JP2004290927A - Catalyst for use in cleaning exhaust gas and method of manufacturing the same - Google Patents

Catalyst for use in cleaning exhaust gas and method of manufacturing the same Download PDF

Info

Publication number
JP2004290927A
JP2004290927A JP2003090475A JP2003090475A JP2004290927A JP 2004290927 A JP2004290927 A JP 2004290927A JP 2003090475 A JP2003090475 A JP 2003090475A JP 2003090475 A JP2003090475 A JP 2003090475A JP 2004290927 A JP2004290927 A JP 2004290927A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
zirconium oxide
nox
oxide carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003090475A
Other languages
Japanese (ja)
Other versions
JP4209234B2 (en
Inventor
Fumio Okada
文男 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Gas Co Ltd
Original Assignee
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Gas Co Ltd filed Critical Toho Gas Co Ltd
Priority to JP2003090475A priority Critical patent/JP4209234B2/en
Publication of JP2004290927A publication Critical patent/JP2004290927A/en
Application granted granted Critical
Publication of JP4209234B2 publication Critical patent/JP4209234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for use in cleaning an exhaust gas, capable of stably maintaining a high cleaning performance with respect to HC, NOx and CO for a long period, and to provide a method of manufacturing such the catalyst. <P>SOLUTION: The exhaust gas cleaning catalyst is to clean a combustion exhaust gas containing HC, NOx, CO, SOx and O<SB>2</SB>. The catalyst comprises a zirconium oxide carrier consisting of zirconium oxide, and Pd, Cr, Ir and sulfate ions all carried by such the zirconium oxide carrier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【技術分野】
本発明は,HC,NOx,CO,SOx及びOを含有する燃焼排気ガスを浄化することができる排気ガス浄化用触媒に関する。
【0002】
【従来技術】
例えば,都市ガス等のメタンを主成分とした燃料ガスを使用するガスエンジンにおいて発生した燃焼排気ガスの浄化を行う際には,Pd(パラジウム)をゼオライトに担持したPd−ゼオライト系触媒が,広く用いられている。このPd−ゼオライト系触媒によれば,上記燃焼排気ガス中のメタンを還元剤として,この燃焼排気ガス中のNOxの浄化を行うことができる。
また,特許文献1のPd−ゼオライト系触媒においては,ゼオライト担体にPdを担持させるだけでなくハロゲンも担持させており,この特許文献1では,HC及びNOxを効果的に浄化できると共に,400℃以上の高温の燃焼排気ガス中の水蒸気に曝されても劣化が少なく,耐熱性及び耐久性に優れた触媒を提供している。
【0003】
また,特許文献2の触媒においては,Pdを担持させた硫酸根ジルコニア担体と白金を担持させた硫酸根ジルコニア担体とを混合したものを用いており,この特許文献2では,NOxを効果的に浄化できると共に,水蒸気が大量に存在する燃焼排気ガスにおいても,長期間にわたって安定したNOxに対する触媒活性が得られる触媒を提供している。
【0004】
【特許文献1】
特開2001−300320号公報
【特許文献2】
特開2000−342972号公報
【0005】
【解決しようとする課題】
しかしながら,上記特許文献1,2の触媒においては,上記燃焼排気ガスを浄化する性能は,長くても120時間ぐらいまでしか確認されていない。そのため,約1000時間もの長期間にわたる使用に際しては,必ずしも十分な浄化性能が得られないおそれがある。
【0006】
本発明は,かかる従来の問題点に鑑みてなされたもので,HC,NOx及びCOに対して長期間にわたって安定して高い浄化性能を維持することができる排気ガス浄化用触媒及びその製造方法を提供しようとするものである。
【0007】
【課題の解決手段】
第1の発明は,HC,NOx,CO,SOx及びOを含有する燃焼排気ガスを浄化するための排気ガス浄化用触媒において,
該触媒は,酸化ジルコニウムからなる酸化ジルコニウム担体と,該酸化ジルコニウム担体に担持させたPd,Cr,Ir及び硫酸イオンとを有していることを特徴とする排気ガス浄化用触媒にある(請求項1)。
【0008】
本発明の排気ガス浄化用触媒は,上記酸化ジルコニウム担体に上記Pd,Cr,Ir及び硫酸イオンの各触媒成分を担持させたことにより,上記HC(炭化水素),NOx(窒素酸化物),CO(一酸化炭素)及びSOx(硫黄酸化物)を含有する燃焼排気ガス中におけるHC,NOx及びCOに対して高い浄化性能を有している。
さらに,本発明の触媒は,上記各触媒成分の担持により,例えば,1000時間以上もの長期間にわたっても,安定してHC,NOx及びCOの浄化性能を維持することができる。
【0009】
そして,上記高い浄化性能は,特に上記Pd,Cr及び硫酸イオンの担持に起因するものと考えられ,上記長期間の浄化性能の維持は,特に上記Irの担持に起因するものと考えられる。以下に,この理由を述べる。
上記HCの浄化に関しては,上記酸化ジルコニウム担体に上記Pdを担持させたことが大きく影響していると考える。すなわち,Pdの介在により,燃焼排気ガス中のHCを酸化させて浄化することができると考える。
そして,上記酸化ジルコニウム担体に上記硫酸イオンを担持させたことにより,PdによるHCの浄化作用を活性化させることができ,HCの浄化性能を向上させることができると考える。
【0010】
ところで,上記触媒における硫酸イオンは,揮発等によって,時間の経過と共に消滅していくと考えられる。そこで,上記酸化ジルコニウム担体に上記Irを担持させたことにより,上記燃焼排気ガス中に含まれるSOをSOへと酸化し,上記触媒中に硫酸イオンを再生させることができると考える。これにより,上記触媒中において硫酸イオンの消滅を緩和させることができると考える。そのため,長期間にわたっても,上記PdによるHCの高い浄化性能を維持することができると考える。
【0011】
上記NOxの浄化に関しては,上記酸化ジルコニウム担体に上記Pd及び上記Crを担持させたことが大きく影響していると考える。すなわち,上記Crの介在により,上記燃焼排気ガス中のNOをNOへと酸化し,このNOが上記Pdの介在によって変成されたHCの分子と反応し,このNOを還元することができると考える。これにより,上記NOxを浄化することができると考える。
そして,上記Irの存在により上記硫酸イオンを再生し,これにより上記Pdの触媒活性が維持されるため,NOxの浄化についても,長期間にわたって高い浄化性能を維持することができると考える。
【0012】
上記COの浄化に関しては,上記酸化ジルコニウム担体に上記Pdを担持させたことが最も大きく影響していると考える。すなわち,上記Pdの介在により,COをCOに酸化して浄化することができると考える。
そして,上記Irの存在により上記硫酸イオンを再生し,これにより上記Pdの触媒活性が維持されるため,COの浄化についても,長期間にわたって高い浄化性能を維持することができると考える。
また,COの浄化に関しては,上記Crの介在も影響しているものと考えられる。
【0013】
上記Pd(パラジウム)の担持量としては,上記酸化ジルコニウムの重量を基準(100重量%)として,0.3〜10.0重量%であることが好ましい。このPdの担持量が0.3重量%未満の場合には,上記HC,NOx及びCOに対する上記触媒の十分な浄化作用が得られないおそれがある。一方,10.0重量%を超える場合には,酸化ジルコニウム担体にPdを担持させる際に,Pdの粒径が大きくなるおそれがあり,この担持が困難になるおそれがある。
【0014】
上記Ir(イリジウム)の担持量としては,上記酸化ジルコニウムの重量を基準(100重量%)として,0.3〜10.0重量%であることが好ましい。Irの担持量が0.3重量%未満の場合には,上記硫酸イオンを再生すると考える作用が十分に得られないおそれがある。一方,10.0重量%を超える場合には,Pd,Cr等による浄化作用に悪影響を及ぼすおそれがある。
【0015】
上記Cr(クロム)の担持量としては,上記酸化ジルコニウムの重量を基準(100重量%)として,1.0〜100.0重量%であることが好ましい。Crの担持量が1.0重量%未満の場合には,上記NOxを浄化すると考える作用が十分に得られないおそれがある。一方,100.0重量%を超える場合には,Pd,Cr等による浄化作用に悪影響を及ぼすおそれがある。
【0016】
上記硫酸イオン(SO 2−)の担持量としては,上記酸化ジルコニウムの重量を基準(100重量%)とした場合,5.0〜50.0重量%であることが好ましい。硫酸イオンの担持量が5.0重量%未満の場合には,上記触媒の長期間にわたる安定した浄化性能が得られないおそれがある。一方,50.0重量%を超える場合には,Pd,Cr等による浄化作用に悪影響を及ぼすおそれがある。
【0017】
第2の発明は,HC,NOx,CO,SOx及びOを含有する燃焼排気ガスを浄化するために,酸化ジルコニウムからなる酸化ジルコニウム担体にPd,Cr,Ir及び硫酸イオンを担持させてなる排気ガス浄化用触媒を製造する方法において,
Pdイオン及び硫酸イオンを含む水溶液に上記酸化ジルコニウム担体を浸漬させ,その後,該酸化ジルコニウム担体を乾燥させて,焼成することにより,上記酸化ジルコニウム担体に上記Pd及び上記硫酸イオンを担持させた中間体を作製し,
次いで,Crイオン及びIrイオンを含む水溶液に上記中間体を浸漬させ,その後,該中間体を乾燥させて,焼成することにより,上記酸化ジルコニウム担体に上記Pd,Cr,Ir及び硫酸イオンを担持させてなる上記触媒を製造することを特徴とする排気ガス浄化用触媒の製造方法にある(請求項2)。
【0018】
本発明においては,一旦は,上記酸化ジルコニウム担体に上記Pd及び上記硫酸イオンを担持させた中間体を作製し,その後,この中間体にCr及びIrを担持させて上記触媒を製造する。すなわち,本発明においては,段階を追って,上記各触媒成分を担持させる。そのため,本発明によれば,上記各触媒成分の担持を効果的に行うことができる。
【0019】
上記第1の発明において,上記触媒は,例えば,粉状体とし,所定形状の容器に詰めて用いることができる。また,触媒は,ペレット,ハニカム構造体等の種々の形状に形成して用いることもできる。
また,上記第1,第2の発明において,上記燃焼排気ガスとは,HCを含む燃料と空気とを燃焼させた後の排気ガスのことをいい,所定濃度の未燃酸素が残存する排気ガスのことをいう。また,上記HCとしては,CH(メタン)とすることができ,上記燃焼排気ガスは,CHを含有する燃料ガスを空気と燃焼させた後の排気ガスとすることができる。
【0020】
また,上記第2の発明において,上記Pdイオンとしては,例えば,酢酸パラジウム,硝酸パラジウム,アンミン水溶液,硫酸パラジウム等に含まれるものを用いることができる。上記Crイオンとしては,酢酸クロム,硝酸クロム,硫酸クロム等に含まれるものを用いることができる。
上記Irイオンとしては,塩化イリジウム,アンミン水溶液等に含まれるものを用いることができる。上記硫酸イオンとしては,例えば,硫酸,硫酸アンモニウム,各種の硫酸金属等に含まれるものを用いることができる。
【0021】
【発明の実施の形態】
以下に,上述した本発明の排気ガス浄化用触媒における好ましい実施の形態につき説明する。
本例の排気ガス浄化用触媒は,HC(炭化水素),NOx(窒素酸化物),CO(一酸化炭素),SOx(硫黄酸化物)及び酸素(O)を含有する燃焼排気ガスを浄化するためのものである。この触媒は,酸化ジルコニウムからなる酸化ジルコニウム担体と,この酸化ジルコニウム担体に担持させたPd(パラジウム),Cr(クロム),Ir(イリジウム)及び硫酸イオン(SO 2−)とを有している。
【0022】
(発明品)
本例においては,上記触媒は,以下のように製造した。
すなわち,まず,Pdイオン及び硫酸イオンを含む水溶液に,酸化ジルコニウム担体を浸漬させ,その後,この酸化ジルコニウム担体を乾燥させて,焼成することにより,酸化ジルコニウム担体にPd及び硫酸イオンを担持させた中間体を作製した。
【0023】
具体的には,酸化ジルコニウムとして約79%含む水酸化ジルコニウム(三津和化学薬品(株)製):100gを,硫酸イオンとPdとをそれぞれほぼ等分に含む硫酸パラジウム:2gを加えた純度98重量%の硫酸溶液:10mlに,約20時間浸漬した。なお,この水溶液の温度は80℃とした。その後,上記水溶液をろ過させて上記酸化ジルコニウムを取り出し,乾燥させた後,550℃で約6時間焼成して,上記中間体を作製した。
【0024】
次いで,Crイオン及びIrイオンを含む水溶液に上記中間体を浸漬させ,その後,この中間体を乾燥させて,焼成することにより,上記酸化ジルコニウム担体に上記Pd,Cr,Ir及び硫酸イオンを担持させてなる触媒を製造した。
具体的には,上記中間体:10gを,Ir濃度が1.202重量%のテトラアンミン水酸化イリジウム溶液:4.2g及び酢酸クロム:2.3gを含有する水溶液150mlに,約20時間浸漬した。なお,この水溶液の温度も80℃とした。その後,上記水溶液の液体成分を蒸発させて上記中間体を取り出し,乾燥させた後,500℃で約5時間焼成して,上記触媒を製造した。
なお,上記各焼成は,酸素が存在する環境下,すなわち本例では空気中において行った。
【0025】
本例においては,上記のように製造した触媒を(発明品)とし,従来のPd−ゼオライト系触媒を(比較品1),従来のPd−Pt−硫酸根ジルコニア触媒を(比較品2)として,各触媒のHC,NOx,CO,SOx及びOを含む燃焼排気ガスに対する浄化度合を測定し,比較した。
【0026】
(比較品1)
比較品1のPd−ゼオライト系触媒は,1.0重量%のPdをゼオライトからなるゼオライト担体に担持させてなるものである。
具体的には,まず,ゼオライト((株)東ソー製”HSZ−620HOA”):20gを,酢酸パラジウム:0.4gを含む水溶液300mlに,約20時間浸漬した。なお,この水溶液の温度も80℃とした。その後,上記水溶液をろ過させて上記ゼオライト担体を取り出し,乾燥させた後,500℃で約5時間空気中において焼成して,上記Pd−ゼオライト系触媒を製造した。
【0027】
(比較品2)
比較品2のPd−Pt−硫酸根ジルコニア触媒は,硫酸根ジルコニアにPd:1.0重量%及びPt:0.2重量%を担持させてなるものである。
具体的には,まず,酸化ジルコニウムを約79%含み残部が水である水酸化ジルコニウム(三津和化学薬品(株)製):360gを,硫酸アンモニウム:54gを溶解した水溶液:400ml中に,約20時間浸漬した。その後,上記水溶液をろ過させて上記酸化ジルコニウムを取り出し,乾燥させた後,550℃で約6時間焼成して,上記硫酸根ジルコニアを作製した。
【0028】
次いで,この硫酸根ジルコニア:20gを,Pd濃度が4.422重量%の硝酸パラジウム溶液:5.4gと,Pt濃度が1.957重量%のテトラアンミン白金水溶液:3.0gを含有する水溶液60ml中に,約20時間浸漬した。なお,この水溶液の温度は80℃とした。その後,上記水溶液の液体成分を蒸発させて上記硫酸根ジルコニアを取り出し,乾燥させた後,500℃で約5時間焼成して,上記Pd−Pt−硫酸根ジルコニア触媒を製造した。
【0029】
上記発明品及び比較品1,2の各触媒の浄化度合の測定は,各触媒を酸素濃度が約6%の燃焼排気ガス中に曝し,各触媒に接触した際に燃焼排気ガス中におけるHC,NOx,COの各濃度がどれだけ低下したかを測定することにより行った。
【0030】
この各触媒の浄化度合の測定は,以下の条件で行った。
すなわち,各触媒の量は,1gとし,上記燃焼排気ガスの組成は,CH:1000ppm,NOx:500ppm,CO:300ppm,SO:40ppm,O:6%,HO:13%(燃焼排気ガスの組成及びO濃度からの推定値)とした。また,燃焼排気ガスの流れのガス空間速度は,10000ml/h・gとし,燃焼排気ガスの温度は,450℃とした。
なお,本例におけるHCは,CHとした。HCの中でも,CHが一番分解され難いと考えられるため,CHによる結果を測定しておけば他のHCについての浄化作用も推定できるものと考える。
【0031】
発明品について測定を行った結果を図1に,比較品1について測定を行った結果を図2に,比較品2について測定を行った結果を図3に示す。各図は,横軸に時間(h)をとり,縦軸に各触媒の浄化性能を示す転化率(%)をとって示すものである。
【0032】
上記転化率(%)は,転化率(%)={1−(Xout)}/Xin×100(%)の式によって表されるものである。ここで,Xinは各触媒に接触する前の燃焼排気ガス中におけるHC,NOx,COの各濃度を表し,Xoutは各触媒に接触した後の燃焼排気ガス中におけるHC,NOx,COの各濃度を表す。
そして,上記転化率(%)が高い程,上記各触媒による浄化性能が高いことを示す。
【0033】
上記測定を行った結果よりわかるのは,上記発明品については,約1300(h)もの長期間にわたり使用しても,CH,NOx,COの浄化性能がほとんど低下しないということである。すなわち,COの浄化性能は,ほぼ100(%)を維持しており,CH及びNOxの浄化性能については時間が経過するほど高くなっているということがわかった。
【0034】
上記CH及びNOxの浄化性能が時間の経過と共に向上していった理由としては,上記発明品においては,酸化ジルコニウム担体にPd及び硫酸イオンを担持させていると共に上記Irを担持させていることが大きく影響しているものと考える。すなわち,Irが上記燃焼排気ガス中のSOをSOへと酸化し,上記硫酸イオンを再生することができるために,上記PdによるHCの浄化作用の低下を抑制するだけでなく,HCの浄化作用を一層活性化させたためであると考える。
【0035】
一方で,上記比較品1については,COの浄化性能は,ほぼ100(%)を維持しているが,CHの浄化性能については,わずか0.4(h)ぐらいの短い間にほとんど浄化性能がなくなってしまったことがわかった。また,NOxの浄化性能についても,わずか0.8(h)ぐらいの短い間にほとんど浄化性能がなくなってしまったことがわかった。
【0036】
また,上記比較品2については,COの浄化性能は,95(%)ぐらいの高い浄化性能を維持しているが,CHの浄化性能については,時間の経過と共に低下していってしまったということがわかった。また,NOxの浄化性能については,測定のはじめのうちから浄化性能が低く,時間の経過があってもあまり浄化性能に変化がなかったということがわかった。
【0037】
上記測定結果より,上記発明品である上記酸化ジルコニウム担体に上記Pd,Cr,Ir及び硫酸イオンを担持させてなる排気ガス浄化用触媒は,従来の触媒に比べて,上記燃焼排気ガス中におけるHC及びNOxに対する浄化性能が格別に優れていることがわかった。
また,上記発明品である触媒は,1300時間以上もの長期間にわたっても,安定してHC,NOx及びCOの浄化性能を維持できることがわかった。
【0038】
また,上記燃焼排気ガス中には,水蒸気としてのHOを含んでいたが,このHOの存在によっても,上記触媒による浄化性能の低下は見られなかった。このことより,上記発明品である触媒は,水蒸気としてのHOを含む燃焼排気ガスに対しても,高い浄化性能を発揮できることがわかった。
また,上記燃焼排気ガスの温度は,450℃としたが,上記発明品である触媒は,このような高温の燃焼排気ガスに対しても高い浄化性能を発揮できることがわかった。
【図面の簡単な説明】
【図1】実施例における,酸化ジルコニウム担体にPd,Cr,Ir及び硫酸イオンを担持させてなる触媒(発明品)について行った浄化性能の測定結果を示すグラフで,横軸に時間(h),縦軸に転化率(%)をとって示すグラフ。
【図2】実施例における,Pd−ゼオライト系触媒(比較品1)について行った浄化性能の測定結果を示すグラフで,横軸に時間(h),縦軸に転化率(%)をとって示すグラフ。
【図3】実施例における,硫酸根ジルコニアにPd及びPtを担持させてなる触媒(比較品2)について行った浄化性能の測定結果を示すグラフで,横軸に時間(h),縦軸に転化率(%)をとって示すグラフ。
[0001]
【Technical field】
The present invention relates to an exhaust gas purifying catalyst that can purify combustion exhaust gas containing HC, NOx, CO, SOx, and O 2 .
[0002]
[Prior art]
For example, when purifying combustion exhaust gas generated in a gas engine using a fuel gas containing methane as a main component such as city gas, a Pd-zeolite catalyst supporting Pd (palladium) on zeolite is widely used. Used. According to this Pd-zeolite catalyst, NOx in the combustion exhaust gas can be purified using methane in the combustion exhaust gas as a reducing agent.
Further, in the Pd-zeolite-based catalyst disclosed in Patent Document 1, not only Pd is supported on a zeolite carrier but also halogen is supported. In Patent Document 1, HC and NOx can be effectively purified, and 400 ° C. The catalyst provides excellent heat resistance and durability with little deterioration even when exposed to the high temperature combustion exhaust gas water vapor.
[0003]
Further, in the catalyst of Patent Document 2, a mixture of a sulfated zirconia carrier carrying Pd and a platinum zirconia carrier carrying platinum is used. In this Patent Document 2, NOx is effectively reduced. The present invention provides a catalyst that can be purified and has a stable catalytic activity for NOx over a long period of time even in combustion exhaust gas containing a large amount of water vapor.
[0004]
[Patent Document 1]
JP 2001-300320 A [Patent Document 2]
JP 2000-342972 A [0005]
[Problem to be solved]
However, in the catalysts of Patent Documents 1 and 2, the performance of purifying the combustion exhaust gas has been confirmed only for up to about 120 hours. Therefore, when used for a long time of about 1000 hours, sufficient purification performance may not always be obtained.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and provides an exhaust gas purifying catalyst capable of stably maintaining high purification performance for HC, NOx, and CO for a long period of time, and a method for producing the same. It is what we are going to offer.
[0007]
[Means for solving the problem]
A first invention relates to an exhaust gas purifying catalyst for purifying a combustion exhaust gas containing HC, NOx, CO, SOx and O 2 ,
The catalyst for exhaust gas purification is characterized in that the catalyst has a zirconium oxide carrier made of zirconium oxide, and Pd, Cr, Ir and sulfate ions supported on the zirconium oxide carrier. 1).
[0008]
In the exhaust gas purifying catalyst of the present invention, the HC (hydrocarbon), NOx (nitrogen oxide), CO 2, and CO 3 are supported on the zirconium oxide carrier by supporting the respective catalyst components of Pd, Cr, Ir, and sulfate ions. It has high purification performance for HC, NOx and CO in combustion exhaust gas containing (carbon monoxide) and SOx (sulfur oxide).
Furthermore, the catalyst of the present invention can stably maintain the purification performance of HC, NOx, and CO for a long period of time, for example, 1000 hours or more by supporting the above-mentioned catalyst components.
[0009]
The high purification performance is considered to be caused particularly by the loading of the Pd, Cr and sulfate ions, and the maintenance of the purification performance for a long period of time is considered to be caused particularly by the loading of the Ir. The reasons are described below.
Regarding the purification of HC, it is considered that the fact that the Pd is supported on the zirconium oxide carrier has a great effect. That is, it is considered that HC in the combustion exhaust gas can be oxidized and purified by the presence of Pd.
It is considered that by supporting the sulfate ion on the zirconium oxide carrier, the purification action of HC by Pd can be activated, and the purification performance of HC can be improved.
[0010]
By the way, it is considered that the sulfate ion in the above catalyst disappears with the passage of time due to volatilization or the like. Therefore, it is considered that by supporting the Ir on the zirconium oxide carrier, SO 2 contained in the combustion exhaust gas can be oxidized to SO 3 and sulfate ions can be regenerated in the catalyst. Thus, it is considered that the disappearance of sulfate ions in the catalyst can be reduced. Therefore, it is considered that the high purification performance of HC by Pd can be maintained over a long period of time.
[0011]
Regarding the purification of NOx, the fact that the Pd and Cr were carried on the zirconium oxide carrier was considered to have a large effect. That is, the presence of the Cr oxidizes NO in the combustion exhaust gas to NO 2 , and the NO 2 reacts with the HC molecules converted by the presence of Pd to reduce the NO 2. Think you can. Thus, it is considered that the NOx can be purified.
Then, the presence of the Ir regenerates the sulfate ions, thereby maintaining the catalytic activity of the Pd. Therefore, it is considered that high purification performance can be maintained over a long period of time for NOx purification.
[0012]
Regarding the purification of CO, it is considered that the fact that the Pd is supported on the zirconium oxide carrier has the greatest effect. That is, it is considered that CO can be oxidized and purified by oxidizing CO into CO 2 by the presence of Pd.
Then, since the sulfate ions are regenerated by the presence of the Ir, thereby maintaining the catalytic activity of the Pd, it is considered that high purification performance can be maintained for a long period of time even in the purification of CO.
In addition, it is considered that the presence of Cr also affects the purification of CO.
[0013]
The amount of Pd (palladium) supported is preferably 0.3 to 10.0% by weight based on the weight of the zirconium oxide (100% by weight). If the supported amount of Pd is less than 0.3% by weight, there is a possibility that the catalyst cannot sufficiently purify the HC, NOx and CO. On the other hand, if it exceeds 10.0% by weight, the particle size of Pd may increase when Pd is loaded on the zirconium oxide carrier, and this loading may be difficult.
[0014]
The amount of Ir (iridium) supported is preferably 0.3 to 10.0% by weight based on the weight of the zirconium oxide (100% by weight). If the supported amount of Ir is less than 0.3% by weight, the effect of regenerating the sulfate ion may not be sufficiently obtained. On the other hand, if the content exceeds 10.0% by weight, the purification action by Pd, Cr and the like may be adversely affected.
[0015]
The amount of Cr (chromium) supported is preferably 1.0 to 100.0% by weight based on the weight of the zirconium oxide (100% by weight). If the supported amount of Cr is less than 1.0% by weight, the effect of purifying NOx may not be sufficiently obtained. On the other hand, if it exceeds 100.0% by weight, there is a possibility that the purification action by Pd, Cr and the like may be adversely affected.
[0016]
The supported amount of the sulfate ion (SO 4 2− ) is preferably 5.0 to 50.0% by weight, based on the weight of the zirconium oxide (100% by weight). If the amount of sulfate ion carried is less than 5.0% by weight, the catalyst may not be able to obtain a long-term stable purification performance. On the other hand, if it exceeds 50.0% by weight, there is a possibility that the purification action by Pd, Cr and the like may be adversely affected.
[0017]
A second invention is, HC, NOx, CO, to purify the combustion exhaust gas containing SOx and O 2, Pd on zirconium oxide support comprising zirconium oxide, Cr, made by carrying Ir and sulfate ions exhaust In a method for producing a gas purification catalyst,
The zirconium oxide carrier is immersed in an aqueous solution containing Pd ions and sulfate ions, and then the zirconium oxide carrier is dried and fired, whereby an intermediate in which the Pd and sulfate ions are carried on the zirconium oxide carrier. And make
Next, the intermediate is immersed in an aqueous solution containing Cr ions and Ir ions, and then the intermediate is dried and fired, whereby the Pd, Cr, Ir and sulfate ions are supported on the zirconium oxide carrier. The present invention provides a method for producing an exhaust gas purifying catalyst, characterized by producing the above catalyst.
[0018]
In the present invention, an intermediate in which the above-mentioned Pd and the above-mentioned sulfate ion are supported on the above-mentioned zirconium oxide carrier is produced, and then, the above-mentioned intermediate is made to carry Cr and Ir to produce the above-mentioned catalyst. That is, in the present invention, the above catalyst components are carried step by step. Therefore, according to the present invention, each of the catalyst components can be effectively supported.
[0019]
In the first aspect, the catalyst may be used, for example, in the form of a powder and packed in a container having a predetermined shape. Further, the catalyst can be used after being formed into various shapes such as pellets and honeycomb structures.
In the first and second inventions, the combustion exhaust gas refers to an exhaust gas after combustion of fuel containing HC and air, and an exhaust gas in which a predetermined concentration of unburned oxygen remains. Means The HC may be CH 4 (methane), and the combustion exhaust gas may be an exhaust gas obtained by burning a fuel gas containing CH 4 with air.
[0020]
In the second invention, as the Pd ion, for example, those contained in palladium acetate, palladium nitrate, an aqueous amine solution, palladium sulfate and the like can be used. As the Cr ions, those contained in chromium acetate, chromium nitrate, chromium sulfate and the like can be used.
As the above-mentioned Ir ions, those contained in iridium chloride, aqueous ammine solution and the like can be used. As the sulfate ion, for example, those contained in sulfuric acid, ammonium sulfate, various kinds of metal sulfates, and the like can be used.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the above-described exhaust gas purifying catalyst of the present invention will be described.
The exhaust gas purifying catalyst of this embodiment purifies a combustion exhaust gas containing HC (hydrocarbon), NOx (nitrogen oxide), CO (carbon monoxide), SOx (sulfur oxide), and oxygen (O 2 ). It is for doing. This catalyst has a zirconium oxide carrier composed of zirconium oxide, and Pd (palladium), Cr (chromium), Ir (iridium) and sulfate ions (SO 4 2− ) supported on the zirconium oxide carrier. .
[0022]
(Invention)
In this example, the catalyst was manufactured as follows.
That is, first, the zirconium oxide carrier is immersed in an aqueous solution containing Pd ions and sulfate ions, and then the zirconium oxide carrier is dried and fired, so that the zirconium oxide carrier has Pd and sulfate ions supported thereon. The body was made.
[0023]
Specifically, a purity of 98 g was added by adding 100 g of zirconium hydroxide containing about 79% as zirconium oxide (manufactured by Mitsuwa Chemicals Co., Ltd.) and 2 g of palladium sulfate containing sulfate ions and Pd almost equally. It was immersed in a 10% by weight sulfuric acid solution for about 20 hours. The temperature of this aqueous solution was 80 ° C. Thereafter, the aqueous solution was filtered to remove the zirconium oxide, dried, and calcined at 550 ° C. for about 6 hours to produce the intermediate.
[0024]
Next, the intermediate is immersed in an aqueous solution containing Cr ions and Ir ions, and then the intermediate is dried and fired, whereby the Pd, Cr, Ir, and sulfate ions are supported on the zirconium oxide carrier. A catalyst was produced.
Specifically, 10 g of the above intermediate was immersed for about 20 hours in 150 ml of an aqueous solution containing 4.2 g of a tetraammine iridium hydroxide solution having an Ir concentration of 1.202% by weight and 2.3 g of chromium acetate. The temperature of this aqueous solution was also set to 80 ° C. Thereafter, the intermediate component was removed by evaporating the liquid component of the aqueous solution, dried, and calcined at 500 ° C. for about 5 hours to produce the catalyst.
In addition, each said baking was performed in the environment where oxygen exists, ie, in the air in this example.
[0025]
In this example, the catalyst produced as described above is referred to as (invention product), the conventional Pd-zeolite catalyst (comparative product 1), and the conventional Pd-Pt-sulfate zirconia catalyst (comparative product 2). , HC of the catalyst, NOx, CO, purification degree for the combustion exhaust gas containing SOx and O 2 were measured and compared.
[0026]
(Comparative product 1)
The Pd-zeolite-based catalyst of Comparative product 1 has 1.0% by weight of Pd supported on a zeolite carrier made of zeolite.
Specifically, first, 20 g of zeolite ("HSZ-620HOA" manufactured by Tosoh Corporation) was immersed in 300 ml of an aqueous solution containing 0.4 g of palladium acetate for about 20 hours. The temperature of this aqueous solution was also set to 80 ° C. Thereafter, the aqueous solution was filtered to remove the zeolite carrier, dried, and calcined in air at 500 ° C. for about 5 hours to produce the Pd-zeolite catalyst.
[0027]
(Comparative product 2)
The Pd-Pt-sulfuric acid zirconia catalyst of Comparative Product 2 is one in which Pd: 1.0% by weight and Pt: 0.2% by weight are supported on sulfated zirconia.
Specifically, first, 360 g of zirconium hydroxide (manufactured by Mitsuwa Chemicals, Inc.) containing about 79% of zirconium oxide and the remainder being water, and about 20 g in 400 ml of an aqueous solution in which 54 g of ammonium sulfate are dissolved. Soaked for hours. Thereafter, the aqueous solution was filtered to remove the zirconium oxide, dried, and calcined at 550 ° C. for about 6 hours to produce the sulfated zirconia.
[0028]
Then, this sulfated zirconia: 20 g, 60 ml of an aqueous solution containing 5.4 g of a palladium nitrate solution having a Pd concentration of 4.422 wt% and 3.0 g of an aqueous tetraammineplatinum solution having a Pt concentration of 1.957 wt%. For about 20 hours. The temperature of this aqueous solution was 80 ° C. Thereafter, the liquid component of the aqueous solution was evaporated to remove the sulfated zirconia, dried, and calcined at 500 ° C. for about 5 hours to produce the Pd-Pt-sulfated zirconia catalyst.
[0029]
The measurement of the degree of purification of each catalyst of the invention and comparative products 1 and 2 was performed by exposing each catalyst to combustion exhaust gas having an oxygen concentration of about 6% and contacting each catalyst with HC, HC in the combustion exhaust gas. The measurement was performed by measuring how much each concentration of NOx and CO decreased.
[0030]
The degree of purification of each catalyst was measured under the following conditions.
That is, the amount of each catalyst, and 1g, the composition of the combustion exhaust gas, CH 4: 1000ppm, NOx: 500ppm, CO: 300ppm, SO 2: 40ppm, O 2: 6%, H 2 O: 13% ( (Estimated value from the composition of the combustion exhaust gas and the O 2 concentration). The gas space velocity of the flow of the combustion exhaust gas was 10,000 ml / h · g, and the temperature of the combustion exhaust gas was 450 ° C.
Incidentally, HC in this example was a CH 4. Since it is considered that CH 4 is most difficult to be decomposed among HCs, it is considered that the purifying action of other HCs can be estimated by measuring the result of CH 4 .
[0031]
FIG. 1 shows the result of measurement of the invention product, FIG. 2 shows the result of measurement of the comparison product 1, and FIG. 3 shows the result of measurement of the comparison product 2. In each figure, the horizontal axis represents time (h), and the vertical axis represents conversion (%) indicating the purification performance of each catalyst.
[0032]
The conversion rate (%) is represented by the following equation: Conversion rate (%) = {1− (X out )} / X in × 100 (%). Here, X in denotes HC, NOx, each concentration of CO in the combustion exhaust gas before the contact with the catalyst, X out the HC in the combustion exhaust gas after contact with the catalyst, NOx, the CO Each concentration is represented.
The higher the conversion (%), the higher the purification performance of each of the catalysts.
[0033]
We know from results of the measurement, for the above-mentioned inventions, be used for about 1300 (h) also show a long period of time, is that CH 4, NOx, purification performance of the CO is hardly lowered. That is, purification performance of CO is maintained substantially 100 (%), the purification performance of the CH 4 and NOx were found that are high enough to over time.
[0034]
The reason for the CH 4 and purification performance of NOx began to improve with time, in the above inventions, that by supporting the Ir along with being by supporting Pd and sulfate ions in a zirconium oxide support Is considered to have a significant effect. That is, since Ir can oxidize SO 2 in the combustion exhaust gas to SO 3 and regenerate the sulfate ions, not only the reduction of the purification action of HC by Pd but also the suppression of HC can be suppressed. It is thought that this is because the purifying action was further activated.
[0035]
On the other hand, for the comparative product 1, the purification performance of the CO, while maintaining almost 100 (%), for the purification performance of CH 4, almost clean while only 0.4 (h) about the short It turned out that the performance was gone. It was also found that the purification performance of NOx almost disappeared in a short time of only 0.8 (h).
[0036]
As for the comparative product 2, purification performance of the CO, while maintaining a high purification performance of about 95 (%), for the purification performance of CH 4, it had began to decrease with time I understood that. In addition, regarding the NOx purification performance, it was found that the purification performance was low from the beginning of the measurement, and the purification performance did not change much even after a lapse of time.
[0037]
From the above measurement results, the exhaust gas purifying catalyst in which the Pd, Cr, Ir, and sulfate ions are supported on the zirconium oxide carrier, which is the invention, has a higher HC content in the combustion exhaust gas than the conventional catalyst. Also, it was found that the purification performance for NOx was particularly excellent.
Further, it was found that the catalyst of the present invention can stably maintain the purification performance of HC, NOx, and CO for a long period of time of 1300 hours or more.
[0038]
In addition, the combustion exhaust gas contained H 2 O as water vapor, but the presence of this H 2 O did not reduce the purification performance of the catalyst. From this, it was found that the catalyst of the present invention can exhibit high purification performance even with respect to combustion exhaust gas containing H 2 O as steam.
Although the temperature of the combustion exhaust gas was 450 ° C., it was found that the catalyst of the present invention can exhibit high purification performance even with such a high-temperature combustion exhaust gas.
[Brief description of the drawings]
FIG. 1 is a graph showing measurement results of purification performance performed on a catalyst (inventive product) in which Pd, Cr, Ir and sulfate ions are supported on a zirconium oxide carrier in the example, and the horizontal axis represents time (h). A graph showing the conversion rate (%) on the vertical axis.
FIG. 2 is a graph showing measurement results of purification performance performed on a Pd-zeolite-based catalyst (Comparative product 1) in the example, in which the horizontal axis represents time (h) and the vertical axis represents conversion (%). Graph shown.
FIG. 3 is a graph showing measurement results of purification performance performed on a catalyst in which Pd and Pt are supported on sulfated zirconia (Comparative product 2) in the example, in which the horizontal axis represents time (h) and the vertical axis represents time. 4 is a graph showing conversion (%).

Claims (2)

HC,NOx,CO,SOx及びOを含有する燃焼排気ガスを浄化するための排気ガス浄化用触媒において,
該触媒は,酸化ジルコニウムからなる酸化ジルコニウム担体と,該酸化ジルコニウム担体に担持させたPd,Cr,Ir及び硫酸イオンとを有していることを特徴とする排気ガス浄化用触媒。
In an exhaust gas purifying catalyst for purifying a combustion exhaust gas containing HC, NOx, CO, SOx and O 2 ,
An exhaust gas purifying catalyst, characterized in that the catalyst has a zirconium oxide carrier made of zirconium oxide, and Pd, Cr, Ir and sulfate ions supported on the zirconium oxide carrier.
HC,NOx,CO,SOx及びOを含有する燃焼排気ガスを浄化するために,酸化ジルコニウムからなる酸化ジルコニウム担体にPd,Cr,Ir及び硫酸イオンを担持させてなる排気ガス浄化用触媒を製造する方法において,
Pdイオン及び硫酸イオンを含む水溶液に上記酸化ジルコニウム担体を浸漬させ,その後,該酸化ジルコニウム担体を乾燥させて,焼成することにより,上記酸化ジルコニウム担体に上記Pd及び上記硫酸イオンを担持させた中間体を作製し,
次いで,Crイオン及びIrイオンを含む水溶液に上記中間体を浸漬させ,その後,該中間体を乾燥させて,焼成することにより,上記酸化ジルコニウム担体に上記Pd,Cr,Ir及び硫酸イオンを担持させてなる上記触媒を製造することを特徴とする排気ガス浄化用触媒の製造方法。
In order to purify combustion exhaust gas containing HC, NOx, CO, SOx and O 2 , an exhaust gas purifying catalyst is produced by supporting Pd, Cr, Ir and sulfate ions on a zirconium oxide carrier made of zirconium oxide. In the method
The zirconium oxide carrier is immersed in an aqueous solution containing Pd ions and sulfate ions, and then the zirconium oxide carrier is dried and fired, whereby an intermediate in which the Pd and sulfate ions are carried on the zirconium oxide carrier. And make
Next, the intermediate is immersed in an aqueous solution containing Cr ions and Ir ions, and then the intermediate is dried and fired, whereby the Pd, Cr, Ir and sulfate ions are supported on the zirconium oxide carrier. A method for producing an exhaust gas purifying catalyst, comprising producing the above catalyst.
JP2003090475A 2003-03-28 2003-03-28 Exhaust gas purification catalyst and method for producing the same Expired - Fee Related JP4209234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003090475A JP4209234B2 (en) 2003-03-28 2003-03-28 Exhaust gas purification catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003090475A JP4209234B2 (en) 2003-03-28 2003-03-28 Exhaust gas purification catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004290927A true JP2004290927A (en) 2004-10-21
JP4209234B2 JP4209234B2 (en) 2009-01-14

Family

ID=33404097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003090475A Expired - Fee Related JP4209234B2 (en) 2003-03-28 2003-03-28 Exhaust gas purification catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP4209234B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181569A (en) * 2004-12-01 2006-07-13 Osaka Gas Co Ltd Three-way catalyst and methane-containing gas cleaning method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181569A (en) * 2004-12-01 2006-07-13 Osaka Gas Co Ltd Three-way catalyst and methane-containing gas cleaning method using the same
JP4688646B2 (en) * 2004-12-01 2011-05-25 大阪瓦斯株式会社 Three-way catalyst and methane-containing gas purification method using the same

Also Published As

Publication number Publication date
JP4209234B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JPS6135897B2 (en)
JP2016531736A (en) Tungsten / titania oxidation catalyst
JP2008246473A (en) Catalyst and method for cleaning exhaust gas
WO1997004855A1 (en) Emission control catalyst and emission control method using the same
JP4209234B2 (en) Exhaust gas purification catalyst and method for producing the same
JPS5820307B2 (en) Catalyst for vehicle exhaust gas purification
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JPS6164331A (en) Catalyst for purifying exhaust gas
JPH054046A (en) Low-temp. working ternary catalyst for purification of exhaust gas
JP3985118B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3956158B2 (en) Nitrogen oxide removal catalyst
JP2605956B2 (en) Exhaust gas purification catalyst
JP3981807B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2015183587A (en) Emission control device, emission control method and emission control catalyst for heat engine
JP4171852B2 (en) Catalyst for purifying hydrocarbons in exhaust gas and method for purifying hydrocarbons in exhaust gas
JP2006043637A (en) Catalyst for cleaning exhaust gas
JPH0663359A (en) Nitrogen oxides purifying method and waste gas treating device
JP2004073921A (en) Catalyst for catalytically reducing and removing nitrogen oxide
JP6325042B2 (en) Exhaust gas purification device for heat engine
JP4192791B2 (en) Exhaust gas purification catalyst
JP4025942B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JPH0583303B2 (en)
WO1995024258A1 (en) Method for removing nitrous oxide
JP2003254117A (en) Exhaust emission controlling method
JPH0985092A (en) Catalyst for cleaning exhaust gas and exhaust gas cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141031

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees