JP2004057868A - Catalyst for oxidizing hydrocarbon in exhaust gas and method of oxidizing and removing hydrocarbon in exhaust gas - Google Patents
Catalyst for oxidizing hydrocarbon in exhaust gas and method of oxidizing and removing hydrocarbon in exhaust gas Download PDFInfo
- Publication number
- JP2004057868A JP2004057868A JP2002216426A JP2002216426A JP2004057868A JP 2004057868 A JP2004057868 A JP 2004057868A JP 2002216426 A JP2002216426 A JP 2002216426A JP 2002216426 A JP2002216426 A JP 2002216426A JP 2004057868 A JP2004057868 A JP 2004057868A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- hydrocarbon
- chromium
- composite oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】本発明は、メタンを含有し酸素を過剰に含む燃焼排ガス中の炭化水素の酸化用触媒および酸化除去方法に関する。ここで、酸素を過剰に含むとは、該排ガスが、それが含む炭化水素や一酸化炭素等の還元性成分を完全酸化するに足る量以上に、酸素や窒素酸化物などの酸化性成分を含むことを意味する。
【0002】
【従来の技術】排ガス中の炭化水素の酸化用触媒として、白金やパラジウム等の白金族金属を担持した触媒が高い性能を示すことが知られている。例えば、特開昭51−106691号公報にはアルミナ担体に白金とパラジウムを担持した排ガス浄化用触媒が開示されている。しかしこれらの触媒を用いても、天然ガスの燃焼排ガスのように炭化水素の主成分がメタンである場合には,メタンの化学的安定性が高いため、十分な炭化水素の酸化性能を得るには、多量の貴金属を担持する必要がある。
また、燃焼排ガス中には通常硫黄酸化物などの阻害物質が共存し、性能が経時的に著しく劣化することが知られている。灯油や軽油などの石油系燃料は、通常含硫黄化合物を含む。また本来ほとんど硫黄化合物を含まない天然ガス燃料であっても、通常の都市ガスには、付臭剤として含硫黄有機化合物が添加されている。これらの含硫黄有機化合物は燃焼によって硫黄酸化物を生成する。
ランパート(Lampert)らは、アプライドキャタリシスB:エンバイロンメンタル(Applied Catalysis B: Environmental)14巻211−223頁(1997年)に、パラジウム触媒を用いたメタン酸化の結果を報告しているが、わずかに0.1 ppmの二酸化硫黄の存在が、数時間のうちにメタン酸化性能をほとんど失わせることを示し、硫黄酸化物の存在が性能に大きな影響を与えることを明らかにしている。山本らは、平成8年度触媒研究発表会講演予稿集(平成8年9月13日発行)においてアルミナに白金及びパラジウムを担持した触媒を用いた、都市ガスを燃料とする排ガス中の炭化水素の酸化除去の結果を報告しているが、100時間程度の間に顕著な除去率の低下が見られる。特開平11−188237号公報は、アルミナ担体にクロムとロジウムとを担持した触媒による燃焼排ガス中の炭化水素の酸化性能を開示しているが、高価な貴金属を多量に必要とする上に、二酸化硫黄の共存下で経時的劣化を示す点が問題である。
このように従来技術の大きな問題点は、メタンに対して高い酸化性能が得難く、また水蒸気や硫黄酸化物が共存する条件で大きな性能の低下が起こるために、長期にわたって高い除去率を得るには、多量の貴金属を担持する必要があり結果として高価となることである。
このような実状に鑑みて、特開平11−319559号公報には、パラジウムまたはパラジウム及び白金を担持したジルコニアが、硫黄酸化物共存下でも高いメタン酸化活性を維持する触媒として開示されている。しかしながら、この触媒であっても、高いメタン除去率を得るためには、好ましくは2重量%程度またはそれ以上の貴金属担持量を要するため、なお経済的には問題がある。
【0003】
卑金属触媒は、安価ではあるが性能は十分ではないと考えられている。例えば、フリツァニ−ステファノパウロス(Flytzani−Stephanopoulos)らは。ジャーナル・オブ・キャタリシス(Journal of Catalysis)第153巻304ページ(1995年)において、Cu0.15Ce0.85Ox等の組成を持つ蛍石型遷移金属複合酸化物によるメタン酸化試験の結果を報告しているがその性能は十分なものとは言い難い。ジー(Xie)らは、キャタリシス・レターズ(Catalysis Letters)第75巻73ページ(2001年)において、クロムとスズの複合酸化物が、水蒸気や硫黄酸化物の共存下、500℃程度の温度であってもメタンを酸化できることを示した。この触媒は、卑金属触媒としては非常に高い性能を示すものの、なお実用的には十分な性能とは言えない上に、製造工程が複雑で工業的な製造には困難が伴う。
【0004】
【発明が解決しようとする課題】
本発明は、かかる状況に鑑みて行われたものであって、その主な目的とするところは、メタンを含有し酸素を過剰に含む燃焼排ガス中の炭化水素の酸化除去において、経済性に優れ、かつ、高い性能を有する触媒を提供することにある。
【0005】
【課題を解決するための手段】
発明者は、鋭意検討を重ねた結果、クロムとジルコニウムの複合酸化物が、硫黄酸化物による阻害に対して高い抵抗性を示し、燃焼排ガスの条件下においても安定して高いメタン酸化性能を維持することを見出した。
本発明はかかる知見に基づきなされたもので、下記の排ガス中の炭化水素の酸化用触媒及び排ガス中の炭化水素の酸化除去方法を提供する。
(1)クロムとジルコニウムの複合酸化物からなる、燃焼排ガス中の炭化水素の酸化用触媒。
(2)貴金属をさらに担持してなる項1に記載の触媒。
(3)クロムとジルコニウムの複合酸化物からなる触媒に400〜600℃の温度で燃焼排ガスを接触させることを特徴とする、燃焼排ガス中の炭化水素の酸化除去方法。
【0006】
【発明の実施の形態】
本発明の排ガス中の炭化水素酸化用触媒は、クロムとジルコニウムの複合酸化物からなる。
【0007】
本発明の触媒の製造には、公知の方法が適用できる。例えば、(1)クロムとジルコニウムのイオンを含む溶液から、共沈法によりクロムとジルコニウムの混合水酸化物の沈殿を得て、これを焼成することによりクロムとジルコニウムの複合酸化物を得る。(2)水酸化ジルコニウムに水溶性クロム化合物の水溶液を含浸し、蒸発乾固してクロムとジルコニウムの複合酸化物を得る。
【0008】
(1)の方法は、クロムとジルコニウムの混合が極めて均一に行われるため、複合酸化物相の形成が良好であるが、廃水処理等の問題を有する。これに対し(2)の方法では、廃水処理の必要がなく、製造が容易である。
【0009】
以下(2)の方法について詳細に説明する。水酸化ジルコニウムは、通常の市販品を用いればよい。ただし、乾燥温度があまりに高いものは、既に酸化ジルコニウムとしての結晶化が進んでいるため、複合酸化物の形成が不良となる恐れがある。従って、含水量が10重量%以上であることが望ましい。クロムの水溶性塩としては、塩化クロム(III)、硝酸クロム(III)、酢酸クロム(III)などが例示できる。この中では、酢酸クロム(III)が製造時に有害なガスを発生しないため取り扱いが容易である。
【0010】
クロムとジルコニウムの混合比は、モル基準で、1:4〜4:1程度とするのがよく、より好ましくは1:1〜1:3の範囲とする。この範囲以外では、複合酸化物よりも酸化クロムあるいは酸化ジルコニウムが主成分となって十分な性能が得られない恐れがある。
水酸化ジルコニウムにクロム化合物の水溶液を含浸した後、蒸発乾固、焼成することにより本発明の触媒を得る。焼成の温度は高すぎると焼結が進んで比表面積が低下するために性能が低下する恐れがあり、低すぎても安定な複合酸化物層が形成されないため、良好な性能を得るには500〜700℃程度とするのがよく、550〜650℃程度とするのがより好ましい。このようにして得られる本発明の触媒は、通常60〜200m2/gのBET比表面積を有する。
なお、通常の酸化ジルコニウムにクロム化合物の水溶液を含浸しても、実質的に酸化クロムと酸化ジルコニウムとの混合物を形成するのみで、上記のような高い比表面積とはならず、十分な性能は得られない。
上記で得た、クロムとスズの複合酸化物に必要に応じて白金族金属を含浸担持することにより、さらに高性能の触媒を得ることができる。白金族金属としては、白金、パラジウム、ロジウム、イリジウムなどが使用できるが、この中ではパラジウムおよびイリジウムが特に好ましい。また、これらの白金族金属の2種以上を合わせて用いてもよい。これらの金属の含浸は、塩化白金酸、テトラアンミン白金硝酸塩、塩化イリジウム酸、硝酸パラジウム、硝酸ロジウムなどの水溶性の化合物を水に溶解した溶液を用いて行う。このほか、トリス(アセチルアセトナト)イリジウム、ビス(アセチルアセトナト)白金、などの有機金属化合物をアセトンなどに溶解した有機溶媒溶液で行っても良い。また、必要に応じて水に水溶性の有機溶媒を加えた混合溶媒としてもよい。
また、前記の貴金属塩は、その種類によっては混合により沈殿を生じる場合があるので、このような場合には、貴金属を1種類ずつ順番に担持しても良く、このとき、次の担持までの間では、適宜乾燥や仮焼などの工程を入れても良い。
貴金属の担持量は、少なすぎると触媒活性が低く、また多すぎると経済的に不利となるので、好ましくは複合酸化物の重量に対して0.1乃至1%、より好ましくは0.3乃至0.8%とする。貴金属担持後に再度焼成を行う。焼成温度は高すぎると、担持された貴金属の粒成長が進んで高い活性が得られない。逆に低すぎても焼成の効果が無く触媒の使用中に貴金属の粒成長が進んで安定した活性が得られないおそれがある。従って、安定して高い活性をうるためには、焼成の温度は450℃から650℃の範囲とするのがよく、より好ましくは500℃から600℃の範囲とするのがよい。
本発明の触媒は、ペレット状やハニカム状など任意の形状に成型して用いても良く、耐火性ハニカム上にウオッシュコートしたりして用いてもよいが、好ましくは耐火性ハニカム上にウオッシュコートして用いられる。
本発明の排ガス中の炭化水素の酸化除去方法は、上記で得られた触媒を用いることを特徴とする。触媒量は、少なすぎると有効な除去率が得られないので、ガス時間当たり空間速度(GHSV)で100,000h−1以下で使用するのが望ましい。ガス時間当たり空間速度(GHSV)を低くするほど触媒量が多くなるため、除去率は向上するが、例えば5,000h−1以下で用いるような場合には経済性の問題に加えて、触媒層での圧力損失が大きくなる問題が生じるおそれがある。また処理ガス中の酸素濃度が極端に低い場合には、反応速度が低下するので、体積基準の酸素濃度として、2%以上であり、かつガス中の炭化水素などの還元性成分の酸化当量の5倍以上の酸素が存在することが好ましい。このとき排ガス中の酸素濃度が十分高くないときには、あらかじめ所要の量の空気を混ぜてもよい。
本発明の排ガス中の炭化水素酸化用触媒は、高い活性を有するが、あまりに低温では活性が下がり、所望の除去率が得られない恐れがあるので、触媒層温度が400℃以上に保たれるようにするのが好ましい。また600℃を超えるような温度での使用では、触媒の耐久性が悪化するおそれがある。また、炭化水素の濃度が著しく高いときには、触媒層で急激な反応が起こって、触媒の耐久性に影響を及ぼすので、触媒層での温度上昇が150℃以下となる条件で用いるのが好ましい。
燃焼排ガス中には、通常5〜15%程度の水蒸気が含まれているが、本発明の方法によれば、このように水蒸気を含む排ガスに対しても有効な炭化水素の除去率が得られる。排ガス中には、この他に触媒活性を著しく低下させることが知られている硫黄酸化物が通常含まれるが、本発明の触媒は硫黄成分による活性低下に対して高い抵抗性を示すので、炭化水素の除去率が高く維持される。
【0011】
【実施例】
以下、実施例および比較例に基づき、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1(Cr−Zr複合酸化物Aの調製)]
オキシ硝酸ジルコニル(ZrO(NO3)2・2H2O) 40gを300mlの水に溶解した水溶液と、塩化クロム(CrCl3・6H2O) 26.7gを100mlの水に溶解した水溶液とを混合した。この混合溶液を攪拌しながら、アンモニア水を添加しpHを8.6とした。さらに室温で2時間攪拌を続けたのち濾過し、200mlの水で3回洗浄した。165℃で1時間乾燥した後、粉砕してさらに200mlの水で3回洗浄した。これを乾燥後600℃で6時間焼成してクロム−スズ複合酸化物(以下“Cr−Zr複合酸化物A”と記す)を得た。BET法による比表面積は133m2/gであった。
[実施例2(Cr−Zr複合酸化物Bの調製)]
水酸化ジルコニウム(ZrO2・nH2O;ZrO2として79重量%含有) 60gに酢酸クロム(Cr(OAc)3・nH2O;Crとして22.5重量%含有) 60gを100mlの水に溶解した水溶液を含浸した。このスラリーを4時間攪拌後、エバポレーターで蒸発乾固した。さらに、150℃で1時間乾燥した後、600℃で6時間焼成してクロム−ジルコニウム複合酸化物(以下“Cr−Zr複合酸化物B”と記す)を得た。BET法による比表面積は111m2/gであった。
[比較例1(Cr2O3−ZrO2の調製)]
市販の酸化ジルコニウム(日本電工製;N−PC;比表面積 35m2/g)20gに酢酸クロム(Cr(OAc)3・nH2O;Crとして22.5重量%含有) 25gを25mlの水に溶解した水溶液を含浸した。このスラリーを4時間攪拌後、エバポレーターで蒸発乾固した。さらに、150℃で1時間乾燥した後、600℃で6時間焼成して酸化クロム−酸化ジルコニウム触媒(以下“Cr2O3−ZrO2”と記す)を得た。BET法による比表面積は25m2/gであった。
[実施例3(Pd/Cr−Zr複合酸化物の調製)]
パラジウムとして0.06gを含有する硝酸パラジウムの水溶液10gに、実施例2で調製したCr−Zr複合酸化物B12gを5時間浸漬し、蒸発乾固後、550℃で6時間焼成して、0.5% Pd/Cr−Zr複合酸化物を得た。
[実施例4(Pt/Cr−Zr複合酸化物の調製)]
白金として0.04gを含有するテトラアンミン白金硝酸塩の水溶液10gに、実施例2で調製したCr−Zr複合酸化物B8gを5時間浸漬し、蒸発乾固後、550℃で6時間焼成して、0.5% Pt/Cr−Zr複合酸化物を得た。
[実施例5(Ir/Cr−Zr複合酸化物の調製)]
イリジウムとして0.06gを含有する塩化イリジウム酸(H2IrCl6)の水溶液10gに、実施例2で調製したCr−Zr複合酸化物B12gを5時間浸漬し、蒸発乾固後、600℃で6時間焼成して、0.5% Ir/Cr−Zr複合酸化物を得た。
[実施例6(Ir−Pt/Cr−Zr複合酸化物の調製)]
イリジウムとして0.06gを含有する塩化イリジウム酸水溶液と、白金として0.024gを含有する塩化白金酸(H2PtCl6)水溶液とに純水を加えて10mlとした溶液に、実施例2で調製したCr−Zr複合酸化物B12gを5時間浸漬し、蒸発乾固後、600℃で6時間焼成して、0.5% Ir− 0.2% Pt/Cr−Zr複合酸化物を得た。
[比較例2(0.5% Pd/アルミナの調製)]
パラジウムとして0.06gを含有する硝酸パラジウム水溶液14gに、アルミナ(ローヌ・プーラン社製、Pural−SB)を750℃で焼成したもの12 gを4時間浸漬し、蒸発乾固後、550℃で6時間焼成して、0.5% Pd/アルミナを得た。
[実施例7(活性評価試験)]
実施例1〜6および比較例1〜2で調製した触媒を打錠成型し破砕して粒径を1mmに揃えた。これとは別に、市販の銅−マンガン系酸化触媒(ズードケミー触媒製;N−140)を破砕して同様に、粒径を1mmに揃えた。これらの3mlを反応管に充填し下記の条件で活性を評価した。まずメタン1000 ppm、酸素10%、水蒸気10%、残部窒素からなる組成のガスをGHSV(ガス時間当たり空間速度)30,000 h−1の条件にて流通し、触媒層温度450℃、500℃でメタン転化率を測定した。その後、窒素以外のガスの濃度はそのままとして二酸化硫黄3 ppmを添加し、触媒層温度を500℃に保って、メタン転化率の経時変化を測定した。30時間経過後、降温して450℃における二酸化硫黄添加後のメタン転化率を測定した。
反応層前後のガス組成は水素炎イオン化検知器を有するガスクロマトグラフにより測定した。500℃における二酸化硫黄添加前と添加1, 2, 5, 10, 20, 30時間後のメタン転化率(%)を表1に示す。また、二酸化硫黄添加前と添加後の450℃におけるメタン転化率を表2に示す。ここでメタン転化率とは、以下の式によって求められる値である。
【0012】
メタン転化率(%)=100×[1―(触媒層出口のメタン濃度)/(触媒層入口のメタン濃度)]
【0013】
【表1】
【0014】
【表2】
【0015】
クロムとジルコニウムの複合酸化物からなる実施例1,2の触媒は、触媒性能を低下させる効果の高い二酸化硫黄の共存下で安定したメタン転化率を示すことが分かる。これに対し、既に酸化ジルコニウムとして結晶化したものにクロムを担持した場合(比較例1)には、複合酸化物の形成が十分なされないために、活性は不十分である。また、卑金属触媒の中では酸化活性が高いとされる銅−マンガン触媒と比較すれば、本発明の触媒が高価な貴金属を用いない卑金属系触媒としては、格段の効果を奏すことが明らかである。
【0016】
クロムとジルコニウムの複合酸化物に、さらに白金族金属を添加した場合には、いずれも活性の向上が見られるが、なかでも特にパラジウムを添加したものの効果が高い。一方、メタン酸化に高い活性を有するとされている、アルミナにパラジウムを担持した触媒(比較例2)は、初期性能は非常に高いものの経時的な触媒性能の低下が顕著である。
【0017】
【発明の効果】
本発明の触媒は、燃焼排ガス条件のような水蒸気を大量に含む排ガス条件にあっても高いメタン酸化性能を持ち、また硫黄酸化物による阻害に対して高い抵抗性を持つため、排ガス中の炭化水素の酸化除去を経済的に有利な条件で行うことが可能となる。[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for oxidizing hydrocarbons in flue gas containing methane and containing an excessive amount of oxygen, and a method for oxidizing and removing the hydrocarbons. Here, the phrase "excessive oxygen" means that the exhaust gas contains oxygen or nitrogen oxides or other oxidizing components in an amount sufficient to completely oxidize the reducing components such as hydrocarbons or carbon monoxide contained therein. Means to include.
[0002]
2. Description of the Related Art It is known that a catalyst supporting a platinum group metal such as platinum or palladium exhibits high performance as a catalyst for oxidizing hydrocarbons in exhaust gas. For example, Japanese Patent Application Laid-Open No. 51-106691 discloses an exhaust gas purifying catalyst in which platinum and palladium are supported on an alumina carrier. However, even when these catalysts are used, when the main component of hydrocarbons is methane, as in the case of natural gas combustion exhaust gas, the chemical stability of methane is high, so that sufficient hydrocarbon oxidation performance cannot be obtained. Need to carry a large amount of noble metal.
In addition, it is known that an inhibitor such as a sulfur oxide usually coexists in the combustion exhaust gas, and the performance is significantly deteriorated with time. Petroleum fuels such as kerosene and light oil usually contain sulfur-containing compounds. In addition, even if the natural gas fuel contains essentially no sulfur compound, a sulfur-containing organic compound is added to ordinary city gas as an odorant. These sulfur-containing organic compounds generate sulfur oxides by combustion.
Lampert et al., In Applied Catalysis B: Environmental (Environmental), Vol. 14, pp. 211-223 (1997), reported the results of methane oxidation using a palladium catalyst. The presence of as little as 0.1 ppm of sulfur dioxide indicates that methane oxidation performance is almost lost in a matter of hours, demonstrating that the presence of sulfur oxides has a significant effect on performance. Yamamoto et al. Reported in the 1996 Preparatory Meeting on Catalyst Research Presentations (published on September 13, 1996) that hydrocarbons in exhaust gas using city gas as fuel, using a catalyst supporting platinum and palladium on alumina. Although the results of oxidation removal are reported, a remarkable decrease in the removal rate is observed in about 100 hours. Japanese Patent Application Laid-Open No. 11-188237 discloses the oxidation performance of hydrocarbons in combustion exhaust gas by a catalyst in which chromium and rhodium are supported on an alumina carrier. The problem is that it shows deterioration over time in the presence of sulfur.
As described above, a major problem of the prior art is that it is difficult to obtain high oxidizing performance with respect to methane, and a large decrease in performance occurs under conditions where steam and sulfur oxides coexist. Requires a large amount of noble metal to be supported, resulting in high cost.
In view of such circumstances, JP-A-11-319559 discloses palladium or zirconia supporting palladium and platinum as a catalyst that maintains high methane oxidation activity even in the presence of sulfur oxide. However, even with this catalyst, in order to obtain a high methane removal rate, a noble metal loading amount of preferably about 2% by weight or more is required, which is still economically problematic.
[0003]
Base metal catalysts are believed to be inexpensive but not perform well. For example, Flytzani-Stephanopoulos et al. In Journal of Catalysis, Vol. 153, p. 304 (1995), the results of a methane oxidation test using a fluorite-type transition metal composite oxide having a composition such as Cu 0.15 Ce 0.85 Ox are described. Although it has been reported, its performance is not enough. Xie et al., In Catalysis Letters, Vol. 75, p. 73 (2001), reported that a composite oxide of chromium and tin had a temperature of about 500 ° C. in the presence of steam and sulfur oxides. Methane can be oxidized. Although this catalyst exhibits very high performance as a base metal catalyst, it cannot be said that it has sufficient performance for practical use, and its production process is complicated and industrial production is difficult.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and its main purpose is to provide excellent economical efficiency in the oxidative removal of hydrocarbons in combustion exhaust gas containing methane and containing excess oxygen. Another object of the present invention is to provide a catalyst having high performance.
[0005]
[Means for Solving the Problems]
As a result of intensive studies, the inventors have found that a composite oxide of chromium and zirconium exhibits high resistance to inhibition by sulfur oxides and maintains a stable high methane oxidation performance even under combustion exhaust gas conditions. I found out.
The present invention has been made based on such findings, and provides the following catalyst for oxidizing hydrocarbons in exhaust gas and a method for oxidizing and removing hydrocarbons in exhaust gas.
(1) A catalyst for oxidizing hydrocarbons in combustion exhaust gas, comprising a composite oxide of chromium and zirconium.
(2) The catalyst according to item 1, further comprising a noble metal.
(3) A method for oxidizing and removing hydrocarbons in flue gas, comprising contacting the flue gas with a catalyst comprising a composite oxide of chromium and zirconium at a temperature of 400 to 600 ° C.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The catalyst for oxidizing hydrocarbons in exhaust gas of the present invention comprises a composite oxide of chromium and zirconium.
[0007]
Known methods can be applied to the production of the catalyst of the present invention. For example, (1) a mixed hydroxide of chromium and zirconium is obtained by precipitation from a solution containing ions of chromium and zirconium by a coprecipitation method, and is calcined to obtain a composite oxide of chromium and zirconium. (2) Impregnating zirconium hydroxide with an aqueous solution of a water-soluble chromium compound and evaporating to dryness to obtain a composite oxide of chromium and zirconium.
[0008]
In the method (1), since the mixing of chromium and zirconium is performed very uniformly, the formation of the composite oxide phase is good, but it has problems such as wastewater treatment. In contrast, the method (2) does not require wastewater treatment and is easy to manufacture.
[0009]
Hereinafter, the method (2) will be described in detail. As zirconium hydroxide, an ordinary commercial product may be used. However, if the drying temperature is too high, the crystallization as zirconium oxide has already progressed, and there is a possibility that the formation of the composite oxide may be poor. Therefore, the water content is desirably 10% by weight or more. Examples of the water-soluble salt of chromium include chromium (III) chloride, chromium (III) nitrate, and chromium (III) acetate. Among them, chromium (III) acetate does not generate a harmful gas at the time of production, so that handling is easy.
[0010]
The mixing ratio of chromium and zirconium is preferably about 1: 4 to 4: 1 on a molar basis, more preferably in the range of 1: 1 to 1: 3. Outside this range, chromium oxide or zirconium oxide may be the main component rather than the composite oxide, and sufficient performance may not be obtained.
The catalyst of the present invention is obtained by impregnating zirconium hydroxide with an aqueous solution of a chromium compound, evaporating to dryness and calcining. If the firing temperature is too high, the sintering proceeds and the specific surface area is reduced, so that the performance may decrease. If the firing temperature is too low, a stable composite oxide layer is not formed. The temperature is preferably about -700 ° C, more preferably about 550-650 ° C. The catalyst of the present invention thus obtained usually has a BET specific surface area of 60 to 200 m 2 / g.
Even when impregnated with an aqueous solution of a chromium compound in ordinary zirconium oxide, only a mixture of chromium oxide and zirconium oxide is formed substantially, and the specific surface area does not become high as described above, and sufficient performance is obtained. I can't get it.
By further impregnating and supporting a platinum group metal on the chromium and tin composite oxide obtained as required, a catalyst with higher performance can be obtained. As the platinum group metal, platinum, palladium, rhodium, iridium and the like can be used, and among them, palladium and iridium are particularly preferable. Further, two or more of these platinum group metals may be used in combination. Impregnation of these metals is performed using a solution in which a water-soluble compound such as chloroplatinic acid, tetraammineplatinum nitrate, iridic acid chloride, palladium nitrate, rhodium nitrate is dissolved in water. In addition, an organic solvent solution in which an organic metal compound such as tris (acetylacetonato) iridium and bis (acetylacetonato) platinum is dissolved in acetone or the like may be used. In addition, a mixed solvent obtained by adding a water-soluble organic solvent to water as necessary may be used.
In addition, the noble metal salt may precipitate due to mixing depending on the type thereof. In such a case, the noble metal salt may be supported one by one in order. Between them, steps such as drying and calcination may be appropriately performed.
If the supported amount of the noble metal is too small, the catalytic activity is low, and if it is too large, it is economically disadvantageous. Therefore, it is preferably 0.1 to 1%, more preferably 0.3 to 1% by weight of the composite oxide. 0.8%. After the noble metal is supported, firing is performed again. If the sintering temperature is too high, the supported noble metal will grow in grain size and high activity cannot be obtained. Conversely, if it is too low, the effect of the calcination will not be obtained, and the noble metal grains will grow during use of the catalyst, so that stable activity may not be obtained. Therefore, in order to obtain a high activity stably, the firing temperature is preferably in the range of 450 ° C. to 650 ° C., and more preferably in the range of 500 ° C. to 600 ° C.
The catalyst of the present invention may be used after being molded into an arbitrary shape such as a pellet or a honeycomb, and may be used as a wash coat on a fire-resistant honeycomb, but preferably a wash coat on a fire-resistant honeycomb. Used as
The method for oxidizing and removing hydrocarbons in exhaust gas of the present invention is characterized by using the catalyst obtained above. If the amount of the catalyst is too small, an effective removal rate cannot be obtained. Therefore, it is desirable to use the catalyst at a gas hourly space velocity (GHSV) of 100,000 h -1 or less. The lower the gas hourly space velocity (GHSV), the greater the amount of catalyst, the higher the removal rate. However, for example, when used at 5,000 h -1 or less, in addition to the problem of economical efficiency, the catalyst layer There is a possibility that the problem that the pressure loss at the pressure increases may occur. When the oxygen concentration in the processing gas is extremely low, the reaction rate is reduced. Therefore, the oxygen concentration on a volume basis is 2% or more, and the oxidizing equivalent of a reducing component such as hydrocarbon in the gas. Preferably, five times or more oxygen is present. At this time, if the oxygen concentration in the exhaust gas is not sufficiently high, a required amount of air may be mixed in advance.
The catalyst for oxidizing hydrocarbons in the exhaust gas of the present invention has a high activity, but the activity is lowered at an extremely low temperature, and a desired removal rate may not be obtained. Therefore, the catalyst layer temperature is maintained at 400 ° C. or higher. It is preferable to do so. When used at a temperature exceeding 600 ° C., the durability of the catalyst may be deteriorated. Further, when the concentration of hydrocarbon is extremely high, a rapid reaction occurs in the catalyst layer, which affects the durability of the catalyst. Therefore, it is preferable to use the catalyst layer under the condition that the temperature rise in the catalyst layer is 150 ° C. or less.
The combustion exhaust gas usually contains about 5 to 15% of water vapor. According to the method of the present invention, an effective hydrocarbon removal rate can be obtained even for an exhaust gas containing water vapor. . Sulfur oxides, which are known to significantly reduce the catalytic activity, are usually contained in the exhaust gas.However, the catalyst of the present invention has high resistance to the decrease in the activity due to the sulfur component. The hydrogen removal rate is kept high.
[0011]
【Example】
Hereinafter, the present invention will be described in more detail based on examples and comparative examples, but the present invention is not limited to these examples.
[Example 1 (Preparation of Cr-Zr composite oxide A)]
Mixing an aqueous solution of zirconyl oxynitrate di a (ZrO (NO 3) 2 · 2H 2 O) 40g was dissolved in water of 300 ml, and an aqueous solution obtained by dissolving chromium chloride (CrCl 3 · 6H 2 O) 26.7g in 100ml water did. While stirring this mixed solution, aqueous ammonia was added to adjust the pH to 8.6. After further stirring at room temperature for 2 hours, the mixture was filtered and washed three times with 200 ml of water. After drying at 165 ° C. for 1 hour, it was pulverized and washed with 200 ml of water three times. This was dried and calcined at 600 ° C. for 6 hours to obtain a chromium-tin composite oxide (hereinafter referred to as “Cr—Zr composite oxide A”). The specific surface area according to the BET method was 133 m 2 / g.
[Example 2 (Preparation of Cr-Zr composite oxide B)]
Zirconium hydroxide dissolved; (22.5 wt% as Cr-containing Cr (OAc) 3 · nH 2 O) 60g in 100ml of water in (ZrO 2 · nH 2 O as ZrO 2 79 wt% content) 60 g chromium acetate The impregnated aqueous solution was impregnated. After stirring this slurry for 4 hours, it was evaporated to dryness by an evaporator. Furthermore, after drying at 150 ° C. for 1 hour, it was baked at 600 ° C. for 6 hours to obtain a chromium-zirconium composite oxide (hereinafter, referred to as “Cr—Zr composite oxide B”). The specific surface area according to the BET method was 111 m 2 / g.
[(Preparation of Cr 2 O 3 -ZrO 2) Comparative Example 1]
20 g of commercially available zirconium oxide (manufactured by Nippon Denko; N-PC; specific surface area 35 m 2 / g) and 25 g of chromium acetate (Cr (OAc) 3 .nH 2 O; containing 22.5% by weight as Cr) in 25 ml of water The dissolved aqueous solution was impregnated. After stirring this slurry for 4 hours, it was evaporated to dryness by an evaporator. Furthermore, after drying at 150 ° C. for 1 hour, it was calcined at 600 ° C. for 6 hours to obtain a chromium oxide-zirconium oxide catalyst (hereinafter referred to as “Cr 2 O 3 —ZrO 2 ”). The specific surface area according to the BET method was 25 m 2 / g.
[Example 3 (Preparation of Pd / Cr-Zr composite oxide)]
12 g of the Cr—Zr composite oxide B prepared in Example 2 was immersed in 10 g of an aqueous solution of palladium nitrate containing 0.06 g of palladium for 5 hours, evaporated to dryness, and calcined at 550 ° C. for 6 hours. 5% Pd / Cr-Zr composite oxide was obtained.
[Example 4 (Preparation of Pt / Cr-Zr composite oxide)]
8 g of the Cr-Zr composite oxide B prepared in Example 2 was immersed in 10 g of an aqueous solution of tetraammineplatinum nitrate containing 0.04 g of platinum for 5 hours, evaporated to dryness, and calcined at 550 ° C. for 6 hours. A 0.5% Pt / Cr-Zr composite oxide was obtained.
[Example 5 (Preparation of Ir / Cr-Zr composite oxide)]
12 g of the Cr-Zr composite oxide B prepared in Example 2 was immersed in 10 g of an aqueous solution of iridic acid chloride (H 2 IrCl 6 ) containing 0.06 g as iridium for 5 hours, and evaporated to dryness. After firing for 0.5 hour, a 0.5% Ir / Cr-Zr composite oxide was obtained.
[Example 6 (Preparation of Ir-Pt / Cr-Zr composite oxide)]
Prepared in Example 2 as a solution prepared by adding pure water to an aqueous solution of iridium chloride containing 0.06 g as iridium and an aqueous solution of chloroplatinic acid (H 2 PtCl 6 ) containing 0.024 g of platinum and adding pure water. 12 g of the thus-prepared Cr-Zr composite oxide B was immersed for 5 hours, evaporated to dryness, and calcined at 600 ° C for 6 hours to obtain 0.5% Ir-0.2% Pt / Cr-Zr composite oxide.
[Comparative Example 2 (Preparation of 0.5% Pd / alumina)]
12 g of alumina (Pural-SB, manufactured by Rhone Poulin Co., Ltd.) calcined at 750 ° C. was immersed in 14 g of an aqueous palladium nitrate solution containing 0.06 g of palladium for 4 hours. Calcination for 0.5 hour gave 0.5% Pd / alumina.
[Example 7 (activity evaluation test)]
The catalysts prepared in Examples 1 to 6 and Comparative Examples 1 and 2 were tableted and crushed to adjust the particle size to 1 mm. Separately, a commercially available copper-manganese-based oxidation catalyst (manufactured by Sudo-Chemie catalyst; N-140) was crushed, and the particle size was similarly adjusted to 1 mm. 3 ml of these were filled in a reaction tube, and the activity was evaluated under the following conditions. First, a gas having a composition consisting of 1000 ppm of methane, 10% of oxygen, 10% of water vapor, and the balance of nitrogen is circulated under the condition of GHSV (gas hourly space velocity) of 30,000 h −1 , and the catalyst layer temperature is 450 ° C. and 500 ° C. Measured the methane conversion. Thereafter, while keeping the concentration of the gas other than nitrogen unchanged, 3 ppm of sulfur dioxide was added, the temperature of the catalyst layer was kept at 500 ° C., and the change over time in the methane conversion was measured. After a lapse of 30 hours, the temperature was lowered and the methane conversion at 450 ° C. after the addition of sulfur dioxide was measured.
The gas composition before and after the reaction layer was measured by a gas chromatograph equipped with a flame ionization detector. Table 1 shows the methane conversion (%) at 500 ° C. before and after 1, 2, 5, 10, 20, and 30 hours of the addition of sulfur dioxide. Table 2 shows the methane conversion at 450 ° C. before and after the addition of sulfur dioxide. Here, the methane conversion is a value obtained by the following equation.
[0012]
Methane conversion rate (%) = 100 × [1− (methane concentration at catalyst layer outlet) / (methane concentration at catalyst layer inlet)]
[0013]
[Table 1]
[0014]
[Table 2]
[0015]
It can be seen that the catalysts of Examples 1 and 2 comprising a composite oxide of chromium and zirconium exhibit a stable methane conversion in the presence of sulfur dioxide, which has a high effect of lowering the catalytic performance. On the other hand, when chromium is carried on a substance already crystallized as zirconium oxide (Comparative Example 1), the activity is insufficient because the formation of the composite oxide is not sufficient. In addition, when compared with the copper-manganese catalyst which is considered to have high oxidation activity among the base metal catalysts, it is clear that the catalyst of the present invention has a remarkable effect as a base metal catalyst not using an expensive noble metal. .
[0016]
In the case where a platinum group metal is further added to the composite oxide of chromium and zirconium, the activity is improved in any case, but among them, palladium is particularly effective. On the other hand, the catalyst having palladium supported on alumina (Comparative Example 2), which is said to have high activity for methane oxidation, has a very high initial performance, but the catalyst performance is remarkably deteriorated with time.
[0017]
【The invention's effect】
The catalyst of the present invention has high methane oxidation performance even under exhaust gas conditions containing a large amount of water vapor, such as combustion exhaust gas conditions, and has high resistance to inhibition by sulfur oxides. Oxidation and removal of hydrogen can be performed under economically advantageous conditions.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002216426A JP4143352B2 (en) | 2002-07-25 | 2002-07-25 | Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002216426A JP4143352B2 (en) | 2002-07-25 | 2002-07-25 | Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004057868A true JP2004057868A (en) | 2004-02-26 |
JP4143352B2 JP4143352B2 (en) | 2008-09-03 |
Family
ID=31938193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002216426A Expired - Fee Related JP4143352B2 (en) | 2002-07-25 | 2002-07-25 | Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4143352B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005246335A (en) * | 2004-03-08 | 2005-09-15 | Osaka Gas Co Ltd | Catalyst for removing hydrocarbon and its hydrocarbon removal method |
JP2013521104A (en) * | 2009-03-02 | 2013-06-10 | ズードケミー インコーポレイテッド | Activated zirconium oxide catalyst support |
JP2013233485A (en) * | 2012-05-07 | 2013-11-21 | Noritake Co Ltd | Catalyst material for cleaning exhaust, and method of producing the same |
CN115870014A (en) * | 2019-01-18 | 2023-03-31 | 康明斯排放处理公司 | Treated SCR catalyst with enhanced sulfur resistance |
-
2002
- 2002-07-25 JP JP2002216426A patent/JP4143352B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005246335A (en) * | 2004-03-08 | 2005-09-15 | Osaka Gas Co Ltd | Catalyst for removing hydrocarbon and its hydrocarbon removal method |
JP2013521104A (en) * | 2009-03-02 | 2013-06-10 | ズードケミー インコーポレイテッド | Activated zirconium oxide catalyst support |
JP2013233485A (en) * | 2012-05-07 | 2013-11-21 | Noritake Co Ltd | Catalyst material for cleaning exhaust, and method of producing the same |
CN115870014A (en) * | 2019-01-18 | 2023-03-31 | 康明斯排放处理公司 | Treated SCR catalyst with enhanced sulfur resistance |
Also Published As
Publication number | Publication date |
---|---|
JP4143352B2 (en) | 2008-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1356863B1 (en) | Method of purifying methane-containing waste gas | |
JP5030818B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP4688646B2 (en) | Three-way catalyst and methane-containing gas purification method using the same | |
JP5541874B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP5865110B2 (en) | Methane oxidation catalyst and production method thereof | |
JP4901366B2 (en) | Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas | |
JP4025945B2 (en) | Methane-containing exhaust gas purification catalyst and methane-containing exhaust gas purification method | |
JP5836149B2 (en) | Methane oxidation removal catalyst and methane oxidation removal method | |
JP4143352B2 (en) | Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas | |
JP6614897B2 (en) | Methane oxidation removal catalyst manufacturing method and methane oxidation removal method | |
JP4052866B2 (en) | Catalyst for oxidizing hydrocarbons in exhaust gas and method for oxidizing and removing hydrocarbons in exhaust gas | |
JP4568640B2 (en) | Methane-containing exhaust gas purification method, methane-containing exhaust gas purification pretreatment method and three-way catalyst using the same | |
JP2006122793A (en) | Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas | |
JP2013215718A (en) | Catalyst and method for oxidizing and removing methane | |
JP6771330B2 (en) | Method for manufacturing catalyst for removing methane oxidation and method for removing methane oxidation | |
JP5610805B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP6103955B2 (en) | Methane oxidation removal catalyst and methane oxidation removal method | |
KR20190125086A (en) | Method for manufacturing exhaust gas purifying catalyst and the exhaust gas purifying catalyst therefrom | |
JP5030880B2 (en) | Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas | |
JP5541873B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
JP4162411B2 (en) | Catalyst for oxidation of methane in exhaust gas and oxidation removal method of methane in exhaust gas | |
JP5825947B2 (en) | Methane oxidation removal catalyst and methane oxidation removal method | |
JP2016165707A (en) | Three-way catalyst, and method for clarification of methane-containing gas using the same | |
JPH11137998A (en) | Catalyst for purifying methane-containing waste gas and method for purifying methane in waste gas by using the catalyst | |
JP2014155919A (en) | Catalyst for oxidation removal of methane and method for oxidation removal of methane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20041210 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20041222 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071115 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080111 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080221 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080409 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080507 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080529 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080616 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110620 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140620 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |