JPH07320750A - Gel state electrolyte battery - Google Patents

Gel state electrolyte battery

Info

Publication number
JPH07320750A
JPH07320750A JP6131432A JP13143294A JPH07320750A JP H07320750 A JPH07320750 A JP H07320750A JP 6131432 A JP6131432 A JP 6131432A JP 13143294 A JP13143294 A JP 13143294A JP H07320750 A JPH07320750 A JP H07320750A
Authority
JP
Japan
Prior art keywords
solvent
boiling point
lithium
electrolyte
gel electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6131432A
Other languages
Japanese (ja)
Other versions
JP3384616B2 (en
Inventor
Seiji Yoshimura
精司 吉村
Yoshihiro Shoji
良浩 小路
Mikiya Yamazaki
幹也 山崎
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13143294A priority Critical patent/JP3384616B2/en
Publication of JPH07320750A publication Critical patent/JPH07320750A/en
Application granted granted Critical
Publication of JP3384616B2 publication Critical patent/JP3384616B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase high rate discharge capacity by using a three components system mixture solvent comprising 40-80vol.% specified one, kind of high boiling point solvent and 5-50vol.% each of specified two kinds of low boiling point solvents as an aprotic solvent. CONSTITUTION:An aprotic solvent consists of 40-80vol.% one kind of solvent selected from ethylene carbonate (238 deg.C) and propylene carbonate (241 deg.C) and the like as a high boiling point solvent and 5-50vol.% each of two kinds of solvents selected from 1,2-dimethoxyethane (84 deg.C), 1,2-diethoxyethane (118 deg.C) and the like as a low boiling point solvent. An electrolyte comprising this aprotic solvent and an electrolyte salt is impregnated. A film with no electronic conductivity such as Li2O film is difficult to form on the interface between a negative electrode and a gel state electrolyte. Since capacity drop in high rate discharge is difficult to occur compared with the existing battery, high rate discharge capacity is increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はゲル状電解質電池に係わ
り、詳しくは高率(大電流)での放電容量(高率放電容
量)が大きい、高分子ゲル状電解質を用いたゲル状電解
質電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel electrolyte battery, more specifically, a gel electrolyte battery using a polymer gel electrolyte having a large discharge capacity (high rate discharge capacity) at a high rate (large current). Regarding

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
固体電解質電池が、漏液の心配が無いためにポジション
フリーであること、電解液の注液を必要としないために
電池の組立が容易であることなどの液体電解質電池には
無い利点があることから、注目されている。
2. Description of the Related Art In recent years,
There are advantages that liquid electrolyte batteries do not have, such as solid electrolyte batteries that are position-free because there is no risk of liquid leakage, and battery assembly is easy because electrolyte injection is not required. It has been attracting attention.

【0003】しかしながら、固体電解質のイオン伝導性
(導電率)が液体電解質のそれに比べて低いため、固体
電解質電池には、高率放電(大電流放電)すると容量が
低下するという欠点があった。このため、現在実用化さ
れている固体電解質電池は、心臓ペースメーカーの電源
用に使用されているリチウム電池のみである。
However, since the ionic conductivity (conductivity) of the solid electrolyte is lower than that of the liquid electrolyte, the solid electrolyte battery has a drawback that the capacity decreases when discharged at a high rate (large current discharge). Therefore, the only solid electrolyte battery that has been put into practical use at present is the lithium battery used for the power supply of the cardiac pacemaker.

【0004】斯かる固体電解質電池の欠点を改善して高
率放電時の高容量化を図るべく、ポリエチレンオキシド
にLiClO4 等の電解質塩(溶質)及び環状炭酸エス
テル(プロピレンカーボネートなどの溶媒)からなる電
解液を含浸させた高分子ゲル状電解質を用いたゲル状電
解質電池が提案されているが、負極と高分子ゲル状電解
質との界面に電子伝導性の無いLi2 O等の被膜が生成
して両者の界面の接触抵抗が上昇するため、実用上充分
大きな高率放電容量を有するものではない。
In order to improve the drawbacks of such a solid electrolyte battery and to increase the capacity at high rate discharge, polyethylene oxide is prepared from electrolyte salt (solute) such as LiClO 4 and cyclic carbonic acid ester (solvent such as propylene carbonate). A gel electrolyte battery using a polymer gel electrolyte impregnated with the following electrolytic solution has been proposed, but a film such as Li 2 O having no electron conductivity is formed at the interface between the negative electrode and the polymer gel electrolyte. Then, the contact resistance at the interface between the two increases, so that it does not have a sufficiently high high-rate discharge capacity in practical use.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、高率放電容量の大
きいゲル状電解質電池を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a gel electrolyte battery having a large high rate discharge capacity.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るゲル状電解質電池(以下、「本発明電
池」と称する。)は、正極と、リチウムを活物質とする
負極と、高分子に電解質塩及び非プロトン性溶媒からな
る電解液を含浸させてなる高分子ゲル状電解質とを備え
るゲル状電解質電池であって、前記非プロトン性溶媒
が、下記の組成の混合溶媒であることを特徴とする。
A gel electrolyte battery according to the present invention (hereinafter, referred to as "the battery of the present invention") for achieving the above object is a positive electrode, a negative electrode using lithium as an active material, A gel electrolyte battery comprising a polymer gel electrolyte obtained by impregnating a polymer with an electrolyte solution comprising an electrolyte salt and an aprotic solvent, wherein the aprotic solvent is a mixed solvent having the following composition: It is characterized by

【0007】(組成) 高沸点溶媒:エチレンカーボネート(238°C)、プ
ロピレンカーボネート(241°C)、ブチレンカーボ
ネート(240°C)、γ−ブチロラクトン(204°
C)及びスルホラン(285°C)より選ばれた溶媒1
種:40〜80体積%、及び 低沸点溶媒:1,2−ジメトキシエタン(84°C)、
1,2−ジエトキシエタン(118°C)、1,2−エ
トキシメトキシエタン(104°C)、テトラヒドロフ
ラン(66°C)、2−メチルテトラヒドロフラン(8
6°C)、1,3−ジオキソラン(78°C)、4−メ
チル−1,3−ジオキソラン(86°C)、ジメチルカ
ーボネート(90°C)、ジエチルカーボネート(12
6°C)及びエチルメチルカーボネート(107°C)
より選ばれた溶媒2種:5〜50体積%。括弧内は大気
圧下での各溶媒の沸点である。
(Composition) High boiling point solvent: ethylene carbonate (238 ° C), propylene carbonate (241 ° C), butylene carbonate (240 ° C), γ-butyrolactone (204 °)
Solvent 1 selected from C) and sulfolane (285 ° C)
Species: 40-80% by volume, and low boiling solvent: 1,2-dimethoxyethane (84 ° C),
1,2-diethoxyethane (118 ° C), 1,2-ethoxymethoxyethane (104 ° C), tetrahydrofuran (66 ° C), 2-methyltetrahydrofuran (8
6 ° C.), 1,3-dioxolane (78 ° C.), 4-methyl-1,3-dioxolane (86 ° C.), dimethyl carbonate (90 ° C.), diethyl carbonate (12
6 ° C) and ethyl methyl carbonate (107 ° C)
Two kinds of solvents selected from: 5 to 50% by volume. The values in parentheses are the boiling points of each solvent under atmospheric pressure.

【0008】リチウムを活物質とする負極としては、金
属リチウム又はリチウムを吸蔵放出可能な、合金、酸化
物、炭素材料が例示される。リチウムを吸蔵放出可能な
合金としては、リチウム−アルミニウム合金、リチウム
−インジウム合金、リチウム−錫合金、リチウム−鉛合
金、リチウム−ビスマス合金、リチウム−ガリウム合
金、リチウム−亜鉛合金、リチウム−カドミウム合金、
リチウム−珪素合金、リチウム−カルシウム合金、リチ
ウム−バリウム合金、リチウム−ストロンチウム合金
が、リチウムを吸蔵放出可能な酸化物としては、酸化
鉄、酸化錫、酸化ニオビウム、酸化タングステン、酸化
チタンが、またリチウムを吸蔵放出可能な炭素材料とし
ては、コークス、黒鉛、有機物焼成体が、それぞれ例示
される。
Examples of the negative electrode containing lithium as an active material include metallic lithium or alloys, oxides, and carbon materials capable of inserting and extracting lithium. As an alloy capable of inserting and extracting lithium, lithium-aluminum alloy, lithium-indium alloy, lithium-tin alloy, lithium-lead alloy, lithium-bismuth alloy, lithium-gallium alloy, lithium-zinc alloy, lithium-cadmium alloy,
Lithium-silicon alloys, lithium-calcium alloys, lithium-barium alloys, lithium-strontium alloys, as oxides capable of occluding and releasing lithium, iron oxide, tin oxide, niobium oxide, tungsten oxide, titanium oxide, and lithium. Examples of the carbon material capable of occluding and releasing carbon dioxide include coke, graphite, and a fired organic material.

【0009】正極の活物質は特に制限されず、例えばリ
チウム含有マンガン酸化物、リチウム含有コバルト酸化
物、リチウム含有ニッケル酸化物、及び、マンガン、コ
バルト及びニッケルから選ばれた少なくとも2種の金属
を含有するリチウム含有複合酸化物などが挙げられる。
The active material of the positive electrode is not particularly limited, and contains, for example, lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing nickel oxide, and at least two metals selected from manganese, cobalt and nickel. And a lithium-containing composite oxide.

【0010】本発明における高分子ゲル状電解質は、高
分子に電解質塩及び特定の非プロトン性溶媒からなる電
解液を含浸させたものである。
The polymer gel electrolyte in the present invention is obtained by impregnating a polymer with an electrolytic solution containing an electrolyte salt and a specific aprotic solvent.

【0011】上記高分子としては、ポリエチレンオキシ
ド、ポリプロピレンオキシド、ポリエチレンイミンが代
表的なものとして例示されるが、ゲル化により電解液を
確実に保持し得るものであれば特にこれらに限定されな
い。
Typical examples of the above-mentioned polymer include polyethylene oxide, polypropylene oxide, and polyethyleneimine, but the polymer is not particularly limited as long as it can securely retain the electrolytic solution by gelation.

【0012】上記電解質塩としては、過塩素酸リチウム
(LiClO4 )、トリフルオロメタンスルホン酸リチ
ウム(LiCF3 SO3 )、六フッ化リン酸リチウム
(LiPF6 )、四フッ化ホウ酸リチウム(LiB
4 )、六フッ化ヒ酸リチウム(LiAsF6 )、六フ
ッ化アンチモン酸リチウム(LiSbF6 )、リチウム
トリフルオロメタンスルホン酸イミド〔LiN(CF3
SO2 2 〕が挙げられる。
As the above-mentioned electrolyte salt, lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiB) is used.
F 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium trifluoromethanesulfonate imide [LiN (CF 3
SO 2 ) 2 ].

【0013】上記非プロトン性溶媒としては、特定の1
種の高沸点溶媒各40〜80体積%と特定の2種の低沸
点溶媒各5〜50体積%とからなる3成分系の混合溶媒
が用いられる。各溶媒の比率が各規制範囲を外れると高
率放電容量が低下する。
Specific examples of the aprotic solvent include:
A three-component mixed solvent consisting of 40 to 80% by volume of each high boiling point solvent and 5 to 50% by volume of each of two specific low boiling point solvents is used. When the ratio of each solvent deviates from each regulation range, the high rate discharge capacity decreases.

【0014】[0014]

【作用】高率放電時の容量低下が従来のゲル状電解質電
池と比較して起こりにくくなる。負極と高分子ゲル状電
解質との界面に電子伝導性の無いLi2 O等の被膜が生
成しにくいために、両者の界面の接触抵抗が小さくなる
ためと推察される。
[Function] The capacity is less likely to decrease at the time of high rate discharge as compared with the conventional gel electrolyte battery. For the negative electrode and the polymer gel interface of Li 2 O or the like without electronic conductive coating of the electrolyte is hardly generated, it is presumed to be due to the contact resistance of the interface between the two is small.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0016】(実施例1〜7) 〔正極〕正極活物質としての二酸化マンガンと、導電剤
としての黒鉛粉末と、PTFE(ポリテトラフルオロエ
チレン)とを重量比8:1:1で混合して正極合剤を調
製し、これを円板状に成形し、100°Cで真空乾燥し
て、正極を作製した。
Examples 1 to 7 [Positive electrode] Manganese dioxide as a positive electrode active material, graphite powder as a conductive agent, and PTFE (polytetrafluoroethylene) were mixed at a weight ratio of 8: 1: 1. A positive electrode mixture was prepared, formed into a disk shape, and vacuum dried at 100 ° C. to prepare a positive electrode.

【0017】〔負極〕リチウム−アルミニウム合金を用
いた。
[Anode] A lithium-aluminum alloy was used.

【0018】〔高分子ゲル状電解質〕平均分子量6万の
ポリエチレンオキシドフィルム、ポリプロピレンオキシ
ドフィルム又はポリエチレンイミンフィルムを、1種の
高沸点溶媒と2種の低沸点溶媒とからなる表1に組成を
示す3成分系の混合溶媒にLiClO4 を1モル/リッ
トル溶かした溶液(電解液)に浸漬して膨潤させ、高分
子ゲル状電解質を作製した。なお、含浸せる電解液と各
フィルムとの重量比は全て4:1とした。また、混合溶
媒の溶媒比率は全て体積比率で60%(高沸点溶媒):
20%(低沸点溶媒):20%(低沸点溶媒)とした。
[Polymer gel electrolyte] The composition of a polyethylene oxide film, a polypropylene oxide film or a polyethyleneimine film having an average molecular weight of 60,000 is shown in Table 1 consisting of one high boiling point solvent and two low boiling point solvents. A polymer gel electrolyte was prepared by immersing LiClO 4 in a three-component mixed solvent in a 1 mol / liter solution (electrolyte solution) to swell the solution. The weight ratio of the electrolyte to be impregnated and each film was 4: 1. The solvent ratio of the mixed solvent is 60% by volume (high-boiling solvent):
20% (low boiling point solvent): 20% (low boiling point solvent).

【0019】[0019]

【表1】 [Table 1]

【0020】〔ゲル状電解質電池〕上記の正極、負極及
び各高分子ゲル状電解質を用いて、順に、扁平型のゲル
状電解質電池A1〜A7(理論容量:120mAh;電
池寸法:直径20mm、厚さ2.5mm)を組み立て
た。
[Gel Electrolyte Battery] Flat gel electrolyte batteries A1 to A7 (theoretical capacity: 120 mAh; battery size: diameter 20 mm, thickness) were used in order using the above positive electrode, negative electrode and each polymer gel electrolyte. 2.5 mm) was assembled.

【0021】(比較例1〜18)実施例で用いたものと
同じ種類のポリエチレンオキシドフィルム、ポリプロピ
レンオキシドフィルム又はポリエチレンイミンフィルム
を、表2に組成を示す1種の高沸点溶媒、又は、1種の
高沸点溶媒と1種の低沸点溶媒とからなる2成分系の混
合溶媒にLiClO4 を1モル/リットル溶かした溶液
(電解液)に浸漬して膨潤させ、高分子ゲル状電解質を
作製した。なお、含浸せる電解液と各フィルムとの重量
比は全て4:1とした。また、2成分系の混合溶媒の溶
媒比率は全て体積比率で60%(高沸点溶媒):40%
(低沸点溶媒)とした。これらの高分子ゲル状電解質を
用いたこと以外は実施例と同様にして、ゲル状電解質電
池B1〜B18を組み立てた。各ゲル状電解質電池に用
いた溶媒及び高分子を表2及び表3に示す。
(Comparative Examples 1 to 18) A polyethylene oxide film, a polypropylene oxide film or a polyethyleneimine film of the same type as that used in the examples was prepared by using one high boiling point solvent whose composition is shown in Table 2 or one kind. Of a high-boiling-point solvent and a low-boiling-point solvent of 1 component were soaked in a solution (electrolyte) of LiClO 4 dissolved in 1 mol / liter to prepare a polymer gel electrolyte. . The weight ratio of the electrolyte to be impregnated and each film was 4: 1. Further, the solvent ratio of the binary solvent mixture is 60% (high boiling point solvent): 40% in volume ratio.
(Low boiling point solvent). Gel electrolyte batteries B1 to B18 were assembled in the same manner as in Example except that these polymer gel electrolytes were used. The solvents and polymers used for each gel electrolyte battery are shown in Tables 2 and 3.

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】(比較例19〜21)LiClO4 をエチ
レンカーボネート、プロピレンカーボネート又はこれら
の等体積混合溶媒に1モル/リットル溶かした溶液を電
解液として用いて、順に液体電解質電池B19〜B21
を組み立てた。セパレータとしては、ポリプロピレン製
の不織布を用いた。各液体電解質電池に用いた用いた溶
媒を先の表3に示す。
(Comparative Examples 19 to 21) Liquid electrolyte batteries B19 to B21 were sequentially prepared by using a solution of LiClO 4 dissolved in ethylene carbonate, propylene carbonate or a mixed solvent thereof in an equal volume of 1 mol / liter as an electrolytic solution.
Assembled. A polypropylene non-woven fabric was used as the separator. The solvent used for each liquid electrolyte battery is shown in Table 3 above.

【0025】〈分解電流〉各電解質と、作用極としての
白金電極と、対極及び参照極としてのリチウム電極とを
用いて、試験セルを組み立て、次いで白金電極の電位を
0V対参照極(Li/Li+ )に設定したときの還元電
流(分解電流μA/cm2 )を測定して、各電解質の分
解性の難易を調べた。分解電流が大きいほど、電解質が
分解し易いことを表す。結果を先の表1〜表3に示す。
<Decomposition current> A test cell was assembled using each electrolyte, a platinum electrode as a working electrode, and a lithium electrode as a counter electrode and a reference electrode, and then the potential of the platinum electrode was set to 0 V vs. the reference electrode (Li / The reduction current (decomposition current μA / cm 2 ) when set to Li + ) was measured to examine the difficulty of the decomposability of each electrolyte. The larger the decomposition current, the easier the electrolyte is to decompose. The results are shown in Tables 1 to 3 above.

【0026】表1〜表3より、溶媒として1種の高沸点
溶媒と2種の低沸点溶媒との混合溶媒を用いた実施例1
〜7の高分子ゲル状電解質は、比較例19〜21の液体
電解質はもとより、比較例1〜18の高分子ゲル状電解
質と比較して、分解電流が小さいことから、分解しにく
いことが分かる。
From Tables 1 to 3, Example 1 using a mixed solvent of one high boiling point solvent and two low boiling point solvents as a solvent
It can be seen that the polymer gel electrolytes of Nos. 7 to 7 are less likely to be decomposed as compared with the liquid electrolytes of Comparative Examples 19 to 21 and the polymer gel electrolytes of Comparative Examples 1 to 18 because the decomposition current is smaller. .

【0027】〈高率放電容量及び内部抵抗〉各電池に1
0kΩの外部抵抗を接続し、室温(25°C)下にて高
率放電試験を行い、各電池の高率放電容量を求めた。ま
た、各電池の内部抵抗についても調べた。結果を先の表
1〜表3に示す。
<High rate discharge capacity and internal resistance> 1 for each battery
An external resistance of 0 kΩ was connected and a high rate discharge test was performed at room temperature (25 ° C) to obtain the high rate discharge capacity of each battery. The internal resistance of each battery was also examined. The results are shown in Tables 1 to 3 above.

【0028】表1〜表3より、分解電流が小さい高分子
ゲル状電解質を用いたゲル状電解質電池A1〜A7(本
発明電池)は、分解電流が大きい電解質を用いた電池B
1〜B21(比較電池)に比し、電池の内部抵抗が小さ
く、それゆえ高率放電容量が大きいことが分かる。
From Tables 1 to 3, the gel electrolyte batteries A1 to A7 (invention batteries) using the polymer gel electrolyte having a small decomposition current are the batteries B using the electrolyte having a large decomposition current.
It can be seen that the internal resistance of the battery is small and therefore the high rate discharge capacity is large as compared with 1 to B21 (comparative battery).

【0029】〈混合溶媒の溶媒比率と高率放電容量との
関係〉エチレンカーボネート(高沸点溶媒)と、1,2
−ジメトキシエタン(低沸点溶媒)と、テトラヒドロフ
ラン(低沸点溶媒)とからなる22種の混合溶媒を用い
たこと以外は実施例1〜7と同様にして、高分子ゲル状
電解質を作製し、ゲル状電解質電池を組み立てた。図1
は、各混合溶媒の組成を三角図にプロットして示したも
のである。図1において各混合溶媒の組成は、プロット
した各点から線分AB(1,2−ジメトキシエタンの比
率)、BC(テトラヒドロフランの比率)及びCA(エ
チレンカーボネートの比率)に平行線を引いたときの、
線分AB、BC及びCAとの交点で表される。
<Relationship between solvent ratio of mixed solvent and high rate discharge capacity> Ethylene carbonate (high boiling point solvent)
-A polymer gel electrolyte was prepared in the same manner as in Examples 1 to 7 except that 22 kinds of mixed solvents of dimethoxyethane (low-boiling solvent) and tetrahydrofuran (low-boiling solvent) were used. -Shaped electrolyte battery was assembled. Figure 1
Shows the composition of each mixed solvent plotted in a triangular diagram. The composition of each mixed solvent in FIG. 1 is obtained by drawing parallel lines from the plotted points on the line segments AB (ratio of 1,2-dimethoxyethane), BC (ratio of tetrahydrofuran) and CA (ratio of ethylene carbonate). of,
It is represented by the intersections with the line segments AB, BC and CA.

【0030】次いで、各ゲル状電解質電池について先の
高率放電試験と同じ条件で高率放電試験を行い、高率放
電容量(mAh)を求めた。各ゲル状電解質電池の高率
放電容量を先の図1中に括弧書きで示す。
Next, each gel electrolyte battery was subjected to a high rate discharge test under the same conditions as the above high rate discharge test to obtain a high rate discharge capacity (mAh). The high rate discharge capacity of each gel electrolyte battery is shown in parentheses in FIG. 1 above.

【0031】図1より、エチレンカーボネート40〜8
0体積%と1,2−ジメトキシエタン及びテトラヒドロ
フラン各5〜50体積%とからなる3成分系の混合溶媒
を用いた場合(図中の斜線部分)に、高率放電容量の大
きいゲル状電解質電池が得られることが分かる。なお、
他の混合溶媒についても、同じ溶媒比率の場合に好結果
が得られることを確認した。
From FIG. 1, ethylene carbonate 40-8
A gel electrolyte battery having a high high-rate discharge capacity when a ternary mixed solvent consisting of 0% by volume and 5 to 50% by volume of 1,2-dimethoxyethane and tetrahydrofuran is used (hatched portion in the figure). It turns out that In addition,
It was confirmed that good results were obtained also with other mixed solvents at the same solvent ratio.

【0032】[0032]

【発明の効果】使用せる高分子ゲル状電解質が分解しに
くいため、高率放電容量が大きい。
EFFECT OF THE INVENTION Since the polymer gel electrolyte used is difficult to decompose, the high rate discharge capacity is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】混合溶媒の溶媒比率と高率放電容量との関係を
示した三角図である。
FIG. 1 is a triangular diagram showing a relationship between a solvent ratio of a mixed solvent and a high rate discharge capacity.

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内Front page continuation (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-5 Keihan-hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極と、リチウムを活物質とする負極と、
高分子に電解質塩及び非プロトン性溶媒からなる電解液
を含浸させてなる高分子ゲル状電解質とを備えるゲル状
電解質電池であって、前記非プロトン性溶媒が、下記の
組成の混合溶媒であることを特徴とするゲル状電解質電
池。 (組成) 高沸点溶媒:エチレンカーボネート、プロピレンカーボ
ネート、ブチレンカーボネート、γ−ブチロラクトン及
びスルホランより選ばれた溶媒1種:40〜80体積
%、及び 低沸点溶媒:1,2−ジメトキシエタン、1,2−ジエ
トキシエタン、1,2−エトキシメトキシエタン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラ
ン、ジメチルカーボネート、ジエチルカーボネート及び
エチルメチルカーボネートより選ばれた溶媒2種:各5
〜50体積%
1. A positive electrode, a negative electrode using lithium as an active material,
A gel electrolyte battery comprising a polymer gel electrolyte obtained by impregnating a polymer with an electrolyte solution comprising an electrolyte salt and an aprotic solvent, wherein the aprotic solvent is a mixed solvent having the following composition: A gel electrolyte battery characterized by the above. (Composition) High boiling point solvent: Solvent selected from ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone and sulfolane: 40 to 80% by volume, and low boiling point solvent: 1,2-dimethoxyethane, 1,2 -Diethoxyethane, 1,2-ethoxymethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,
Two solvents selected from 3-dioxolane, 4-methyl-1,3-dioxolane, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate: 5 each
~ 50% by volume
【請求項2】前記高分子が、ポリエチレンオキシド、ポ
リプロピレンオキシド又はポリエチレンイミンである請
求項1記載のゲル状電解質電池。
2. The gel electrolyte battery according to claim 1, wherein the polymer is polyethylene oxide, polypropylene oxide or polyethyleneimine.
JP13143294A 1994-05-20 1994-05-20 Gel electrolyte battery Expired - Fee Related JP3384616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13143294A JP3384616B2 (en) 1994-05-20 1994-05-20 Gel electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13143294A JP3384616B2 (en) 1994-05-20 1994-05-20 Gel electrolyte battery

Publications (2)

Publication Number Publication Date
JPH07320750A true JPH07320750A (en) 1995-12-08
JP3384616B2 JP3384616B2 (en) 2003-03-10

Family

ID=15057829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13143294A Expired - Fee Related JP3384616B2 (en) 1994-05-20 1994-05-20 Gel electrolyte battery

Country Status (1)

Country Link
JP (1) JP3384616B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097303A1 (en) * 2000-06-15 2001-12-20 HYDRO-QUéBEC Composition, method and device for applying a coating on a support
KR100354231B1 (en) * 2000-07-25 2002-09-27 삼성에스디아이 주식회사 An Electrolyte for Lithium Sulfur batteries
JP2008130559A (en) * 2006-11-16 2008-06-05 Korea Electronics Telecommun Aqueous system electrolyte composition and encapsulated-film primary battery equipped with electrolyte layer obtained from it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097303A1 (en) * 2000-06-15 2001-12-20 HYDRO-QUéBEC Composition, method and device for applying a coating on a support
US7427369B2 (en) 2000-06-15 2008-09-23 Hydro-Quebec Graphite and cobalt oxide-containing composition and device for applying a coating on a support
EP2551941A3 (en) * 2000-06-15 2014-04-30 Hydro Quebec Method and device for applying a coating on a support
KR100354231B1 (en) * 2000-07-25 2002-09-27 삼성에스디아이 주식회사 An Electrolyte for Lithium Sulfur batteries
JP2008130559A (en) * 2006-11-16 2008-06-05 Korea Electronics Telecommun Aqueous system electrolyte composition and encapsulated-film primary battery equipped with electrolyte layer obtained from it

Also Published As

Publication number Publication date
JP3384616B2 (en) 2003-03-10

Similar Documents

Publication Publication Date Title
JP3059832B2 (en) Lithium secondary battery
JP3938045B2 (en) Lithium secondary battery
JP3066126B2 (en) Non-aqueous electrolyte battery
US7976988B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3416265B2 (en) Solid electrolyte secondary battery
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3416440B2 (en) Anode for lithium battery and lithium battery
JPH11185804A (en) Nonaqueous electrolyte for secondary battery
JPH07320780A (en) Solid electrolytic secondary battery
US20030148190A1 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JP3969072B2 (en) Nonaqueous electrolyte secondary battery
JPH07320781A (en) Solid electrolytic secondary battery
JP3451781B2 (en) Organic electrolyte secondary battery
JP2005190978A (en) Nonaqueous electrolyte secondary battery
JP3384616B2 (en) Gel electrolyte battery
JP3107300B2 (en) Lithium secondary battery
JP3239267B2 (en) Organic electrolyte battery
JP3229769B2 (en) Lithium secondary battery
JP3384615B2 (en) Gel electrolyte battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees