参照)。しかしながら、この触媒は、非常に希少な貴金属であるイリジウムを比較的多量に必要とする点が実用上の課題となる。 A catalyst for purifying hydrocarbons in combustion exhaust gas containing methane and containing oxygen excessively, comprising zirconium oxide supporting at least one selected from the group consisting of platinum, palladium, rhodium and ruthenium and iridium. It is also disclosed that a catalyst having a specific surface area of 2 to 60 m 2 / g continues to maintain high methane oxidation activity even at a low temperature of about 400 ° C. in the presence of sulfur oxide (patent document) 6). However, this catalyst has a practical problem in that it requires a relatively large amount of iridium, which is a very rare noble metal.

また、酸化スズに白金を担持した触媒に助触媒としてイリジウムを担持させてなる、硫黄酸化物を含む燃焼排ガス中のメタンを低温域で酸化除去する触媒も提案されている(特許文献7参照)が、この触媒も400℃以下でのメタン除去性能は十分とは言えない。   In addition, a catalyst is proposed in which iridium is supported as a co-catalyst on a catalyst in which platinum is supported on tin oxide, and methane in combustion exhaust gas containing sulfur oxide is oxidized and removed at a low temperature range (see Patent Document 7). However, this catalyst does not have sufficient methane removal performance below 400 ° C.

また、ガス燃料の燃焼排ガス中に含まれるNOx成分を分解除去させるために、アルミナ、酸化ジルコニウム、酸化チタンの1種または複数種からなる多孔状の担体に、イリジウム、白金、ロジウムの1種または複数種を担持させたNOx除去用触媒が提案されている(特許文献8参照)。しかしながら、この文献は、NOx除去性能を示すのみで、炭化水素の除去率については、一切教示しておらず、炭化水素の中で最も難分解性のメタンを酸化分解できるかどうかについては、何ら示唆もしていない。   In addition, in order to decompose and remove NOx components contained in the combustion exhaust gas of gas fuel, a porous carrier made of one or more of alumina, zirconium oxide, and titanium oxide is used with one or more of iridium, platinum, and rhodium. A catalyst for removing NOx carrying a plurality of species has been proposed (see Patent Document 8). However, this document only shows NOx removal performance, and does not teach any removal rate of hydrocarbons. What is the possibility of oxidative decomposition of the most difficult-to-decompose methane among hydrocarbons? I did not suggest.

また、クエン酸を使用する特定の方法により、活性アルミナなどの無機質担体に白金およびロジウムの少なくとも1種とイリジウムおよびルテニウムの少なくとも1種とを併せて担持させた排気ガス浄化用触媒を製造する方法が開示されている(特許文献9参照)。この文献によれば、イリジウムおよび/またはルテニウムが、白金および/またはロジウムと融点の高い固溶体を形成するので、得られた触媒の耐熱性が向上するとされている。しかしながら、この文献は、得られた触媒のNOx転化率が改善されたことを示すのみで、排気ガスに含まれる炭化水素の中でも特に難分解性のメタンの酸化分解については、一切教示していない。   A method for producing an exhaust gas purifying catalyst in which at least one of platinum and rhodium and at least one of iridium and ruthenium are supported on an inorganic support such as activated alumina by a specific method using citric acid. Is disclosed (see Patent Document 9). According to this document, iridium and / or ruthenium form a solid solution having a high melting point with platinum and / or rhodium, so that the heat resistance of the obtained catalyst is improved. However, this document only shows that the NOx conversion rate of the obtained catalyst has been improved, and does not teach any oxidative decomposition of methane, which is particularly difficult to decompose among the hydrocarbons contained in the exhaust gas. .

アルミナ、シリカ、酸化ジルコニウム、酸化チタンなどの多様な担体にイリジウムを担持してなる、リーンバーンエンジン排気ガスの脱硝触媒が提案されている(特許文献10参照)。しかしながら、この文献も、排気ガス中に存在する種々の炭化水素類中でもメタンが特に難分解性であることについての認識を示していない。従って、メタンをどのようにすれば、効率良く酸化分解できるかなどについては、一切明らかにしていない。   There has been proposed a lean burn engine exhaust gas denitration catalyst in which iridium is supported on various supports such as alumina, silica, zirconium oxide, and titanium oxide (see Patent Document 10). However, this document also does not show recognition that methane is particularly difficult to decompose among various hydrocarbons present in the exhaust gas. Therefore, it has not been clarified at all about how methane can be efficiently oxidized and decomposed.

特開昭51-106691号公報Japanese Patent Laid-Open No. 51-106691 特開平8-332392号公報JP-A-8-332392 特開平11-319559号公報JP-A-11-319559 特開2000-254500号公報JP 2000-254500 A 特開2004-351236号公報Japanese Patent Laid-Open No. 2004-351236 国際公開公報WO2002/040152International Publication WO2002 / 040152 特開2006-272079号公報JP 2006-272079 A 特開平3-293035号公報Japanese Patent Laid-Open No. 3-293035 特開平3-98644号公報Japanese Patent Laid-Open No. 3-98644 特開平7-80315号公報Japanese Unexamined Patent Publication No. 7-80315

アプライド キャタリシス B:エンバイロンメンタル(Applied Catalysis B: Environmental),第14巻,211-223頁(1997年)Applied Catalysis B: Environmental, Vol. 14, pp. 211-223 (1997) インダストリアル アンド エンジニアリング ケミストリー(Industrial and Engineering Chemistry),第53巻,809-812頁(1961年)Industrial and Engineering Chemistry, Vol. 53, 809-812 (1961) インダストリアル アンド エンジニアリング ケミストリー プロダクト リサーチ アンド ディベロップメント(Industrial and Engineering Chemistry Product Research and Development),第19巻,293-298頁(1980年)Industrial and Engineering Chemistry Product Research and Development, Vol. 19, pp. 293-298 (1980)

本発明の課題は、酸素を過剰に含む燃焼排ガス中のメタンの酸化除去において、低い温度でも高いメタン分解能を発揮する触媒、ならびに、この触媒を用いた排ガス中のメタンの酸化除去方法を提供することにある。   An object of the present invention is to provide a catalyst that exhibits high methane resolution even at a low temperature in the oxidation removal of methane in combustion exhaust gas containing excessive oxygen, and a method for oxidizing and removing methane in exhaust gas using this catalyst. There is.

本発明は、下記に示すとおりの排ガス浄化触媒、その製造方法および排ガス浄化方法を提供するものである。
項1. メタン、硫黄酸化物および過剰の酸素を含む燃焼排ガス中のメタンを酸化除去するための触媒であって、酸化チタン担体に第一成分として白金、第二成分としてイリジウム、第三成分としてニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種を担持してなる触媒。
項2. 白金の担持量が、酸化チタンに対する質量比で0.5〜20%である項1に記載の触媒。
項3. 白金とイリジウムの担持量が、質量比で白金/イリジウム=0.2〜9の範囲にある項1または2に記載の触媒。
項4. 白金と、ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種との担持量が、質量比で白金/(ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種)=0.2〜9の範囲にある項1〜3のいずれかに記載の触媒。
項5. 酸化チタン担体に第一成分として白金、第二成分としてイリジウム、第三成分としてニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種を担持してなる触媒の製造方法であって、白金化合物、イリジウム化合物、ならびに、ニオブ化合物、タングステン化合物およびアンチモン化合物からなる群より選ばれる少なくとも1種の化合物の混合水溶液を、酸化チタン担体に含浸担持させ、乾燥・焼成することを特徴とする項1〜4のいずれかに記載の触媒を製造する方法。
項6. メタン、硫黄酸化物および過剰の酸素を含む燃焼排ガス中のメタンを酸化除去する方法であって、該排ガスを300〜500℃の温度で、項1〜4のいずれかに記載の触媒に接触させる方法。
The present invention provides an exhaust gas purification catalyst, a production method thereof, and an exhaust gas purification method as described below.
Item 1. A catalyst for oxidizing and removing methane in combustion exhaust gas containing methane, sulfur oxides and excess oxygen, including titanium oxide as a first component, iridium as a second component, niobium, tungsten as a third component And a catalyst carrying at least one selected from the group consisting of antimony.
Item 2. Item 2. The catalyst according to Item 1, wherein the supported amount of platinum is 0.5 to 20% by mass ratio to titanium oxide.
Item 3. Item 3. The catalyst according to Item 1 or 2, wherein the supported amount of platinum and iridium is in the range of platinum / iridium = 0.2 to 9 by mass ratio.
Item 4. The supported amount of platinum and at least one selected from the group consisting of niobium, tungsten and antimony is in the range of platinum / (at least one selected from the group consisting of niobium, tungsten and antimony) = 0.2 to 9 in mass ratio. Item 4. The catalyst according to any one of Items 1 to 3.
Item 5. A method for producing a catalyst comprising a titanium oxide support supporting at least one selected from the group consisting of platinum as a first component, iridium as a second component, niobium, tungsten and antimony as a third component, comprising a platinum compound, Item 1-4, wherein a mixed aqueous solution of an iridium compound and at least one compound selected from the group consisting of a niobium compound, a tungsten compound, and an antimony compound is impregnated and supported on a titanium oxide carrier, and dried and fired. A process for producing the catalyst according to any one of the above.
Item 6. A method for oxidizing and removing methane in combustion exhaust gas containing methane, sulfur oxides and excess oxygen, wherein the exhaust gas is brought into contact with the catalyst according to any one of Items 1 to 4 at a temperature of 300 to 500 ° C. Method.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の触媒は、燃焼排ガス中のメタンの酸化除去用触媒であって、担体としての酸化チタンに、触媒活性成分としての白金およびイリジウムとともに、ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種を担持してなることを特徴とする。   The catalyst of the present invention is a catalyst for oxidizing and removing methane in combustion exhaust gas, and includes at least one selected from the group consisting of niobium, tungsten and antimony together with titanium oxide as a carrier, platinum and iridium as catalytic active components. It is characterized by carrying a seed.

担体である酸化チタンの表面積が小さすぎる場合には、触媒活性成分を高分散に保つことができなくなる。一方、表面積が大きすぎる場合には、酸化チタンの熱安定性が十分でなく、触媒の使用中に酸化チタン自体の焼結が進行するおそれがある。   When the surface area of titanium oxide as a support is too small, the catalytically active component cannot be kept highly dispersed. On the other hand, when the surface area is too large, the thermal stability of the titanium oxide is not sufficient, and the titanium oxide itself may be sintered during the use of the catalyst.

酸化チタンの比表面積(本明細書においては、BET法による比表面積を言う)は、通常2〜90m2/g程度であり、好ましくは5〜60m2/g程度である。酸化チタンの結晶形はアナターゼ型が好ましいが、質量基準で25%以下のルチル型酸化チタンを含んでいても良い。なお、結晶相含有比率の測定には、X線回折測定などの公知の方法が適用できる。このような酸化チタンは、市販の触媒担体用酸化チタンをそのままでもよいし、あるいは空気などの酸化雰囲気下において550℃〜700℃で焼成するなどの方法により調製することができる。 The specific surface area of titanium oxide (referred to herein as the specific surface area by the BET method) is usually about 2 to 90 m 2 / g, and preferably about 5 to 60 m 2 / g. The crystal form of titanium oxide is preferably anatase type, but may contain 25% or less of rutile type titanium oxide on a mass basis. A known method such as X-ray diffraction measurement can be applied to the measurement of the crystal phase content ratio. Such a titanium oxide may be a commercially available titanium oxide for a catalyst carrier as it is, or can be prepared by a method such as firing at 550 ° C. to 700 ° C. in an oxidizing atmosphere such as air.

触媒担体には、コージェライト等の支持体への付着性や焼結性の改善のため、アルミナ、シリカなどの酸化チタン以外の微量の成分を含んでいても良いが、これらの成分は質量基準で2%を超えないことが望ましい。   The catalyst carrier may contain a small amount of components other than titanium oxide such as alumina and silica in order to improve adhesion to a support such as cordierite and sinterability, but these components are based on mass. It is desirable not to exceed 2%.

酸化チタンに対する触媒活性成分の担持量は、少なすぎる場合には触媒活性が低くなるのに対し、多すぎる場合には粒径が大きくなって、担持された触媒活性成分が有効に利用されなくなる。   When the amount of the catalytically active component supported on the titanium oxide is too small, the catalytic activity is low, whereas when it is too large, the particle size becomes large and the supported catalytically active component is not effectively used.

白金の担持量は、酸化チタンに対する質量比で0.5〜20%程度であるのが好ましく、0.5〜5%程度であるのがより好ましい。イリジウムの担持量は、酸化チタンに対する質量比で0.1〜20%程度であるのが好ましく、0.2〜5%程度であるのがより好ましい。白金とイリジウムの担持量の比率は、Pt/Irの質量比で0.2〜9程度であるのが好ましく、0.5〜4程度であるのがより好ましい。ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種の担持量は、酸化チタンに対する質量比で0.1〜20%程度であるのが好ましく、0.2〜5%程度であるのがより好ましい。白金と、ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種との担持量の比率は、質量比で白金/(ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種)が0.2〜9程度であるのが好ましく、0.4〜2程度であるのがより好ましい。   The supported amount of platinum is preferably about 0.5 to 20% by mass ratio with respect to titanium oxide, and more preferably about 0.5 to 5%. The supported amount of iridium is preferably about 0.1 to 20% by mass ratio with respect to titanium oxide, and more preferably about 0.2 to 5%. The ratio of the supported amount of platinum and iridium is preferably about 0.2 to 9 and more preferably about 0.5 to 4 by mass ratio of Pt / Ir. The supported amount of at least one selected from the group consisting of niobium, tungsten and antimony is preferably about 0.1 to 20%, more preferably about 0.2 to 5% in terms of mass ratio to titanium oxide. The supported amount ratio of platinum and at least one selected from the group consisting of niobium, tungsten and antimony is 0.2 to 9 in terms of mass ratio of platinum / (at least one selected from the group consisting of niobium, tungsten and antimony). Is preferably about 0.4, and more preferably about 0.4 to 2.

本発明の触媒は、例えば、白金化合物、イリジウム化合物、ならびに、ニオブ化合物、タングステン化合物およびアンチモン化合物からなる群より選ばれる少なくとも1種の化合物の混合水溶液を、酸化チタン担体に含浸担持させ、乾燥し、焼成することにより得られる。   The catalyst of the present invention, for example, impregnates and supports a titanium oxide carrier with a mixed aqueous solution of at least one compound selected from the group consisting of platinum compounds, iridium compounds, niobium compounds, tungsten compounds, and antimony compounds, and is dried. Obtained by firing.

含浸操作は、クロロ錯体、アンミン錯体、硝酸塩などの水溶性化合物を純水に溶解することにより調製した水溶液を用いて行っても良く、あるいはアセチルアセトナト錯体などの有機金属化合物をアセトンなどの有機溶媒に溶解した有機溶媒溶液を用いて行っても良い。   The impregnation operation may be performed using an aqueous solution prepared by dissolving a water-soluble compound such as a chloro complex, an ammine complex, or nitrate in pure water, or an organic metal compound such as an acetylacetonato complex may be used as an organic material such as acetone. You may carry out using the organic-solvent solution melt | dissolved in the solvent.

水溶性化合物としては、塩化イリジウム酸(ヘキサクロロイリジウム酸)、ヘキサアンミンイリジウム硝酸塩、塩化白金酸、テトラアンミン白金硝酸塩、ジニトロジアンミン白金、塩化ニオブ、タングステン酸アンモニウム、塩化アンチモンなどが例示される。なお、溶解度が低く、純水に溶解して所望の濃度が得られない場合は、溶解性を高めるために、希硝酸、希塩酸やアンモニア水を添加しても良い。   Examples of the water-soluble compound include chloroiridate (hexachloroiridate), hexaammineiridium nitrate, chloroplatinic acid, tetraammineplatinum nitrate, dinitrodiammineplatinum, niobium chloride, ammonium tungstate, and antimony chloride. If the solubility is low and the desired concentration cannot be obtained by dissolving in pure water, dilute nitric acid, dilute hydrochloric acid, or aqueous ammonia may be added to increase the solubility.

また、有機金属化合物としては、トリス(アセチルアセトナト)イリジウム、ビス(アセチルアセトナト)白金などが例示される。   Examples of the organometallic compound include tris (acetylacetonato) iridium and bis (acetylacetonato) platinum.

含浸時間は、所定の担持量が確保される限り、特に制限されないが、通常1〜50時間程度、好ましくは3〜20時間程度である。   The impregnation time is not particularly limited as long as a predetermined loading amount is ensured, but is usually about 1 to 50 hours, preferably about 3 to 20 hours.

次いで、所定の金属成分を担持させた酸化チタンを、必要に応じて蒸発乾固または乾燥させた後に、焼成する。   Next, the titanium oxide supporting a predetermined metal component is evaporated or dried or dried as necessary, and then fired.

焼成は、空気の流通下に行えばよい。あるいは、空気または酸素と窒素などの不活性ガスとを適宜混合したガスなどの酸化性ガスの流通下において行っても良い。   Firing may be performed under air circulation. Or you may carry out in distribution | circulation of oxidizing gas, such as the gas which mixed air or oxygen, and inert gas, such as nitrogen, suitably.

焼成温度は、高すぎる場合には、担持された金属の粒成長が進んで高い活性が得られない。逆に、低すぎる場合には、焼成が十分に行われないので、触媒の使用中に担持された金属粒子が粗大化して、安定した活性が得られないおそれがある。従って、安定して高い触媒活性を得るためには、焼成温度は、450〜650℃程度とするのが好ましく、500〜600℃程度とするのがより好ましい。   If the firing temperature is too high, grain growth of the supported metal proceeds and high activity cannot be obtained. On the other hand, if it is too low, the calcination is not performed sufficiently, so that the metal particles supported during the use of the catalyst may become coarse and stable activity may not be obtained. Therefore, in order to stably obtain high catalytic activity, the calcination temperature is preferably about 450 to 650 ° C, more preferably about 500 to 600 ° C.

焼成時間は、特に制限されないが、通常1〜50時間程度であり、好ましくは3〜20時間程度である。   The firing time is not particularly limited, but is usually about 1 to 50 hours, preferably about 3 to 20 hours.

本発明の触媒は、ペレット状やハニカム状などの任意の形状に成形して用いても良く、耐火性ハニカム上にウオッシュコートして用いてもよい。好ましくは、耐火性ハニカム上にウオッシュコートして用いる。   The catalyst of the present invention may be used after being molded into an arbitrary shape such as pellets or honeycombs, or may be used by wash coating on a refractory honeycomb. Preferably, the refractory honeycomb is wash coated.

耐火性ハニカム上にウオッシュコートする場合には、上記の方法で調製した触媒をスラリー状にしてウオッシュコートしても良く、あるいは、あらかじめ酸化チタンを耐火性ハニカム上にウオッシュコートした後に、上記の含浸手法に従って活性成分を担持してもよい。いずれの場合にも、必要に応じて、バインダーを添加することができる。   When wash-coating on a fire-resistant honeycomb, the catalyst prepared by the above method may be slurry-coated and washed, or after titanium oxide is washed on the fire-resistant honeycomb beforehand, the impregnation described above may be performed. The active ingredient may be supported according to the technique. In either case, a binder can be added as necessary.

本発明の触媒の比表面積は、通常2〜90m2/g程度であり、好ましくは5〜60m2/g程度である。 The specific surface area of the catalyst of the present invention is usually about 2 to 90 m 2 / g, preferably about 5 to 60 m 2 / g.

本発明の排ガス浄化方法が処理対象とするのは、メタン、硫黄酸化物および過剰の酸素を含む燃焼排ガスである。燃焼排ガス中には、メタンの他に、エタン、プロパンなどの低級炭化水素や一酸化炭素、含酸素化合物などの可燃性成分が含まれていても差し支えない。これらは、メタンに比して易分解性なので、本発明の方法により、メタンと同時に容易に酸化除去できる。   The exhaust gas purification method of the present invention is a treatment target for combustion exhaust gas containing methane, sulfur oxides, and excess oxygen. In addition to methane, the combustion exhaust gas may contain lower hydrocarbons such as ethane and propane, carbon monoxide, and oxygen-containing combustible components. Since these are easily decomposable as compared with methane, they can be easily oxidized and removed simultaneously with methane by the method of the present invention.

排ガス中の可燃性成分の濃度は、特に制限されないが、高すぎる場合には触媒層で極端な温度上昇が生じ、触媒の耐久性に悪影響を及ぼす可能性があるので、メタン換算で約5,000ppm以下とするのが好ましい。   The concentration of flammable components in the exhaust gas is not particularly limited, but if it is too high, an extreme temperature rise occurs in the catalyst layer, which may adversely affect the durability of the catalyst. The following is preferable.

本発明の排ガス中のメタンの酸化除去方法は、上記のようにして得られた触媒を用いることを特徴とする。   The method for oxidizing and removing methane in exhaust gas according to the present invention is characterized by using the catalyst obtained as described above.

触媒の使用量が少なすぎる場合には、有効な浄化率が得られないので、ガス時間当たり空間速度(GHSV)で200,000h-1以下となる量を使用するのが好ましい。一方、ガス時間当たり空間速度(GHSV)を低くするほど触媒量が多くなるので、浄化率は向上するが、GHSVが低すぎる場合には、経済的に不利であり、また触媒層での圧力損失が大きくなる。従って、GHSVの下限は、1,000h-1程度とするのが好ましく、5,000h-1程度とするのがより好ましい。 When the amount of the catalyst used is too small, an effective purification rate cannot be obtained. Therefore, it is preferable to use an amount that gives a space velocity per gas hour (GHSV) of 200,000 h −1 or less. On the other hand, the lower the gas hourly space velocity (GHSV), the greater the amount of catalyst, so the purification rate improves, but if GHSV is too low, it is economically disadvantageous and pressure loss in the catalyst layer Becomes larger. Therefore, the lower limit of GHSV may preferably be about 1,000 h -1, and more preferably about 5,000h -1.

被処理ガスである排ガス中の酸素濃度は、酸素を過剰に含む限り特に制限されないが、体積基準として約2%以上(より好ましくは約5%以上)であって且つ炭化水素などからなる還元性成分の酸化当量の約5倍以上(より好ましくは約10倍以上)の酸素が存在するのが好ましい。   The oxygen concentration in the exhaust gas, which is the gas to be treated, is not particularly limited as long as it contains oxygen in excess, but it is about 2% or more (more preferably about 5% or more) on a volume basis and has a reducing property consisting of hydrocarbons and the like It is preferred that there be about 5 times or more (more preferably about 10 times or more) of oxygen equivalent to the oxidation equivalent of the components.

排ガス中の酸素濃度が極端に低い場合には、反応速度が低下するおそれがあるので、予め所要の量の空気、酸素過剰の排ガスなどを混ぜてもよい。   When the oxygen concentration in the exhaust gas is extremely low, the reaction rate may decrease. Therefore, a required amount of air, excess oxygen exhaust gas, or the like may be mixed in advance.

本発明の排ガス中のメタンの酸化除去触媒は、高い活性を有するが、排ガス処理温度が低すぎる場合には、活性が下がり、所望のメタン転化率が得られない。一方、処理温度が高すぎる場合には、触媒の耐久性が悪化するおそれがある。   The catalyst for removing oxidation of methane in the exhaust gas of the present invention has high activity. However, when the exhaust gas treatment temperature is too low, the activity is lowered and a desired methane conversion rate cannot be obtained. On the other hand, when the treatment temperature is too high, the durability of the catalyst may deteriorate.

触媒層の温度は、通常300〜500℃程度であり、好ましくは300〜450℃程度である。   The temperature of the catalyst layer is usually about 300 to 500 ° C, preferably about 300 to 450 ° C.

また、被処理ガス中の炭化水素の濃度が著しく高いときには、触媒層で急激な反応が起こって、触媒の耐久性に悪影響を及ぼすので、触媒層での温度上昇が、通常約150℃以下、好ましくは約100℃以下となる条件で用いるのが好ましい。   In addition, when the concentration of hydrocarbons in the gas to be treated is extremely high, a rapid reaction occurs in the catalyst layer, which adversely affects the durability of the catalyst, so the temperature rise in the catalyst layer is usually about 150 ° C. or less, It is preferable to use it under conditions of about 100 ° C. or less.

燃焼排ガス中には、通常5〜15%程度の水蒸気が含まれているが、本発明によれば、このように水蒸気を含む排ガスに対しても、有効なメタン酸化除去が達成される。   The combustion exhaust gas normally contains about 5 to 15% of water vapor, but according to the present invention, effective methane oxidation removal is achieved even for the exhaust gas containing water vapor.

また、燃焼排ガス中には、触媒活性を著しく低下させる硫黄酸化物が通常含まれるが、本発明の触媒は、硫黄酸化物による活性低下に対して特に高い抵抗性を示すので、体積基準で0.1〜30ppm程度の硫黄酸化物が含まれる場合でも、メタン転化率には実質的に影響がない。   The combustion exhaust gas usually contains sulfur oxides that significantly reduce the catalyst activity. However, the catalyst of the present invention exhibits a particularly high resistance to the activity reduction caused by sulfur oxides, so that 0.1% by volume. Even when about 30 ppm of sulfur oxide is contained, the methane conversion is not substantially affected.

本発明の触媒は、水蒸気や硫黄酸化物による活性阻害に対して非常に優れた抵抗性を示すので、燃焼排ガスのように水蒸気を大量に含み、かつ硫黄酸化物を含む排ガスにおいても、高いメタン酸化活性を発揮する。   Since the catalyst of the present invention exhibits very excellent resistance to activity inhibition by water vapor and sulfur oxides, even in exhaust gas containing a large amount of water vapor and containing sulfur oxide like combustion exhaust gas, high methane Exhibits oxidative activity.

また、本発明の触媒は、低温でも高い活性を示すので、高価な貴金属の使用量を低減でき、経済性にも優れている。   Further, since the catalyst of the present invention exhibits high activity even at a low temperature, the amount of expensive noble metal used can be reduced and the economy is excellent.

以下、実施例を示し、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated in detail, this invention is not limited to these Examples.

実施例1
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。塩化アンチモン(SbCl3)(0.112g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0 g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-0.5%Ir-2%Sb/酸化チタン触媒を得た。
Example 1
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.112 g) and dissolved by heating, and distilled water (10 ml) was added. Subsequently, after mixing each said aqueous solution, the said baked titanium oxide (3.0 g) was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-0.5% Ir-2% Sb / titanium oxide catalyst.

実施例2
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。タングステン酸アンモニウム5水和物((NH410W12O41・5H2O)(0.0975g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-0.5%Ir-2%W/酸化チタン触媒を得た。
Example 2
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. After heated and dissolved by addition of hydrochloric acid (0.50 ml) in ammonium tungstate pentahydrate ((NH 4) 10 W 12 O 41 · 5H 2 O) (0.0975g), was added distilled water (10 ml). Subsequently, after mixing said each aqueous solution, the said baked titanium oxide (3.0g) was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-0.5% Ir-2% W / titanium oxide catalyst.

実施例3
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)、塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)および塩化ニオブ(NbCl5)(0.175g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、各水溶液を混合した後に、前記の焼成酸化チタン(3.0 g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-0.5%Ir-2%Nb/酸化チタン触媒を得た。
Example 3
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g), iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) and niobium chloride (NbCl 5 ) Concentrated nitric acid (0.50 ml) was added to each (0.175 g) and dissolved by heating, and then distilled water (10 ml) was added. Subsequently, after mixing each aqueous solution, the said baked titanium oxide (3.0 g) was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-0.5% Ir-2% Nb / titanium oxide catalyst.

比較例1
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)に濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加え、前記の焼成酸化チタン(3.0 g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt/酸化チタン触媒を得た。
Comparative Example 1
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) is added with concentrated nitric acid (0.50 ml), heated and dissolved, then distilled water (10 ml) is added, and the above-mentioned calcined titanium oxide (3.0 g) was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt / titanium oxide catalyst.

比較例2
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、それぞれ蒸留水(10ml)を加えて混合し、前記の焼成酸化チタン(3.0 g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-0.5%Ir/酸化チタン触媒を得た。
Comparative Example 2
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added and mixed, and the calcined titanium oxide (3.0 g) was immersed therein. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-0.5% Ir / titanium oxide catalyst.

[活性評価試験1]
実施例1〜3および比較例1、2において調製した触媒をそれぞれ打錠成形した後、各成形体2.0ml(約1.4g)を石英製反応管(内径20mm)に充填した。次いで、メタン1,000ppm、酸素10%、水蒸気10%(いずれも体積基準)および残部窒素からなる組成を有するガスを、GHSV(ガス時間当たり空間速度)40,000h-1の条件にて反応管に流通し、触媒層温度300℃、350℃、400℃および450℃におけるメタン転化率を測定した(初期転化率)。反応層前後のガス組成は、水素炎イオン化検知器を有するガスクロマトグラフにより測定した。その後、触媒層温度を450℃に保ったまま、反応ガスに二酸化硫黄3ppmを添加して反応を継続し、20時間後および45時間後のそれぞれの時点で、触媒層温度450℃、400℃、350℃および300℃におけるメタン転化率を同様に測定した。
[Activity evaluation test 1]
Each of the catalysts prepared in Examples 1 to 3 and Comparative Examples 1 and 2 was subjected to tableting, and 2.0 ml (about 1.4 g) of each molded body was filled in a quartz reaction tube (inner diameter 20 mm). Next, a gas having a composition consisting of 1,000 ppm of methane, 10% oxygen, 10% water vapor (both based on volume) and the balance nitrogen is circulated in the reaction tube under the condition of GHSV (space velocity per gas hour) 40,000h- 1. The methane conversion at catalyst layer temperatures of 300 ° C., 350 ° C., 400 ° C. and 450 ° C. was measured (initial conversion rate). The gas composition before and after the reaction layer was measured by a gas chromatograph having a flame ionization detector. Thereafter, while maintaining the catalyst layer temperature at 450 ° C., 3 ppm of sulfur dioxide was added to the reaction gas to continue the reaction. At each time point after 20 hours and 45 hours, the catalyst layer temperature was 450 ° C., 400 ° C., The methane conversion at 350 ° C. and 300 ° C. was measured similarly.

メタン転化率(%)の測定結果を表1に示す。ここで、メタン転化率とは、以下の式によって求められる値である。
CH4転化率(%)=100×(1−CH4-OUT/CH4-in)
式中、「CH4-OUT」とは触媒層出口のメタン濃度を示し、「CH4-in」とは触媒層入口のメタン濃度を示す。
Table 1 shows the measurement results of methane conversion (%). Here, the methane conversion is a value obtained by the following equation.
CH 4 conversion (%) = 100 × (1−CH 4 -OUT / CH 4 -in)
In the formula, “CH 4 -OUT” indicates the methane concentration at the catalyst layer outlet, and “CH 4 -in” indicates the methane concentration at the catalyst layer inlet.

Figure 2009262132
Figure 2009262132

実施例1〜3の触媒は、低温でも高い性能を示す上に、実質的に硫黄化合物によって阻害を受けない。しかも、45時間後の活性が、初期活性と変わらない。酸化チタン担体に、白金、イリジウム、ならびに、アンチモン、タングステンおよびニオブからなる群より選ばれる少なくとも1種を担持することにより、メタン転化率が増加し、長期にわたって高い触媒活性を維持する。   The catalysts of Examples 1 to 3 exhibit high performance even at a low temperature and are not substantially inhibited by the sulfur compound. Moreover, the activity after 45 hours is not different from the initial activity. By supporting at least one selected from the group consisting of platinum, iridium, and antimony, tungsten and niobium on the titanium oxide support, the methane conversion increases and high catalytic activity is maintained over a long period of time.

実施例4
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.055g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。塩化アンチモン(SbCl3)(0.112g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0 g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、1%Pt-0.5%Ir-2%Sb/酸化チタン触媒を得た。
Example 4
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.055 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.112 g) and dissolved by heating, and distilled water (10 ml) was added. Subsequently, after mixing each said aqueous solution, the said baked titanium oxide (3.0 g) was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 1% Pt-0.5% Ir-2% Sb / titanium oxide catalyst.

実施例5
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.027g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。塩化アンチモン(SbCl3)(0.112g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、0.5%Pt-0.5%Ir-2%Sb/酸化チタン触媒を得た。
Example 5
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.027 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.112 g) and dissolved by heating, and distilled water (10 ml) was added. Subsequently, after mixing said each aqueous solution, the said baked titanium oxide (3.0g) was immersed. After evaporating to dryness and drying at 60 ° C., the mixture was calcined at 500 ° C. for 2 hours in air to obtain a 0.5% Pt-0.5% Ir-2% Sb / titanium oxide catalyst.

実施例6
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.108g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。塩化アンチモン(SbCl3)(0.112g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-2%Ir-2%Sb/酸化チタン触媒を得た。
Example 6
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 xH 2 O, containing 54.8% as Ir) (0.108 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.112 g) and dissolved by heating, and distilled water (10 ml) was added. Subsequently, after mixing said each aqueous solution, the said baked titanium oxide (3.0g) was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-2% Ir-2% Sb / titanium oxide catalyst.

実施例7
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.216g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。塩化アンチモン(SbCl3)(0.112g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-4%Ir-2%Sb/酸化チタン触媒を得た。
Example 7
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.216 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.112 g) and dissolved by heating, and distilled water (10 ml) was added. Subsequently, after mixing said each aqueous solution, the said baked titanium oxide (3.0g) was immersed. After evaporating to dryness and drying at 60 ° C., the mixture was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-4% Ir-2% Sb / titanium oxide catalyst.

実施例8
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。塩化アンチモン(SbCl3)(0.056g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-0.5%Ir-1%Sb/酸化チタン触媒を得た。
Example 8
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.056 g) and dissolved by heating, and distilled water (10 ml) was added. Subsequently, after mixing said each aqueous solution, the said baked titanium oxide (3.0g) was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-0.5% Ir-1% Sb / titanium oxide catalyst.

実施例9
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。塩化アンチモン(SbCl3)(0.280g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、上記の各水溶液を混合した後に、前記の焼成酸化チタン(3.0g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-0.5%Ir-5%Sb/酸化チタン触媒を得た。
Example 9
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.280 g) and dissolved by heating, and distilled water (10 ml) was added. Subsequently, after mixing said each aqueous solution, the said baked titanium oxide (3.0g) was immersed. After evaporating to dryness and drying at 60 ° C., the mixture was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-0.5% Ir-5% Sb / titanium oxide catalyst.

比較例3
市販の酸化チタン(石原産業社製MC-50、比表面積62m2/g)を空気中で700℃で4時間焼成して、焼成酸化チタンを得た。塩化アンチモン(SbCl3)(0.112g)に塩酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加え、前記の焼成酸化チタン(3.0g)を浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Sb/酸化チタンを得た。ジニトロジアンミン白金(cis-Pt(NO2)2(NH3)2)(0.109g)および塩化イリジウム(IrCl3・xH2O、Irとして54.8%含有)(0.027g)に、それぞれ濃硝酸(0.50ml)を加えて加熱溶解した後に、蒸留水(10ml)を加えた。次いで、各水溶液を混合した後に、前記の2%Sb/酸化チタンを浸漬した。蒸発乾固し、60℃で乾燥した後に、空気中で500℃で2時間焼成し、2%Pt-0.5%Ir-2%Sb/酸化チタン触媒を得た。
Comparative Example 3
Commercially available titanium oxide (MC-50 manufactured by Ishihara Sangyo Co., Ltd., specific surface area 62 m 2 / g) was calcined in air at 700 ° C. for 4 hours to obtain calcined titanium oxide. Hydrochloric acid (0.50 ml) was added to antimony chloride (SbCl 3 ) (0.112 g) and dissolved by heating, distilled water (10 ml) was added, and the calcined titanium oxide (3.0 g) was immersed therein. After evaporating to dryness and drying at 60 ° C., the mixture was calcined in air at 500 ° C. for 2 hours to obtain 2% Sb / titanium oxide. Dinitrodiammineplatinum (cis-Pt (NO 2 ) 2 (NH 3 ) 2 ) (0.109 g) and iridium chloride (IrCl 3 · xH 2 O, containing 54.8% as Ir) (0.027 g) were added to concentrated nitric acid (0.50 ml) was added and dissolved by heating, and then distilled water (10 ml) was added. Next, after mixing each aqueous solution, the 2% Sb / titanium oxide was immersed. After evaporating to dryness and drying at 60 ° C., it was calcined in air at 500 ° C. for 2 hours to obtain a 2% Pt-0.5% Ir-2% Sb / titanium oxide catalyst.

[活性評価試験2]
実施例4〜9および比較例3において調製した触媒について、活性評価試験1と同様にして性能を評価した。メタン転化率(%)の測定結果を表2に示す。
[Activity evaluation test 2]
The performance of the catalysts prepared in Examples 4 to 9 and Comparative Example 3 was evaluated in the same manner as in the activity evaluation test 1. Table 2 shows the measurement results of methane conversion (%).

Figure 2009262132
Figure 2009262132

実施例4〜9の触媒においては、酸化チタンに対する白金の担持量、白金とイリジウムの担持量の比、および白金とアンチモンの担持量の比が、それぞれ、特定の好ましい範囲内にあるので、安定して高いメタン酸化活性が得られた。   In the catalysts of Examples 4 to 9, since the supported amount of platinum with respect to titanium oxide, the ratio of the supported amount of platinum and iridium, and the ratio of the supported amount of platinum and antimony are within specific preferred ranges, As a result, high methane oxidation activity was obtained.

比較例3の触媒は、酸化チタン担体にアンチモン化合物の水溶液を含浸担持させ、乾燥・焼成した後に、白金化合物およびイリジウム化合物の混合水溶液を、該アンチモン担持酸化チタン担体に含浸担持させ、乾燥・焼成した触媒であるので、メタン転化率が、実施例1の触媒を用いて反応を行った時よりも低かった。このことは、白金化合物、イリジウム化合物、およびアンチモン化合物の混合水溶液を、酸化チタン担体に含浸担持させ、乾燥・焼成して得られた触媒の方が、安定して高いメタン酸化活性が得られることを示している。   The catalyst of Comparative Example 3 was impregnated and supported with an aqueous solution of an antimony compound on a titanium oxide support, dried and calcined, and then mixed with an aqueous solution of a platinum compound and an iridium compound was impregnated and supported on the titanium oxide support with antimony, and was dried and calcined. Thus, the methane conversion was lower than when the reaction was carried out using the catalyst of Example 1. This means that a catalyst obtained by impregnating and supporting a mixed aqueous solution of a platinum compound, an iridium compound, and an antimony compound on a titanium oxide carrier, and drying and calcining can provide a stable and high methane oxidation activity. Is shown.

本発明によれば、燃焼排ガス中のメタンの酸化除去を安定して行うことが可能となるので、メタン発酵ガスや天然ガス系都市ガスなどの燃焼排ガスや各種プロセスガスなどの硫黄酸化物を含有する排ガスを本発明の方法で処理することにより、排ガス中に含まれるメタンを酸化除去して、その反応熱を回収してエネルギーとして有効利用できるほか、地球環境の改善にも寄与する。   According to the present invention, it becomes possible to stably oxidize and remove methane in combustion exhaust gas, so that it contains sulfur oxides such as combustion exhaust gas such as methane fermentation gas and natural gas city gas, and various process gases. By treating the exhaust gas to be treated by the method of the present invention, methane contained in the exhaust gas is oxidized and removed, and the reaction heat can be recovered and effectively used as energy, and also contributes to the improvement of the global environment.

Claims (6)

メタン、硫黄酸化物および過剰の酸素を含む燃焼排ガス中のメタンを酸化除去するための触媒であって、酸化チタン担体に第一成分として白金、第二成分としてイリジウム、第三成分としてニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種を担持してなる触媒。   A catalyst for oxidizing and removing methane in combustion exhaust gas containing methane, sulfur oxides and excess oxygen, including titanium oxide as a first component, iridium as a second component, niobium, tungsten as a third component And a catalyst carrying at least one selected from the group consisting of antimony. 白金の担持量が、酸化チタンに対する質量比で0.5〜20%である請求項1に記載の触媒。   The catalyst according to claim 1, wherein the supported amount of platinum is 0.5 to 20% by mass ratio with respect to titanium oxide. 白金とイリジウムの担持量が、質量比で白金/イリジウム=0.2〜9の範囲にある請求項1または2に記載の触媒。   The catalyst according to claim 1 or 2, wherein the supported amount of platinum and iridium is in the range of platinum / iridium = 0.2 to 9 by mass ratio. 白金と、ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種との担持量が、質量比で白金/(ニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種)=0.2〜9の範囲にある請求項1〜3のいずれかに記載の触媒。   The supported amount of platinum and at least one selected from the group consisting of niobium, tungsten and antimony is in the range of platinum / (at least one selected from the group consisting of niobium, tungsten and antimony) = 0.2 to 9 in mass ratio. The catalyst according to any one of claims 1 to 3. 酸化チタン担体に第一成分として白金、第二成分としてイリジウム、第三成分としてニオブ、タングステンおよびアンチモンからなる群より選ばれる少なくとも1種を担持してなる触媒の製造方法であって、白金化合物、イリジウム化合物、ならびに、ニオブ化合物、タングステン化合物およびアンチモン化合物からなる群より選ばれる少なくとも1種の化合物の混合水溶液を、酸化チタン担体に含浸担持させ、乾燥・焼成することを特徴とする請求項1〜4のいずれかに記載の触媒を製造する方法。   A method for producing a catalyst comprising a titanium oxide support supporting at least one selected from the group consisting of platinum as a first component, iridium as a second component, niobium, tungsten and antimony as a third component, comprising a platinum compound, An iridium compound and a mixed aqueous solution of at least one compound selected from the group consisting of a niobium compound, a tungsten compound, and an antimony compound are impregnated and supported on a titanium oxide carrier, and dried and fired. 5. A method for producing the catalyst according to any one of 4 above. メタン、硫黄酸化物および過剰の酸素を含む燃焼排ガス中のメタンを酸化除去する方法であって、該排ガスを300〜500℃の温度で、請求項1〜4のいずれかに記載の触媒に接触させる方法。   A method for oxidizing and removing methane in combustion exhaust gas containing methane, sulfur oxides and excess oxygen, wherein the exhaust gas is contacted with the catalyst according to any one of claims 1 to 4 at a temperature of 300 to 500 ° C. How to make.
JP2009067467A 2008-03-27 2009-03-19 Exhaust gas purification catalyst and exhaust gas purification method Expired - Fee Related JP5541874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067467A JP5541874B2 (en) 2008-03-27 2009-03-19 Exhaust gas purification catalyst and exhaust gas purification method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008084505 2008-03-27
JP2008084505 2008-03-27
JP2008098672 2008-04-04
JP2008098672 2008-04-04
JP2009067467A JP5541874B2 (en) 2008-03-27 2009-03-19 Exhaust gas purification catalyst and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JP2009262132A true JP2009262132A (en) 2009-11-12
JP5541874B2 JP5541874B2 (en) 2014-07-09

Family

ID=41388651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067467A Expired - Fee Related JP5541874B2 (en) 2008-03-27 2009-03-19 Exhaust gas purification catalyst and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP5541874B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262131A (en) * 2008-03-27 2009-11-12 Osaka Gas Co Ltd Catalyst for purification of exhaust gas and method of purifying exhaust gas
WO2014050296A1 (en) * 2012-09-26 2014-04-03 エヌ・イーケムキャット株式会社 Platinum oxidation catalyst and method for purifying exhaust gas using same
JP2015211960A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Oxidation catalyst of combustible component in gas to be treated, method for producing oxidation catalyst of combustible component in gas to be treated, oxidation method of combustible component in gas to be treated, and method for removing nitrogen oxide in gas to be treated
CN105715335A (en) * 2014-12-19 2016-06-29 罗伯特·博世有限公司 Exhaust gas pose-processing system and method for internal combustion engine
GB2545539A (en) * 2015-10-14 2017-06-21 Johnson Matthey Plc Oxidation catalyst for a diesel engine exhaust
GB2555981A (en) * 2015-10-14 2018-05-16 Johnson Matthey Plc Oxidation catalyst for a diesel engine exhaust

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250848A (en) * 1990-12-27 1992-09-07 Toyota Motor Corp Catalyst to decrease diesel particulate
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
JP2002513670A (en) * 1998-05-06 2002-05-14 シーメンス アクチエンゲゼルシヤフト Oxidation catalyst and catalyst oxidation method
WO2002040152A1 (en) * 2000-11-17 2002-05-23 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
JP2004033989A (en) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst
JP2006272079A (en) * 2005-03-28 2006-10-12 Tokyo Gas Co Ltd Catalyst for oxidizing and removing methane in combustion exhaust gas and exhaust gas cleaning method
JP2007315372A (en) * 2006-05-24 2007-12-06 Sk Corp Exhaust emission control device for diesel engine provided with exhaust gas recirculation line
JP2008246473A (en) * 2007-03-08 2008-10-16 Osaka Gas Co Ltd Catalyst and method for cleaning exhaust gas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04250848A (en) * 1990-12-27 1992-09-07 Toyota Motor Corp Catalyst to decrease diesel particulate
JP2002513670A (en) * 1998-05-06 2002-05-14 シーメンス アクチエンゲゼルシヤフト Oxidation catalyst and catalyst oxidation method
JPH11333294A (en) * 1998-05-27 1999-12-07 Johnson Matthey Japan Inc Exhaust gas cleaning catalyst and exhaust gas cleaning
WO2002040152A1 (en) * 2000-11-17 2002-05-23 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
JP2004033989A (en) * 2002-07-08 2004-02-05 Mitsubishi Heavy Ind Ltd Exhaust gas treatment catalyst
JP2006272079A (en) * 2005-03-28 2006-10-12 Tokyo Gas Co Ltd Catalyst for oxidizing and removing methane in combustion exhaust gas and exhaust gas cleaning method
JP2007315372A (en) * 2006-05-24 2007-12-06 Sk Corp Exhaust emission control device for diesel engine provided with exhaust gas recirculation line
JP2008246473A (en) * 2007-03-08 2008-10-16 Osaka Gas Co Ltd Catalyst and method for cleaning exhaust gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009262131A (en) * 2008-03-27 2009-11-12 Osaka Gas Co Ltd Catalyst for purification of exhaust gas and method of purifying exhaust gas
WO2014050296A1 (en) * 2012-09-26 2014-04-03 エヌ・イーケムキャット株式会社 Platinum oxidation catalyst and method for purifying exhaust gas using same
JPWO2014050296A1 (en) * 2012-09-26 2016-08-22 エヌ・イーケムキャット株式会社 Platinum-based oxidation catalyst and exhaust gas purification method using the same
JP2015211960A (en) * 2014-04-16 2015-11-26 新日鐵住金株式会社 Oxidation catalyst of combustible component in gas to be treated, method for producing oxidation catalyst of combustible component in gas to be treated, oxidation method of combustible component in gas to be treated, and method for removing nitrogen oxide in gas to be treated
CN105715335A (en) * 2014-12-19 2016-06-29 罗伯特·博世有限公司 Exhaust gas pose-processing system and method for internal combustion engine
GB2545539A (en) * 2015-10-14 2017-06-21 Johnson Matthey Plc Oxidation catalyst for a diesel engine exhaust
GB2555981A (en) * 2015-10-14 2018-05-16 Johnson Matthey Plc Oxidation catalyst for a diesel engine exhaust
GB2545539B (en) * 2015-10-14 2019-02-20 Johnson Matthey Plc Oxidation catalyst for a diesel engine exhaust
US10357743B2 (en) 2015-10-14 2019-07-23 Johnson Matthey Public Limited Company Oxidation catalyst for a diesel engine exhaust
GB2555981B (en) * 2015-10-14 2019-12-11 Johnson Matthey Plc Oxidation catalyst for a diesel engine exhaust

Also Published As

Publication number Publication date
JP5541874B2 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
JP5030818B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
EP1356863B1 (en) Method of purifying methane-containing waste gas
JP4429950B2 (en) Catalyst for removing oxidation of methane from combustion exhaust gas and exhaust gas purification method
JP5541874B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP5607131B2 (en) Exhaust gas purification catalyst
JP4901366B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP4688646B2 (en) Three-way catalyst and methane-containing gas purification method using the same
JP5865110B2 (en) Methane oxidation catalyst and production method thereof
JP5836149B2 (en) Methane oxidation removal catalyst and methane oxidation removal method
JP6614897B2 (en) Methane oxidation removal catalyst manufacturing method and methane oxidation removal method
JP5541873B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2013215718A (en) Catalyst and method for oxidizing and removing methane
JP5610805B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP4568640B2 (en) Methane-containing exhaust gas purification method, methane-containing exhaust gas purification pretreatment method and three-way catalyst using the same
JP6103955B2 (en) Methane oxidation removal catalyst and methane oxidation removal method
JP5825947B2 (en) Methane oxidation removal catalyst and methane oxidation removal method
JP6771330B2 (en) Method for manufacturing catalyst for removing methane oxidation and method for removing methane oxidation
JP5030880B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP2004057868A (en) Catalyst for oxidizing hydrocarbon in exhaust gas and method of oxidizing and removing hydrocarbon in exhaust gas
JPH04284824A (en) Method for purifying exhaust gas
JP2014155919A (en) Catalyst for oxidation removal of methane and method for oxidation removal of methane
JP4901072B2 (en) Hydrocarbon removal catalyst and hydrocarbon removal method thereof
JP2015211960A (en) Oxidation catalyst of combustible component in gas to be treated, method for producing oxidation catalyst of combustible component in gas to be treated, oxidation method of combustible component in gas to be treated, and method for removing nitrogen oxide in gas to be treated
JP2005279372A (en) Denitrification catalyst and denitrification method using it
JP2009056459A (en) Catalyst and method for cleaning exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140502

R150 Certificate of patent or registration of utility model

Ref document number: 5541874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees