JP3384615B2 - Gel electrolyte battery - Google Patents

Gel electrolyte battery

Info

Publication number
JP3384615B2
JP3384615B2 JP13143194A JP13143194A JP3384615B2 JP 3384615 B2 JP3384615 B2 JP 3384615B2 JP 13143194 A JP13143194 A JP 13143194A JP 13143194 A JP13143194 A JP 13143194A JP 3384615 B2 JP3384615 B2 JP 3384615B2
Authority
JP
Japan
Prior art keywords
solvent
lithium
gel electrolyte
electrolyte
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13143194A
Other languages
Japanese (ja)
Other versions
JPH07320749A (en
Inventor
精司 吉村
良浩 小路
幹也 山崎
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13143194A priority Critical patent/JP3384615B2/en
Publication of JPH07320749A publication Critical patent/JPH07320749A/en
Application granted granted Critical
Publication of JP3384615B2 publication Critical patent/JP3384615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明はゲル状電解質電池に係わ
り、詳しくは高率(大電流)での放電容量(高率放電容
量)が大きい、高分子ゲル状電解質を用いたゲル状電解
質電池に関する。 【0002】 【従来の技術及び発明が解決しようとする課題】近年、
固体電解質電池が、漏液の心配が無いためにポジション
フリーであること、電解液の注液を必要としないために
電池の組立が容易であることなどの液体電解質電池には
無い利点があることから、注目されている。 【0003】しかしながら、固体電解質のイオン伝導性
(導電率)が液体電解質のそれに比べて低いため、固体
電解質電池には、高率放電(大電流放電)した場合、容
量が低下するという欠点があった。このため、現在実用
化されている固体電解質電池は、心臓ペースメーカーの
電源用に使用されているリチウム電池のみである。 【0004】斯かる固体電解質電池の欠点を改善して高
率放電時の高容量化を図るべく、ポリエチレンオキシド
にLiClO4 等の電解質塩(溶質)及び環状炭酸エス
テル(プロピレンカーボネートなどの溶媒)からなる電
解液を含浸させた高分子ゲル状電解質を用いたゲル状電
解質電池が提案されているが、負極と高分子ゲル状電解
質との界面に電子伝導性の無いLi2 O等の被膜が生成
して両者の接触抵抗が上昇するため、実用上充分大きな
高率放電容量を有するものではない。 【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、高率放電容量の大
きいゲル状電解質電池を提供するにある。 【0006】 【課題を解決するための手段】上記目的を達成するため
の本発明に係るゲル状電解質電池(以下、「本発明電
池」と称する。)は、正極と、リチウムを活物質とする
負極と、高分子に電解質塩及び非プロトン性溶媒からな
る電解液を含浸させてなる高分子ゲル状電解質とを備え
るゲル状電解質電池であって、前記高分子が、ポリエチ
レンオキシド又はポリプロピレンオキシドであり、且つ
前記非プロトン性溶媒が、下記の組成の混合溶媒である
ことを特徴とする。 【0007】(組成) 高沸点溶媒:エチレンカーボネート(238°C)、プ
ロピレンカーボネート(241°C)、ブチレンカーボ
ネート(240°C)、γ−ブチロラクトン(204°
C)及びスルホラン(285°C)より選ばれた溶媒2
種:各5〜50体積%、及び 低沸点溶媒:1,2−ジメトキシエタン(84°C)、
1,2−ジエトキシエタン(118°C)、1,2−エ
トキシメトキシエタン(104°C)、テトラヒドロフ
ラン(66°C)、2−メチルテトラヒドロフラン(8
6°C)、1,3−ジオキソラン(78°C)、4−メ
チル−1,3−ジオキソラン(86°C)、ジメチルカ
ーボネート(90°C)、ジエチルカーボネート(12
6°C)及びエチルメチルカーボネート(107°C)
より選ばれた溶媒1種:10〜50体積%。括弧内は大
気圧下での各溶媒の沸点である。 【0008】リチウムを活物質とする負極としては、金
属リチウム又はリチウムを吸蔵放出可能な、合金、酸化
物、炭素材料が例示される。リチウムを吸蔵放出可能な
合金としては、リチウム−アルミニウム合金、リチウム
−インジウム合金、リチウム−錫合金、リチウム−鉛合
金、リチウム−ビスマス合金、リチウム−ガリウム合
金、リチウム−亜鉛合金、リチウム−カドミウム合金、
リチウム−珪素合金、リチウム−カルシウム合金、リチ
ウム−バリウム合金、リチウム−ストロンチウム合金
が、リチウムを吸蔵放出可能な酸化物としては、酸化
鉄、酸化錫、酸化ニオビウム、酸化タングステン、酸化
チタンが、またリチウムを吸蔵放出可能な炭素材料とし
ては、コークス、黒鉛、有機物焼成体が、それぞれ例示
される。 【0009】正極の活物質は特に制限されず、例えばリ
チウム含有マンガン酸化物、リチウム含有コバルト酸化
物、リチウム含有ニッケル酸化物、及び、マンガン、コ
バルト及びニッケルから選ばれた少なくとも2種の金属
を含有するリチウム含有複合酸化物などが挙げられる。 【0010】本発明における高分子ゲル状電解質は、
定の高分子に電解質塩及び特定の非プロトン性溶媒から
なる電解液を含浸させたものである。 【0011】上記高分子としては、ポリエチレンオキシ
又はポリプロピレンオキシドが、用いられる。 【0012】上記電解質塩としては、過塩素酸リチウム
(LiClO4 )、トリフルオロメタンスルホン酸リチ
ウム(LiCF3 SO3 )、六フッ化リン酸リチウム
(LiPF6 )、四フッ化ホウ酸リチウム(LiB
4 )、六フッ化ヒ酸リチウム(LiAsF6 )、六フ
ッ化アンチモン酸リチウム(LiSbF6 )、リチウム
トリフルオロメタンスルホン酸イミド〔LiN(CF3
SO2 2 〕が挙げられる。 【0013】上記非プロトン性溶媒としては、特定の2
種の高沸点溶媒各5〜50体積%と特定の1種の低沸点
溶媒10〜50体積%とからなる3成分系の混合溶媒が
用いられる。各溶媒の比率が各規制範囲を外れると高率
放電容量が低下する。 【0014】 【作用】高率放電時の容量低下が従来のゲル状電解質電
池と比較して起こりにくくなる。負極と高分子ゲル状電
解質との界面に電子伝導性の無いLi2 O等の被膜が生
成しにくいために、両者の界面の接触抵抗が小さくなる
ためと推察される。 【0015】 【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 【0016】(実施例1〜6及び参考例1) 〔正極〕 正極活物質としての二酸化マンガンと、導電剤としての
黒鉛粉末と、PTFE(ポリテトラフルオロエチレン)
とを重量比8:1:1で混合して正極合剤を調製し、こ
れを円板状に成形し、100°Cで真空乾燥して、正極
を作製した。 【0017】〔負極〕リチウム−アルミニウム合金を用
いた。 【0018】〔高分子ゲル状電解質〕平均分子量6万の
ポリエチレンオキシドフィルム、ポリプロピレンオキシ
ドフィルム又はポリエチレンイミンフィルムを、2種の
高沸点溶媒と1種の低沸点溶媒とからなる表1に組成を
示す3成分系の混合溶媒にLiClO4 を1モル/リッ
トル溶かした溶液(電解液)に浸漬して膨潤させ、高分
子ゲル状電解質を作製した。なお、含浸せる電解液と各
フィルムとの重量比は全て4:1とした。また、混合溶
媒の溶媒比率は全て体積比率で40%(高沸点溶媒):
40%(高沸点溶媒):20%(低沸点溶媒)とした。 【0019】 【表1】 【0020】〔ゲル状電解質電池〕 上記の正極、負極及び各高分子ゲル状電解質を用いて、
順に、扁平型のゲル状電解質電池A1〜A7(理論容
量:120mAh;直径20mm、厚さ2.5mm)を
組み立てた。電池A1〜A6は、本発明電池であり、電
池A7は、参考電池である。 【0021】(比較例1〜18)実施例で用いたものと
同じ種類のポリエチレンオキシドフィルム、ポリプロピ
レンオキシドフィルム又はポリエチレンイミンフィルム
を、表2に組成を示す1種の高沸点溶媒、又は、1種の
高沸点溶媒と1種の低沸点溶媒とからなる2成分系の混
合溶媒にLiClO4 を1モル/リットル溶かした溶液
(電解液)に浸漬して膨潤させ、高分子ゲル状電解質を
作製した。なお、含浸せる電解液と各フィルムとの重量
比は全て4:1とした。また、2成分系の混合溶媒の溶
媒比率は全て体積比率で80%(高沸点溶媒):20%
(低沸点溶媒)とした。これらの高分子ゲル状電解質を
用いたこと以外は実施例と同様にして、ゲル状電解質電
池B1〜B18を組み立てた。各ゲル状電解質電池に用
いた溶媒及び高分子を表2及び表3に示す。 【0022】 【表2】【0023】 【表3】 【0024】(比較例19〜21)LiClO4 をエチ
レンカーボネート、プロピレンカーボネート又はこれら
の等体積混合溶媒に1モル/リットル溶かした溶液を電
解液として用いて、順に液体電解質電池B19〜B21
を組み立てた。セパレータとしては、ポリプロピレン製
の不織布を用いた。各液体電解質電池に用いた溶媒を先
の表3に示す。 【0025】〈分解電流〉各電解質と、作用極としての
白金電極と、対極及び参照極としてのリチウム電極とを
用いて、試験セルを組み立て、次いで白金電極の電位を
0V対参照極(Li/Li+ )に設定したときの還元電
流(分解電流μA/cm2 )を測定して、各電解質の分
解性の難易を調べた。分解電流が大きいほど、電解質が
分解し易いことを表す。結果を先の表1〜表3に示す。 【0026】表1〜表3より、溶媒として2種の高沸点
溶媒と1種の低沸点溶媒との混合溶媒を用いた実施例
〜6の高分子ゲル状電解質は、比較例19〜21の液体
電解質はもとより、比較例1〜18の高分子ゲル状電解
質と比較して、分解電流が小さく、分解しにくいことが
分かる。 【0027】〈高率放電容量及び内部抵抗〉各電池に1
0kΩの外部抵抗を接続し、室温(25°C)下にて高
率放電試験を行い、各電池の高率放電容量を求めた。ま
た、各電池の内部抵抗についても調べた。結果を先の表
1〜表3に示す。 【0028】表1〜表3より、分解電流が小さい高分子
ゲル状電解質を用いたゲル状電解質電池A1〜A6(本
発明電池)は、分解電流が大きい電解質を用いた電池B
1〜B21(比較電池)に比し、電池の内部抵抗が小さ
く、それゆえ高率放電容量が大きいことが分かる。 【0029】 〈混合溶媒の溶媒比率と高率放電容量との関係〉 エチレンカーボネート(高沸点溶媒)と、プロピレンカ
ーボネート(高沸点溶媒)と、1,2−ジメトキシエタ
ン(低沸点溶媒)とからなる25種の混合溶媒を用いた
こと以外は実施例1〜6と同様にして、高分子ゲル状電
解質を作製し、ゲル状電解質電池を組み立てた。図1
は、各混合溶媒の組成を三角図にプロットして示したも
のである。図1において各混合溶媒の組成は、プロット
した各点から線分AB(エチレンカーボネートの比
率)、BC(プロピレンカーボネートの比率)及びCA
(1,2−ジメトキシエタンの比率)に平行線を引いた
ときの、線分AB、BC及びCAとの交点で表される。 【0030】次いで、各ゲル状電解質電池について先の
高率放電試験と同じ条件で高率放電試験を行い、高率放
電容量(mAh)を求めた。各ゲル状電解質電池の高率
放電容量を先の図1中に括弧書きで示す。 【0031】図1より、エチレンカーボネート及びプロ
ピレンカーボネート各5〜50体積%と1,2−ジメト
キシエタン10〜50体積%とからなる3成分系の混合
溶媒を用いた場合(図中の斜線部分)に、高率放電容量
の大きいゲル状電解質電池が得られることが分かる。な
お、他の混合溶媒についても、同じ溶媒比率の場合に好
結果が得られることを確認した。 【0032】 【発明の効果】使用せる高分子ゲル状電解質が分解しに
くいため、高率放電容量が大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gel electrolyte battery, and more particularly, to a polymer having a high discharge capacity (high rate discharge capacity) at a high rate (large current). The present invention relates to a gel electrolyte battery using a gel electrolyte. 2. Description of the Related Art In recent years,
Solid electrolyte batteries have advantages that liquid electrolyte batteries do not have, such as being position-free because there is no risk of liquid leakage, and being easy to assemble the batteries because they do not require electrolyte injection. From, has attracted attention. [0003] However, since the ionic conductivity (conductivity) of the solid electrolyte is lower than that of the liquid electrolyte, the solid electrolyte battery has a disadvantage that its capacity is reduced when discharged at a high rate (large current discharge). Was. For this reason, the only solid electrolyte battery currently in practical use is a lithium battery used as a power source for a cardiac pacemaker. In order to improve the drawbacks of such a solid electrolyte battery and to increase the capacity during high-rate discharge, polyethylene oxide is converted from an electrolyte salt (solute) such as LiClO 4 and a cyclic carbonate (a solvent such as propylene carbonate). Electrolyte battery using a polymer gel electrolyte impregnated with an electrolyte solution has been proposed, but a film such as Li 2 O without electron conductivity is formed at the interface between the negative electrode and the polymer gel electrolyte. As a result, the contact resistance between the two increases, so that the battery does not have a sufficiently high high-rate discharge capacity for practical use. The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a gel electrolyte battery having a large high rate discharge capacity. A gel electrolyte battery according to the present invention (hereinafter, referred to as "battery of the present invention") for achieving the above object uses a positive electrode and lithium as an active material. A gel electrolyte battery comprising a negative electrode and a polymer gel electrolyte in which a polymer is impregnated with an electrolyte solution comprising an electrolyte salt and an aprotic solvent, wherein the polymer is a polyethylene.
And the aprotic solvent is a mixed solvent having the following composition. (Composition) High boiling point solvent: ethylene carbonate (238 ° C.), propylene carbonate (241 ° C.), butylene carbonate (240 ° C.), γ-butyrolactone (204 ° C.)
Solvent 2 selected from C) and sulfolane (285 ° C.)
Species: 5-50% by volume each, and low boiling solvent: 1,2-dimethoxyethane (84 ° C),
1,2-diethoxyethane (118 ° C), 1,2-ethoxymethoxyethane (104 ° C), tetrahydrofuran (66 ° C), 2-methyltetrahydrofuran (8
6 ° C.), 1,3-dioxolane (78 ° C.), 4-methyl-1,3-dioxolane (86 ° C.), dimethyl carbonate (90 ° C.), diethyl carbonate (12 ° C.)
6 ° C) and ethyl methyl carbonate (107 ° C)
One solvent selected from the following: 10 to 50% by volume. In parentheses are the boiling points of each solvent under atmospheric pressure. Examples of the negative electrode using lithium as an active material include metallic lithium or alloys, oxides, and carbon materials capable of inserting and extracting lithium. As alloys capable of inserting and extracting lithium, lithium-aluminum alloy, lithium-indium alloy, lithium-tin alloy, lithium-lead alloy, lithium-bismuth alloy, lithium-gallium alloy, lithium-zinc alloy, lithium-cadmium alloy,
Lithium-silicon alloys, lithium-calcium alloys, lithium-barium alloys, lithium-strontium alloys, and oxides capable of inserting and extracting lithium include iron oxide, tin oxide, niobium oxide, tungsten oxide, titanium oxide, and lithium oxide. Examples of the carbon material capable of storing and releasing carbon dioxide include coke, graphite, and a fired organic material. The active material of the positive electrode is not particularly limited, and includes, for example, lithium-containing manganese oxide, lithium-containing cobalt oxide, lithium-containing nickel oxide, and at least two metals selected from manganese, cobalt, and nickel. And the like. [0010] the polymer gel electrolyte of the present invention, especially
It is obtained by impregnating a fixed polymer with an electrolytic solution comprising an electrolyte salt and a specific aprotic solvent. As the polymer, polyethylene oxide or polypropylene oxide is used. The electrolyte salt includes lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), and lithium tetrafluoroborate (LiB 4).
F 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium trifluoromethanesulfonate imide [LiN (CF 3
SO 2 ) 2 ]. As the aprotic solvent, specific 2
A ternary mixed solvent consisting of 5 to 50% by volume of each kind of high-boiling solvent and 10 to 50% by volume of a specific low-boiling solvent is used. When the ratio of each solvent is out of each regulation range, the high-rate discharge capacity decreases. The decrease in capacity during high-rate discharge is less likely to occur than in conventional gel electrolyte batteries. It is presumed that the contact resistance at the interface between the negative electrode and the polymer gel electrolyte is reduced because it is difficult to form a film such as Li 2 O having no electron conductivity at the interface between the anode and the polymer gel electrolyte. Hereinafter, the present invention will be described in more detail with reference to the following Examples. However, the present invention is not limited to the following Examples at all, and may be modified as appropriate without departing from the scope of the invention. It can be implemented. (Examples 1 to 6 and Reference Example 1 ) [Positive electrode] Manganese dioxide as a positive electrode active material, graphite powder as a conductive agent, and PTFE (polytetrafluoroethylene)
Were mixed at a weight ratio of 8: 1: 1 to prepare a positive electrode mixture, which was formed into a disc shape, and dried at 100 ° C. under vacuum to prepare a positive electrode. [Negative electrode] A lithium-aluminum alloy was used. [Polymer Gel Electrolyte] The composition of a polyethylene oxide film, a polypropylene oxide film or a polyethyleneimine film having an average molecular weight of 60,000 is shown in Table 1 comprising two kinds of high-boiling solvents and one kind of low-boiling solvents. It was immersed in a solution (electrolyte solution) in which LiClO 4 was dissolved at 1 mol / liter in a ternary mixed solvent to swell, thereby producing a polymer gel electrolyte. The weight ratio of the electrolyte to be impregnated to each film was 4: 1. The solvent ratio of the mixed solvent is 40% by volume (high-boiling solvent):
40% (high-boiling solvent): 20% (low-boiling solvent). [Table 1] [Gel Electrolyte Battery] Using the above positive electrode, negative electrode and each polymer gel electrolyte,
Flat gel electrolyte batteries A1 to A7 (theoretical capacity: 120 mAh; diameter: 20 mm, thickness: 2.5 mm) were assembled in this order. Batteries A1 to A6 are the batteries of the present invention,
Pond A7 is a reference battery. (Comparative Examples 1 to 18) The same kind of polyethylene oxide film, polypropylene oxide film or polyethylene imine film as those used in the examples was prepared by using one kind of high boiling point solvent shown in Table 2 or one kind Immersed in a solution (electrolyte solution) of LiClO 4 dissolved at 1 mol / l in a binary mixed solvent consisting of a high boiling point solvent and one low boiling point solvent to swell to produce a polymer gel electrolyte . The weight ratio of the electrolyte to be impregnated to each film was 4: 1. The solvent ratio of the two-component mixed solvent was 80% (high boiling point solvent): 20% by volume.
(Low boiling point solvent). Gel electrolyte batteries B1 to B18 were assembled in the same manner as in the example except that these polymer gel electrolytes were used. Tables 2 and 3 show the solvents and polymers used for each gel electrolyte battery. [Table 2] [Table 3] Comparative Examples 19 to 21 Liquid electrolyte batteries B19 to B21 were prepared using LiClO 4 dissolved in ethylene carbonate, propylene carbonate, or a mixture of these solvents in an equal volume of 1 mol / liter as an electrolyte.
Was assembled. A nonwoven fabric made of polypropylene was used as the separator. Table 3 shows the solvents used for each liquid electrolyte battery. <Decomposition Current> A test cell was assembled using each electrolyte, a platinum electrode as a working electrode, and a lithium electrode as a counter electrode and a reference electrode. Then, the potential of the platinum electrode was set to 0 V to the reference electrode (Li / Li + ) was measured to determine the difficulty of decomposability of each electrolyte by measuring the reduction current (decomposition current μA / cm 2 ). The higher the decomposition current, the more easily the electrolyte is decomposed. The results are shown in Tables 1 to 3 above. According to Tables 1 to 3, Example 1 in which a mixed solvent of two kinds of high-boiling solvents and one kind of low-boiling solvents was used as the solvent.
It can be seen that the polymer gel electrolytes of Nos. 6 to 6 have a smaller decomposition current and are less likely to be decomposed than the liquid electrolytes of Comparative Examples 19 to 21 and the polymer gel electrolytes of Comparative Examples 1 to 18. <High-rate discharge capacity and internal resistance> 1 for each battery
A high-rate discharge test was performed at room temperature (25 ° C.) by connecting an external resistor of 0 kΩ to obtain a high-rate discharge capacity of each battery. The internal resistance of each battery was also examined. The results are shown in Tables 1 to 3 above. As can be seen from Tables 1 to 3, the gel electrolyte batteries A1 to A6 using the polymer gel electrolyte having a small decomposition current (the batteries of the present invention) are the batteries B using the electrolyte having a large decomposition current.
It can be seen that the internal resistance of the battery is smaller than that of 1 to B21 (comparative battery), and therefore the high rate discharge capacity is large. <Relationship between Solvent Ratio of Mixed Solvent and High-Rate Discharge Capacity> The solvent is composed of ethylene carbonate (high-boiling solvent), propylene carbonate (high-boiling solvent), and 1,2-dimethoxyethane (low-boiling solvent). A polymer gel electrolyte was prepared and a gel electrolyte battery was assembled in the same manner as in Examples 1 to 6 , except that 25 kinds of mixed solvents were used. FIG.
Is a plot of the composition of each mixed solvent in a triangular diagram. In FIG. 1, the composition of each mixed solvent is represented by a line segment AB (ratio of ethylene carbonate), BC (ratio of propylene carbonate) and CA
It is represented by the intersection of line segments AB, BC and CA when a parallel line is drawn to (ratio of 1,2-dimethoxyethane). Next, a high-rate discharge test was performed on each of the gel electrolyte batteries under the same conditions as the above-mentioned high-rate discharge test, and a high-rate discharge capacity (mAh) was obtained. The high-rate discharge capacity of each gel electrolyte battery is shown in parentheses in FIG. As shown in FIG. 1, when a ternary mixed solvent consisting of 5 to 50% by volume of ethylene carbonate and propylene carbonate and 10 to 50% by volume of 1,2-dimethoxyethane is used (shaded area in the figure) Further, it can be seen that a gel electrolyte battery having a large high rate discharge capacity can be obtained. It was also confirmed that good results were obtained with other mixed solvents at the same solvent ratio. The high-rate discharge capacity is large because the polymer gel electrolyte to be used is hardly decomposed.

【図面の簡単な説明】 【図1】混合溶媒の溶媒比率と高率放電容量との関係を
示した三角図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a triangular diagram showing a relationship between a solvent ratio of a mixed solvent and a high-rate discharge capacity.

フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平1−281679(JP,A) 特開 昭60−121676(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 6/18 H01M 6/22 H01M 10/40 Continuation of the front page (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo (56) References JP-A-1-281679 (JP, A) JP-A-60-121676 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 6 / 18 H01M 6/22 H01M 10/40

Claims (1)

(57)【特許請求の範囲】 【請求項1】正極と、リチウムを活物質とする負極と、
高分子に電解質塩及び非プロトン性溶媒からなる電解液
を含浸させてなる高分子ゲル状電解質とを備えるゲル状
電解質電池であって、前記高分子が、ポリエチレンオキ
シド又はポリプロピレンオキシドであり、且つ前記非プ
ロトン性溶媒が、下記の組成の混合溶媒であることを特
徴とするゲル状電解質電池。 (組成) 高沸点溶媒:エチレンカーボネート、プロピレンカーボ
ネート、ブチレンカーボネート、γ−ブチロラクトン及
びスルホランより選ばれた溶媒2種:各5〜50体積
%、及び 低沸点溶媒:1,2−ジメトキシエタン、1,2−ジエ
トキシエタン、1,2−エトキシメトキシエタン、テト
ラヒドロフラン、2−メチルテトラヒドロフラン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラ
ン、ジメチルカーボネート、ジエチルカーボネート及び
エチルメチルカーボネートより選ばれた溶媒1種:10
〜50体積%
(57) [Claim 1] A positive electrode, a negative electrode using lithium as an active material,
A gel electrolyte comprising a polymer impregnated with an electrolyte solution comprising an electrolyte salt and an aprotic solvent, wherein the polymer is a polyethylene oxide.
A gel electrolyte battery , which is sid or polypropylene oxide, and wherein the aprotic solvent is a mixed solvent having the following composition. (Composition) High-boiling solvents: two solvents selected from ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, and sulfolane: 5 to 50 vol% each; and low-boiling solvents: 1,2-dimethoxyethane, 1, 2-diethoxyethane, 1,2-ethoxymethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,
One kind of solvent selected from 3-dioxolan, 4-methyl-1,3-dioxolan, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate: 10
~ 50% by volume
JP13143194A 1994-05-20 1994-05-20 Gel electrolyte battery Expired - Fee Related JP3384615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13143194A JP3384615B2 (en) 1994-05-20 1994-05-20 Gel electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13143194A JP3384615B2 (en) 1994-05-20 1994-05-20 Gel electrolyte battery

Publications (2)

Publication Number Publication Date
JPH07320749A JPH07320749A (en) 1995-12-08
JP3384615B2 true JP3384615B2 (en) 2003-03-10

Family

ID=15057804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13143194A Expired - Fee Related JP3384615B2 (en) 1994-05-20 1994-05-20 Gel electrolyte battery

Country Status (1)

Country Link
JP (1) JP3384615B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3029360B1 (en) * 2014-12-01 2019-04-26 Blue Solutions ORGANIC LITHIUM BATTERY

Also Published As

Publication number Publication date
JPH07320749A (en) 1995-12-08

Similar Documents

Publication Publication Date Title
JP3059832B2 (en) Lithium secondary battery
JP3066126B2 (en) Non-aqueous electrolyte battery
JP3938045B2 (en) Lithium secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP3416265B2 (en) Solid electrolyte secondary battery
EP1022797A1 (en) Polymer electrolyte battery and polymer electrolyte
JP3428750B2 (en) Non-aqueous solvent secondary battery
JP3574072B2 (en) Gel polymer electrolyte lithium secondary battery
JP3177299B2 (en) Non-aqueous electrolyte secondary battery
JP3416440B2 (en) Anode for lithium battery and lithium battery
JPH07320780A (en) Solid electrolytic secondary battery
JPH0864240A (en) Nonaqueous electrolyte battery
JP2705529B2 (en) Organic electrolyte secondary battery
JP2780480B2 (en) Non-aqueous electrolyte secondary battery
JP4915025B2 (en) Nonaqueous electrolyte and lithium secondary battery
JPH07320781A (en) Solid electrolytic secondary battery
JP3384616B2 (en) Gel electrolyte battery
JP3384615B2 (en) Gel electrolyte battery
JPH1012243A (en) Lithium secondary battery
JPH07220756A (en) Nonaqueous electrolyte lithium secondary battery
JP3449679B2 (en) Lithium secondary battery
JPH08124597A (en) Solid electrolytic secondary cell
JP3433079B2 (en) Lithium secondary battery
JP2003115298A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081227

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees