JPH07323227A - Catalyst for reduction removing nitrogen oxides in waste combustion gas - Google Patents

Catalyst for reduction removing nitrogen oxides in waste combustion gas

Info

Publication number
JPH07323227A
JPH07323227A JP6139356A JP13935694A JPH07323227A JP H07323227 A JPH07323227 A JP H07323227A JP 6139356 A JP6139356 A JP 6139356A JP 13935694 A JP13935694 A JP 13935694A JP H07323227 A JPH07323227 A JP H07323227A
Authority
JP
Japan
Prior art keywords
catalyst
supported
activated carbon
exhaust gas
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6139356A
Other languages
Japanese (ja)
Inventor
Ataru Wakabayashi
中 若林
Yoichi Umehara
洋一 梅原
Hisanori Sonehara
尚紀 曽根原
Takashi Kimura
隆志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Original Assignee
Chiyoda Corp
Chiyoda Chemical Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corp, Chiyoda Chemical Engineering and Construction Co Ltd filed Critical Chiyoda Corp
Priority to JP6139356A priority Critical patent/JPH07323227A/en
Publication of JPH07323227A publication Critical patent/JPH07323227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a denitration catalyst without lowering the catalytic activity over a long period of time and capable of reductive-removing nitrogen oxides from a low temp. waste combustion gas in the presence of ammonia. CONSTITUTION:This catalyst for reductive-removing nitrogen oxides in the waste combustion gas is obtained by depositing a vanadium compound, a bromine compound and at least one kind of a compound of a metal selected among iron, cobalt and rare earth metal, if necessary, further platinum group metal on a carbonaceous material. As the carbonaceous material, an activated carbon based carbonaceous material having >=10m<2>/g specific surface area is preferably used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃焼排ガスの窒素酸化
物還元除去触媒に関し、更に詳しくは、湿式脱硫後の比
較的低温の排ガスから、アンモニアの存在下、窒素酸化
物を還元除去できる燃焼排ガスの窒素酸化物還元除去触
媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for reducing and removing nitrogen oxides from combustion exhaust gas, and more specifically to a combustion device capable of reducing and removing nitrogen oxides from exhaust gas at a relatively low temperature after wet desulfurization in the presence of ammonia. The present invention relates to a catalyst for reducing nitrogen oxides in exhaust gas.

【0002】[0002]

【従来の技術】近年、地球規模で環境汚染が問題とな
り、汚染防止のための対策が種々提案されたり、また、
排水、排ガス等の排出基準等も見直され検討されてい
る。大気汚染源となっている燃焼排ガスは、より厳しく
規制されることになる。これら状況を鑑み、発明者ら
は、先に特願平5−124007号で炭素質材料にバナ
ジウム化合物及び臭素化合物を担持した排ガス用脱硝触
媒を提案した。この触媒は、低温で、且つ、大きな空間
速度(SV)で排ガス中の窒素酸化物を還元処理するこ
とができ、更に、地球温暖化を著しく促進するといわれ
る亜酸化窒素の副生もなく、排ガス用還元脱硝触媒とし
ては優れたものである。
2. Description of the Related Art In recent years, environmental pollution has become a problem on a global scale, and various measures for preventing pollution have been proposed.
Emission standards for wastewater and exhaust gas have also been reviewed and studied. Combustion exhaust gas, which is a source of air pollution, will be more strictly regulated. In view of these circumstances, the inventors previously proposed a denitration catalyst for exhaust gas in which a carbonaceous material carries a vanadium compound and a bromine compound in Japanese Patent Application No. 5-124007. This catalyst can reduce nitrogen oxides in exhaust gas at a low space and a high space velocity (SV), and further, without the byproduct of nitrous oxide which is said to significantly promote global warming, It is excellent as a reduction denitration catalyst for exhaust gas.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、発明者
らが、更に、上記提案の触媒の使用等について検討した
結果、この触媒を用い窒素酸化物を還元処理する場合、
操作時間の経過と共に僅かずつではあるがその触媒活性
が低下し、操作初期に比し脱硝率が徐々に低下すること
を知見した。本発明は、上記知見に基づき、長期間の排
ガス脱硝処理においても触媒活性が低下することなく、
窒素酸化物を含有する低温排ガス、例えば湿式排煙脱硫
後の排ガスから、長時間安定した脱硝率で窒素酸化物を
アンモニア存在下で還元除去できる触媒を提供すること
を目的とする。発明者らは、上記目的達成のために、先
に提案の脱硝触媒の開発において得た知見等を基に担持
金属等を更に検討し、本発明をなすに至った。
However, as a result of further investigations by the inventors regarding the use of the above-mentioned catalyst, etc., when nitrogen oxide is reduced using this catalyst,
It was found that the catalytic activity gradually decreased with the lapse of operation time, and the denitration rate gradually decreased compared to the initial operation. The present invention, based on the above findings, does not decrease the catalytic activity even in a long-term exhaust gas denitration treatment,
An object of the present invention is to provide a catalyst capable of reducing and removing nitrogen oxides from low-temperature exhaust gas containing nitrogen oxides, for example, exhaust gas after wet flue gas desulfurization in the presence of ammonia with a stable denitration rate for a long time. In order to achieve the above object, the inventors have further studied supported metals and the like based on the knowledge obtained in the development of the proposed denitration catalyst, and have completed the present invention.

【0004】[0004]

【課題を解決するための手段】本発明によれば、炭素質
材料に、バナジウム化合物、臭素化合物、並びに、鉄、
コバルト及び希土類金属から選ばれた少なくとも1種の
金属の化合物を担持してなることを特徴とする燃焼排ガ
スの窒素酸化物還元除去触媒が提供される。また、本発
明は、上記少なくと3成分担持の燃焼排ガスの窒素酸化
物還元除去触媒に更に白金族金属を担持させてなる燃焼
排ガスの窒素酸化物還元除去触媒を提供する。
According to the present invention, a vanadium compound, a bromine compound, and iron are added to a carbonaceous material.
Provided is a catalyst for reducing and removing nitrogen oxides from combustion exhaust gas, which comprises a compound of at least one metal selected from cobalt and rare earth metals. Further, the present invention provides a nitrogen oxide reduction removal catalyst for combustion exhaust gas, which is obtained by further supporting a platinum group metal on the nitrogen oxide reduction removal catalyst for combustion exhaust gas carrying at least three components.

【0005】[0005]

【作用】本発明は上記のように構成され、炭素質材料
に、バナジウム化合物と臭素化合物、更に鉄、コバルト
及び希土類金属から選ばれた少なくとも1種の金属の化
合物の少なくとも3成分を担持することにより、従来提
案の還元脱硝触媒に比して低温における触媒活性の低下
を抑え、亜酸化窒素の副生もなく長期間安定した還元脱
硝性能を維持することができる。また、触媒成分とし
て、更に白金族金属を担持することにより、活性向上を
図ることができる。本発明の燃焼排ガスの処理方法は、
上記触媒を用いることにより、燃焼排ガスを湿式脱硫し
た後の約100℃以下等の低温排ガスを、アンモニアの
存在下、高空間速度で処理し、長期間安定して高脱硝率
で窒素酸化物を還元除去することができる。
The present invention is constituted as described above, and carries at least three components of a vanadium compound and a bromine compound and a compound of at least one metal selected from iron, cobalt and a rare earth metal on a carbonaceous material. As a result, compared with the conventionally proposed reduction denitration catalyst, it is possible to suppress a decrease in catalytic activity at low temperatures, and to maintain stable reduction denitration performance for a long period of time without nitrous oxide byproduct. Further, the activity can be improved by further supporting a platinum group metal as a catalyst component. The method for treating combustion exhaust gas of the present invention is
By using the above catalyst, low temperature exhaust gas of about 100 ° C. or lower after wet desulfurization of combustion exhaust gas is treated at a high space velocity in the presence of ammonia to stably produce nitrogen oxides at a high denitration rate for a long period of time. It can be reduced and removed.

【0006】以下、本発明について、更に詳細に説明す
る。本発明に使用される触媒担体である炭素質材料とし
ては、木炭、ヤシ殻等木質系活性炭、コールタールピッ
チ等石炭系活性炭、石油ピッチ等石油系活性炭等の各種
活性炭、活性コークス、活性炭素繊維等の炭素質物であ
って、その比表面積が10m2 /g以上のものであれば
よく、それらの中から任意のものを各種使用条件等に合
わせ適宜選択して使用することができる。好ましくは、
比表面積が100〜2000m2 /g、より好ましく
は、500〜1500m2 /gの活性炭系炭素質を用い
ることができる。炭素質材料の比表面積が10m2 /g
であると所定の触媒活性が得られない。
The present invention will be described in more detail below. Examples of the carbonaceous material that is the catalyst carrier used in the present invention include charcoal, coconut shell and other wood-based activated carbon, coal tar pitch and other coal-based activated carbon, petroleum pitch and other petroleum-based activated carbon, activated carbon, activated coke and activated carbon fiber. As long as the carbonaceous material has a specific surface area of 10 m 2 / g or more, any of them can be appropriately selected and used according to various usage conditions. Preferably,
An activated carbon-based carbonaceous material having a specific surface area of 100 to 2000 m 2 / g, and more preferably 500 to 1500 m 2 / g can be used. Specific surface area of carbonaceous material is 10m 2 / g
If so, the predetermined catalyst activity cannot be obtained.

【0007】本発明において、触媒活性成分のバナジウ
ム化合物は、3価、4価及び5価のいずれかのバナジウ
ムの酸化物、無機酸塩または有機酸塩を用いて、上記炭
素質材料に担持することができる。通常、メタバナジン
酸アンモニウムを蓚酸で還元したものや、硫酸バナジル
を好適に用いることができる。担持法としては、スプレ
ー法、浸漬含浸法、混練法等の公知のいずれの方法でも
使用できる。通常、スプレー法や浸漬含浸法が用いられ
る。例えば、上記バナジウム化合物を水等の可溶溶媒に
溶解し、その溶液中に上記炭素質材料を浸漬した後、室
温〜200℃で乾燥し、その後、窒素等の不活性気流中
200〜600℃で焼成して、バナジウム担持炭素質担
体とすることができる。上記のようにして担持したバナ
ジウム化合物は、最終的に担体上においては、一般に、
酸化物の形態を採るものと推定される。本発明の触媒に
おいて、バナジウム担持量は、バナジウム元素基準で
0.1〜20重量%、好ましくは1〜10重量%であ
る。0.1重量%未満であると十分な脱硝性能が得られ
ず、20重量%を超えて担持すると炭素質材料の比表面
積が低下するため逆効果となり好ましくない。
In the present invention, the vanadium compound as the catalytically active component is supported on the carbonaceous material by using an oxide, inorganic acid salt or organic acid salt of trivalent, tetravalent or pentavalent vanadium. be able to. Usually, ammonium metavanadate reduced with oxalic acid and vanadyl sulfate can be preferably used. As the supporting method, any known method such as a spray method, a dipping impregnation method, a kneading method or the like can be used. Usually, a spray method or a dip impregnation method is used. For example, the vanadium compound is dissolved in a soluble solvent such as water, the carbonaceous material is immersed in the solution, dried at room temperature to 200 ° C., and then in an inert gas stream such as nitrogen at 200 to 600 ° C. Can be calcined to obtain a vanadium-supporting carbonaceous carrier. The vanadium compound supported as described above is generally, finally, on a carrier,
It is presumed to take the form of oxide. In the catalyst of the present invention, the supported amount of vanadium is 0.1 to 20% by weight, preferably 1 to 10% by weight, based on vanadium element. If it is less than 0.1% by weight, sufficient denitration performance cannot be obtained, and if it exceeds 20% by weight, the specific surface area of the carbonaceous material decreases, which is an adverse effect and is not preferable.

【0008】本発明の他の触媒活性成分の臭素化合物と
しては、臭化水素酸、臭化アンモニウム、臭化ナトリウ
ム等のアルカリ金属塩、臭化マグネシウム等のアルカリ
希土類金属塩等を用いて、上記炭素質材料に担持するこ
とができる。通常、臭化水素酸または臭化アンモニウム
を用いる。炭素質材料への担持は、上記バナジウム化合
物と同様に公知のいずれの方法でもよく、例えば臭化物
等の水溶液に炭素質材料を浸漬し、含浸後、室温〜15
0℃で乾燥して、担持する。また、乾燥後、要すれば、
窒素等の不活性気流中150〜600℃で焼成してもよ
い。本発明の触媒において、臭素担持量は、臭素元素基
準で0.1〜20重量%、好ましくは2〜15重量%で
ある。0.1重量%未満であると十分な脱硝性能が得ら
れず、20重量%を超えて担持すると炭素質材料の比表
面積が減少するため好ましくない。
As the bromine compound as another catalytically active component of the present invention, alkali metal salts such as hydrobromic acid, ammonium bromide, sodium bromide, etc., alkali rare earth metal salts such as magnesium bromide, etc. are used. It can be supported on a carbonaceous material. Usually, hydrobromic acid or ammonium bromide is used. The carbonaceous material may be supported by any known method as in the case of the vanadium compound. For example, the carbonaceous material may be immersed in an aqueous solution of bromide or the like and impregnated at room temperature to 15 ° C.
Dry at 0 ° C. and load. Also, after drying, if necessary,
You may bake at 150-600 degreeC in inert gas streams, such as nitrogen. In the catalyst of the present invention, the amount of bromine supported is 0.1 to 20% by weight, preferably 2 to 15% by weight, based on the elemental bromine. If it is less than 0.1% by weight, sufficient denitration performance cannot be obtained, and if it exceeds 20% by weight, the specific surface area of the carbonaceous material decreases, which is not preferable.

【0009】本発明の他の触媒活性成分の鉄の化合物と
しては、2価及び3価のいずれかの鉄の酸化物、無機酸
塩、有機酸塩を用い、上記炭素質材料に担持することが
できる。通常、硝酸鉄または硫酸鉄が好適に用いられ
る。また、他の触媒活性成分のコバルトの化合物として
は、2価の酸化物、無機酸塩、有機酸塩のいずれかを用
いて担持することができる。通常、硝酸コバルトまたは
硫酸コバルトが用いられる。更に、他の触媒活性成分の
希土類金属としては、ネオジウム(Nd)またはサマリ
ウム(Sm)が好ましく、それらの化合物として酸化
物、無機酸塩、有機酸塩のいずれかを用い上記炭素質材
料に担持できる。通常、塩化ネオジウムまたは塩化サマ
リウムが用いられる。炭素質材料への担持は、上記バナ
ジウム化合物と同様に公知のいずれの方法でもよい。本
発明において、上記の鉄、コバルト及び希土類金属の担
持量は、バナジウムに対しモル比で0.1〜2であり、
好ましくは0.5〜1.5である。このモル比が0.1
未満であると十分な脱硝性能が得られず、また2を超え
て担持してもそれ以上の効果は得られない。
As the iron compound which is another catalytically active component of the present invention, either a divalent or trivalent iron oxide, an inorganic acid salt or an organic acid salt is used and is supported on the carbonaceous material. You can Usually, iron nitrate or iron sulfate is preferably used. Further, as the cobalt compound which is another catalytically active component, any of a divalent oxide, an inorganic acid salt and an organic acid salt can be used for supporting. Usually, cobalt nitrate or cobalt sulfate is used. Further, as the rare earth metal of the other catalytically active component, neodymium (Nd) or samarium (Sm) is preferable, and any one of oxides, inorganic acid salts, and organic acid salts of these compounds is supported on the carbonaceous material. it can. Usually, neodymium chloride or samarium chloride is used. The carbonaceous material may be supported by any known method as in the case of the vanadium compound. In the present invention, the supported amount of iron, cobalt and rare earth metal is 0.1 to 2 in molar ratio with respect to vanadium,
It is preferably 0.5 to 1.5. This molar ratio is 0.1
When the amount is less than the above, sufficient denitration performance cannot be obtained, and even when more than 2 is supported, no further effect can be obtained.

【0010】本発明において、上記バナジウム化合物、
臭素化合物、並びに、鉄、コバルト及び希土類金属から
の1種以上の少なくとも3触媒成分の他に、要すれば、
更に触媒成分として白金族金属化合物、即ち、ルテニウ
ム(Ru)、ロジウム(Rh)、パラジウム(Pd)、
オスミウム(Os)、イリジウム(Ir)、または、白
金(Pt)の化合物を担持することができる。白金族金
属化合物は、酸化物、無機酸塩、有機酸塩を用いて、上
記炭素質材料に担持することができる。通常、無機酸塩
を好適に用いることができる。担持法としては、含浸
法、混練法等の公知のいずれの方法でも使用できる。通
常、含浸法が用いられる。例えば、上記白金族金属化合
物を水等の可溶溶媒に溶解し、その溶液中に上記炭素質
材料を浸漬した後、室温〜200℃で乾燥し、その後、
窒素等の不活性気流中200〜600℃で焼成して、白
金族金属担持炭素質担体とすることができる。上記のよ
うにして担持した白金族金属化合物は、最終的に担体上
においては、一般に、金属または金属酸化物の形態を採
るものと推定される。本発明の触媒において、白金族金
属担持量は、白金族金属元素基準で0.0001〜0.
1重量%、好ましくは0.01〜0.05重量%であ
る。0.0001重量%未満であると担持した効果が殆
ど得られず、0.1重量%を超えて担持してもそれ以上
の効果がえられない。
In the present invention, the above vanadium compound,
In addition to the bromine compound and one or more at least three catalyst components from iron, cobalt and rare earth metals, optionally,
Further, as a catalyst component, a platinum group metal compound, that is, ruthenium (Ru), rhodium (Rh), palladium (Pd),
A compound of osmium (Os), iridium (Ir), or platinum (Pt) can be supported. The platinum group metal compound can be supported on the carbonaceous material using an oxide, an inorganic acid salt, or an organic acid salt. Usually, an inorganic acid salt can be preferably used. As a supporting method, any known method such as an impregnation method or a kneading method can be used. Usually, the impregnation method is used. For example, the platinum group metal compound is dissolved in a soluble solvent such as water, the carbonaceous material is immersed in the solution, dried at room temperature to 200 ° C., and then,
The platinum group metal-supporting carbonaceous carrier can be obtained by firing at 200 to 600 ° C. in an inert gas stream such as nitrogen. It is presumed that the platinum group metal compound supported as described above generally takes the form of a metal or a metal oxide on the final support. In the catalyst of the present invention, the loading amount of the platinum group metal is 0.0001 to 0.
It is 1% by weight, preferably 0.01 to 0.05% by weight. If it is less than 0.0001% by weight, the effect of supporting it is hardly obtained, and if it exceeds 0.1% by weight, no further effect can be obtained.

【0011】本発明の燃焼排ガス用窒素酸化物還元除去
触媒は、上記のように、好ましくは活性炭系炭素質材料
へバナジウム化合物と臭素化合物、更に、鉄、コバルト
及び希土類金属からの1種以上の少なくとも3成分を触
媒成分として担持して形成することができる。また、要
すれば、より高活性を得るために、上記3成分に加え、
更に白金族金属化合物を触媒成分として担持して形成す
ることができる。上記各触媒成分は、それぞれ別々に担
持してもよいし、使用する各触媒成分の化合物によって
は、例えば浸漬含浸法であれば、混合溶液を用い同時に
担持することもできる。また、スプレー法であれば、各
成分担持を順次行い、乾燥、焼成を共通させて一段とす
ることができる。別々に担持させる場合、好ましくは、
バナジウム成分、鉄、コバルト及び希土類金属からの1
種以上、白金族金属の金属成分を先に担持し、その後、
臭素成分を担持するのが好ましい。また、スプレー法や
含浸法において、担持を減圧下で行うことにより、担持
成分を炭素質材料担体に均一に担持させることができ好
ましい。更に、臭素化合物として、バナジウム、鉄、コ
バルト、希土類金属及び/または白金族金属の塩として
担持することもできる。この場合、担持量を勘案して、
不足量を別途担持することもできる。
As described above, the catalyst for reducing nitrogen oxides for combustion exhaust gas of the present invention is preferably a vanadium compound and a bromine compound which are preferably activated carbon-based carbonaceous materials, and one or more of iron, cobalt and a rare earth metal. At least three components can be supported and formed as a catalyst component. In addition, if necessary, in order to obtain higher activity, in addition to the above three components,
Further, a platinum group metal compound can be supported and formed as a catalyst component. Each of the above catalyst components may be supported separately, or depending on the compound of each catalyst component used, for example, a dipping impregnation method, a mixed solution may be simultaneously supported. Further, in the case of the spray method, it is possible to carry out the loading of the respective components in sequence and to carry out the drying and firing in common to further improve the process. When loaded separately, preferably
1 from vanadium components, iron, cobalt and rare earth metals
More than one species, the metal component of the platinum group metal is first supported, then,
It is preferable to carry a bromine component. In addition, in the spray method or the impregnation method, it is preferable to carry out the loading under a reduced pressure because the loading component can be loaded uniformly on the carbonaceous material carrier. Further, as a bromine compound, it can be supported as a salt of vanadium, iron, cobalt, a rare earth metal and / or a platinum group metal. In this case, considering the supported amount,
The deficient amount can be carried separately.

【0012】本発明の触媒の形状は、特に制限されな
い。例えば、粉末状や、粒状、顆粒状、球状、円柱状等
成形体等、処理条件に応じて適宜選択することができ
る。本発明の燃焼排ガスの窒素酸化物還元除去触媒は、
排煙湿式脱硫後の約100℃以下等の低温燃焼排ガス
と、アンモニアの存在下、SVを1000/時以上の高
空間速度で接触処理して、高脱硝率で長期間安定して窒
素酸化物が還元除去することができる。
The shape of the catalyst of the present invention is not particularly limited. For example, a powdery, granular, granular, spherical, cylindrical, or other shaped body can be appropriately selected according to the processing conditions. Nitrogen oxide reduction removal catalyst of the combustion exhaust gas of the present invention,
SV is contacted with low-temperature combustion exhaust gas after flue gas wet desulfurization at about 100 ° C. or less in the presence of ammonia at a high space velocity of 1000 / hour or more to stably produce nitrogen oxides at a high denitration rate for a long period of time. Can be reduced and removed.

【0013】[0013]

【実施例】本発明について実施例に基づき、更に詳細に
説明する。但し、本発明は、下記の実施例に制限される
ものでない。 実施例1 メタバナジン酸アンモニウムを蓚酸で還元して調製した
バナジウムイオン1モル/リットル含有水溶液100m
lに、市販粒状活性炭(武田薬品工業(株)製、商品名
GX、比表面積約1,000m2 /g) 50g を加え減
圧下で浸漬含浸しろ過分離した。次いで、得られたV含
浸活性炭を、100℃の乾燥器中で12時間乾燥した
後、窒素気流中450℃で5時間焼成し、室温まで冷却
しV担持活性炭を得た。上記のようにして得たV担持活
性炭を、鉄(Fe)(3価)を1モル/リットル含有す
る硝酸第2鉄水溶液100mlに減圧下で浸漬した後、
ろ過分離した。ろ過分離されたFe含浸V担持活性炭
を、100℃の乾燥器中で12時間乾燥した後、窒素気
流中450℃で5時間焼成し、V−Fe担持活性炭触媒
を得た。得られたV−Fe担持活性炭を、引き続き1モ
ル/リットル臭化水素酸水溶液100ml中に減圧下で
浸漬含浸を行い、ろ過分離した。ろ過分離された臭化水
素含浸活性炭を110℃の乾燥器中で12時間乾燥し、
V−Fe−Br担持活性炭触媒を得た。得られたV−F
e−Br担持活性炭触媒は、V担持量が4.0重量%、
Fe担持量が4.5重量%、Br担持量が6.1重量%
であった。
EXAMPLES The present invention will be described in more detail based on examples. However, the present invention is not limited to the following examples. Example 1 100 m of an aqueous solution containing vanadium ion 1 mol / l prepared by reducing ammonium metavanadate with oxalic acid.
50 g of commercially available granular activated carbon (trade name: GX, manufactured by Takeda Yakuhin Kogyo Co., Ltd., specific surface area of about 1,000 m 2 / g) was added to 1 l, and the mixture was immersed and impregnated under reduced pressure, and separated by filtration. Next, the obtained V-impregnated activated carbon was dried in a drier at 100 ° C. for 12 hours, then calcined in a nitrogen stream at 450 ° C. for 5 hours, and cooled to room temperature to obtain V-supporting activated carbon. The V-supported activated carbon obtained as described above was immersed under reduced pressure in 100 ml of an aqueous ferric nitrate solution containing 1 mol / liter of iron (Fe) (trivalent),
It separated by filtration. The Fe-impregnated V-supported activated carbon separated by filtration was dried in a drier at 100 ° C. for 12 hours and then calcined in a nitrogen stream at 450 ° C. for 5 hours to obtain a V-Fe-supported activated carbon catalyst. The obtained V-Fe-supporting activated carbon was subsequently immersed and impregnated in 100 ml of a 1 mol / liter aqueous solution of hydrobromic acid under reduced pressure, and separated by filtration. The hydrogen bromide-impregnated activated carbon separated by filtration is dried in a dryer at 110 ° C. for 12 hours,
A V-Fe-Br supported activated carbon catalyst was obtained. VF obtained
The e-Br supported activated carbon catalyst has a V supported amount of 4.0% by weight,
Fe loading 4.5% by weight, Br loading 6.1% by weight
Met.

【0014】上記で生成したV−Fe−Br担持活性炭
触媒を、内径30mmφで高さ500mmのガラス製脱
硝反応管に212ml充填し、触媒固定床を形成した。
この反応管に、温度100℃、SV2,750/時で、
酸化窒素(NO)500ppm、酸素(O2 )5容量
%、炭酸ガス(CO2 )12容量%、水(H2 O)9.
5容量%を含有し、残部が窒素ガスからなる疑似燃焼排
ガスに、アンモニア(NH3 )500ppmを添加し
て、連続して流通処理した。表1に示した各処理時間に
おける処理ガス組成を(株)島津製作所製化学発光式N
OX 計にて測定し、脱硝率を算出した。亜酸化窒素(N
2 O)の生成量は、ガスクロマトグラフィのカラムにユ
ニビーズC(ジーエルサイエンス製)を充填して測定し
た。その結果、各処理時間のいずれも1ppm以下であ
った。なお、脱硝率(%)は、(NO入口濃度−NO出
口濃度)/NO入口濃度×100で算出した。その結果
を、表1に示した。また、表中の生成N2 Oの濃度(p
pm)は、処理時間を通しての値である(以下同じ)。
212 ml of the V-Fe-Br-supported activated carbon catalyst produced above was packed in a glass denitration reaction tube having an inner diameter of 30 mmφ and a height of 500 mm to form a catalyst fixed bed.
In this reaction tube, at a temperature of 100 ° C. and SV of 2,750 / hour,
Nitrogen oxide (NO) 500 ppm, oxygen (O2) 5% by volume, carbon dioxide (CO2) 12% by volume, water (H2 O) 9.
500 ppm of ammonia (NH3) was added to the pseudo-combustion exhaust gas containing 5% by volume and the balance being nitrogen gas, and continuously flow-treated. The processing gas composition at each processing time shown in Table 1 is the chemiluminescence formula N manufactured by Shimadzu Corporation.
The denitration rate was calculated by measuring with an OX meter. Nitrous oxide (N
The amount of 2 O) produced was measured by filling a gas chromatography column with UniBeads C (manufactured by GL Sciences). As a result, each processing time was 1 ppm or less. The denitration rate (%) was calculated by (NO inlet concentration-NO outlet concentration) / NO inlet concentration x 100. The results are shown in Table 1. Also, the concentration of produced N2 O in the table (p
pm) is a value throughout the processing time (the same applies hereinafter).

【0015】実施例2〜5 触媒成分のV、Fe及びBrの担持量が表1に示した値
になるように、水溶液濃度を調整して実施例1と同様に
して、V−Fe−Br担持活性炭触媒を得た。また、得
られた各触媒を用い、実施例1と同様に疑似燃焼排ガス
を処理した。その結果を表1に示した。
Examples 2 to 5 V-Fe-Br was prepared in the same manner as in Example 1 by adjusting the concentration of the aqueous solution so that the supported amounts of V, Fe and Br of the catalyst components were the values shown in Table 1. A supported activated carbon catalyst was obtained. Further, using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例6〜8 実施例1と同様な方法で調製したV担持活性炭50gず
つを、0.25(実施例6)、0.5(実施例7)及び
1.0(実施例8)モル/リットルの各塩化ネオジウム
水溶液100mlに減圧下でそれぞれ浸漬し、希土類金
属のNdを含浸させた後、ろ過分離した。得られたNd
含浸V担持活性炭を100℃の乾燥器中で12時間乾燥
した後、窒素気流中450℃で5時間焼成した後、室温
まで冷却した。得られたV−Nd担持活性炭を、1モル
/リットルの臭化水素酸水溶液100ml中に減圧下で
浸漬しBrを含浸させ、ろ過分離した。得られたBr含
浸V−Nd担持活性炭を、110℃の乾燥器中で12時
間乾燥し、表1に示した各成分担持量のV−Nd−Br
担持活性炭触媒を得た。得られた各触媒を用い、実施例
1と同様に疑似燃焼排ガスを処理した。その結果を表1
に示した。
Examples 6-8 0.25 (Example 6), 0.5 (Example 7) and 1.0 (Example 8) were obtained by adding 50 g each of V-supported activated carbon prepared in the same manner as in Example 1. ) It was immersed in 100 ml of each mol / liter neodymium chloride aqueous solution under reduced pressure to impregnate Nd of a rare earth metal and then separated by filtration. The obtained Nd
The impregnated V-supported activated carbon was dried in a dryer at 100 ° C. for 12 hours, then calcined in a nitrogen stream at 450 ° C. for 5 hours, and then cooled to room temperature. The obtained V-Nd-supported activated carbon was immersed in 100 ml of a 1 mol / liter aqueous solution of hydrobromic acid under reduced pressure to impregnate Br, and then separated by filtration. The Br-impregnated V-Nd-supporting activated carbon thus obtained was dried in a dryer at 110 ° C. for 12 hours, and each component-supporting amount of V-Nd-Br shown in Table 1 was used.
A supported activated carbon catalyst was obtained. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.
It was shown to.

【0018】実施例9 実施例1と同様な方法で調製したV担持活性炭50g
を、0.5モル/リットルの塩化サマリウム水溶液10
0mlに減圧下で浸漬し、Smを含浸した後、ろ過分離
した。得られたSm含浸V担持活性炭を100℃の乾燥
器中で12時間乾燥した後、窒素気流中450℃で5時
間焼成し、室温迄冷却した。得られたV−Sm担持活性
炭を、1モル/リットルの臭化水素酸水溶液100ml
中に減圧下で浸漬を行い、Brを含浸し、ろ過分離し
た。得られたBr含浸V−Sm担持活性炭を、110℃
の乾燥器中で12時間乾燥し、V−Sm−Br担持活性
炭触媒を得た。得られたV−Sm−Br担持活性炭触媒
のバナジウム担持量は2.1重量%、サマリウム担持量
は5.3重量%、臭素担持量は6.1重量%であった。
得られた触媒を用い、実施例1と同様に疑似燃焼排ガス
を処理した。その結果を表1に示した。
Example 9 50 g of V-supported activated carbon prepared in the same manner as in Example 1
10 mol of 0.5 mol / liter samarium chloride aqueous solution
It was immersed in 0 ml under reduced pressure, impregnated with Sm, and then separated by filtration. The obtained Sm-impregnated V-supported activated carbon was dried in a drier at 100 ° C. for 12 hours, then calcined in a nitrogen stream at 450 ° C. for 5 hours, and cooled to room temperature. The obtained V-Sm-supported activated carbon was added to 100 ml of a 1 mol / liter hydrobromic acid aqueous solution.
It was immersed therein under reduced pressure, impregnated with Br, and separated by filtration. The obtained Br-impregnated V-Sm-supporting activated carbon was heated at 110 ° C.
Was dried for 12 hours in a drier to obtain a V-Sm-Br-supported activated carbon catalyst. The V-Sm-Br supported activated carbon catalyst thus obtained had a vanadium supported amount of 2.1% by weight, a samarium supported amount of 5.3% by weight, and a bromine supported amount of 6.1% by weight.
Using the obtained catalyst, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.

【0019】実施例10〜12 実施例1と同様な方法で調製したV担持活性炭50gず
つを、0.25(実施例6)、0.5(実施例7)及び
1.0(実施例8)モル/リットルの各硝酸コバルト水
溶液100mlに減圧下でそれぞれ浸漬し、コバルト
(Co)を含浸させた後、ろ過分離した。得られたCo
含浸V担持活性炭を100℃の乾燥器中で12時間乾燥
した後、窒素気流中450℃で5時間焼成した後、室温
まで冷却した。得られたV−Co担持活性炭を、1モル
/リットルの臭化水素酸水溶液100ml中に減圧下で
浸漬しBrを含浸させ、ろ過分離した。得られたBr含
浸V−Co担持活性炭を、110℃の乾燥器中で12時
間乾燥し、表1に示した各成分担持量のV−Co−Br
担持活性炭触媒を得た。得られた各触媒を用い、実施例
1と同様に疑似燃焼排ガスを処理した。その結果を表1
に示した。
Examples 10-12 0.25 (Example 6), 0.5 (Example 7) and 1.0 (Example 8) were obtained using 50 g each of V-supported activated carbon prepared in the same manner as in Example 1. ) Each cobalt nitrate aqueous solution of 100 mol / liter was immersed under reduced pressure to impregnate cobalt (Co), and then separated by filtration. Obtained Co
The impregnated V-supported activated carbon was dried in a dryer at 100 ° C. for 12 hours, then calcined in a nitrogen stream at 450 ° C. for 5 hours, and then cooled to room temperature. The obtained V-Co-supported activated carbon was immersed in 100 ml of a 1 mol / liter hydrobromic acid aqueous solution under reduced pressure to impregnate Br, and then separated by filtration. The Br-impregnated V-Co-supported activated carbon thus obtained was dried in a dryer at 110 ° C. for 12 hours, and each component-supported amount of V-Co-Br shown in Table 1 was used.
A supported activated carbon catalyst was obtained. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 1.
It was shown to.

【0020】実施例13〜15 実施例1と同様な方法で調製したV−Fe担持活性炭の
各50gを、0.0001(実施例13)、0.001
(実施例14)及び0.007(実施例15)モル/リ
ットルの各塩化白金酸水溶液100ml中にそれぞれ減
圧下で浸漬を行い白金(Pt)を含浸させ、ろ過分離し
た。得られた各Pt含浸V−Fe担持活性炭を110℃
の乾燥器中で12時間乾燥した後、窒素気流中450℃
で5時間焼成し、室温まで冷却し、V−Fe−Pt担持
活性炭をそれぞれ得た。得られた各V−Fe−Pt担持
活性炭を、更に、1モル/リットルの臭化水素酸水溶液
100ml中に減圧下で浸漬を行い、Brを含浸させろ
過分離した。得られたBr含浸V−Fe−Pt担持活性
炭を110℃の乾燥器中で12時間乾燥し、表2に示し
た各成分担持量のV−Fe−Pt−Br担持活性炭触媒
をそれぞれ得た。得られた各触媒を用い、実施例1と同
様に疑似燃焼排ガスを処理した。その結果を表2に示し
た。
Examples 13 to 15 50 g of each V-Fe-supporting activated carbon prepared in the same manner as in Example 1 was added to 0.0001 (Example 13) and 0.001.
(Example 14) and 0.007 (Example 15) Platinum (Pt) was impregnated by immersing in 100 ml of each mol / liter chloroplatinic acid aqueous solution to impregnate platinum (Pt), followed by separation by filtration. The obtained Pt-impregnated V-Fe-supporting activated carbon was heated at 110 ° C.
After drying for 12 hours in a drier, then in a nitrogen stream at 450 ° C
The mixture was baked for 5 hours at room temperature and cooled to room temperature to obtain V-Fe-Pt-supported activated carbon. Each of the obtained V-Fe-Pt-supported activated carbons was further immersed in 100 ml of a 1 mol / liter hydrobromic acid aqueous solution under reduced pressure, impregnated with Br, and separated by filtration. The Br-impregnated V-Fe-Pt-supported activated carbon thus obtained was dried in a drier at 110 ° C for 12 hours to obtain V-Fe-Pt-Br-supported activated carbon catalysts each having a component-supporting amount shown in Table 2. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例16〜18 実施例6と同様な方法で調製したV−Nd担持活性炭の
各50gを、0.0001(実施例16)、0.001
(実施例17)及び0.007(実施例18)モル/リ
ットルの各塩化白金酸水溶液100ml中にそれぞれ減
圧下で浸漬を行い白金(Pt)を含浸させ、ろ過分離し
た。得られた各Pt含浸V−Nd担持活性炭を110℃
の乾燥器中で12時間乾燥した後、窒素気流中450℃
で5時間焼成し、室温まで冷却し、V−Nd−Pt担持
活性炭をそれぞれ得た。得られた各V−Nd−Pt担持
活性炭を、更に、1モル/リットルの臭化水素酸水溶液
100ml中に減圧下で浸漬を行い、Brを含浸させろ
過分離した。得られたBr含浸V−Nd−Pt担持活性
炭を110℃の乾燥器中で12時間乾燥し、表2に示し
た各成分担持量のV−Nd−Pt−Br担持活性炭触媒
をそれぞれ得た。得られた各触媒を用い、実施例1と同
様に疑似燃焼排ガスを処理した。その結果を表2に示し
た。
Examples 16 to 18 50 g of each of the V-Nd-supporting activated carbons prepared in the same manner as in Example 6 was added to 0.0001 (Example 16) and 0.001.
(Example 17) and 0.007 (Example 18) Platinum (Pt) was impregnated by immersing in 100 ml of each mol / liter chloroplatinic acid aqueous solution to impregnate platinum (Pt), followed by separation by filtration. The obtained Pt-impregnated V-Nd-supported activated carbon was heated at 110 ° C.
After drying for 12 hours in a drier, then in a nitrogen stream at 450 ° C
The mixture was calcined for 5 hours and cooled to room temperature to obtain V-Nd-Pt-supported activated carbon. Each of the obtained V-Nd-Pt-supported activated carbons was further immersed in 100 ml of a 1 mol / liter hydrobromic acid aqueous solution under reduced pressure, impregnated with Br, and separated by filtration. The Br-impregnated V-Nd-Pt-supported activated carbon thus obtained was dried in a drier at 110 ° C. for 12 hours to obtain V-Nd-Pt-Br-supported activated carbon catalysts having the respective component-supporting amounts shown in Table 2. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 2.

【0023】実施例19〜21 実施例10と同様な方法で調製したV−Co担持活性炭
の各50gを、0.0001(実施例19)、0.00
1(実施例20)及び0.007(実施例21)モル/
リットルの各塩化白金酸水溶液100ml中にそれぞれ
減圧下で浸漬を行い白金(Pt)を含浸させ、ろ過分離
した。得られた各Pt含浸V−Co担持活性炭を110
℃の乾燥器中で12時間乾燥した後、窒素気流中450
℃で5時間焼成し、室温まで冷却し、V−Co−Pt担
持活性炭をそれぞれ得た。得られた各V−Co−Pt担
持活性炭を、更に、1モル/リットルの臭化水素酸水溶
液100ml中に減圧下で浸漬を行い、Brを含浸させ
ろ過分離した。得られたBr含浸V−Co−Pt担持活
性炭を110℃の乾燥器中で12時間乾燥し、表2に示
した各成分担持量のV−Co−Pt−Br担持活性炭触
媒をそれぞれ得た。得られた各触媒を用い、実施例1と
同様に疑似燃焼排ガスを処理した。その結果を表2に示
した。
Examples 19 to 21 50 g of each V-Co-supporting activated carbon prepared in the same manner as in Example 10 was added to 0.0001 (Example 19) and 0.005.
1 (Example 20) and 0.007 (Example 21) mol /
Each of them was immersed in 100 ml of each chloroplatinic acid aqueous solution under reduced pressure to impregnate platinum (Pt), and separated by filtration. The obtained Pt-impregnated V-Co-supported activated carbon was added to 110
After drying for 12 hours in a dryer at ℃, 450 in a nitrogen stream
The mixture was calcined at 5 ° C for 5 hours and cooled to room temperature to obtain V-Co-Pt-supported activated carbon. Each of the obtained V-Co-Pt-supported activated carbons was further immersed in 100 ml of a 1 mol / liter hydrobromic acid aqueous solution under reduced pressure, impregnated with Br, and separated by filtration. The Br-impregnated V-Co-Pt-supported activated carbon thus obtained was dried in a drier at 110 ° C for 12 hours to obtain V-Co-Pt-Br-supported activated carbon catalysts each having a component-supporting amount shown in Table 2. Using each of the obtained catalysts, the pseudo combustion exhaust gas was treated in the same manner as in Example 1. The results are shown in Table 2.

【0024】比較例1 実施例1と同様な方法で調製したV担持活性炭の50g
を、1モル/リットルの臭化水素酸水溶液100ml中
に減圧下で浸漬を行い、Brを含浸させろ過分離した。
得られたBr含浸V担持活性炭を110℃の乾燥器中で
12時間乾燥し、表2に示した各成分担持量のV−Br
担持活性炭触媒を得た。得られたバナジウム担持量が
4.1重量%、臭素担持量が6.0重量%のV−Br担
持活性炭触媒を用い、実施例1と同様に疑似燃焼排ガス
を処理した。その結果を表2に示した。
Comparative Example 1 50 g of V-supported activated carbon prepared in the same manner as in Example 1
Was immersed in 100 ml of a 1 mol / liter hydrobromic acid aqueous solution under reduced pressure, impregnated with Br, and separated by filtration.
The Br-impregnated V-supported activated carbon thus obtained was dried in a dryer at 110 ° C. for 12 hours, and V-Br having the respective amounts of each component shown in Table 2 was carried.
A supported activated carbon catalyst was obtained. The pseudo-combustion exhaust gas was treated in the same manner as in Example 1 by using the obtained V-Br-supported activated carbon catalyst having a vanadium supported amount of 4.1% by weight and a bromine supported amount of 6.0% by weight. The results are shown in Table 2.

【0025】上記実施例及び比較例より明らかなよう
に、本発明のV−Fe−Br担持、V−Co−Br担
持、V−Nd−Br担持、V−Sm−Br担持持活性炭
触媒は、V−Br担持活性炭触媒に比して脱硝の初期活
性は高くないが、長期間の使用においても活性が低下す
ることなく、安定して脱硝処理できることが分かる。一
方、V−Br担持活性炭触媒は、初期活性は高いが、処
理時間が経過するにつれ脱硝活性が低下することが分か
る。また、上記各触媒成分担持活性炭に、更に白金を担
持させたV−Fe−Pt−Br担持活性炭触媒等は、高
活性が得られ、且つ、活性が持続することが分かる。更
に、本発明の触媒が、亜酸化窒素の副生がないことが分
かる。
As is clear from the above Examples and Comparative Examples, the V-Fe-Br supported, V-Co-Br supported, V-Nd-Br supported, V-Sm-Br supported activated carbon catalyst of the present invention is It can be seen that although the initial activity of denitration is not higher than that of the V-Br-supported activated carbon catalyst, the activity does not decrease even after long-term use and the denitration treatment can be performed stably. On the other hand, it can be seen that the V-Br-supported activated carbon catalyst has a high initial activity, but the denitration activity decreases as the treatment time elapses. Further, it can be seen that the V-Fe-Pt-Br-supported activated carbon catalyst in which platinum is further supported on each of the above-mentioned catalyst component-supported activated carbons has high activity and the activity is sustained. Further, it can be seen that the catalyst of the present invention is free of nitrous oxide by-product.

【0026】[0026]

【発明の効果】本発明の燃焼排ガスの窒素酸化物還元除
去触媒は、長期間に渡り安定して比較的低温の燃焼排ガ
スを脱硝処理できる。従って、湿式排煙脱硫後等の比較
的低温の燃焼排ガスを、大きい空間速度で、即ち、小さ
な反応器で処理して、その中に含有される窒素酸化物を
長時間安定的に還元除去することができ、環境汚染の防
止上極めて利用価値が高い。また、本発明の燃焼排ガス
の窒素酸化物還元除去触媒を用いることにより、大気汚
染源となっているSOxやNOxを含有する燃焼排ガス
からSOxを除去するため既に実施されている湿式排煙
脱硫装置からの低温となった燃焼排ガスを処理すること
により、窒素酸化物を連続的にコンパクトな装置で簡
便、且つ、円滑に除去でき工業上有用である。
INDUSTRIAL APPLICABILITY The catalyst for reducing nitrogen oxides in combustion exhaust gas according to the present invention can stably denitrate combustion exhaust gas at a relatively low temperature for a long period of time. Therefore, the flue gas at a relatively low temperature after wet flue gas desulfurization is treated at a large space velocity, that is, in a small reactor to stably reduce and remove the nitrogen oxides contained therein for a long time. Therefore, it is extremely useful in preventing environmental pollution. In addition, by using the catalyst for reducing nitrogen oxides in combustion exhaust gas of the present invention, the wet flue gas desulfurization apparatus already used for removing SOx from combustion exhaust gas containing SOx and NOx which are sources of air pollution. By treating the combustion exhaust gas that has become low temperature, nitrogen oxides can be continuously and easily removed with a compact apparatus, and it is industrially useful.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/10 ZAB A 23/22 ZAB A 23/40 ZAB A 23/70 ZAB A B01D 53/36 102 H (72)発明者 曽根原 尚紀 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内 (72)発明者 木村 隆志 神奈川県横浜市鶴見区鶴見中央二丁目12番 1号 千代田化工建設株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical indication location B01J 23/10 ZAB A 23/22 ZAB A 23/40 ZAB A 23/70 ZAB A B01D 53/36 102 H (72) Inventor Naoki Sonehara 2-12-1, Tsurumi Chuo, Tsurumi-ku, Yokohama-shi, Kanagawa Chiyoda Kako Construction Co., Ltd. (72) Inventor Takashi Kimura 2-12-1, Tsurumi-cho, Tsurumi-ku, Yokohama Chiyoda Kakoh Construction Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素質材料に、バナジウム化合物、臭素
化合物、並びに、鉄、コバルト及び希土類金属から選ば
れた少なくとも1種の金属の化合物を担持してなること
を特徴とする燃焼排ガスの窒素酸化物還元除去触媒。
1. Nitrogen oxidation of combustion exhaust gas, characterized in that a carbonaceous material is loaded with a vanadium compound, a bromine compound, and a compound of at least one metal selected from iron, cobalt, and a rare earth metal. Material reduction removal catalyst.
【請求項2】 更に、白金族金属を担持させてなる請求
項1記載の燃焼排ガス用窒素酸化物還元除去触媒。
2. The nitrogen oxide reduction removal catalyst for combustion exhaust gas according to claim 1, further comprising a platinum group metal supported thereon.
JP6139356A 1994-05-30 1994-05-30 Catalyst for reduction removing nitrogen oxides in waste combustion gas Pending JPH07323227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6139356A JPH07323227A (en) 1994-05-30 1994-05-30 Catalyst for reduction removing nitrogen oxides in waste combustion gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6139356A JPH07323227A (en) 1994-05-30 1994-05-30 Catalyst for reduction removing nitrogen oxides in waste combustion gas

Publications (1)

Publication Number Publication Date
JPH07323227A true JPH07323227A (en) 1995-12-12

Family

ID=15243429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6139356A Pending JPH07323227A (en) 1994-05-30 1994-05-30 Catalyst for reduction removing nitrogen oxides in waste combustion gas

Country Status (1)

Country Link
JP (1) JPH07323227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764657A (en) * 2012-08-10 2012-11-07 武汉科技大学 Nano V205/activated coke denitration catalyst and preparation method of catalyst
EP1624963B1 (en) * 2003-04-23 2019-11-27 Midwest Energy Emissions Corporation Method of removal of mercury and other pollutant species from flue gas streams generated during the burning of fossil fuels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624963B1 (en) * 2003-04-23 2019-11-27 Midwest Energy Emissions Corporation Method of removal of mercury and other pollutant species from flue gas streams generated during the burning of fossil fuels
CN102764657A (en) * 2012-08-10 2012-11-07 武汉科技大学 Nano V205/activated coke denitration catalyst and preparation method of catalyst

Similar Documents

Publication Publication Date Title
JP4573320B2 (en) Nitrous oxide decomposition catalyst, production method thereof, and decomposition method of nitrous oxide
JP2004512162A (en) Catalyst for eliminating CO, VOC and halogenated organic emissions
JPS594175B2 (en) Nitrogen oxide removal using coated catalysts
JPH0884910A (en) Method for decomposing ammonia
JPH06142517A (en) Catalyst for decomposition of nitrous oxide
KR101251499B1 (en) Zeolite catalyst for removing nitrogen oxides, method for preparing the same, and removing method of nitrogen oxides using the same
JPH07323227A (en) Catalyst for reduction removing nitrogen oxides in waste combustion gas
JP2004223381A (en) Support for methane-selective type denitrification catalyst, its manufacturing method and methane-selective type denitrification catalyst
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JPH07323225A (en) Catalyst for reductive-removing nitrogen oxides in waste combustion gas
JPH07256109A (en) Nox reduction and removal catalyst for waste combustion gas
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
KR102224335B1 (en) Selective oxidation catalyst for converting gaseous ammonia into nitrogen and its production method
JP4016193B2 (en) Denitration catalyst
JP3944597B2 (en) Nitrogen oxide removing catalyst and nitrogen oxide removing method
JPH0833843A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JPH06262079A (en) Catalyst for nitrogen oxide purification and nitrogen oxide purification
JPH0833844A (en) Catalyst for reducing and removing nitrogen oxides in waste combustion gas
JPH06154602A (en) Catalyst for removal of nitrogen oxide
JP3952823B2 (en) Combustion exhaust gas purification catalyst and exhaust gas purification method
JP2001162171A (en) Catalyst for purification of exhaust gas and method of purifying exhaust gas
JP4664608B2 (en) Ammonia decomposition catalyst and ammonia decomposition method
JPH06327975A (en) Catalyst for reducing nitrogen oxide in waste gas
JP2971274B2 (en) Nitrogen oxide removal catalyst and nitrogen oxide removal method using the same
JPS5913893B2 (en) Flue gas denitrification catalyst with low temperature activity