JP4688646B2 - Three-way catalyst and methane-containing gas purification method using the same - Google Patents

Three-way catalyst and methane-containing gas purification method using the same Download PDF

Info

Publication number
JP4688646B2
JP4688646B2 JP2005334287A JP2005334287A JP4688646B2 JP 4688646 B2 JP4688646 B2 JP 4688646B2 JP 2005334287 A JP2005334287 A JP 2005334287A JP 2005334287 A JP2005334287 A JP 2005334287A JP 4688646 B2 JP4688646 B2 JP 4688646B2
Authority
JP
Japan
Prior art keywords
methane
way catalyst
containing gas
air
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005334287A
Other languages
Japanese (ja)
Other versions
JP2006181569A (en
Inventor
浩文 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005334287A priority Critical patent/JP4688646B2/en
Publication of JP2006181569A publication Critical patent/JP2006181569A/en
Application granted granted Critical
Publication of JP4688646B2 publication Critical patent/JP4688646B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、例えば、天然ガスを燃料とするガスエンジンの排ガスのような、メタン含有ガスを浄化するための三元触媒、及びこれを用いたメタン含有ガスの浄化方法に関する。   The present invention relates to a three-way catalyst for purifying methane-containing gas, such as exhaust gas from a gas engine using natural gas as fuel, and a method for purifying methane-containing gas using the same.

エンジン等の内燃機関の排ガス中には、窒素酸化物や一酸化炭素、さらには炭化水素が含まれる。これらの成分は大気中にそのまま放出すると環境等の観点から問題があるので、従来、三元触媒法を用いて排ガスから上記3成分を除去して排ガスを放出していた。三元触媒法は、排ガスの空燃比を制御して排ガス中の酸化性成分と還元性成分とを釣り合わせた上で、白金やロジウムを含む触媒(三元触媒)に排ガスを通じて、窒素酸化物、一酸化炭素、および炭化水素の同時除去を図るものである。   The exhaust gas of an internal combustion engine such as an engine contains nitrogen oxides, carbon monoxide, and hydrocarbons. If these components are released into the atmosphere as they are, there is a problem from the viewpoint of the environment and the like. Conventionally, the above three components are removed from the exhaust gas using a three-way catalyst method, and the exhaust gas is released. In the three-way catalyst method, the air-fuel ratio of exhaust gas is controlled to balance the oxidizing and reducing components in the exhaust gas, and then nitrogen oxides are passed through the exhaust gas through a catalyst containing platinum or rhodium (three-way catalyst). , Carbon monoxide, and hydrocarbons are simultaneously removed.

三元触媒を用いた排ガスの浄化方法は、ガソリン自動車の排ガス浄化に適用され、自動車排ガスからの窒素酸化物低減に多大な効果をもたらした。三元触媒法をガソリン自動車排ガスに適用した場合、空燃比が、λ=1.000及びその近辺では、窒素酸化物、一酸化炭素、および炭化水素のいずれの成分も良好に除去できる。λ=1.000よりもリーン(燃料希薄すなわち酸素過剰)側の空燃比では、一酸化炭素や炭化水素の浄化率は高く維持されるが、窒素酸化物の除去率が低下する。一方、λ=1.000よりもリッチ(燃料過剰すなわち酸素不足)側の空燃比では、窒素酸化物の浄化率は高いが、一酸化炭素や炭化水素の浄化率は低下する。リーン及びリッチ側に傾いた空燃比で浄化性能が低下するのは、酸化性成分と還元性成分のバランスが崩れるためである。三元触媒の使用目安となる、前記3種のガス成分をバランスよく除去できる空燃比の範囲を、一般的に「ウインドウ」と呼ぶ(例えば、非特許文献1参照)。 The exhaust gas purification method using a three-way catalyst has been applied to exhaust gas purification of gasoline automobiles, and has had a great effect on reducing nitrogen oxides from automobile exhaust gas. When the three-way catalyst method is applied to gasoline automobile exhaust gas, any component of nitrogen oxides, carbon monoxide, and hydrocarbons can be removed well when the air-fuel ratio is λ = 1.000 and the vicinity thereof. At an air-fuel ratio on the lean (fuel lean or oxygen-excess) side than λ = 1.000, the purification rate of carbon monoxide and hydrocarbons is maintained high, but the nitrogen oxide removal rate is reduced. On the other hand, at the air-fuel ratio on the rich side (excess fuel, that is, oxygen shortage) than λ = 1.000, the purification rate of nitrogen oxides is high, but the purification rate of carbon monoxide and hydrocarbons decreases. The reason why the purification performance decreases at the lean and rich air-fuel ratio is that the balance between the oxidizing component and the reducing component is lost. The range of the air-fuel ratio that can remove the three kinds of gas components in a well-balanced manner, which is a guideline for using the three-way catalyst, is generally called “window” (for example, see Non-Patent Document 1).

そして、ガスエンジンの排ガスのように、炭化水素が主としてメタンである排ガスの浄化においても、三元触媒の適用が提案されてきた(例えば、非特許文献1、2及び特許文献1、2等参照)。
小野嘉夫、御園生誠、諸岡良彦編、“触媒の事典”、朝倉書店、2000年(260頁) ハナキ−ヤスナリ他、“JSAE Review”、17巻259〜265頁、1996年(図4及び図5) 再公表公報WO96/25593(背景技術、第3図、第4図) 特開平5−23592号公報(段落番号〔0005〕)
Also, the application of a three-way catalyst has been proposed in the purification of exhaust gas whose hydrocarbon is mainly methane, such as exhaust gas of a gas engine (see, for example, Non-Patent Documents 1 and 2 and Patent Documents 1 and 2). ).
Yoshio Ono, Makoto Misono, Yoshihiko Morooka, “Encyclopedia of Catalysts”, Asakura Shoten, 2000 (page 260) Hanaki-Yasunari et al., “JSAE Review”, 17: 259-265, 1996 (FIGS. 4 and 5) Republished publication WO 96/25593 (background art, FIGS. 3 and 4) JP-A-5-23592 (paragraph number [0005])

しかしながら、ガスエンジンの排ガスのように、排ガス中の炭化水素が主としてメタンである場合、非特許文献2及び特許文献1、2(特に非特許文献2の図4及び図5)に記載されているように、前記ウインドウ領域が非常に狭く、ガソリン排ガスと同種の触媒や使用条件では高い浄化率が得られないことが明らかとなってきた。具体的には、炭化水素がメタンである場合、リーン側でもメタンの浄化率も低く、λ=1.000付近での窒素酸化物の浄化率も低い。さらには、窒素酸化物の浄化率を確保するための空燃比がリッチ側に移動する。これらは、メタンが炭化水素の中で最も安定性の高い炭化水素で、反応性に乏しいことに起因していると考えられている。加えて、空燃比の制御に用いられる酸化ジルコニウム酸素センサーはλ=1.000付近で最も感度が高いため、最適浄化率が得られる空燃比がλ=1.000から外れるにつれ感度が低下し、このような場合、空燃比制御が益々困難になるという問題もあった。   However, when the hydrocarbon in the exhaust gas is mainly methane like the exhaust gas of a gas engine, it is described in Non-Patent Document 2 and Patent Documents 1 and 2 (particularly FIGS. 4 and 5 of Non-Patent Document 2). Thus, it has been clarified that the window region is very narrow, and a high purification rate cannot be obtained with the same type of catalyst and use conditions as gasoline exhaust gas. Specifically, when the hydrocarbon is methane, the methane purification rate is low on the lean side, and the nitrogen oxide purification rate near λ = 1.000 is low. Furthermore, the air-fuel ratio for securing the nitrogen oxide purification rate moves to the rich side. These are considered to be caused by the fact that methane is the most stable hydrocarbon among the hydrocarbons and lacks reactivity. In addition, since the zirconium oxide oxygen sensor used for air-fuel ratio control has the highest sensitivity in the vicinity of λ = 1.000, the sensitivity decreases as the air-fuel ratio at which the optimum purification rate is obtained deviates from λ = 1.000, In such a case, there is a problem that air-fuel ratio control becomes more difficult.

又、近年、エンジンのエネルギー利用効率が向上したため、排ガスの温度が低温化する傾向にある。従って、従来の三元触媒では低温で十分な性能を得るには多量の触媒を要する懸念があり、より低い温度でも使用できる高活性の三元触媒が求められている。   In recent years, the energy utilization efficiency of the engine has improved, and the temperature of the exhaust gas tends to decrease. Therefore, there is a concern that a conventional three-way catalyst requires a large amount of catalyst in order to obtain sufficient performance at a low temperature, and a highly active three-way catalyst that can be used even at a lower temperature is demanded.

更に、燃料として供給される天然ガスには付臭剤として硫黄化合物が添加されている場合があり、このような場合、触媒が被毒し、活性低下や寿命の短期化をまねくことがあるという問題があった。   Furthermore, natural gas supplied as fuel may contain sulfur compounds as odorants. In such a case, the catalyst may be poisoned, leading to a decrease in activity and a shortened life. There was a problem.

従って、本発明の目的は、上記問題点に鑑み、低温性能に優れるとともに、硫黄被毒抵抗性が高く、リーン側でもメタン除去性能に優れる三元触媒を提供することにある。   Therefore, in view of the above problems, an object of the present invention is to provide a three-way catalyst that is excellent in low-temperature performance, has high resistance to sulfur poisoning, and has excellent methane removal performance on the lean side.

この目的を達成するための本発明の三元触媒の特徴構成は、請求項1に記載されているように、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムを担持して構成され、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスの三元触媒反応処理において、前記メタンを還元力として前記窒素酸化物の還元除去を行う点にある。尚、本明細書において、「理論空燃比」とは、空気量が理論空気量の0.990倍〜1.005倍(λ=0.990〜1.005)程度の範囲をいう。 To achieve this object, the three-way catalyst of the present invention is characterized in that, as described in claim 1, iridium is supported on an inorganic oxide mainly composed of monoclinic zirconium oxide. In the three-way catalytic reaction treatment of a methane-containing gas containing carbon monoxide, nitrogen oxides, and methane, combustion air for fuel is generated by combustion of a gas adjusted to the stoichiometric air-fuel ratio. The nitrogen oxides are reduced and removed . In this specification, “theoretical air-fuel ratio” refers to a range in which the air amount is about 0.990 times to 1.005 times (λ = 0.990 to 1.005) the theoretical air amount.

上記特徴構成において、請求項2に記載されているように、白金を担持することが好ましく、
請求項3に記載されているように、イリジウムの担持量が、酸化ジルコニウムの質量に対して0.5〜20%であることが好ましく、
請求項4に記載されているように、前記単斜晶の無機酸化物に酸化ジルコニウムが50質量%より多く含まれることが好ましい。
In the above characteristic configuration, as described in claim 2, it is preferable to carry platinum,
As described in claim 3, the supported amount of iridium is preferably 0.5 to 20% with respect to the mass of zirconium oxide,
Preferably, the monoclinic inorganic oxide contains more than 50% by mass of zirconium oxide.

この目的を達成するための本発明のメタン含有ガスの浄化方法の特徴手段は、請求項5に記載されているように、理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスを、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムを担持して構成される三元触媒に接触させ、前記メタン含有ガス中のメタンを還元力として利用して、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンを三元触媒反応により除去する点にある。 The characteristic means of the purification method of methane-containing gas of the present invention for achieving this object, as described in claim 5, is generated by combustion of a gas adjusted to a stoichiometric air-fuel ratio, carbon monoxide, the methane-containing gas containing nitrogen oxides and methane, is come in contact to the three-way catalyst constituted by supported iridium inorganic oxide composed mainly of zirconium oxide monoclinic, the methane-containing gas Using methane as a reducing power , carbon monoxide, nitrogen oxides, and methane in the methane-containing gas are removed by a three-way catalytic reaction .

上記特徴手段において、請求項6に記載されているように、前記ガスの空燃比を、λ=0.998〜1.000に調整して、燃焼により発生した前記メタン含有ガスを前記三元触媒に接触させることが好ましい。
又、請求項7に記載されているように、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンの除去反応を、400℃〜600℃の反応温度で行うことが好ましく、
更には、請求項8に記載されているように、前記反応温度が400〜550℃であることが好ましい。
In the above characteristic means, as described in claim 6, an air-fuel ratio of the gas is adjusted to λ = 0.998 to 1.000, and the methane-containing gas generated by combustion is converted into the three-way catalyst. It is preferable to make it contact.
Further, as described in claim 7, it is preferable that the removal reaction of carbon monoxide, nitrogen oxide and methane in the methane-containing gas is performed at a reaction temperature of 400 ° C to 600 ° C,
Furthermore, as described in claim 8, the reaction temperature is preferably 400 to 550 ° C.

発明者は鋭意検討を進めた結果、請求項1に記載されているように、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムを担持して構成された三元触媒が、理論空燃比でメタン含有ガス中のメタンを還元力として利用可能であり、この触媒が低温性能に優れるとともに、硫黄被毒抵抗性が高く、リーン側でもメタン除去性能に優れることを見出し、発明を完成するに至った。   As a result of diligent study by the inventors, as described in claim 1, a three-way catalyst constituted by supporting iridium on an inorganic oxide mainly composed of monoclinic zirconium oxide is theoretically Methane contained in methane-containing gas can be used as reducing power at an air-fuel ratio, and this catalyst has excellent low-temperature performance, high sulfur poisoning resistance, and excellent methane removal performance on the lean side, completing the invention It came to do.

さらに、請求項2に記載されているように、上記三元触媒が、前記イリジウムに加え白金を担持したものであると、低温性能およびリーン側のメタン除去性能に非常に優れるものとなった。   Furthermore, as described in claim 2, when the three-way catalyst is one that carries platinum in addition to the iridium, the low-temperature performance and the lean-side methane removal performance are very excellent.

ここで、イリジウムの担持量が、酸化ジルコニウムの質量に対して0.5%より少ないと三元触媒活性が低く、20%より多くてもイリジウムの粒径が大きくなり担持量に見合った性能が得られなくなり、経済性に劣る。従って、請求項3に記載されているように、イリジウムの担持量が、酸化ジルコニウムの質量に対して0.5〜20%とするのが好ましい。   Here, if the supported amount of iridium is less than 0.5% with respect to the mass of zirconium oxide, the three-way catalytic activity is low, and if it is more than 20%, the particle size of iridium becomes large and the performance commensurate with the supported amount. It cannot be obtained and is not economical. Therefore, as described in claim 3, it is preferable that the amount of iridium supported be 0.5 to 20% with respect to the mass of zirconium oxide.

また、請求項4に記載されているように、前記単斜晶の無機酸化物に酸化ジルコニウムが50質量%より多く含まれていると、耐熱性に優れた三元触媒を得ることができる。   Further, as described in claim 4, when the monoclinic inorganic oxide contains more than 50% by mass of zirconium oxide, a three-way catalyst having excellent heat resistance can be obtained.

そして、請求項5に記載されているように、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムを担持して構成され、理論空燃比でメタン含有ガス中のメタンを還元力として利用可能な三元触媒を、理論空燃比にあるメタン含有ガスと接触させると、実施例より明らかなように前記三元触媒が高い低温性能を示すので、従来の三元触媒と同様に低い温度でも三元触媒としての一酸化炭素、窒素酸化物およびメタン浄化能を発揮する。しかも、硫黄被毒による性能低下が少ないので寿命が長く、長期間に亘ってメタン含有ガスの浄化を行うことができる。   Further, as described in claim 5, iridium is supported on an inorganic oxide mainly composed of monoclinic zirconium oxide, and methane in a methane-containing gas is used as a reducing power at a stoichiometric air-fuel ratio. When an available three-way catalyst is brought into contact with a methane-containing gas at a stoichiometric air-fuel ratio, the three-way catalyst exhibits high low-temperature performance, as is clear from the examples. However, it exhibits carbon monoxide, nitrogen oxide and methane purification capabilities as a three-way catalyst. In addition, since the performance degradation due to sulfur poisoning is small, the life is long and the methane-containing gas can be purified over a long period of time.

ここで、請求項6に記載されているように、前記メタン含有ガスの空燃比を、λ=0.998〜1.000に調整して前記三元触媒に接触させると、実施例から明らかなように、非常に高い三元触媒活性を発揮し、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンをほとんど除去することができる。また、前記三元触媒に接触させるメタン含有ガスの空燃比を調整する場合には、酸化ジルコニウム酸素センサーの感度が鋭敏となる空燃比であるので、前記メタン含有ガスの空燃比の調整を容易且つ正確に行うことができる。   Here, as described in claim 6, when the air-fuel ratio of the methane-containing gas is adjusted to λ = 0.998 to 1.000 and brought into contact with the three-way catalyst, it is clear from the examples. As described above, a very high three-way catalytic activity is exhibited, and carbon monoxide, nitrogen oxides and methane in the methane-containing gas can be almost removed. In addition, when adjusting the air-fuel ratio of the methane-containing gas brought into contact with the three-way catalyst, the air-fuel ratio is such that the sensitivity of the zirconium oxide oxygen sensor becomes sharp. Therefore, the air-fuel ratio of the methane-containing gas can be easily adjusted. Can be done accurately.

又、請求項7に記載されているように、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンの除去反応を400℃〜600℃の反応温度で行うと、前記三元触媒の熱による劣化(粒成長)を抑制することができる。また、低温で運転されるガスエンジン等では排ガスの温度がこの範囲にあるので、排ガスを温度調整することなく浄化することができる。このような効果は、請求項8に記載されているように、前記反応温度が400〜550℃である場合に顕著である。   In addition, as described in claim 7, when the removal reaction of carbon monoxide, nitrogen oxides, and methane in the methane-containing gas is performed at a reaction temperature of 400 ° C to 600 ° C, the heat of the three-way catalyst It is possible to suppress deterioration due to (grain growth). Moreover, in the gas engine etc. which operate | move at low temperature, since the temperature of waste gas exists in this range, it can purify | clean, without adjusting temperature of waste gas. Such an effect is remarkable when the reaction temperature is 400 to 550 ° C. as described in claim 8.

尚、WO 2002/040152号国際公開公報に、酸化ジルコニウムにイリジウムや白金を担持した触媒が炭化水素(特にメタン)を除去することが開示されている。しかしながら、この触媒は、メタンを含有し酸素を大過剰に含む燃焼排ガス(体積基準として約2%以上であって且つ炭化水素などからなる還元性成分の酸化当量の約5倍以上の酸素が存在)中の炭化水素を浄化するものである。ここで、排ガス浄化に関する技術常識では、浄化対象ガスの酸素濃度が大きく異なる、即ち、空燃比が大きく異なる状態では、触媒機能を司る金属元素の酸化還元状態が変化するため、同様の触媒活性は期待できないと通常考えられている。例えば、前掲の特許文献1の請求項3、4及び図3、4に記載されているように、実質上、白金/ロジウム系の三元触媒の「ウインドウ」は空燃比0.99〜1.00、パラジウム系の三元触媒では空燃比0.85〜0.95となっている。このように、三元触媒として有効に機能する空燃比の範囲はかなり狭い上に、触媒によってその範囲は異なるものである。従って、類似する組成を有する触媒では、理論空燃比領域と酸素大過剰の空燃比領域の何れかで高い活性を発揮する場合、他方では高活性を維持しないと考えるのが妥当であり、かかる観点に鑑みれば、WO 2002/040152号国際公開公報の開示に基づいて本発明に容易に想到し得るものではない。   In WO 2002/040152, it is disclosed that a catalyst in which iridium or platinum is supported on zirconium oxide removes hydrocarbons (particularly methane). However, this catalyst is a combustion exhaust gas containing methane and containing a large excess of oxygen (about 2% or more on a volume basis and having oxygen more than about 5 times the oxidation equivalent of reducing components such as hydrocarbons) ) To purify the hydrocarbons in it. Here, in the technical common sense related to exhaust gas purification, in the state where the oxygen concentration of the purification target gas is greatly different, that is, in the state where the air-fuel ratio is greatly different, the oxidation-reduction state of the metal element that controls the catalytic function changes. It is usually thought that it cannot be expected. For example, as described in Claims 3 and 4 of Patent Document 1 and FIGS. 3 and 4, the “window” of the platinum / rhodium three-way catalyst substantially has an air-fuel ratio of 0.99 to 1. In the case of 00, palladium-based three-way catalyst, the air-fuel ratio is 0.85 to 0.95. Thus, the range of the air-fuel ratio that functions effectively as a three-way catalyst is quite narrow, and the range varies depending on the catalyst. Therefore, it is reasonable to consider that a catalyst having a similar composition does not maintain high activity on the other side when it exhibits high activity in either the stoichiometric air-fuel ratio region or the oxygen-excess air-fuel ratio region. In view of the above, the present invention cannot be easily conceived based on the disclosure of WO 2002/040152.

以下に本発明の実施の形態を説明する。
本発明の三元触媒は、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムを担持して構成され、理論空燃比でメタン含有ガス中のメタンを還元力として利用可能な触媒である。
Embodiments of the present invention will be described below.
The three-way catalyst of the present invention is configured by supporting iridium on an inorganic oxide mainly composed of monoclinic zirconium oxide, and can use methane in a methane-containing gas as a reducing power at a stoichiometric air-fuel ratio. is there.

この三元触媒は、酸化ジルコニウム(ZrO)に、イリジウムのイオンを含む溶液を含浸し、乾燥、焼成することによって得られる。イリジウムの含浸に用いる金属イオンを含む溶液としては、水溶液で行う場合には、塩化イリジウム酸などの水溶性の化合物を純水に溶解すればよい。また、トリス(アセチルアセトナト)イリジウムなどの有機金属化合物をアセトンなどに溶解した有機溶媒系で行っても良い。また、必要に応じて水に水溶性の有機溶媒を加えた混合溶媒としてもよい。イリジウムに加え白金を担持する場合には、イリジウム塩および白金塩の両方を溶解する水溶液を用いて一度に担持することもでき、この場合、塩化イリジウム酸と塩化白金酸との混合溶液を用いることができる。また、イリジウムと白金とを分けて逐次的に担持しても良く、このとき、次の担持までの間に、適宜乾燥や仮焼などの工程を経ても良い。 This three-way catalyst is obtained by impregnating zirconium oxide (ZrO 2 ) with a solution containing iridium ions, followed by drying and firing. As a solution containing metal ions used for impregnation with iridium, when an aqueous solution is used, a water-soluble compound such as chloroiridium acid may be dissolved in pure water. Alternatively, an organic solvent system in which an organometallic compound such as tris (acetylacetonato) iridium is dissolved in acetone or the like may be used. Moreover, it is good also as a mixed solvent which added the water-soluble organic solvent to water as needed. When platinum is supported in addition to iridium, it can also be supported at once using an aqueous solution that dissolves both iridium salt and platinum salt. In this case, use a mixed solution of chloroiridate and chloroplatinic acid. Can do. In addition, iridium and platinum may be separately loaded and supported sequentially, and at this time, a process such as drying or calcining may be appropriately performed before the next loading.

酸化ジルコニウムの比表面積は、あまりに低いとイリジウムを高分散に保つことができなくなる一方、あまりに高表面積でも、不安定となって使用中に担体の焼結が進行するおそれがある。従って、2〜90m/gの範囲とするのがよく、より好ましくは、5〜60m/gの範囲である。このような酸化ジルコニウムとしては、市販の触媒担体用酸化ジルコニウムを用いても良く、または市販の水酸化ジルコニウムを600〜1000℃で焼成して用いても良い。また、前記酸化ジルコニウム担体は、その比表面積を2〜90m/gの範囲とするのがよく、5〜60m/gの範囲であることがより好ましい。尚、酸化ジルコニウムには、調製条件並びに添加物の有無およびその量により、単斜晶、正方晶、立方晶のものが存在することが知られている。本発明の三元触媒で用いる担体は、正方晶、立方晶の酸化ジルコニウムを含んでいてもよいが、単斜晶の酸化ジルコニウムを主成分とする必要がある。本発明の場合、主成分としての単斜晶の酸化ジルコニウムの酸化ジルコニウム以外の成分を含めた担体に占める割合が、質量基準で50%より多く含まれていると理論空燃比近傍での窒素酸化物浄化率が高く、更に、前記単斜晶の酸化ジルコニウムの割合が質量基準で60%より多く含まれると、一層、理論空燃比近傍での窒素酸化物浄化率が向上するので好ましい。更に、65%より多く含まれるものは、硫黄酸化物による活性阻害が小さく、耐久性が一層高まるのでより好ましい。 If the specific surface area of zirconium oxide is too low, iridium cannot be kept in a highly dispersed state. On the other hand, if the surface area is too high, the carrier may become unstable and sintering of the support may proceed during use. Therefore, it is good to set it as the range of 2-90 m < 2 > / g, More preferably, it is the range of 5-60 m < 2 > / g. As such zirconium oxide, commercially available zirconium oxide for catalyst support may be used, or commercially available zirconium hydroxide may be used after calcining at 600 to 1000 ° C. The zirconium oxide support preferably has a specific surface area of 2 to 90 m 2 / g, and more preferably 5 to 60 m 2 / g. Zirconium oxide is known to be monoclinic, tetragonal, or cubic depending on the preparation conditions, the presence or absence of additives, and the amount thereof. The support used in the three-way catalyst of the present invention may contain tetragonal or cubic zirconium oxide, but it must contain monoclinic zirconium oxide as a main component. In the case of the present invention, if the proportion of monoclinic zirconium oxide as a main component in the support including components other than zirconium oxide is more than 50% on a mass basis, nitrogen oxidation in the vicinity of the theoretical air-fuel ratio is performed. When the ratio of the monoclinic zirconium oxide is more than 60% on a mass basis, the nitrogen oxide purification ratio near the stoichiometric air-fuel ratio is further improved. Further, a content of more than 65% is more preferable because activity inhibition by sulfur oxide is small and durability is further enhanced.

イリジウムの担持量は、少なすぎると三元触媒活性が低く、また多すぎるとイリジウムの粒径が大きくなり担持量に見合った性能が得られなくなり、経済性に劣る。よって、好ましくは酸化ジルコニウムの質量に対して0.5〜20%、より好ましくは1〜5%とする。白金を用いる場合には、少なすぎると効果がなく、また多すぎるとイリジウムの活性を阻害するので、好ましくはイリジウムの質量に対して5〜100%、より好ましくは10〜50%とする。   If the supported amount of iridium is too small, the three-way catalyst activity is low, and if it is too large, the particle size of iridium becomes large and performance corresponding to the supported amount cannot be obtained, resulting in poor economic efficiency. Therefore, Preferably it is 0.5 to 20% with respect to the mass of a zirconium oxide, More preferably, you may be 1 to 5%. In the case of using platinum, if it is too small, there is no effect, and if it is too much, the activity of iridium is inhibited. Therefore, it is preferably 5 to 100%, more preferably 10 to 50% with respect to the mass of iridium.

活性金属の担持後、これを焼成して触媒が完成する。焼成時に流通するガスは、通常の空気でよいが、空気あるいは酸素と、窒素などの不活性ガスとを適宜混合したガスを用いても良く、この他水蒸気や二酸化炭素などを添加しても良い。焼成温度は高すぎると、担持された貴金属の粒成長が進んで高い活性が得られない。逆に低すぎても焼成の効果が無く三元触媒の使用中に貴金属の粒成長が進んで安定した活性が得られないおそれがある。従って、安定して高い活性をうるためには、焼成の温度は450℃〜650℃の範囲とするのがよく、より好ましくは500℃〜600℃の範囲とするのがよい。   After loading the active metal, it is calcined to complete the catalyst. The gas that circulates at the time of firing may be ordinary air, but a gas obtained by appropriately mixing air or oxygen and an inert gas such as nitrogen may be used, or water vapor or carbon dioxide may be added. . If the calcination temperature is too high, grain growth of the supported noble metal proceeds and high activity cannot be obtained. On the other hand, if it is too low, there is no effect of calcination, and there is a possibility that the growth of noble metal grains progresses during use of the three-way catalyst, and stable activity cannot be obtained. Therefore, in order to obtain high activity stably, the firing temperature is preferably in the range of 450 ° C. to 650 ° C., more preferably in the range of 500 ° C. to 600 ° C.

本発明の三元触媒は、その形状を、ペレット状やハニカム状など任意の形状に成型して用いても良い。例えば、コージェライトなどの耐火性ハニカム上にウオッシュコートしたりして用いてもよく、このようにすることで、圧力損失を低減することができる。耐火性ハニカム上にウオッシュコートする場合には、上記の方法で調製した三元触媒に必要に応じて酸化ジルコニウムゾルなどを加えてスラリー状にしてウオッシュコートしても、あらかじめ酸化ジルコニウムを同様の方法で耐火性ハニカム上にウオッシュコートしてから上記の方法に従ってイリジウムおよび必要に応じて白金などを担持してもよい。コージェライトにウオッシュコートする場合の三元触媒のコート量は、コージェライト1リットルあたり、酸化ジルコニウムとして50〜300g、イリジウムとして0.5〜30gとするのが良く、より好ましくは、酸化ジルコニウムとして100〜250g、イリジウムとして5〜20gの範囲とする。白金を担持する場合、イリジウムに対する質量比で5〜100%、より好ましくは10〜50%とする。   The three-way catalyst of the present invention may be used by molding its shape into an arbitrary shape such as a pellet shape or a honeycomb shape. For example, a wash-resistant honeycomb such as cordierite may be used as a wash coat, and pressure loss can be reduced by doing so. When wash-coating on a fire-resistant honeycomb, zirconium oxide sol or the like may be added to the three-way catalyst prepared by the above method to form a slurry and wash-coated as required. Then, after wash-coating on the refractory honeycomb, iridium and, if necessary, platinum may be supported according to the above method. When the cordierite is wash-coated, the coating amount of the three-way catalyst is preferably 50 to 300 g as zirconium oxide and 0.5 to 30 g as iridium per liter of cordierite, more preferably 100 as zirconium oxide. ˜250 g, iridium as 5-20 g. When carrying | supporting platinum, it is 5 to 100% by mass ratio with respect to iridium, More preferably, you may be 10 to 50%.

本発明の三元触媒は、必要に応じて公知の触媒と混合併用して用いても良い。本発明の三元触媒との混合の方法は、両粉体を混合粉砕しても良く、またウオッシュコート触媒とする場合は、両粉体を混合粉砕して得た混合粉体をウオッシュコートしても良く、2またはそれ以上の層に分けて別々にあるいは混合比を変えてコートしても良い。
使用する触媒の量は、少なすぎると有効な酸化性能が得られないので、ガス時間当たり空間速度(GHSV)として200,000h−1以下となる条件で使用するのが望まし
い。ガス時間当たり空間速度(GHSV)を低くするほど触媒量が多くなるため、触媒性能は向上するが、例えば1000h−1以下で用いるような場合には経済性の問題に加えて、触媒層での圧力損失が大きくなる問題が生じるおそれがある。
The three-way catalyst of the present invention may be used in combination with a known catalyst as necessary. In the method of mixing with the three-way catalyst of the present invention, both powders may be mixed and pulverized, and when a washcoat catalyst is used, the mixed powder obtained by mixing and pulverizing both powders is washcoated. It may be divided into two or more layers and coated separately or with different mixing ratios.
If the amount of the catalyst used is too small, an effective oxidation performance cannot be obtained. Therefore, it is desirable to use the catalyst under conditions where the space velocity per gas hour (GHSV) is 200,000 h −1 or less. As the space velocity per gas time (GHSV) decreases, the amount of catalyst increases, so the catalyst performance improves. For example, when used at 1000 h -1 or less, in addition to the economical problem, There is a risk that the pressure loss will increase.

上述したような触媒を用いるメタン含有ガス浄化方法は、上記の三元触媒に、理論空燃比にあるメタン含有ガスを接触させて、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンを除去することを特徴とする。   In the methane-containing gas purification method using the catalyst as described above, the methane-containing gas at the stoichiometric air-fuel ratio is brought into contact with the above three-way catalyst, and the carbon monoxide, nitrogen oxide, and methane in the methane-containing gas are contacted. It is characterized by removing.

浄化すべきメタン含有ガスガスの空燃比が理論空燃比にある場合には、空燃比を調整する必要はない。かかる空燃比にはないメタン含有ガスが浄化対象である場合には、例えば、通常行われるような、燃焼器の空燃比を直接制御する方法、又は、燃焼メタン含有ガスの酸素過剰度を測定してそれに応じて空気などの酸化性ガスあるいは燃料などの還元性ガスを添加する方法等で空燃比を調整する。   When the air-fuel ratio of the methane-containing gas to be purified is at the stoichiometric air-fuel ratio, it is not necessary to adjust the air-fuel ratio. When a methane-containing gas that does not have such an air-fuel ratio is the target of purification, for example, a method of directly controlling the air-fuel ratio of the combustor, which is normally performed, or the oxygen excess of the combustion methane-containing gas is measured. Accordingly, the air-fuel ratio is adjusted by a method of adding an oxidizing gas such as air or a reducing gas such as fuel.

ここで、理論空燃比とは、通常、燃焼器に投入される燃料に対する燃焼用空気量が完全燃焼に必要な最小値(理論空気量)であることを言い、例えば、空気量が理論空気量の0.990倍〜1.005倍(λ=0.990〜1.005)程度の範囲にあることをいう。実用上、空燃比を数10ミリ秒〜数秒単位で振動させる場合においては、時間平均の空燃比が上記の範囲に入っていればよい。特殊な場合として、燃焼器の後段で空気や燃料等を添加する場合には、これらと燃焼器に投入される燃料または空気量とを合算して計算したものが上記の範囲にあればよい。燃焼用空気に、通常の空気ではなく、酸素富化空気等酸素濃度の異なるガスを用いる場合であっても、酸素含有量に応じて理論ガス量は計算できるので、同様に理論ガス量の0.990倍〜1.005倍程度とすればよい。   Here, the stoichiometric air-fuel ratio means that the amount of combustion air with respect to the fuel input to the combustor is usually the minimum value (theoretical air amount) necessary for complete combustion. For example, the air amount is the theoretical air amount. Of 0.990 times to 1.005 times (λ = 0.990 to 1.005). In practice, when the air-fuel ratio is vibrated in units of several tens of milliseconds to several seconds, the time-averaged air-fuel ratio may be within the above range. As a special case, when air, fuel, or the like is added at the subsequent stage of the combustor, the sum of these and the amount of fuel or air introduced into the combustor may be within the above range. Even when a gas having a different oxygen concentration, such as oxygen-enriched air, is used as the combustion air, the theoretical gas amount can be calculated according to the oxygen content. It may be about 990 times to 1.005 times.

簡便には、前記三元触媒に接触させるメタン含有ガスの組成が、下記の2条件を共に充足する範囲となるように調整することで、上記空燃比に該当する。
条件1:
(〔H〕×0.5+〔CO〕×0.5+〔CH〕) < (〔O〕+〔NO〕×0.5+〔NO〕)
条件2:
(〔H〕×0.5+〔CO〕×0.5+〔CH〕×2) > (〔O〕+〔NO〕×0.25+〔NO〕×0.5)
ただし、〔〕内は、ガス濃度をppm(体積基準)で表したものである。
For simplicity, the composition of the methane-containing gas brought into contact with the three-way catalyst is adjusted so as to be in a range satisfying both of the following two conditions, thereby satisfying the air-fuel ratio.
Condition 1:
([H 2 ] × 0.5 + [CO] × 0.5 + [CH 4 ]) <([O 2 ] + [NO] × 0.5 + [NO 2 ])
Condition 2:
([H 2 ] × 0.5 + [CO] × 0.5 + [CH 4 ] × 2)> ([O 2 ] + [NO] × 0.25 + [NO 2 ] × 0.5)
However, the inside of [] represents gas concentration in ppm (volume basis).

好ましくは、λ=0.998〜1.000の空燃比にあるメタン含有ガスを、本発明に係る三元触媒に接触させる。このようにすると、非常に高い浄化能を発揮することができる。   Preferably, a methane-containing gas having an air-fuel ratio of λ = 0.998 to 1.000 is brought into contact with the three-way catalyst according to the present invention. If it does in this way, very high purification ability can be exhibited.

本発明の三元触媒は、高い活性を有するが、あまりに低温では活性が下がり、所望の酸化性能が得られない虞れがあるので、触媒層温度が400℃以上に保たれるようにするのが好ましい。また600℃を超えるような温度での使用では、三元触媒の耐久性が悪化するおそれがある。また、600℃以上の温度で長時間空気を流通するなどした場合には活性金属の凝集(粒成長)が促進されるため、三元触媒劣化の懸念がある。より好ましくは400〜550℃の低温運転のエンジンから排出されたガスをそのまま触媒に接触させる。   Although the three-way catalyst of the present invention has a high activity, the activity is lowered at a too low temperature, and the desired oxidation performance may not be obtained. Therefore, the catalyst layer temperature should be maintained at 400 ° C. or higher. Is preferred. In addition, when used at a temperature exceeding 600 ° C., the durability of the three-way catalyst may be deteriorated. Further, when air is circulated for a long time at a temperature of 600 ° C. or more, active metal aggregation (granular growth) is promoted, and there is a concern about deterioration of the three-way catalyst. More preferably, the gas discharged from the engine operating at a low temperature of 400 to 550 ° C. is directly brought into contact with the catalyst.

ここで、メタン含有ガスには、燃料中の硫黄分に由来して二酸化硫黄などの硫黄成分が含まれることがある。ところが、実施例から明らかなように、本発明の三元触媒は硫黄被毒に対する抵抗性が高いので、このような場合にも高い浄化性能が維持される。この他、メタン含有ガス中にはメタン以外の炭化水素やその他の有機成分が含まれることがある。このような場合にも、本発明の三元触媒は、不活性なメタンも利用できるほどの高い酸化活性を有するので、メタン以外の炭化水素やその他の有機成分も有効に除去でき、浄化性能を阻害されることはない。   Here, the methane-containing gas may contain sulfur components such as sulfur dioxide derived from the sulfur content in the fuel. However, as is clear from the examples, the three-way catalyst of the present invention has high resistance to sulfur poisoning, and thus high purification performance is maintained even in such a case. In addition, the methane-containing gas may contain hydrocarbons other than methane and other organic components. Even in such a case, since the three-way catalyst of the present invention has a high oxidation activity that can also use inert methane, hydrocarbons other than methane and other organic components can be effectively removed, and purification performance is improved. There is no inhibition.

以下、実施例および比較例を示し、本発明をより詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated in detail, this invention is not limited to these Examples.

〔実施例1〕
酸化ジルコニウム(日本電工(株)製、N−PC、比表面積 28m/g)を空気中800℃で6時間焼成し、BET比表面積16m/gの焼成酸化ジルコニウムを得た。Cu−Kα線を用いたX線回折測定では、2θ=28°及び31.5°付近の単斜晶の回折線のみが観測された。2θ=30°付近の正方晶の回折線は観測されなかった。このことから、この焼成酸化ジルコニウムの99%以上が単斜晶であると考えられる。この焼成酸化ジルコニウム40gに、塩化イリジウム酸(HIrCl)水溶液を含浸し、さらにエバポレーターで蒸発乾固した後、空気中550℃で6時間焼成して、酸化ジルコニウムに対してIrを2質量%含有するIr/酸化ジルコニウム三元触媒を得た。この三元触媒の比表面積は16m/gであった。
[Example 1]
Zirconium oxide (Nippon Denko Corporation, N-PC, specific surface area 28 m 2 / g) was calcined in air at 800 ° C. for 6 hours to obtain calcined zirconium oxide having a BET specific surface area of 16 m 2 / g. In X-ray diffraction measurement using Cu-Kα rays, only monoclinic diffraction lines near 2θ = 28 ° and 31.5 ° were observed. Tetragonal diffraction lines around 2θ = 30 ° were not observed. From this, it is considered that 99% or more of the calcined zirconium oxide is monoclinic. After impregnating 40 g of this calcined zirconium oxide with an aqueous solution of chloroiridic acid (H 2 IrCl 6 ) and further evaporating to dryness with an evaporator, it was calcined in air at 550 ° C. for 6 hours to give 2 mass of Ir with respect to zirconium oxide. % Ir / zirconium oxide three-way catalyst was obtained. The specific surface area of this three-way catalyst was 16 m 2 / g.

この三元触媒を打錠成型して粒径1〜2mmに整粒したものを用意し、この2mlをステンレス製反応管に充填した。三元触媒層温度を400〜550℃の所定の温度に保ち、表1に示す組成(理論空気量に対する空気量の比(λ)が0.985〜1.005のメタン含有ガスを模擬している)の初期反応ガスを毎分1.5リットル(標準状態における体積;以下同様)の流量で流通して、NO,CH,COの浄化率を測定した。 A three-way catalyst was formed by tableting and sized to a particle size of 1 to 2 mm, and 2 ml of this was filled into a stainless steel reaction tube. The temperature of the three-way catalyst layer is kept at a predetermined temperature of 400 to 550 ° C., and the composition shown in Table 1 (simulating a methane-containing gas having a ratio of air amount to theoretical air amount (λ) of 0.985 to 1.005) The initial reaction gas was circulated at a flow rate of 1.5 liters per minute (volume in the standard state; the same applies hereinafter), and the purification rate of NO x , CH 4 , and CO was measured.

引き続いて、表2に示す組成のガスを毎分1.5リットルの流量で20時間流通して劣化処理を行ったのち、表3に示す組成のガスを毎分1.5リットルの流量で流通して、NO,CH,COの浄化率を再び測定した。 Subsequently, the gas having the composition shown in Table 2 was circulated for 20 hours at a flow rate of 1.5 liters per minute, and after the deterioration treatment, the gas having the composition shown in Table 3 was circulated at a flow rate of 1.5 liters per minute. Then, the purification rate of NO x , CH 4 , and CO was measured again.

Figure 0004688646
Figure 0004688646

Figure 0004688646
Figure 0004688646

Figure 0004688646
Figure 0004688646

なお、浄化率はいずれも、100×(1−(出口濃度)/(入口濃度))(%)で定義され、NOについては一酸化窒素(NO)と二酸化窒素(NO)の合計濃度を用いている。 The purification rate is defined as 100 × (1− (exit concentration) / (inlet concentration)) (%), and for NO x , the total concentration of nitrogen monoxide (NO) and nitrogen dioxide (NO 2 ). Is used.

結果を表4に示す。空燃比がλ=1.000におけるNO浄化率は、450℃以上では100%となり、NO,CH,COの全てについて高い浄化率を示した。また、リーン側(λ=1.005)のメタン浄化率は、450℃で98%に達し、空燃比がリーン側に外れた場合もメタンの除去性能は高く維持できる。また二酸化硫黄による劣化処理後でも、450℃で87%と高いメタン除去率を維持し、475℃以上ではλ=0.998及び1.000においてNO,CH,COの全てについて高い浄化率を維持していた。 The results are shown in Table 4. The NO x purification rate at an air-fuel ratio of λ = 1.000 was 100% at 450 ° C. or higher, and high purification rates were shown for all of NO x , CH 4 , and CO. Further, the methane purification rate on the lean side (λ = 1.005) reaches 98% at 450 ° C., and the methane removal performance can be maintained high even when the air-fuel ratio deviates to the lean side. Moreover, even after deterioration treatment with sulfur dioxide, a high methane removal rate of 87% at 450 ° C. is maintained, and a high purification rate for all of NO x , CH 4 , and CO at λ = 0.998 and 1.000 above 475 ° C. Was maintained.

Figure 0004688646
Figure 0004688646

〔実施例2〕
実施例1と同じ焼成酸化ジルコニウム40gに、塩化イリジウム酸(HIrCl)および塩化白金酸(HPtCl)の混合水溶液を含浸して、さらにエバポレーターで蒸発乾固した後、空気中550℃で6時間焼成して、酸化ジルコニウムに対してIrを2質量%、Ptを0.5質量%含有するIr−Pt/酸化ジルコニウム三元触媒を得た。この三元触媒の比表面積は16m/gであった。
[Example 2]
40 g of the same calcined zirconium oxide as in Example 1 was impregnated with a mixed aqueous solution of chlorinated iridium acid (H 2 IrCl 6 ) and chloroplatinic acid (H 2 PtCl 6 ), further evaporated to dryness with an evaporator, and then 550 in air. Firing at 6 ° C. for 6 hours gave an Ir—Pt / zirconium oxide three-way catalyst containing 2% by mass of Ir and 0.5% by mass of Pt based on zirconium oxide. The specific surface area of this three-way catalyst was 16 m 2 / g.

この三元触媒の性能を実施例1と同じ条件で評価した。結果を表5に示す。空燃比がλ=1.000におけるNO浄化率は、450℃以上では100%となった。また、リーン側(λ=1.005)のメタン浄化率は、450℃以上ではほぼ100%となった。三元触媒では空燃比を制御して、いずれの成分も除去できるようにするが、例えば、NO,CH,COのいずれをも90%除去することとした場合、初期では400℃で、劣化処理後でも450℃以上であれば、必要な浄化性能が得られた。しかも、二酸化硫黄による劣化処理後も、特にλ=0.998〜1.000で、非常に高い三元触媒活性を維持することができた。 The performance of this three-way catalyst was evaluated under the same conditions as in Example 1. The results are shown in Table 5. The NO x purification rate when the air-fuel ratio is λ = 1.000 was 100% at 450 ° C. or higher. Further, the methane purification rate on the lean side (λ = 1.005) was almost 100% at 450 ° C. or higher. In the three-way catalyst, the air-fuel ratio is controlled so that any component can be removed. For example, when 90% of NO x , CH 4 , and CO are removed, the initial temperature is 400 ° C. Even after the deterioration treatment, if it was 450 ° C. or higher, the necessary purification performance was obtained. Moreover, even after the deterioration treatment with sulfur dioxide, very high three-way catalyst activity could be maintained particularly at λ = 0.998 to 1.000.

Figure 0004688646
Figure 0004688646

〔比較例1〕
アルミナ(サンゴバン−ノートン社製、SA6276)を破砕して粒径1〜2mmに整粒したもの12.8gに、硝酸セリウム(Ce(NO・6HO) 3.2gを18gの純水に溶解した水溶液を含浸した。これを蒸発乾固したのち、800℃で6時間焼成してアルミナに対して10%の酸化セリウム(CeO)を担持したCeO−Al担体を得た。この6gに、テトラアンミン白金硝酸塩(Pt(NH(NO)およびペンタアンミンアクアロジウム硝酸塩(Rh(NH(HO)(NO)を溶解する水溶液を含浸して、蒸発乾固し、さらに空気中550℃で焼成して担体に対して2質量%のPtと0.5質量%のロジウムを担持するPt−Rh/CeO−Al三元触媒を得た。
[Comparative Example 1]
Alumina (Gobain - Norton Co., SA6276) in 12.8g those sized crushing to a particle size 1~2mm a cerium nitrate (Ce (NO 3) 3 · 6H 2 O) and 3.2g of 18g pure An aqueous solution dissolved in water was impregnated. This was evaporated to dryness and then calcined at 800 ° C. for 6 hours to obtain a CeO 2 —Al 2 O 3 support carrying 10% cerium oxide (CeO 2 ) with respect to alumina. 6 g of this was impregnated with an aqueous solution dissolving tetraammineplatinum nitrate (Pt (NH 3 ) 4 (NO 3 ) 2 ) and pentaammine aquadium nitrate (Rh (NH 3 ) 5 (H 2 O) (NO 3 ) 3 ). Pt—Rh / CeO 2 —Al 2 O 3 ternary carrying 2% by mass of Pt and 0.5% by mass of rhodium with respect to the support by evaporating to dryness and further firing in air at 550 ° C. A catalyst was obtained.

この三元触媒の性能を実施例1と同じ条件で評価した。結果を表6に示す。実施例1及び2に係る三元触媒と比較して、比較例1に係る三元触媒はリーン側の空燃比(λ=1.000〜1.005)での浄化率が低い。硫黄被毒による劣化処理後はさらに浄化率が低下し、NO,CH,COのいずれをも90%除去することとした場合、初期では400℃で可能だが、劣化処理後では500℃以上の温度でなければ必要な浄化性能が得らなかった。 The performance of this three-way catalyst was evaluated under the same conditions as in Example 1. The results are shown in Table 6. Compared to the three-way catalyst according to Examples 1 and 2, the three-way catalyst according to Comparative Example 1 has a lower purification rate at the lean side air-fuel ratio (λ = 1.000 to 1.005). After the deterioration treatment due to sulfur poisoning, the purification rate is further reduced, and when NO x , CH 4 , and CO are all removed by 90%, it is possible at 400 ° C at the beginning, but after the deterioration treatment, it is 500 ° C or more. Necessary purification performance could not be obtained unless the temperature was lower.

Figure 0004688646
Figure 0004688646

〔比較例2〕
実施例1と同じ焼成酸化ジルコニウム15gに、硝酸パラジウム(Pd(NO)水溶液を含浸し、さらにエバポレーターで蒸発乾固した後、空気中550℃で6時間焼成して、酸化ジルコニウムに対してPdを2質量%担持するPd/酸化ジルコニウム三元触媒を得た。
[Comparative Example 2]
15 g of the same calcined zirconium oxide as in Example 1 was impregnated with an aqueous solution of palladium nitrate (Pd (NO 3 ) 2 ), further evaporated to dryness with an evaporator, and then calcined in air at 550 ° C. for 6 hours. Thus, a Pd / zirconium oxide three-way catalyst supporting 2% by mass of Pd was obtained.

この三元触媒の性能を実施例1と同じ条件で評価した。結果を表7に示す。初期の浄化率は高く、空燃比がλ=1.000におけるNO浄化率は、400℃で78%、450℃で100%に達し、また、リーン側(λ=1.005)のメタン浄化率は、400℃でも89%に達していた。しかしながら、二酸化硫黄による劣化処理後は浄化率が大きく低下し、空燃比がλ=1.000におけるNO浄化率は、550℃で63%に過ぎず、400〜550℃の領域では、NO,CH,COのいずれをも90%除去できる空燃比は存在しなかった。従って、この比較例2に係る触媒は硫黄被毒に非常に弱く、実用的には三元触媒として機能しないことが分かる。 The performance of this three-way catalyst was evaluated under the same conditions as in Example 1. The results are shown in Table 7. The initial purification rate is high, and the NO x purification rate when the air-fuel ratio is λ = 1.000 reaches 78% at 400 ° C. and 100% at 450 ° C., and methane purification on the lean side (λ = 1.005) The rate reached 89% even at 400 ° C. However, after the deterioration treatment with sulfur dioxide, the purification rate is greatly reduced, and the NO x purification rate when the air-fuel ratio is λ = 1.000 is only 63% at 550 ° C., and in the region of 400 to 550 ° C., NO x , CH 4, air-fuel ratio can be 90% removal of any CO was present. Therefore, it can be seen that the catalyst according to Comparative Example 2 is very vulnerable to sulfur poisoning and does not practically function as a three-way catalyst.

Figure 0004688646
Figure 0004688646

実施例1に係る触媒と比較例1に係る触媒とを比較すると、実施例1に係る触媒がよりリーン側の空燃比(λ=1.000)で窒素酸化物、メタン、一酸化炭素のほとんどを除去可能であることが判る。また、実施例1に係る触媒と比較例2に係る触媒とを比較すると、実施例1に係る触媒が硫黄分を含むガスで劣化処理された後も高い活性を維持するのに対して、比較例2に係る触媒では窒素酸化物やメタンの浄化率が大幅に低下しているのが判る。このように、本発明に係る三元触媒は、硫黄被毒耐性を有しつつ、従来の触媒よりリーン側の、極めてλ=1.000に近い空燃比で除去能を発揮する点で優れているといえる。   When the catalyst according to Example 1 and the catalyst according to Comparative Example 1 are compared, the catalyst according to Example 1 has a leaner air-fuel ratio (λ = 1.000) and most of nitrogen oxides, methane, and carbon monoxide. It can be seen that it can be removed. Further, when the catalyst according to Example 1 and the catalyst according to Comparative Example 2 are compared, the catalyst according to Example 1 maintains high activity even after being deteriorated with a gas containing sulfur, whereas It can be seen that in the catalyst according to Example 2, the purification rate of nitrogen oxides and methane is greatly reduced. As described above, the three-way catalyst according to the present invention is excellent in that it has a sulfur poisoning resistance and exhibits a removal ability at an air-fuel ratio very close to λ = 1.000 on the lean side of the conventional catalyst. It can be said that.

又、実施例2に示すように、酸化ジルコニウムを担体としてこれにイリジウムと共に白金を担持することによって、表5に示されるように、上記効果は更に良好となる。   Further, as shown in Table 2, by loading zirconium oxide as a carrier and platinum together with iridium as shown in Example 2, the above effects are further improved as shown in Table 5.

〔比較例3〕
水酸化ジルコニウム(林純薬工業社製、ZrOとして79%含有)60gを、硝酸セリウム6水和物(Ce(NO・6HO)22gを60gの純水に溶解した水溶液に15時間浸漬し、蒸発乾固した。この後、700℃で6時間焼成して、BET比表面積39m/gのセリア−ジルコニア担体(質量比で酸化セリウム:酸化ジルコニウム=16:84)を得た。Cu−Kα線を用いたX線回折測定では、2θ=30°付近の正方晶の回折線が強く観測された。この他にも、2θ=28°及び31.5°付近の単斜晶の回折線は弱く観測された。これらの強度比から、このセリア−ジルコニアは80%が正方晶または立方晶で、単斜晶の割合は20%であると計算された。単斜晶がすべて酸化ジルコニウムからなるとしても、このセリア−ジルコニア担体に占める単斜晶酸化ジルコニウムの割合は20%程度である。
このセリアージルコニア担体に、塩化イリジウム酸(HIrCl)および塩化白金酸(HPtCl)の混合水溶液を含浸し、さらにエバポレーターで蒸発乾固した後、空気中550℃で6時間焼成した。これにより、セリアージルコニア担体に対して、Irを2質量%、Ptを0.5質量%含有するIr−Pt/セリアージルコニア三元触媒を得た。この三元触媒の比表面積は38m/gであった。
[Comparative Example 3]
Zirconium hydroxide 60g (HayashiJunyaku Kogyo Co., 79% contained as ZrO 2), cerium nitrate hexahydrate (Ce (NO 3) 3 · 6H 2 O) 22g aqueous solution prepared by dissolving in pure water 60g It was immersed for 15 hours and evaporated to dryness. Thereafter, the mixture was calcined at 700 ° C. for 6 hours to obtain a ceria-zirconia carrier having a BET specific surface area of 39 m 2 / g (cerium oxide: zirconium oxide = 16: 84 by mass ratio). In the X-ray diffraction measurement using Cu-Kα rays, a tetragonal diffraction line near 2θ = 30 ° was strongly observed. In addition, the monoclinic diffraction lines near 2θ = 28 ° and 31.5 ° were weakly observed. From these intensity ratios, it was calculated that 80% of this ceria-zirconia was tetragonal or cubic, and the proportion of monoclinic crystal was 20%. Even if the monoclinic crystal consists entirely of zirconium oxide, the proportion of monoclinic zirconium oxide in the ceria-zirconia support is about 20%.
This ceria-zirconia support was impregnated with a mixed aqueous solution of chloroiridic acid (H 2 IrCl 6 ) and chloroplatinic acid (H 2 PtCl 6 ), evaporated to dryness with an evaporator, and then fired at 550 ° C. in air for 6 hours. did. As a result, an Ir—Pt / ceria-zirconia three-way catalyst containing 2% by mass of Ir and 0.5% by mass of Pt with respect to the ceria-zirconia support was obtained. The specific surface area of this three-way catalyst was 38 m 2 / g.

この三元触媒の性能を実施例1と同じ条件で評価した。劣化処理後の浄化率を、表8に示す。理論空燃比(λ=1.000)におけるNOx浄化率は475℃で77%で、比較例1と同程度に止まった。   The performance of this three-way catalyst was evaluated under the same conditions as in Example 1. Table 8 shows the purification rate after the deterioration treatment. The NOx purification rate at the theoretical air-fuel ratio (λ = 1.000) was 77% at 475 ° C., which was about the same as that of Comparative Example 1.

Figure 0004688646
Figure 0004688646

〔比較例4〕
比較例3と同じセリアージルコニア担体を、ヘキサアンミンイリジウム硝酸塩([Ir(NH](NO)とテトラアンミン白金硝酸塩([Pt(NH](NO)とを1%アンモニア水に溶解した混合水溶液に15時間浸漬して蒸発乾固した。この後、空気中550℃で6時間焼成して、セリアージルコニア担体に対してIrを2質量%、Ptを0.5質量%含有するIr−Pt/セリア−ジルコニア三元触媒(2)を得た。この三元触媒の比表面積は、39m/gであった。
[Comparative Example 4]
The same ceria-zirconia support as in Comparative Example 3 was prepared from hexaammineiridium nitrate ([Ir (NH 3 ) 6 ] (NO 3 ) 3 ) and tetraammine platinum nitrate ([Pt (NH 3 ) 4 ] (NO 3 ) 2 ). Was immersed in a mixed aqueous solution dissolved in 1% aqueous ammonia for 15 hours to evaporate to dryness. Thereafter, it was calcined in air at 550 ° C. for 6 hours to obtain an Ir—Pt / ceria-zirconia three-way catalyst (2) containing 2% by mass of Ir and 0.5% by mass of Pt based on the ceria-zirconia support. Obtained. The specific surface area of this three-way catalyst was 39 m 2 / g.

この三元触媒の性能を実施例1と同じ条件で評価した。劣化処理後の浄化率を、表9に示す。理論空燃比(λ=1.000)におけるNOx浄化率は475℃で84%で、比較例3よりは若干高くなったが、比較例1とほぼ同程度である。   The performance of this three-way catalyst was evaluated under the same conditions as in Example 1. Table 9 shows the purification rate after the deterioration treatment. The NOx purification rate at the stoichiometric air-fuel ratio (λ = 1.000) was 84% at 475 ° C., which was slightly higher than that of Comparative Example 3, but is almost the same as that of Comparative Example 1.

Figure 0004688646
Figure 0004688646

〔実施例3〕
実施例1で用いた焼成酸化ジルコニウム10gと、比較例3で用いたセリア−ジルコニア担体5gとを乳鉢で混合した。この結果得られたセリア−ジルコニア混合担体は、少なくとも66質量%の単斜晶酸化ジルコニウムを含む。このセリア−ジルコニア混合担体に、比較例4と同様にして白金とイリジウムとを担持し、担体に対してIrを2質量%、Ptを0.5質量%含有するIr−Pt/セリア−ジルコニア三元触媒(3)を得た。
Example 3
The calcined zirconium oxide 10 g used in Example 1 and the ceria-zirconia carrier 5 g used in Comparative Example 3 were mixed in a mortar. The resulting ceria-zirconia mixed support contains at least 66% by weight of monoclinic zirconium oxide. In this ceria-zirconia mixed carrier, platinum and iridium are supported in the same manner as in Comparative Example 4, and Ir—Pt / ceria-zirconia tris containing 2% by mass of Ir and 0.5% by mass of Pt with respect to the carrier. The original catalyst (3) was obtained.

この三元触媒の性能を実施例1と同じ条件で評価した。劣化処理後の浄化率を、表10に示す。理論空燃比(λ=1.000)におけるNOx浄化率は475℃で93%であった。この結果は、実施例1と同程度であり、比較例1より格段に優れるものであった。また、表10には示していないが、λ=1.005におけるメタン浄化率は、450℃で92%、475℃で96%であり、比較例1より格段に優れていた。   The performance of this three-way catalyst was evaluated under the same conditions as in Example 1. Table 10 shows the purification rate after the deterioration treatment. The NOx purification rate at the theoretical air fuel ratio (λ = 1.000) was 93% at 475 ° C. This result was similar to that of Example 1 and was much better than Comparative Example 1. Although not shown in Table 10, the methane purification rate at λ = 1.005 was 92% at 450 ° C. and 96% at 475 ° C., which was much better than Comparative Example 1.

Figure 0004688646
Figure 0004688646

以上の結果をまとめると、三元触媒の窒素酸化物浄化率は、低温又は空燃比上昇の少なくとも何れかの条件において、担体に含まれる単斜晶の酸化ジルコニウムの比率が高いほど、また、イリジウムに加えて白金を担持することで高まることが明らかになった。   Summarizing the above results, the nitrogen oxide purification rate of the three-way catalyst is higher when the ratio of monoclinic zirconium oxide contained in the support is higher at least in the condition of low temperature or increased air-fuel ratio. In addition to the above, it has been clarified that it is increased by supporting platinum.

本発明の三元触媒は、低温性能に優れるとともに、リーン側でのメタン除去性能に優れるので、これを用いてメタン含有ガス浄化装置を構成することにより、排気温度が低い条件でも高いメタン含有ガス浄化性能を得ることができ、経済的に有利な条件で高度のメタン含有ガス浄化が可能となる。しかも、硫黄被毒に対する高い耐性を併せ持つので、付臭剤としての硫黄化合物を含む一般に流通する天然ガス由来の排ガス(メタン含有ガス)をそのまま利用することができる。従って、天然ガスエンジンを利用した諸設備等においてメタン含有ガス処理コストの低減を可能とすると共に、環境改善にも資するところ大である。   The three-way catalyst of the present invention is excellent in low-temperature performance and excellent in methane removal performance on the lean side, so that a methane-containing gas purification device is used to construct a methane-containing gas even under low exhaust temperature conditions. Purification performance can be obtained, and high-level methane-containing gas purification can be performed under economically advantageous conditions. And since it has high tolerance with respect to sulfur poisoning, the exhaust gas (methane containing gas) derived from the generally distributed natural gas containing the sulfur compound as an odorant can be utilized as it is. Therefore, it is possible to reduce the cost for treating methane-containing gas in various facilities using a natural gas engine, and to greatly improve the environment.

Claims (8)

単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムを担持して構成され、燃料に対する燃焼用空気が理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスの三元触媒反応処理において、前記メタンを還元力として前記窒素酸化物の還元除去を行う三元触媒。 Composed of iridium supported on inorganic oxide mainly composed of monoclinic zirconium oxide, combustion air for fuel is generated by combustion of gas adjusted to the theoretical air-fuel ratio , carbon monoxide, nitrogen oxide And a three-way catalyst for reducing and removing the nitrogen oxides using the methane as a reducing power in a three-way catalytic reaction treatment of a methane-containing gas containing methane. 白金を担持した請求項1に記載の三元触媒。   The three-way catalyst according to claim 1, wherein platinum is supported. イリジウムの担持量が、酸化ジルコニウムの質量に対して0.5〜20%である請求項1又は2に記載の三元触媒。   The three-way catalyst according to claim 1 or 2, wherein the amount of iridium supported is 0.5 to 20% with respect to the mass of zirconium oxide. 前記無機酸化物に単斜晶の酸化ジルコニウムが50質量%より多く含まれる請求項1〜3の何れか1項に記載の三元触媒。   The three-way catalyst according to any one of claims 1 to 3, wherein the inorganic oxide contains more than 50 mass% of monoclinic zirconium oxide. 理論空燃比に調整されたガスの燃焼により発生し、一酸化炭素、窒素酸化物及びメタンを含有するメタン含有ガスを、単斜晶の酸化ジルコニウムを主成分とする無機酸化物にイリジウムを担持して構成される三元触媒に接触させ、前記メタン含有ガス中のメタンを還元力として利用して、前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンを三元触媒反応により除去するメタン含有ガスの浄化方法。 A methane-containing gas containing carbon monoxide, nitrogen oxides, and methane is generated by combustion of a gas adjusted to a theoretical air-fuel ratio, and iridium is supported on an inorganic oxide mainly composed of monoclinic zirconium oxide. is come in contact to the three-way catalyst comprised Te, by using methane of the methane-containing gas as the reducing power, carbon monoxide of the methane-containing gas is removed by the nitrogen oxide and the three-way catalyst reaction of methane Purification method for methane-containing gas. 前記ガスの空燃比を、λ=0.998〜1.000に調整して、燃焼により発生した前記メタン含有ガスを前記三元触媒に接触させる請求項5に記載のメタン含有ガスの浄化方法。 The method for purifying a methane-containing gas according to claim 5, wherein an air-fuel ratio of the gas is adjusted to λ = 0.998 to 1.000, and the methane-containing gas generated by combustion is brought into contact with the three-way catalyst. 前記メタン含有ガス中の一酸化炭素、窒素酸化物およびメタンの除去反応を、400℃〜600℃の反応温度で行う請求項5又は6に記載のメタン含有ガスの浄化方法。   The method for purifying a methane-containing gas according to claim 5 or 6, wherein the removal reaction of carbon monoxide, nitrogen oxides, and methane in the methane-containing gas is performed at a reaction temperature of 400 ° C to 600 ° C. 前記反応温度が400〜550℃である請求項7に記載のメタン含有ガスの浄化方法。   The method for purifying a methane-containing gas according to claim 7, wherein the reaction temperature is 400 to 550 ° C.
JP2005334287A 2004-12-01 2005-11-18 Three-way catalyst and methane-containing gas purification method using the same Expired - Fee Related JP4688646B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005334287A JP4688646B2 (en) 2004-12-01 2005-11-18 Three-way catalyst and methane-containing gas purification method using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004348374 2004-12-01
JP2004348374 2004-12-01
JP2005334287A JP4688646B2 (en) 2004-12-01 2005-11-18 Three-way catalyst and methane-containing gas purification method using the same

Publications (2)

Publication Number Publication Date
JP2006181569A JP2006181569A (en) 2006-07-13
JP4688646B2 true JP4688646B2 (en) 2011-05-25

Family

ID=36735052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005334287A Expired - Fee Related JP4688646B2 (en) 2004-12-01 2005-11-18 Three-way catalyst and methane-containing gas purification method using the same

Country Status (1)

Country Link
JP (1) JP4688646B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030818B2 (en) * 2007-03-08 2012-09-19 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method
JP5030880B2 (en) * 2007-08-08 2012-09-19 大阪瓦斯株式会社 Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JP4917003B2 (en) * 2007-11-02 2012-04-18 東京瓦斯株式会社 Catalyst for oxidation removal of methane in exhaust gas and exhaust gas purification method
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
RU2715732C2 (en) * 2015-03-05 2020-03-03 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Catalyst for oxidation of methane, process for production thereof and method for application thereof
ES2898788T3 (en) * 2016-08-31 2022-03-08 Shell Int Research Process for preparing a methane oxidation catalyst
US11173473B2 (en) 2016-08-31 2021-11-16 Shell Oil Company Methane oxidation catalyst, process to prepare the same and method of using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025593A1 (en) * 1995-02-15 1996-08-22 Hitachi, Ltd. Method and device for purifying exhaust gas of natural-gas engine
WO2002040152A1 (en) * 2000-11-17 2002-05-23 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
JP2004290927A (en) * 2003-03-28 2004-10-21 Toho Gas Co Ltd Catalyst for use in cleaning exhaust gas and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996025593A1 (en) * 1995-02-15 1996-08-22 Hitachi, Ltd. Method and device for purifying exhaust gas of natural-gas engine
WO2002040152A1 (en) * 2000-11-17 2002-05-23 Osaka Gas Company Limited Catalyst for purifying methane-containing waste gas and method of purifying methane-containing waste gas
JP2004290927A (en) * 2003-03-28 2004-10-21 Toho Gas Co Ltd Catalyst for use in cleaning exhaust gas and method of manufacturing the same

Also Published As

Publication number Publication date
JP2006181569A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP7206045B2 (en) Nitrous oxide removal catalyst for exhaust system
JP4096176B2 (en) Methane-containing exhaust gas purification catalyst and methane-containing exhaust gas purification method
JP3758601B2 (en) NOx storage reduction catalyst
JP4688646B2 (en) Three-way catalyst and methane-containing gas purification method using the same
US20160136621A1 (en) Bimetallic Synergized PGM Catalyst Systems for TWC Application
JPS63116741A (en) Catalyst for purifying exhaust gas
US5821190A (en) Catalyst comprising iridium, alkaline metal, alkaline earth or rare earth metal, and metal carbide or metal nitride
WO2019088302A1 (en) Oxygen absorbing and releasing material, catalyst, exhaust gas purifying system, and exhaust gas treatment method
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3965676B2 (en) Exhaust gas purification catalyst and exhaust gas purification system
JP5865110B2 (en) Methane oxidation catalyst and production method thereof
JP4901366B2 (en) Catalyst for oxidation removal of methane in exhaust gas and method for oxidation removal of methane in exhaust gas
JPH09313938A (en) Catalyst for cleaning exhaust gas
JP4852595B2 (en) Exhaust gas purification catalyst
JPH10218620A (en) Oxygen-storable cerium compound oxide
JPH09248462A (en) Exhaust gas-purifying catalyst
JP4568640B2 (en) Methane-containing exhaust gas purification method, methane-containing exhaust gas purification pretreatment method and three-way catalyst using the same
JPH10128114A (en) Catalyst for purifying exhaust gas
JP5328133B2 (en) Exhaust gas purification catalyst
JP2007301471A (en) Catalyst for cleaning exhaust gas
JP2013146726A (en) Exhaust emission control device and exhaust emission control method
JPH08281116A (en) Catalyst for purifying exhaust gas
JP4143352B2 (en) Catalyst for oxidizing methane in exhaust gas and method for oxidizing and removing methane in exhaust gas
JP4052866B2 (en) Catalyst for oxidizing hydrocarbons in exhaust gas and method for oxidizing and removing hydrocarbons in exhaust gas
JP5051009B2 (en) NOx storage reduction catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4688646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees