JPH09192491A - Catalyst for reduction and removal of nitrogen oxide in waste combustion gas - Google Patents

Catalyst for reduction and removal of nitrogen oxide in waste combustion gas

Info

Publication number
JPH09192491A
JPH09192491A JP8029938A JP2993896A JPH09192491A JP H09192491 A JPH09192491 A JP H09192491A JP 8029938 A JP8029938 A JP 8029938A JP 2993896 A JP2993896 A JP 2993896A JP H09192491 A JPH09192491 A JP H09192491A
Authority
JP
Japan
Prior art keywords
catalyst
compd
activated carbon
supported
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8029938A
Other languages
Japanese (ja)
Inventor
Ataru Wakabayashi
中 若林
Yoichi Umehara
洋一 梅原
Hisanori Sonehara
尚紀 曽根原
Ryuichi Kanai
隆一 金井
Osamu Tokari
脩 戸河里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP8029938A priority Critical patent/JPH09192491A/en
Publication of JPH09192491A publication Critical patent/JPH09192491A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)

Abstract

PROBLEM TO BE SOLVED: To obtain a catalyst capable of reducing and removing NOx from waste gas after dusulfurization of stack gas at a stable rate of denitration over a long time in the presence of ammonia by carrying a vanadium compd., a bromine compd., a copper compd., a compd. of lanthanum, etc., and a compd. of molybdenum, etc., on a carbonaceous material. SOLUTION: A vanadium compd., a bromine compd., a copper compd., a molybdenum or tungsten compd. and a lanthanum or cerium compd. are carried on a carbonaceus material to obtain the objective catalyst having high catalyst activity of densitration at a low temp. of about 100 deg.C, producing little nitrous oxide as a by-product and capable of stably maintaining reduction denitrating performance over a long time even at a high space velocity. When this catalyst is used for treating waste combustion gas at a low temp. freed of SOx from an apparatus for wet-desulfurizing stack gas, residual NOx can be continuously removed with a compact apparatus in an easy and smooth manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼排ガス中の窒
素酸化物還元除去用触媒に関し、更に詳しくは、湿式脱
硫後等の比較的低温の燃焼排ガスからアンモニアの存在
下で窒素酸化物を還元除去できる燃焼排ガス中の窒素酸
化物還元除去用触媒に関する。
TECHNICAL FIELD The present invention relates to a catalyst for reducing and removing nitrogen oxides in combustion exhaust gas, and more particularly, to reducing nitrogen oxides from combustion exhaust gas at a relatively low temperature after wet desulfurization in the presence of ammonia. The present invention relates to a catalyst for removing and reducing nitrogen oxides in combustion exhaust gas that can be removed.

【0002】[0002]

【従来の技術】近年、地球規模で環境汚染が問題とな
り、汚染防止のための対策が種々提案されたり、また、
排水、排ガス等の排出基準等も見直され検討されてい
る。大気汚染源となっている燃焼排ガスは、より厳しく
規制されることになる。燃焼排ガス中には大気の二大汚
染源である硫黄酸化物(SOx)と窒素酸化物(NO
x)とが含まれ、燃焼排ガス処理に関する技術はいかに
これらSOx及びNOxを除去するかである。SOxに
関して各種の実用的な脱硫技術が確立され、既に優れた
数多くの実装置が稼動して効果をあげている。
2. Description of the Related Art In recent years, environmental pollution has become a problem on a global scale, and various measures for preventing pollution have been proposed.
Emission standards for wastewater and exhaust gas have also been reviewed and studied. Combustion exhaust gas, which is a source of air pollution, will be more strictly regulated. Sulfur oxides (SOx) and nitrogen oxides (NO
x) is included, and the technology related to flue gas treatment is how to remove these SOx and NOx. Various practical desulfurization technologies have been established for SOx, and many excellent actual equipments have already been operating and are producing results.

【0003】一方、NOX に関しても、各種の脱硝技術
も提案され実施され、現在最も多く採用されている脱硝
技術は、チタニア等セラミック担体に五酸化バナジウム
等のバナジウム酸化物を担持させた触媒を用い、アンモ
ニアの存在下でNOX を還元して窒素として無害化を図
るものである。この触媒は250〜400℃の高温にお
いて活性を示すため、バーナー燃焼用空気を余熱するエ
アーヒータより上流側のボイラーから出た後に、上記触
媒を用いた脱硝装置を設置する必要があった。しかし、
この場合、脱硝装置でSO2 が酸化され生成する三酸化
硫黄(SO3 )と脱硝時に添加されるアンモニアとの反
応で生成する酸性硫酸アンモニウム(NH4 HSO4
によると考えられるエアーヒータの支障が多く問題とな
っていた。このため、脱硝装置の設置を上記エアーヒー
タの上流側から下流側に変更することを目的に、下流の
約130〜150℃の比較的低い温度の低温燃焼排ガス
からのNOX を無害化除去するための触媒として、活性
炭や活性コークス等の炭素質材料を触媒とする方法が提
案された。この場合でも、燃焼排ガス中にSOX が存在
する場合は、同様に、硫酸アンモニウム((NH4)2 SO
4)やNH4 HSO4が生成し、活性炭などの触媒活性を
低下させる等の支障がある。
On the other hand, regarding NO x , various denitration techniques have also been proposed and implemented, and the denitration technique most widely used at present is a catalyst in which vanadium oxide such as vanadium pentoxide is supported on a ceramic carrier such as titania. It is used to reduce NO X in the presence of ammonia to make it harmless as nitrogen. Since this catalyst exhibits activity at a high temperature of 250 to 400 ° C., it was necessary to install a denitration device using the above catalyst after it came out of the boiler upstream of the air heater for preheating the burner combustion air. But,
In this case, acidic ammonium sulfate (NH 4 HSO 4 ) generated by the reaction between sulfur trioxide (SO 3 ) generated by SO 2 oxidation in the denitration device and ammonia added during denitration
There were many problems with the air heater, which is thought to be due to the above. Therefore, for the purpose of changing the installation of the denitration device from the upstream side of the air heater to the downstream side, the NO x from the low temperature combustion exhaust gas at a relatively low temperature of about 130 to 150 ° C. downstream is detoxified and removed. As a catalyst for this, a method using a carbonaceous material such as activated carbon or activated coke as a catalyst has been proposed. Even in this case, when SO X is present in the combustion exhaust gas, similarly, ammonium sulfate ((NH 4 ) 2 SO
4 ) and NH 4 HSO 4 are generated, and there is a problem such that the catalytic activity of activated carbon is reduced.

【0004】従って、近年、排ガス中の硫黄酸化物を除
去後に窒素酸化物を除去する方法が試みられたが、硫黄
酸化物の除去に通常使用される湿式排煙脱硫装置から排
出される排ガスの温度は約50℃と低く、ガス‐ガス・
ヒータを用い加熱したとしても100℃程度であり、上
記活性炭等触媒でも反応速度が遅く、実用性に乏しい。
そのため、更に100℃程度の低温でも脱硝活性がある
触媒の開発が進められ、発明者らは特願平6−1918
27号で炭素質材料にバナジウム化合物、臭素化合物、
銅化合物、及びモリブデンまたはタングステンの化合物
を担持した脱硝触媒を提案した。この触媒は100℃程
度の低温での脱硝の触媒活性が比較的高く、且つ地球温
暖化を著しく促進するといわれる亜酸化窒素の副生が少
なく、しかも長時間安定して還元脱硝性能を維持するこ
とができる優れた触媒である。
Therefore, in recent years, a method of removing nitrogen oxides after removing sulfur oxides in exhaust gas has been tried, but exhaust gas discharged from a wet flue gas desulfurization device usually used for removing sulfur oxides has been tried. The temperature is as low as about 50 ℃,
Even if it is heated using a heater, the temperature is about 100 ° C., and even with the above-mentioned activated carbon catalyst, the reaction rate is slow and it is not practical.
Therefore, further development of a catalyst having denitration activity even at a low temperature of about 100 ° C. has been promoted, and the inventors of the present invention have filed Japanese Patent Application No. 6-1918.
In No. 27, vanadium compound, bromine compound,
We have proposed a denitration catalyst that supports copper compounds and molybdenum or tungsten compounds. This catalyst has a relatively high catalytic activity for denitration at a low temperature of about 100 ° C., has little nitrous oxide by-product which is said to significantly promote global warming, and maintains stable reduction denitration performance for a long time. It is an excellent catalyst that can.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、発明者
らが更に上記提案の触媒の使用等について検討した結
果、この触媒を用い高い空間速度(SV)で窒素酸化物
を還元処理する場合、操作時間の経過と共に僅かずつで
はあるが触媒活性が低下し、操作初期に比し脱硝率が徐
々に低下することを知見した。本発明は上記知見に基づ
き、高SVでの長期間の排ガス処理においても触媒活性
が低下することなく、窒素酸化物を含有する低温排ガ
ス、例えば排煙脱硫後の排ガスから、長時間安定した脱
硝率で窒素酸化物をアンモニア存在下で還元除去できる
触媒を提供することを目的とし、更に亜酸化窒素の副生
もなお一層抑制できる触媒を提供することを目的とす
る。発明者らは、上記目的達成のために、先に提案の脱
硝触媒の開発において得た知見等を基に担持金属等を更
に検討し、本発明をなすに至った。
However, as a result of further investigations by the inventors regarding the use of the above-mentioned catalyst, etc., when the reduction treatment of nitrogen oxides at a high space velocity (SV) is performed using this catalyst, the operating time is reduced. It was found that the catalyst activity gradually decreased with the lapse of time, and the denitration rate gradually decreased compared to the initial stage of the operation. The present invention is based on the above findings and shows stable denitration for a long time from low-temperature exhaust gas containing nitrogen oxides, for example, exhaust gas after flue gas desulfurization, without lowering catalytic activity even in long-term exhaust gas treatment at high SV. It is intended to provide a catalyst capable of reducing and removing nitrogen oxides in the presence of ammonia at a high rate, and further to provide a catalyst capable of further suppressing nitrous oxide by-product. In order to achieve the above object, the inventors have further studied supported metals and the like based on the knowledge obtained in the development of the proposed denitration catalyst, and have completed the present invention.

【0006】[0006]

【課題を解決するための手段】本発明によれば、炭素質
材料にバナジウム化合物、臭素化合物、銅化合物、モリ
ブデンまたはタングステンの化合物、およびランタンま
たはセリウム化合物を担持してなることを特徴とする燃
焼排ガス中の窒素酸化物還元除去用触媒が提供される。
According to the present invention, a combustion characterized in that a carbonaceous material is loaded with a vanadium compound, a bromine compound, a copper compound, a molybdenum or tungsten compound, and a lanthanum or cerium compound. A catalyst for reducing and removing nitrogen oxides in exhaust gas is provided.

【0007】本発明は上記のように構成され、炭素質材
料にバナジウム化合物、臭素化合物、銅化合物およびモ
リブデンまたはタングステンの化合物、更にランタンま
たはセリウムの化合物の5成分を担持することにより、
100℃程度の低温での脱硝の触媒活性が高く、且つ亜
酸化窒素の副生が少なく、しかも高SVでも長時間安定
して還元脱硝性能を維持することができる。本発明の上
記燃焼排ガス中の窒素酸化物還元除去用触媒を用いるこ
とにより、燃焼排ガスを脱硫した後等の100℃程度の
低温排ガスにおいても、アンモニア存在下、高SVで接
触処理して長時間安定的に高脱硝率で窒素酸化物を還元
除去することができる。
The present invention is constituted as described above, and by supporting five components of a vanadium compound, a bromine compound, a copper compound and a molybdenum or tungsten compound, and further a lanthanum or cerium compound on a carbonaceous material,
The catalyst activity of denitration at a low temperature of about 100 ° C. is high, the nitrous oxide by-product is small, and the reduction denitration performance can be stably maintained for a long time even at a high SV. By using the catalyst for reducing nitrogen oxides in combustion exhaust gas of the present invention, even in low-temperature exhaust gas of about 100 ° C. after desulfurization of combustion exhaust gas, contact treatment is performed at high SV in the presence of ammonia for a long time. Nitrogen oxides can be stably reduced and removed with a high denitration rate.

【0008】[0008]

【発明の実施の形態】以下、本発明について、更に詳細
に説明する。本発明に使用される触媒担体である炭素質
材料としては木質、ヤシ殻等木質系活性炭、コールター
ルピッチ等石炭系活性炭、石油ピッチ等石油系活性炭等
の各種活性炭、活性コークス、活性炭素繊維等の炭素質
物であって、その比表面積が10m2 /g以上のもので
あればよく、それらの中から任意のものを各種使用条件
等に合わせ適宜選択して使用することができる。好まし
くは、比表面積が100m2 /g〜2000m2 /g、
より好ましくは500m2 /g〜1500m2/gの活
性炭系炭素質を用いる。炭素質材料の比表面積が10m
2 /g未満であると所定の触媒活性が得られない。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. Examples of the carbonaceous material which is the catalyst carrier used in the present invention include wood, activated carbon such as coconut shell, coal activated carbon such as coal tar pitch, activated carbon such as petroleum activated carbon such as petroleum pitch, activated coke, activated carbon fiber and the like. The above carbonaceous material may be used as long as it has a specific surface area of 10 m 2 / g or more, and any one of them can be appropriately selected and used according to various usage conditions. Preferably, a specific surface area of 100m 2 / g~2000m 2 / g,
More preferably using activated carbon-based carbonaceous 500m 2 / g~1500m 2 / g. Specific surface area of carbonaceous material is 10m
If it is less than 2 / g, the desired catalytic activity cannot be obtained.

【0009】本発明において、触媒活性成分のバナジウ
ム化合物は、3価 、4価及び5価のいずれかのバナジ
ウムの酸化物、無機酸塩または有機酸塩を用いて、上記
炭素質材料に担持することができる。通常、メタバナジ
ン酸アンモニウムを蓚酸で還元したものや、硫酸バナジ
ルを好適に用いることができる。担持法としては浸漬含
浸法、スプレー法、混練法等の公知のいずれの方法でも
使用できる。通常、浸漬含浸法やスプレー法が用いられ
る。例えば、上記バナジウム化合物を水等の可溶溶媒に
溶解し、その溶液中に上記炭素質材料を浸漬した後、室
温〜200℃で乾燥し、その後、窒素等の不活性気流中
200〜600℃で焼成して、バナジウム担持炭素質担
体とすることができる。上記のようにして担持したバナ
ジウム化合物は、最終的に担体上においては、一般に、
酸化物の形態をとるものと推定される。本発明の触媒に
おいて、バナジウム(V)担持量は、バナジウム元素基
準で0.5〜15重量%、好ましくは1〜10重量%で
ある。0.5重量%未満であると充分な脱硝性能が得ら
れず、15重量%を超えて担持すると炭素質材料の比表
面積が低下するため逆効果となり好ましくない。
In the present invention, the vanadium compound as the catalytically active component is supported on the carbonaceous material by using an oxide, inorganic acid salt or organic acid salt of any of trivalent, tetravalent and pentavalent vanadium. be able to. Usually, a product obtained by reducing ammonium metavanadate with oxalic acid or vanadyl sulfate can be suitably used. As a supporting method, any known method such as a dipping impregnation method, a spray method, a kneading method or the like can be used. Usually, an immersion impregnation method or a spray method is used. For example, the vanadium compound is dissolved in a soluble solvent such as water, the carbonaceous material is immersed in the solution, dried at room temperature to 200 ° C, and then in an inert gas stream such as nitrogen at 200 to 600 ° C. Can be calcined to obtain a vanadium-supporting carbonaceous carrier. The vanadium compound supported as described above is generally, finally, on a carrier,
It is presumed to take the form of an oxide. In the catalyst of the present invention, the supported amount of vanadium (V) is 0.5 to 15% by weight, preferably 1 to 10% by weight based on vanadium element. If it is less than 0.5% by weight, sufficient denitration performance cannot be obtained, and if it exceeds 15% by weight, the specific surface area of the carbonaceous material decreases, which is an adverse effect and is not preferable.

【0010】本発明の他の触媒活性成分の臭素化合物
は、臭化水素酸、臭化アンモニウム、臭化ナトリウム等
のアルカリ金属塩、臭化マグネシウム等のアルカリ土類
金属塩などを用いて、上記炭素質材料に担持することが
できる。通常、臭化水素酸または臭化アンモニウムを用
いる。炭素質材料への担持は、上記バナジウム化合物と
同様に公知のいずれの方法でもよく、例えば臭化物等の
水溶液に炭素質材料を浸漬し、含浸後、室温〜100℃
で乾燥して、担持する。また、乾燥後、要すれば、窒素
などの不活性気流中150〜600℃で焼成してもよ
い。本発明の触媒において、臭素(Br)担持量は、臭
素元素基準で0.1〜20重量%、好ましくは2〜15
重量%である。0.1重量%未満であると充分な脱硝性
能が得られず、20重量%を超えて担持してもそれ以上
の効果は得られない。
The bromine compound as another catalytically active component of the present invention is prepared by using an alkali metal salt such as hydrobromic acid, ammonium bromide, sodium bromide, etc., an alkaline earth metal salt such as magnesium bromide, etc. It can be supported on a carbonaceous material. Usually, hydrobromic acid or ammonium bromide is used. The carbonaceous material may be supported by any known method similar to the above vanadium compound. For example, the carbonaceous material is immersed in an aqueous solution of bromide or the like, and after impregnation, room temperature to 100 ° C.
And dried to support. After drying, if necessary, baking may be performed at 150 to 600 ° C. in an inert gas stream such as nitrogen. In the catalyst of the present invention, the amount of bromine (Br) supported is 0.1 to 20% by weight, preferably 2 to 15% by weight based on the elemental bromine.
% By weight. If it is less than 0.1% by weight, sufficient denitration performance cannot be obtained, and if it exceeds 20% by weight, no further effect can be obtained.

【0011】本発明の他の触媒活性成分の銅化合物とし
ては、1価及び2価のいずれかの銅の酸化物、無機酸塩
または有機酸塩を用いて、上記炭素質材料に担持するこ
とができる。通常、硝酸銅、硫酸銅等が好適に用いられ
る。炭素質材料への担持は、上記バナジウム化合物と同
様に公知のいずれの方法でもよい。本発明の触媒におい
て、銅(Cu)担持量は、元素基準で上記V担持量に対
し、モル比で0.1〜2.0、好ましくは0.2〜1.
0である。このモル比が0.1未満では、充分な脱硝性
能が得られず、一方、2.0を超えて担持してもそれ以
上の効果は得られない。
As the copper compound as another catalytically active component of the present invention, an oxide of monovalent or divalent copper, an inorganic acid salt or an organic acid salt is used and supported on the carbonaceous material. You can Usually, copper nitrate, copper sulfate and the like are preferably used. The carbonaceous material may be supported by any known method as in the case of the vanadium compound. In the catalyst of the present invention, the supported amount of copper (Cu) is 0.1 to 2.0, preferably 0.2 to 1.
0. If this molar ratio is less than 0.1, sufficient denitration performance cannot be obtained, while if it exceeds 2.0, no further effect can be obtained.

【0012】本発明の他の触媒活性成分のランタンまた
はセリウムの化合物としては、3価の酸化物、無機酸塩
または有機酸塩を用いて、上記炭素質材料に担持するこ
とができる。通常、硝酸ランタンまたは硝酸セリウムが
好適に用いられる。炭素質材料への担持は、上記バナジ
ウム化合物と同様に公知のいずれの方法でもよい。本発
明の触媒において、ランタン(La)またはセリウム
(Ce)の担持量は、元素基準で上記V担持量に対し、
モル比で0.1〜2.0、好ましくは0.2〜1.0で
ある。このモル比が0.1未満では、充分な脱硝酸性能
が得られず、一方、2.0を超えて担持してもそれ以上
の効果は得られない。
As a compound of lanthanum or cerium which is another catalytically active component of the present invention, a trivalent oxide, an inorganic acid salt or an organic acid salt can be used and supported on the carbonaceous material. Usually, lanthanum nitrate or cerium nitrate is preferably used. The carbonaceous material may be supported by any known method as in the case of the vanadium compound. In the catalyst of the present invention, the loading amount of lanthanum (La) or cerium (Ce) is based on the above V loading amount on an element basis.
The molar ratio is 0.1 to 2.0, preferably 0.2 to 1.0. If this molar ratio is less than 0.1, sufficient denitrification performance cannot be obtained, while if it exceeds 2.0, no further effect can be obtained.

【0013】本発明の他の触媒活性成分のモリブデン
(Mo)及びタングステン(W)の化合物としては2
価、3価、4価、5価、6価のいずれかの酸化物、無機
酸塩、または有機酸塩を用い上記炭素質材料に担持する
ことができる。通常、モリブデン酸アンモニウム、メタ
タングステン酸アンモニウム、パラタングステン酸アン
モニウムが好適に用いられる。炭素質材料への担持は、
上記バナジウム化合物と同様に公知のいずれの方法でも
よく、例えば、上記MoまたはWの化合物の水溶液に炭
素質材料を浸漬し、室温〜200℃で乾燥後、窒素等の
不活性気流中200〜600℃で焼成する。上記のよう
にして担持したMoまたはW化合物は、最終的に担体上
においては、一般に酸化物の形態を採るものと推定され
る。本発明の触媒において、上記MoまたはWの化合物
の担持量は、上記Cu担持量に対し、モル比で0.5以
上であり、好ましくは1〜2である。このモル比が0.
5未満であると亜酸化窒素の生成に対しての抑制効果が
低くなり、また2を超えて担持してもそれ以上の効果は
得られない。
The compound of molybdenum (Mo) and tungsten (W) which are other catalytically active components of the present invention is 2
An oxide, an inorganic acid salt, or an organic acid salt of any one of trivalent, trivalent, tetravalent, pentavalent, and hexavalent can be used to support the carbonaceous material. Usually, ammonium molybdate, ammonium metatungstate, and ammonium paratungstate are preferably used. Supporting carbonaceous materials
Any known method may be used as in the case of the vanadium compound. For example, the carbonaceous material is immersed in an aqueous solution of the compound of Mo or W, dried at room temperature to 200 ° C., and then 200 to 600 in an inert gas stream such as nitrogen. Bake at ° C. It is presumed that the Mo or W compound supported as described above generally takes the form of an oxide on the support. In the catalyst of the present invention, the supported amount of the compound of Mo or W is 0.5 or more, preferably 1 to 2 in molar ratio with respect to the supported amount of Cu. This molar ratio is 0.
If it is less than 5, the effect of suppressing the generation of nitrous oxide is low, and if it is supported in excess of 2, no further effect can be obtained.

【0014】本発明の燃焼排ガス中の窒素酸化物還元除
去用触媒は、上記のように、好ましくは活性炭系炭素質
材料へバナジウム化合物、臭素化合物、銅化合物、ラン
タンまたはセリウム化合物、更に、モリブデンまたはタ
ングステンの5成分を触媒成分として担持して形成する
ことができる。上記各触媒成分は、それぞれ別々に担持
してもよいし、使用する各触媒成分の化合物によって
は、例えば浸漬含浸法であれば、混合溶液を用い同時に
担持することもできる。また、スプレー法であれば、各
成分担持を順次行い、乾燥、焼成を共通させて一段とす
ることができる。別々に担持させる場合、好ましくは、
バナジウム成分、銅成分、ランタンまたはセリウム成
分、モリブデンまたはタングステン成分の金属成分を先
に担持し、その後、臭素成分を担持するのが好ましい。
また、スプレー法や含浸法において、担持を減圧下で行
うことにより、担持成分を炭素質材料担体に均一に担持
させることができ好ましい。
As described above, the catalyst for reducing nitrogen oxides in combustion exhaust gas according to the present invention is preferably a vanadium compound, a bromine compound, a copper compound, a lanthanum or cerium compound, and further molybdenum or It can be formed by supporting five components of tungsten as a catalyst component. Each of the above catalyst components may be supported separately, or depending on the compound of each catalyst component used, for example, a dipping impregnation method, a mixed solution may be simultaneously supported. Further, in the case of the spray method, it is possible to carry out the loading of the respective components in sequence and to carry out the drying and firing in common to further improve the process. When loaded separately, preferably
It is preferable that the metal component such as the vanadium component, the copper component, the lanthanum or cerium component, the molybdenum or the tungsten component is loaded first, and then the bromine component is loaded.
In addition, in the spray method or the impregnation method, it is preferable to carry out the loading under a reduced pressure because the loading component can be loaded uniformly on the carbonaceous material carrier.

【0015】更に、臭素化合物として、バナジウム、
銅、ランタン、セリウム、モリブデン、タングステンの
塩として担持することもできる。この場合、担持量を勘
案して、不足量を別途担持することもできる。この場合
の上記金属臭化物の担持方法としては、前記臭化物の担
持方法と同様で良く、担持順序は最後に担持するのが好
ましい。本発明の触媒の形状は、特に制限されない。例
えば、粉末状や、粒状、顆粒状、球状、円柱状等成形体
等、あるいはハニカム状等、処理条件に応じて適宜選択
することができる。本発明の燃焼排ガス中の窒素酸化物
の還元除去用触媒は、排煙湿式脱硫後等の約100℃以
下の低温から約150℃までの温度範囲の燃焼排ガスに
好適に用いられ、アンモニアの存在下、SVを2000
/時以上の高空間速度で接触処理して、高脱硝率で長期
間安定して窒素酸化物を還元除去することができる。
Further, vanadium, as a bromine compound,
It can also be supported as a salt of copper, lanthanum, cerium, molybdenum, or tungsten. In this case, the deficient amount may be separately supported in consideration of the supported amount. In this case, the method for supporting the metal bromide may be the same as the method for supporting the bromide, and the supporting order is preferably the last. The shape of the catalyst of the present invention is not particularly limited. For example, a powdery, granular, granular, spherical, cylindrical, or the like shaped body, or a honeycomb shape or the like can be appropriately selected according to the processing conditions. INDUSTRIAL APPLICABILITY The catalyst for reducing and removing nitrogen oxides in flue gas of the present invention is suitably used for flue gas in a temperature range from a low temperature of about 100 ° C. or less to about 150 ° C. after flue gas wet desulfurization, etc. Below, SV 2000
By performing contact treatment at a high space velocity of not less than 1 hour / hour, nitrogen oxides can be reduced and removed stably with a high denitration rate for a long period of time.

【0016】[0016]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものではない。 実施例1 メタバナジン酸アンモニウムを蓚酸で還元して調製した
バナジウムイオン0.5mol/1含有水溶液200m
lに、市販粒状活性炭(武田薬品工業(株)製、商品
名:Gx、直径4mmφ、長さ6mmの成形品、比表面
積約1,200m2 /g)100gを加え減圧下で浸漬
してVを含浸させ、ろ過分離した。次いで、得られたV
担持活性炭を100℃の乾燥器中で12時間乾燥した
後、窒素気流中450℃で5時間焼成し、室温まで冷却
してV担持活性炭を得た。上記のようにして得たV担持
活性炭を、0.5mol/1のモリブデンを含有するモ
リブデン酸アンモニウム水溶液200mlに減圧下で浸
漬し、Moを含浸した後は、上記のV担持と同様にし
て、V−Mo担持活性炭を得た。得られたV−Mo担持
活性炭を、0.25mol/1硝酸ランタン水溶液20
0mlに減圧下で浸漬しLaを含浸した後は、上記の
V、Mo担持と同様にして、V−Mo−La担持活性炭
を得た。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 1 200 m of vanadium ion-containing 0.5 mol / 1 aqueous solution prepared by reducing ammonium metavanadate with oxalic acid
100 g of commercially available granular activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd., trade name: Gx, diameter 4 mmφ, length 6 mm, specific surface area of about 1,200 m 2 / g) was added to 1 and immersed under reduced pressure to obtain V. Was impregnated and separated by filtration. Then, the obtained V
The supported activated carbon was dried in a dryer at 100 ° C. for 12 hours, then calcined in a nitrogen stream at 450 ° C. for 5 hours and cooled to room temperature to obtain V-supported activated carbon. The V-supporting activated carbon obtained as described above was immersed in 200 ml of an ammonium molybdate aqueous solution containing 0.5 mol / 1 of molybdenum under reduced pressure, and after impregnating with Mo, in the same manner as the V-supporting above, V-Mo carrying activated carbon was obtained. The obtained V-Mo-supported activated carbon was added to a 0.25 mol / 1 lanthanum nitrate aqueous solution 20.
After dipping in 0 ml under reduced pressure to impregnate La, V-Mo-La-supported activated carbon was obtained in the same manner as in the above V and Mo support.

【0017】次いで、得られたV−Mo−La担持活性
炭を0.25mol/1硫酸銅水溶液200mlに減圧
下で浸漬し、ろ過分離した。得られたCu含浸V−Mo
−La担持活性炭を、100℃の乾燥器中で12時間乾
燥した後、窒素気流中200℃で5時間焼成し、室温ま
で冷却しV−Mo−La−Cu担持活性炭を得た。得ら
れたV−Mo−La−Cu担持活性炭を、1mol/1
臭化水素酸水溶液200ml中に減圧下で浸漬含浸を行
い、ろ過分離した。ろ過分離された臭化水素含浸活性炭
を110℃の乾燥器中で12時間乾燥し、V−Mo−L
a−Cu−Br担持活性炭触媒を得た。得られたV−M
o−La−Cu−Br担持活性炭触媒は、V担持量が
2.0重量%、Mo担持量が3.7重量%、La担持量
が2.8重量%、Cu担持量が1.4重量%、Br担持
量が6.2重量%であった。
Next, the obtained V-Mo-La-supported activated carbon was immersed in 200 ml of a 0.25 mol / 1 copper sulfate aqueous solution under reduced pressure and separated by filtration. Obtained Cu-impregnated V-Mo
The -La-supported activated carbon was dried in a drier at 100 ° C for 12 hours, then fired at 200 ° C for 5 hours in a nitrogen stream and cooled to room temperature to obtain V-Mo-La-Cu-supported activated carbon. The obtained V-Mo-La-Cu-supported activated carbon was added in an amount of 1 mol / 1.
Immersion impregnation was carried out in 200 ml of a hydrobromic acid aqueous solution under reduced pressure, followed by separation by filtration. The hydrogen bromide-impregnated activated carbon separated by filtration was dried in a drier at 110 ° C. for 12 hours to obtain V-Mo-L.
An a-Cu-Br-supported activated carbon catalyst was obtained. Obtained VM
The o-La-Cu-Br supported activated carbon catalyst has a V loading of 2.0% by weight, a Mo loading of 3.7% by weight, a La loading of 2.8% by weight, and a Cu loading of 1.4% by weight. %, And the Br loading amount was 6.2% by weight.

【0018】上記で調製したV−Mo−La−Cu−B
r担持活性炭触媒を、内径30mmφで高さ500mm
のガラス製脱硝反応管に33ml充填し、触媒固定床を
形成した。この反応管に、温度100℃、SV5,00
0/時で酸化窒素(NO)500ppm、酸素(O2
5容量%、炭酸ガス(CO2 )12容量%、水(H
2O)9.5容量%を含有し、残部が窒素ガスからなる
模擬燃焼排ガスにアンモニア(NH3 )500ppmを
添加して、連続して流通処理した。表1に示した各処理
時間における処理ガス組成を(株)島津製作所製化学発
光式NOx計にて測定し、脱硝率を算出した。亜酸化窒
素(N2 O)の生成量は、ガスクロマトグラフィーのカ
ラムにユニビーズC(ジーエルサイエンス製)を充填し
て測定した。尚、脱硝率[%]は、(NOx入口濃度−
NOx出口濃度)/NOx入口濃度×100で算出し
た。その結果を、表1に示した。また、表中の生成N2
Oの濃度(ppm)は、処理時間を通しての平均値であ
る(以下同じ)。
V-Mo-La-Cu-B prepared above
r-supported activated carbon catalyst with inner diameter of 30 mmφ and height of 500 mm
The glass denitration reaction tube of No. 33 was filled with 33 ml to form a catalyst fixed bed. In this reaction tube, a temperature of 100 ° C.
Nitrogen oxide (NO) 500ppm, oxygen (O 2 ) at 0 / hr
5% by volume, carbon dioxide (CO 2 ) 12% by volume, water (H
2 O) containing 9.5% by volume, the balance being nitrogen gas, and 500 ppm of ammonia (NH 3 ) was added to the simulated combustion exhaust gas, and the mixture was continuously flow-treated. The treatment gas composition at each treatment time shown in Table 1 was measured by a chemiluminescence type NOx meter manufactured by Shimadzu Corporation to calculate the denitration rate. The amount of nitrous oxide (N 2 O) produced was measured by filling a column for gas chromatography with UniBeads C (manufactured by GL Sciences). Note that the denitration rate [%] is (NOx inlet concentration-
It was calculated by (NOx outlet concentration) / NOx inlet concentration × 100. The results are shown in Table 1. In addition, the generated N 2 in the table
The O concentration (ppm) is an average value over the treatment time (the same applies hereinafter).

【0019】実施例2 触媒成分のLa担持量が表1に示した値になるように、
水溶液濃度を調整して実施例1と同様にして、V−Mo
−La−Cu−Br担持活性炭触媒を得た。得られた触
媒を用い、実施例1と同様に疑似燃焼排ガスを処理し
た。その結果を表1に示した。
Example 2 The La loading amount of the catalyst component was adjusted to the values shown in Table 1,
The concentration of the aqueous solution was adjusted and V-Mo was prepared in the same manner as in Example 1.
A -La-Cu-Br-supported activated carbon catalyst was obtained. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0020】実施例3 実施例1と同様な方法で調製したV−Mo担持活性炭1
00gを、0.25mol/1硝酸セリウム水溶液20
0mlに減圧下で浸漬してCeを含浸させ、ろ過分離し
た。次いで、得られたCe含浸V−Mo担持活性炭を1
00℃の乾燥器中で12時間乾燥した後、窒素気流中4
50℃で5時間焼成し、室温まで冷却してV−Mo−C
e担持活性炭を得た。得られたV−Mo−Ce担持活性
炭に実施例1と同様な方法でCu、Br担持を行い、V
−Mo−Ce−Cu−Br担持活性炭触媒を得た。得ら
れた触媒を用い、実施例1と同様に疑似燃焼排ガスを処
理した。その結果を表1に示した。
Example 3 V-Mo-supported activated carbon 1 prepared in the same manner as in Example 1
00 g of 0.25 mol / 1 cerium nitrate aqueous solution 20
It was immersed in 0 ml under reduced pressure to impregnate Ce, and separated by filtration. Then, the obtained Ce-impregnated V-Mo-supported activated carbon was added to 1
After drying for 12 hours in a dryer at 00 ° C, 4 in a nitrogen stream
Baking at 50 ° C for 5 hours, cooling to room temperature and then V-Mo-C
e-supported activated carbon was obtained. The obtained V-Mo-Ce-supported activated carbon was loaded with Cu and Br in the same manner as in Example 1, and V
A -Mo-Ce-Cu-Br-supported activated carbon catalyst was obtained. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0021】実施例4 実施例1と同様な方法で調製したV担持活性炭100g
を、Wを0.05mol/1含有するパラタングステン
酸アンモニウム水溶液400mlに浸漬した後、エバポ
レータにて減圧乾燥し、得られたW含浸V担持活性炭を
100℃の乾燥器中で12時間乾燥した。このW担持操
作を再度繰り返した後、窒素気流中450℃で5時間焼
成した。得られたV−W担持活性炭に、実施例1と同様
な方法でLa、Cu及びBrを担持してV−W−La−
Cu−Br担持活性炭触媒を得た。得られた触媒を用
い、実施例1と同様に疑似燃焼排ガスを処理した。その
結果を表1に示した。
Example 4 100 g of V-supported activated carbon prepared in the same manner as in Example 1
Was immersed in 400 ml of an ammonium paratungstate aqueous solution containing 0.05 mol / 1 of W and then dried under reduced pressure by an evaporator, and the obtained W-impregnated V-supported activated carbon was dried in a dryer at 100 ° C. for 12 hours. After repeating this W supporting operation again, firing was performed at 450 ° C. for 5 hours in a nitrogen stream. La, Cu and Br were loaded on the obtained V-W-supported activated carbon in the same manner as in Example 1 to carry out V-W-La-.
A Cu-Br supported activated carbon catalyst was obtained. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0022】実施例5 触媒成分のLa担持量が表1に示した値になるように、
水溶液濃度を調整して実施例4と同様にして、V−W−
La−Cu−Br担持活性炭触媒を得た。得られた触媒
を用い、実施例1と同様に疑似燃焼排ガスを処理した。
その結果を表1に示した。
Example 5 The La loading amount of the catalyst component was adjusted to the value shown in Table 1,
The concentration of the aqueous solution was adjusted and V-W-
An La-Cu-Br supported activated carbon catalyst was obtained. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1.
The results are shown in Table 1.

【0023】実施例6 実施例4と同様な方法で調製したV−W担持活性炭10
0gを、0.25mol/1硝酸セリウム水溶液200
mlに減圧下で浸漬してCeを含浸させ、ろ過分離し
た。次いで、得られたCe含浸V−W担持活性炭を10
0℃の乾燥器中で12時間乾燥した後、窒素気流中45
0℃で5時間焼成し、室温まで冷却してV−W−Ce担
持活性炭を得た。得られたV−W−Ce担持活性炭に実
施例1と同様な方法でCu、Br担持を行い、V−W−
Ce−Cu−Br担持活性炭触媒を得た。得られた触媒
を用い、実施例1と同様に疑似燃焼排ガスを処理した。
その結果を表1に示した。
Example 6 V-W supported activated carbon 10 prepared in the same manner as in Example 4
0 g of 0.25 mol / 1 cerium nitrate aqueous solution 200
It was immersed in ml under reduced pressure to impregnate Ce, and separated by filtration. Then, the obtained Ce-impregnated VW-supported activated carbon was mixed with 10
After drying in a 0 ° C dryer for 12 hours, 45 in a nitrogen stream
The mixture was calcined at 0 ° C for 5 hours and cooled to room temperature to obtain VW-Ce-supported activated carbon. The obtained V-W-Ce-supported activated carbon was loaded with Cu and Br in the same manner as in Example 1, and V-W-
A Ce-Cu-Br supported activated carbon catalyst was obtained. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1.
The results are shown in Table 1.

【0024】実施例7 実施例1と同様な方法で調製したV−Mo担持活性炭1
00gを、0.25mol/1臭化第二銅と0.17m
ol/1臭化ランタンとの混合水溶液200mlに減圧
下で浸漬含浸を行い、ろ過分離した。ろ過分離されたL
a−Cu−Br含浸V−Mo担持活性炭を100℃の乾
燥器中で12時間乾燥した後、窒素気流中200℃で5
時間焼成して、表1に示した各成分担持量のV−Mo−
La−Cu−Br担持活性炭触媒を得た。得られた触媒
を用い、実施例1と同様に疑似燃焼排ガスを処理した。
その結果を表1に示した。
Example 7 V-Mo-supporting activated carbon 1 prepared in the same manner as in Example 1
00g, 0.17m with 0.25mol / 1 cupric bromide
It was immersed and impregnated in 200 ml of a mixed aqueous solution of ol / 1 lanthanum bromide under reduced pressure, and separated by filtration. L separated by filtration
The a-Cu-Br-impregnated V-Mo-supported activated carbon was dried in a drier at 100 ° C for 12 hours, and then at 5 ° C in a nitrogen stream at 200 ° C.
After firing for an hour, the amount of each component shown in Table 1 is V-Mo-
An La-Cu-Br supported activated carbon catalyst was obtained. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1.
The results are shown in Table 1.

【0025】実施例8 実施例4と同様な方法で調製したV−W担持活性炭10
0gに、実施例7と同様な方法でLa、Cu及びBrを
担持してV−W−La−Cu−Br担持活性炭触媒を得
た。得られた触媒を用い、実施例1と同様に疑似燃焼排
ガスを処理した。その結果を表1に示した。
Example 8 V-W supported activated carbon 10 prepared in the same manner as in Example 4
La, Cu and Br were supported on 0 g in the same manner as in Example 7 to obtain a VW-La-Cu-Br supported activated carbon catalyst. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0026】実施例9〜11 実施例1、4、7の方法で調製された触媒を用い、実施
例1で使用したものと同じガラス製脱硝反応管に16.
5ml充填し、140℃、SV10,000/時で同様
な組成の疑似燃焼排ガスを処理した。その結果を表1に
示した。
Examples 9 to 11 Using the catalysts prepared by the methods of Examples 1, 4, and 7 in the same glass denitration reaction tube as used in Example 1, 16.
5 ml was filled, and a pseudo combustion exhaust gas having the same composition was treated at 140 ° C. and SV 10,000 / hour. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】比較例1 実施例1と同様な方法で調製したV−Mo担持活性炭1
00gを、0.25mol/1硫酸銅水溶液200ml
に減圧下で浸漬し、ろ過分離した。得られたCu含浸V
−Mo担持活性炭を、100℃の乾燥器中で12時間乾
燥した後、窒素気流中200℃で5時間焼成し、室温ま
で冷却してV−Mo−Cu担持活性炭を得た。得られた
V−Mo−Cu担持活性炭に実施例1と同様な方法でB
r担持を行い、V−Mo−Cu−Br担持活性炭触媒を
得た。得られた触媒を用い、実施例1と同様に疑似燃焼
排ガスを処理した。その結果を表2に示した。
Comparative Example 1 V-Mo-supporting activated carbon 1 prepared in the same manner as in Example 1
00 g, 200 ml of 0.25 mol / 1 copper sulfate aqueous solution
Was immersed in a vacuum under reduced pressure, and separated by filtration. Obtained Cu impregnation V
The —Mo-supported activated carbon was dried in a dryer at 100 ° C. for 12 hours, then fired in a nitrogen stream at 200 ° C. for 5 hours and cooled to room temperature to obtain V-Mo-Cu-supported activated carbon. The obtained V-Mo-Cu-supported activated carbon was treated with B in the same manner as in Example 1.
r-supporting was performed to obtain a V-Mo-Cu-Br-supporting activated carbon catalyst. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 2.

【0029】比較例2 実施例4と同様な方法で調製したV−W担持活性炭に、
比較例1と同様な方法でCu及びBr担持を行い、V−
W−Cu−Br担持活性炭触媒を得た。得られた触媒を
用い、実施例1と同様に疑似燃焼排ガスを処理した。そ
の結果を表2に示した。
Comparative Example 2 V-W supported activated carbon prepared in the same manner as in Example 4 was added with
Cu and Br were loaded in the same manner as in Comparative Example 1, and V-
A W-Cu-Br-supported activated carbon catalyst was obtained. Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 2.

【0030】比較例3 比較例1と同様な方法で調製したV−Mo−Cu−Br
担持活性炭触媒を用いて、実施例9と同様にして疑似燃
焼排ガスを処理した。その結果を表2に示した。
Comparative Example 3 V-Mo-Cu-Br prepared in the same manner as in Comparative Example 1.
The simulated combustion exhaust gas was treated in the same manner as in Example 9 using the supported activated carbon catalyst. The results are shown in Table 2.

【0031】[0031]

【表2】 [Table 2]

【0032】上記実施例、及び比較例より明らかなよう
に、本発明のV−Mo(またはW)−La(またはC
e)Cu−Br担持活性炭触媒は、空間速度が5000
/時、10000/時という、高い処理能力が要求され
る条件下で燃焼排ガスの脱硝処理に使用した場合であっ
ても、本発明者等が先に特願平6−191827号で提
案したV−Mo−Cu−Br担持活性炭触媒に比して、
長期間にわたって高脱硝率を示し、触媒活性が維持され
ていることがわかる。また、亜酸化窒素の副生量が6p
pm以下であり、V−Mo−Cu−Br担持活性炭触媒
を使用した場合に比して、より一層の低減が図られてい
る。従来、例えば、同一出願人が特開平7−16468
号公報で提案したV−Cu−Br担持活性炭触媒は、同
様の脱硝試験において触媒活性を維持しつつ処理できる
時間が720時間を越えても使用でき、長期間に亘り使
用でき耐久性があるものとして十分実用性の高いもので
あったが、本発明の触媒の耐用期間は960時間とこれ
を大きく上回ることが明らかであり、より実用性が高い
ことが分かる。
As is clear from the above Examples and Comparative Examples, V-Mo (or W) -La (or C of the present invention is used.
e) The Cu-Br supported activated carbon catalyst has a space velocity of 5000.
Even when used for denitrification treatment of combustion exhaust gas under the condition of high treatment capacity of 1 / hr / 10,000 / hr, the present inventors previously proposed V in Japanese Patent Application No. 6-191827. -Compared to the Mo-Cu-Br supported activated carbon catalyst,
It can be seen that a high denitration rate is exhibited over a long period of time, and the catalytic activity is maintained. Also, the amount of nitrous oxide by-product is 6p
It is pm or less, and further reduction is achieved as compared with the case where a V-Mo-Cu-Br-supported activated carbon catalyst is used. Conventionally, for example, the same applicant has disclosed in Japanese Patent Laid-Open No. 7-16468.
The V-Cu-Br-supported activated carbon catalyst proposed in Japanese Patent Laid-open Publication can be used even if the time during which it can be treated while maintaining the catalyst activity in the same denitration test exceeds 720 hours, and can be used for a long period of time and has durability. However, it is clear that the catalyst of the present invention has a useful life of 960 hours, which is much higher than that of the catalyst of the present invention.

【0033】[0033]

【発明の効果】本発明の燃焼排ガスの窒素酸化物還元除
去用触媒は、亜酸化窒素の副生が少なく長期間に亘り安
定して比較的低温の燃焼排ガスを脱硝処理できる。従っ
て、本発明の窒素酸化物還元除去用触媒を用いることに
より、湿式排煙脱硫後等の比較的低温の燃焼排ガスを、
非常に大きい空間速度、即ち小さな反応器で処理して、
窒素酸化物を長時間安定的に還元除去することができ、
環境汚染の防止上極めて利用価値が高い。また、大気汚
染源となっているSOxやNOxを含有する燃焼排ガス
からSOxを除去するために既に実施されている湿式排
煙脱硫装置からのSOxが除去された低温の燃焼排ガス
の処理に、本発明の窒素酸化物還元除去用触媒を用いる
ことにより、コンパクトな装置で簡便に且つ円滑に、残
存する窒素酸化物を連続的に除去することができ工業上
有用である。
INDUSTRIAL APPLICABILITY The catalyst for reducing nitrogen oxides in flue gas according to the present invention has little nitrous oxide by-product and can stably denitrate flue gas at a relatively low temperature over a long period of time. Therefore, by using the catalyst for nitrogen oxide reduction removal of the present invention, relatively low temperature combustion exhaust gas after wet flue gas desulfurization,
With a very high space velocity, i.e. a small reactor,
Nitrogen oxide can be reduced and removed stably for a long time,
It has extremely high utility value in terms of preventing environmental pollution. Further, the present invention is applied to the treatment of low-temperature flue gas from which SOx has been removed from a wet flue gas desulfurization device that has already been implemented to remove SOx from flue gas containing SOx and NOx, which are air pollution sources. By using the catalyst for reducing and removing nitrogen oxides, it is possible to remove residual nitrogen oxides easily and smoothly in a compact device, which is industrially useful.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽根原 尚紀 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 金井 隆一 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 戸河里 脩 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naoki Sonehara 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Ryuichi Kanai Chuo, Tsurumi-ku, Tsurumi-ku, Yokohama-shi, Kanagawa Chome 12-1 Chiyoda Kakoh Construction Co., Ltd. (72) Inventor Togari Shun 2-12-1 Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kakoh Construction Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素質材料にバナジウム化合物、臭素化
合物、銅化合物、ランタンまたはセリウムの化合物、及
びモリブデンまたはタングステンの化合物を担持してな
ることを特徴とする燃焼排ガス中の窒素酸化物還元除去
用触媒。
1. A method for reducing nitrogen oxides in combustion exhaust gas, which comprises supporting a vanadium compound, a bromine compound, a copper compound, a lanthanum or cerium compound, and a molybdenum or tungsten compound on a carbonaceous material. catalyst.
JP8029938A 1996-01-23 1996-01-23 Catalyst for reduction and removal of nitrogen oxide in waste combustion gas Pending JPH09192491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8029938A JPH09192491A (en) 1996-01-23 1996-01-23 Catalyst for reduction and removal of nitrogen oxide in waste combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8029938A JPH09192491A (en) 1996-01-23 1996-01-23 Catalyst for reduction and removal of nitrogen oxide in waste combustion gas

Publications (1)

Publication Number Publication Date
JPH09192491A true JPH09192491A (en) 1997-07-29

Family

ID=12289942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8029938A Pending JPH09192491A (en) 1996-01-23 1996-01-23 Catalyst for reduction and removal of nitrogen oxide in waste combustion gas

Country Status (1)

Country Link
JP (1) JPH09192491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501246A (en) * 2008-09-02 2012-01-19 スリーエム イノベイティブ プロパティズ カンパニー Gaseous air filter without ammonia
WO2020179892A1 (en) * 2019-03-07 2020-09-10 中国電力株式会社 Combustion system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012501246A (en) * 2008-09-02 2012-01-19 スリーエム イノベイティブ プロパティズ カンパニー Gaseous air filter without ammonia
WO2020179892A1 (en) * 2019-03-07 2020-09-10 中国電力株式会社 Combustion system

Similar Documents

Publication Publication Date Title
KR100838500B1 (en) A process and catalyst for reducing nitrogen oxides
JP4813830B2 (en) Exhaust gas treatment catalyst, exhaust gas treatment method and exhaust gas treatment device
JPH07299331A (en) Dry desulfurization and denitration process
JP2012024669A (en) Method for regenerating denitration catalyst
JP2005081189A (en) Catalyst for denitrifying high temperature waste gas
JP5386096B2 (en) Exhaust gas treatment catalyst
KR20220072360A (en) Low Temperature SCR Catalyst for Treating of the Exhaust Gas from a Fixed Source and Preparation Method Thereof
JPH09192491A (en) Catalyst for reduction and removal of nitrogen oxide in waste combustion gas
JP3474514B2 (en) Low temperature denitration catalyst and low temperature denitration method
KR100382051B1 (en) Catalyst for Selective Catalytic Reduction of Nitrogen Oxides Including Sulfur Dioxide at Low Temperature
KR100549777B1 (en) Vanadium/Titania-based Catalyst Containing Vanadium Trioxide for Removing Nitrogen Oxide and/or Dioxin at Wide Active Temperature Window
KR102224335B1 (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
JP3150519B2 (en) Regeneration method of denitration catalyst
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
KR102378405B1 (en) Selective reduction catalyst for removing nitrogen oxide using ammonia, manufacturing method thereof and method for removing nitrogen oxide using the same
JP2548756B2 (en) Catalyst for removing nitrogen oxides
JP3521933B2 (en) Catalyst for removing nitrogen oxides in exhaust gas
JPS62298452A (en) Catalyst for purifying exhaust gas
KR20100001315A (en) Catalytic composition for removing nitrogen oxide, and method for producing that, and method for removing nitrogen oxide using the same
JPH08131832A (en) Ammonia decomposition catalyst and method for decomposing and removing ammonia
JPH0833843A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JPH03213145A (en) Ozone decomposing catalyst
JPH0833844A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JPH07323225A (en) Catalyst for reductive-removing nitrogen oxides in waste combustion gas
JPH038820B2 (en)