JPH11185804A - Nonaqueous electrolyte for secondary battery - Google Patents
Nonaqueous electrolyte for secondary batteryInfo
- Publication number
- JPH11185804A JPH11185804A JP9363895A JP36389597A JPH11185804A JP H11185804 A JPH11185804 A JP H11185804A JP 9363895 A JP9363895 A JP 9363895A JP 36389597 A JP36389597 A JP 36389597A JP H11185804 A JPH11185804 A JP H11185804A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- secondary battery
- battery
- silicone
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02E60/122—
Landscapes
- Secondary Cells (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウム化合物を
電解質として含有する二次電池用非水電解液に関し、特
に、負極と非水電解液中の溶媒との反応に起因する、低
温放電特性の低下の防止、インピ−ダンス特性の改善を
目的とした当該非水電解液の改良技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte for a secondary battery containing a lithium compound as an electrolyte, and more particularly to a low-temperature discharge characteristic caused by a reaction between a negative electrode and a solvent in the non-aqueous electrolyte. The present invention relates to a technique for improving the non-aqueous electrolyte for the purpose of preventing a decrease and improving impedance characteristics.
【0002】[0002]
【従来の技術】近年、カメラ一体型VTR、携帯電話、
ラップトップコンピュータ等の新しいポータブル電源と
して、特に、従来のニッケルーカドミニウム(Ni−C
d)二次電池や鉛二次電池に比べ軽量で高容量且つ高エ
ネルギー密度のリチウム二次電池が注目されている。2. Description of the Related Art In recent years, camera-integrated VTRs, mobile phones,
New portable power supplies, such as laptop computers, are particularly suitable for conventional nickel-cadmium (Ni-C
d) Lightweight, high capacity, and high energy density lithium secondary batteries are attracting attention as compared with secondary batteries and lead secondary batteries.
【0003】従来より、リチウム二次電池の非水電解液
の電解質としては、LiPF6、LiBF4等が、また、
非水溶媒としては、炭酸プロピレン(PC)、炭酸エチ
レン(EC)、γーブチロラクトン(GBL)、炭酸ジ
メチル(DMC)、炭酸エチルメチル(MEC)、炭酸
ジエチル(DEC)、酢酸エチル(EA)、プロピオン
酸メチル(MPR)、1,2−ジメトキシエタン(DM
E)、2−メチルテトラヒドロフラン(2−MeTH
F)等が用いられている。Conventionally, as an electrolyte of a non-aqueous electrolyte of a lithium secondary battery, LiPF 6 , LiBF 4 and the like have been used.
Non-aqueous solvents include propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone (GBL), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), diethyl carbonate (DEC), ethyl acetate (EA), Methyl propionate (MPR), 1,2-dimethoxyethane (DM
E), 2-methyltetrahydrofuran (2-MeTH
F) etc. are used.
【0004】しかしながら、負極活物質であるリチウム
は反応性に富み、上記電解質と反応し、その反応生成物
が電極表面に被膜となって付着し、その被膜が電池特性
に大きく影響を与える。そこで、電池特性に悪影響を及
ぼさないよう電解液組成が工夫されており、一般に、上
記PCあるいはEC等の炭酸エステル類は、リチウムと
反応してイオン伝導性を有する炭酸塩の被膜を生成する
為、電池内部抵抗の増加等の電池特性に及ぼす悪影響は
少なく、さらに、この被膜が負極表面の保護膜となり、
電池の保存特性等を良好にしているので、従来よりリチ
ウム二次電池用非水電解液の主成分となっている。しか
し、当該炭酸エステル類は、比較的融点が高く、また、
当該PCあるいはEC等の環状のものは、粘性率が高
く、さらに、上記DMCあるいはDEC等の直鎖状のも
のは、誘電率が低い為、上記GBLあるいはEA等のカ
ルボン酸エステルと比較すると、電解液溶媒とした時の
電解液の導電率が小さいという欠点がある。従って、高
出力な二次電池として要求される充分な急速充電特性あ
るいは低温放電特性が得られなかった。さらに、炭酸エ
ステル類は、二次電池の充電放電時あるいは高温下での
保存中に、分解により炭酸ガスやオレフィンガスを生成
する為、内圧が上昇し、電池が膨れるという問題があっ
た。However, lithium, which is a negative electrode active material, is highly reactive and reacts with the above-mentioned electrolyte, and the reaction product adheres to the electrode surface as a film, and the film greatly affects battery characteristics. Therefore, the composition of the electrolytic solution has been devised so as not to adversely affect the battery characteristics. In general, the above-mentioned carbonates such as PC and EC react with lithium to form an ion-conductive carbonate coating. , The adverse effect on the battery characteristics such as an increase in the battery internal resistance is small, and further, this coating serves as a protective film on the negative electrode surface,
Since the battery has good storage characteristics and the like, it has conventionally been the main component of the nonaqueous electrolyte for lithium secondary batteries. However, the carbonates have a relatively high melting point, and
The cyclic one such as PC or EC has a high viscosity, and the linear one such as DMC or DEC has a low dielectric constant. Therefore, when compared with the carboxylate such as GBL or EA, There is a disadvantage that the conductivity of the electrolytic solution when used as the electrolytic solution solvent is small. Therefore, sufficient rapid charging characteristics or low-temperature discharging characteristics required for a high-output secondary battery could not be obtained. Furthermore, carbonates generate carbon dioxide gas and olefin gas by decomposition during charge and discharge of the secondary battery or during storage at a high temperature, so that the internal pressure increases and the battery swells.
【0005】[0005]
【発明が解決しようとする課題】本発明は、かかる従来
技術の有する欠点を解消できる技術を提供することを目
的としたものであって、特に、二次電池の充電放電サイ
クル特性、低温放電特性、保存特性等の電池特性を向上
させることができる技術を提供することを目的とする。
本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面からもあきらかになるで
あろう。SUMMARY OF THE INVENTION An object of the present invention is to provide a technique capable of solving the drawbacks of the prior art. In particular, the present invention provides a charge / discharge cycle characteristic and a low-temperature discharge characteristic of a secondary battery. It is an object of the present invention to provide a technique capable of improving battery characteristics such as storage characteristics.
The above and other objects and novel features of the present invention are as follows.
It will be clear from the description of this specification and the accompanying drawings.
【0006】[0006]
【課題を解決するための手段】本発明者らは、上述の目
的を達成する為に、鋭意検討した結果、非水電解液二次
電池の非水電解液へシリコ−ン系消泡剤を添加すること
により、充放電における非水電解液の分解によるガス発
生を抑制し、また、放電容量の向上、並びに、インピ−
ダンス特性が改善できることを見出し、これに基づき、
上述問題を解決する電解液を発明するに至った。すなわ
ち、本発明は、非水溶媒と、電解質としてリチウム化合
物を含む二次電池用非水電解液において、シリコ−ン系
消泡剤を添加してなることを特徴とする二次電池用非水
電解液に係るものである。Means for Solving the Problems The present inventors have conducted intensive studies in order to achieve the above object, and as a result, have found that a silicone-based defoaming agent is added to a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery. The addition suppresses the generation of gas due to the decomposition of the non-aqueous electrolyte during charge and discharge, improves the discharge capacity, and improves the impedance.
We found that dance characteristics could be improved, and based on this,
The inventors have invented an electrolytic solution that solves the above-mentioned problems. That is, the present invention provides a non-aqueous electrolyte for a secondary battery, comprising adding a silicone-based defoaming agent to a non-aqueous electrolyte for a secondary battery containing a non-aqueous solvent and a lithium compound as an electrolyte. It relates to an electrolytic solution.
【0007】[0007]
【発明の実施の形態】以下、本発明を詳細に説明する。
本発明において使用されるシリコ−ン系消泡剤の例とし
ては、次の式1で表されるシリコ−ン系消泡剤が挙げら
れる。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
Examples of the silicone-based antifoaming agent used in the present invention include a silicone-based antifoaming agent represented by the following formula 1.
【0008】[0008]
【式1】 (Equation 1)
【0009】但し、上記式中のR は、有機基もしくは水
素原子であり、同一でも、異なっていてもよい。有機基
であることが、本発明の目的から好ましい。有機基の例
としては、アルキル基、アリ−ル基が挙げられる。当該
アルキル基における炭素数には特に上限はないが、電解
液の導電性を良好にするには、できるだけ低分子のアル
キル基が好ましく、当該アルキル基の例には、メチル
基、エチル基が挙げられる。アリ−ル基の例としては、
フェニル基が挙げられる。シリコ−ン系消泡剤として、
上記のようなシリコ−ンオイルを溶剤に溶かした溶液型
や各種添加剤を配合したもの等の二次製品的なものを使
用できる。シリコ−ン系消泡剤は、市販のものを使用す
ることができ、具体例としては、サンノプコ株式会社製
ダッポ−SN−357(以下、SN−357と称す
る。)、信越化学工業株式会社製KS603(以下、K
S603と称する。)等が挙げられる。However, R in the above formula Is an organic group or water
And are the same or different. Organic group
Is preferred for the purpose of the present invention. Examples of organic groups
Examples thereof include an alkyl group and an aryl group. The
Although there is no particular upper limit on the number of carbon atoms in the alkyl group,
In order to improve the conductivity of the liquid, the low molecular weight
Preferably, the alkyl group is methyl.
And an ethyl group. Examples of aryl groups include:
A phenyl group. As a silicone-based defoamer,
Solution type in which the above silicone oil is dissolved in a solvent
And secondary products such as those containing various additives.
Can be used. Use a commercially available silicone antifoaming agent.
Can be used as a specific example.
Dappo-SN-357 (hereinafter referred to as SN-357)
You. ), KS603 manufactured by Shin-Etsu Chemical Co., Ltd.
Called S603. ) And the like.
【0010】シリコ−ン系消泡剤の非水電解液中での濃
度は、低過ぎると添加した効果が充分でなく、高過ぎる
と電池容量が低下する傾向にあるので、10ppm〜1
0重量%とすることが好ましい。If the concentration of the silicone-based defoamer in the non-aqueous electrolyte is too low, the effect of the addition is not sufficient, and if it is too high, the battery capacity tends to decrease.
It is preferably 0% by weight.
【0011】本発明において使用される非水溶媒として
は特に限定されるものではなく、従来より二次電池用非
水電解液において用いられているような溶媒を使用する
ことができる。例えば、炭酸プロピレン(PC)、炭酸
エチレン(EC)、炭酸ジメチル(DMC)、炭酸エチ
ルメチル(MEC)、炭酸ジエチル(DEC)、γーブ
チロラクトン(GBL)、酢酸エチル(EA)、プロピ
オン酸メチル(MPR)、プロピオン酸エチル(EP
R)、1,2−ジメトキシエタン(DME)、1,2−
ジエトキシエタン(DEE)、2−メチルテトラヒドロ
フラン(2−MeTHF)、テトラヒドロフラン(TH
F)、スルホラン(SL)、メチルスルホラン(MeS
L)等を使用することができ、これらは二種以上を混合
してもよい。[0011] The non-aqueous solvent used in the present invention is not particularly limited, and solvents such as those conventionally used in non-aqueous electrolytes for secondary batteries can be used. For example, propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (MEC), diethyl carbonate (DEC), γ-butyrolactone (GBL), ethyl acetate (EA), methyl propionate ( MPR), ethyl propionate (EP
R), 1,2-dimethoxyethane (DME), 1,2-
Diethoxyethane (DEE), 2-methyltetrahydrofuran (2-MeTHF), tetrahydrofuran (TH
F), sulfolane (SL), methyl sulfolane (MeS
L) and the like may be used, and these may be used in combination of two or more.
【0012】本発明の二次電池用非水電解液において
は、電解質としてリチウム化合物を使用する。これによ
り、本電解質はリチウム二次電池の電解液として特に有
用となる。このようなリチウム化合物としては、従来の
リチウム二次電池において用いられているものを使用す
ることができる。例えば、LiClO4、LiAsF6、
LiPF6、LiBF4、LiCF3SO3、LiN(CF
3SO2)2、LiC(CF3SO2)3等を使用できる。
尚、電解質であるリチウム化合物の二次電池用非水電解
液中での濃度は、導電率の点から0.1〜3.0mol
/リットル、好ましくは0.3〜2.0mol/リット
ルとするとよい。In the non-aqueous electrolyte for a secondary battery of the present invention, a lithium compound is used as an electrolyte. This makes the present electrolyte particularly useful as an electrolyte for a lithium secondary battery. As such a lithium compound, those used in a conventional lithium secondary battery can be used. For example, LiClO 4 , LiAsF 6 ,
LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF
3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 can be used.
The concentration of the lithium compound as the electrolyte in the non-aqueous electrolyte for a secondary battery is 0.1 to 3.0 mol from the viewpoint of conductivity.
/ Liter, preferably 0.3 to 2.0 mol / liter.
【0013】本発明の二次電池用非水電解液は、例え
ば、非水溶媒を撹拌しながら、その中に電解質としてリ
チウム化合物を添加して溶解させ、シリコ−ン系消泡剤
を添加して溶解させることにより製造することができ
る。The non-aqueous electrolyte solution for a secondary battery according to the present invention is prepared by adding a lithium compound as an electrolyte to the non-aqueous solvent while stirring the non-aqueous solvent and dissolving the same, and adding a silicone-based defoaming agent. It can be manufactured by dissolving in water.
【0014】本発明の二次電池用非水電解液は、リチウ
ム化合物を電解質とする、種々の構成の二次電池に適用
することができる。例えば、リチウム金属、リチウム合
金またはリチウムをドープ・脱ドープすることができる
材料からなる負極を有するリチウム二次電池に好ましく
適用することができる。ここで、リチウム合金として
は、リチウムーアルミニウム合金を例示することができ
る。また、リチウムをドープ・脱ドープすることができ
る材料としては、例えば、熱分解炭素類、コークス類
(ピッチコークス、ニードルコークス、石油コークス
等)、グラファイト類、有機高分子化合物焼成体(フェ
ノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化
したもの)、炭素繊維、活性炭等の炭素材料等を使用す
ることができる。The non-aqueous electrolyte for a secondary battery according to the present invention can be applied to secondary batteries of various configurations using a lithium compound as an electrolyte. For example, the present invention can be preferably applied to a lithium secondary battery having a negative electrode made of lithium metal, a lithium alloy, or a material capable of doping and undoping lithium. Here, as the lithium alloy, a lithium-aluminum alloy can be exemplified. Examples of the material capable of doping / dedoping lithium include, for example, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, and organic polymer compound fired bodies (phenol resin, Carbonized materials obtained by calcining a furan resin or the like at an appropriate temperature), carbon fibers, activated carbon, and other carbon materials can be used.
【0015】一方、正極は、充放電が可能な種々の材料
から形成することができる。例えば、LiCoO2、L
iNiO2、LiMn2O4、LiMnO2などのLixM
O2(ここで、Mは一種以上の遷移金属であり、xは電
池の充放電状態によって異なり、通常0.05≦x≦
1.20である)で表される、リチウムと一種以上の遷
移金属との複合酸化物や、FeS2、TiS2、V2O5、
MoO3、MoS2などの遷移元素のカルコゲナイトある
いはポリアセチレン、ポリピロール等のポリマー等を使
用することができる。On the other hand, the positive electrode can be formed from various chargeable / dischargeable materials. For example, LiCoO 2 , L
Li x M such as iNiO 2 , LiMn 2 O 4 , LiMnO 2
O 2 (where M is one or more transition metals, x varies depending on the charge / discharge state of the battery, and is usually 0.05 ≦ x ≦
1.20), a composite oxide of lithium and one or more transition metals, FeS 2 , TiS 2 , V 2 O 5 ,
Transition element chalcogenites such as MoO 3 and MoS 2 and polymers such as polyacetylene and polypyrrole can be used.
【0016】本発明の二次電池用非水電解液を使用した
二次電池の形状については特に限定されることはなく、
ボタン型、円筒型、角型、コイン型等の種々の形状にす
ることができる。The shape of the secondary battery using the non-aqueous electrolyte for a secondary battery of the present invention is not particularly limited.
Various shapes such as a button type, a cylindrical type, a square type, and a coin type can be used.
【0017】[0017]
【作用】本発明の二次電池用非水電解液において、非水
電解液にシリコ−ン系消泡剤を含有させると、充電放電
において、非水電解液の分解による炭酸ガス、オレフィ
ンガス等の発生を抑制し、低温放電特性が向上され、イ
ンピ−ダンス特性を改善できる。In the non-aqueous electrolyte for a secondary battery according to the present invention, when a non-aqueous electrolyte contains a silicone-based defoaming agent, carbon dioxide gas, olefin gas, etc. due to decomposition of the non-aqueous electrolyte during charge and discharge. Is suppressed, the low-temperature discharge characteristics are improved, and the impedance characteristics can be improved.
【0018】[0018]
【実施例】以下、本発明を実施例に基づいて更に説明す
る。The present invention will be further described below with reference to examples.
【0019】実施例1.当該実施例で用いた非水電解液
二次電池につき、図1に基づいて説明する。図1に示す
ごとく、本例の非水電解液二次電池1は、正極2と負極
3とセパレータ4と非水電解液5とボタン型電池容器6
と正極側集電体7と負極側集電体8とガスケット9とを
有してなる。上記正極2としては、LiCoO2を正極
活物質とする合剤をペレット状に加圧成形した成形品を
使用した。また、負極3としては、コークスを負極活物
質担体とした合剤をペレット状に加圧成形した成形品を
使用した。非水電解液5には、炭酸エチレン(EC)と
炭酸ジエチル(DEC)との混合溶媒(容量比2:3)
に、LiPF6からなる電解質を濃度1mol/リット
ルにて含有させ、さらに、シリコ−ン系消泡剤SN−3
57を0.05wt%含有してなる溶液を使用した。上
記セパレータ4にはポリプロピレン製の不織布よりなる
セパレータを用いた。また、正極側集電体7はステンレ
ス鋼により構成し、一方、負極側集電体8はニッケルエ
キスパンドメタルにより構成した。さらに、前記電池容
器6はステンレス鋼より構成し、その正極缶と負極缶を
ポリプロピレンのガスケット9により固定した。以上の
ようにして作製した電池について、電池容量、低温放電
時の電池容量、電池インピ−ダンスを調べた。尚、充電
は定電流法とし、上限電圧を4.2V、定電流での電流
密度を0.60(0.2C)mA/cm2 に設定し、放
電は、電流密度を0.60(0.2C)mA/cm2ま
たは3(1C)mA/cm2下定電流で行ない、終止電
圧は2.7Vとした。通常充放電は20℃で実施した。
低温放電時の電池容量は、通常充電した電池を−10℃
に放置し、電流密度3(1C)mA/cm2で放電を実
施し、通常放電した電池容量の比較から評価した。ま
た、電池を温度90℃の環境下に100時間放置した
後、電池を分解し、電解液を赤外分光光度計を使用して
炭酸ガス濃度を測定して評価した。Embodiment 1 FIG. Non-aqueous electrolyte used in this example
The secondary battery will be described with reference to FIG. Shown in FIG.
As described above, the non-aqueous electrolyte secondary battery 1 of this example has a positive electrode 2 and a negative electrode
3, separator 4, non-aqueous electrolyte 5 and button type battery container 6
And the positive current collector 7, the negative current collector 8, and the gasket 9
Have. As the positive electrode 2, LiCoOTwoThe positive electrode
A molded product obtained by pressure-forming the mixture as an active material into pellets
used. Further, as the negative electrode 3, coke was used as a negative electrode active material.
Molded product obtained by pressure-forming the mixture as a porous carrier into pellets
used. The non-aqueous electrolyte 5 includes ethylene carbonate (EC)
Mixed solvent with diethyl carbonate (DEC) (volume ratio 2: 3)
And LiPF6Concentration of 1mol / lit.
And a silicone-based defoamer SN-3
A solution containing 0.05 wt% of 57 was used. Up
The separator 4 is made of a nonwoven fabric made of polypropylene.
A separator was used. The positive electrode side current collector 7 is made of stainless steel.
The negative electrode-side current collector 8 is made of nickel
It was composed of Kispand metal. Further, the battery capacity
The container 6 is made of stainless steel, and the positive electrode can and the negative electrode can
It was fixed with a polypropylene gasket 9. More than
Battery, low-temperature discharge
The battery capacity and battery impedance at that time were examined. In addition, charging
Is the constant current method, the upper limit voltage is 4.2 V, and the current at the constant current
Density 0.60 (0.2C) mA / cmTwo Set to
The current density is 0.60 (0.2 C) mA / cm.TwoMa
Or 3 (1C) mA / cmTwoPerform at lower constant current, cut off current
The pressure was set to 2.7V. Normal charging and discharging were performed at 20 ° C.
Battery capacity at low temperature discharge is usually -10 ° C
At a current density of 3 (1 C) mA / cmTwoDischarge
The battery capacity was evaluated based on a comparison of the battery capacity which was normally discharged. Ma
In addition, the battery was left in an environment at a temperature of 90 ° C. for 100 hours.
Later, disassemble the battery and remove the electrolyte using an infrared spectrophotometer.
The carbon dioxide concentration was measured and evaluated.
【0020】実施例2.実施例1におけるシリコ−ン系
消泡剤をKS603に変えた以外は、上記実施例1と同
様にしてボタン型電池を作製し、実施例1と同様の条件
下で、電池容量、低温放電時の電池容量、インピ−ダン
ス、電解液の炭酸ガス濃度を調べた。Embodiment 2 FIG. A button-type battery was produced in the same manner as in Example 1 except that the silicone-based defoaming agent in Example 1 was changed to KS603. The battery capacity, impedance, and concentration of carbon dioxide in the electrolyte were examined.
【0021】実施例3.実施例1におけるシリコ−ン系
消泡剤SN−357の含有量を0.1%に変えた以外
は、実施例1と同様にしてボタン型電池を作製し、実施
例1と同様の条件下で、電池容量、低温放電時の電池容
量、インピ−ダンス、電解液の炭酸ガス濃度を調べた。Embodiment 3 FIG. A button-type battery was manufactured in the same manner as in Example 1 except that the content of the silicone-based antifoaming agent SN-357 in Example 1 was changed to 0.1%, and the same conditions as in Example 1 were used. Then, the battery capacity, the battery capacity at the time of low-temperature discharge, the impedance, and the carbon dioxide concentration of the electrolytic solution were examined.
【0022】実施例4.実施例2におけるシリコ−ン系
消泡剤KS603の含有量を0.1%とした以外は、実
施例1と同様にしてボタン型電池を作製し、上述の同様
の条件下で、電池容量、低温放電時の電池容量、インピ
−ダンス、電解液の炭酸ガス濃度を調べた。Embodiment 4 FIG. A button-type battery was manufactured in the same manner as in Example 1 except that the content of the silicone-based antifoaming agent KS603 in Example 2 was changed to 0.1%, and the battery capacity and the battery capacity were measured under the same conditions as described above. The battery capacity, impedance, and carbon dioxide concentration of the electrolytic solution during low-temperature discharge were examined.
【0023】実施例5.上記実施例3における非水電解
液を、炭酸エチレン(EC)と炭酸ジメチル(DMC)
との混合溶媒(容量比1:1)とした以外は、実施例3
と同様にしてボタン型電池を作製し、実施例1と同様の
条件下で、電池容量、低温放電時の電池容量、インピ−
ダンスを調べた。Embodiment 5 FIG. The non-aqueous electrolyte in Example 3 was replaced with ethylene carbonate (EC) and dimethyl carbonate (DMC).
Example 3 except that the solvent mixture was 1: 1 (by volume).
A button-type battery was prepared in the same manner as in Example 1, and the battery capacity, the battery capacity during low-temperature discharge,
I checked the dance.
【0024】実施例6.上記実施例4における非水電解
液を、炭酸エチレン(EC)と炭酸ジメチル(DMC)
との混合溶媒(容量比1:1)とした以外は、実施例4
と同様にしてボタン型電池を作製し、実施例1と同様の
条件下で、電池容量、低温放電時の電池容量、インピ−
ダンスを調べた。Embodiment 6 FIG. The non-aqueous electrolyte in Example 4 was replaced with ethylene carbonate (EC) and dimethyl carbonate (DMC).
Example 4 except that the mixed solvent was 1: 1 (volume ratio: 1: 1).
A button-type battery was prepared in the same manner as in Example 1, and the battery capacity, the battery capacity during low-temperature discharge,
I checked the dance.
【0025】比較例1.実施例1においてシリコ−ン系
消泡剤を添加しなかった以外は、実施例1と同様にして
ボタン型電池を作製し、実施例1と同様の条件下で、電
池容量、低温放電時の電池容量、インピ−ダンス、電解
液の炭酸ガス濃度を調べた。Comparative Example 1. A button-type battery was prepared in the same manner as in Example 1 except that the silicone-based defoaming agent was not added in Example 1, and under the same conditions as in Example 1, the battery capacity and the low-temperature discharge time were measured. The battery capacity, impedance, and concentration of carbon dioxide in the electrolytic solution were examined.
【0026】比較例2.実施例5において、シリコ−ン
系消泡剤を添加しなかった以外は、実施例5と同様にし
てボタン型電池を作製し、実施例1と同様の条件下で、
電池容量、低温放電時の電池容量、インピ−ダンス、電
解液の炭酸ガス濃度を調べた。Comparative Example 2 A button-type battery was prepared in the same manner as in Example 5 except that the silicone-based defoaming agent was not added in Example 5, and the same conditions as in Example 1 were used.
The battery capacity, the battery capacity at low temperature discharge, the impedance, and the concentration of carbon dioxide in the electrolytic solution were examined.
【0027】以上の結果を、表1、図2(A)及び図2
(B)に示す。尚、図2(A)は、実施例3および実施
例4と比較例1の低温放電後のインピ−ダンス曲線を示
す。また、図2(B)は、実施例5および実施例6と比
較例2の低温放電後のインピ−ダンス曲線を示す。The above results are shown in Table 1, FIG. 2 (A) and FIG.
It is shown in (B). FIG. 2A shows impedance curves after low-temperature discharge in Examples 3 and 4 and Comparative Example 1. FIG. 2B shows impedance curves after low-temperature discharge in Examples 5 and 6 and Comparative Example 2.
【0028】[0028]
【表1】 [Table 1]
【0029】表1に示すように、本発明のシリコ−ン系
消泡剤を添加した電解液(実施例1〜6)は、初期放電
容量、低温放電時の電池容量の全てにおいて、当該シリ
コ−ン系消泡剤を加えていない電解液(比較例1、比較
例2)に比較して、増加が見られ、効果があることが判
る。図2(A)は、実施例3および実施例4と比較例1
の低温放電後のインピ−ダンス曲線を示すが、当該図2
(A)に示すように、実施例3、実施例4とも比較例1
に比べインピ−ダンスが下がり優れていることが判る。
また、図2(B)は、実施例5および実施例6と比較例
2の低温放電後のインピ−ダンス曲線を示すが、当該図
2(B)に示すように、実施例5、実施例6とも比較例
2に比べインピ−ダンスが下がり優れていることが判
る。さらに、シリコ−ン系消泡剤を添加した電解液(実
施例1〜4)は、90℃、100時間放置後の炭酸ガス
濃度において、当該シリコ−ン系消泡剤を加えていない
電解液(比較例1、比較例2)に比較して、低下が見ら
れ、効果があることが判る。As shown in Table 1, the electrolytes (Examples 1 to 6) to which the silicone-based antifoaming agent of the present invention was added exhibited the same characteristics as the silicon in all of the initial discharge capacity and the battery capacity during low-temperature discharge. Compared with the electrolyte solution (Comparative Example 1 and Comparative Example 2) to which no -based antifoaming agent was added, an increase was observed, and it was found that there was an effect. FIG. 2A shows Examples 3 and 4 and Comparative Example 1.
FIG. 2 shows an impedance curve after low-temperature discharge of FIG.
As shown in (A), in both Examples 3 and 4, Comparative Example 1 was used.
It can be seen that the impedance is lower than that of the above.
FIG. 2B shows impedance curves after low-temperature discharge in Examples 5 and 6 and Comparative Example 2. As shown in FIG. 6 shows that the impedance is lower than that of Comparative Example 2 and is excellent. Furthermore, the electrolyte solution (Examples 1 to 4) to which the silicone-based antifoaming agent was added was the electrolyte solution to which the silicone-based antifoaming agent was not added at the carbon dioxide concentration after standing at 90 ° C. for 100 hours. Compared with (Comparative Example 1 and Comparative Example 2), a decrease was observed, and it was found that there was an effect.
【0030】以上本発明者によってなされた発明を実施
例にもとずき具体的に説明したが、本発明は上記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることはいうまでもない。例えば、
上記実施例では、電池の形状はボタン型で説明を行なっ
たが、これに限定されるものではなく、他の角型、円筒
型、コイン型等であっても同様の効果を得ることが出来
る。Although the invention made by the inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the invention. Needless to say, For example,
In the above embodiment, the shape of the battery is described as a button type, but the shape is not limited to this, and similar effects can be obtained even with other square, cylindrical, coin type, etc. .
【0031】[0031]
【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。すなわち、本発明によれば、二次電
池用非水電解液において、シリコ−ン系消泡剤を添加す
ることにより、その電解液を用いた二次電池の放電特
性、低温放電特性、および分解ガスの抑制を向上させる
ことができる。The effects obtained by the representative ones of the inventions disclosed in the present application will be briefly described as follows. That is, according to the present invention, by adding a silicone-based defoaming agent to a non-aqueous electrolyte for a secondary battery, the discharge characteristics, low-temperature discharge characteristics, and decomposition of a secondary battery using the electrolyte are added. Gas suppression can be improved.
【図1】図1は、本発明の実施例に係る非水電解液二次
電池の一例断面図である。FIG. 1 is a cross-sectional view of an example of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.
【図2】図2(A)および(B)は、それぞれ、本発明
の作用効果を説明する低温放電後のインピ−ダンス曲線
によるグラフである。FIGS. 2 (A) and 2 (B) are graphs based on impedance curves after low-temperature discharge, respectively, for explaining the operation and effect of the present invention.
1…非水電解液二次電池 2…正極 3…負極 4…セパレータ 5…非水電解液 6…ボタン型電池容器 7…正極側集電体 8…負極側集電体 9…ガスケット DESCRIPTION OF SYMBOLS 1 ... Non-aqueous electrolyte secondary battery 2 ... Positive electrode 3 ... Negative electrode 4 ... Separator 5 ... Non-aqueous electrolyte 6 ... Button type battery container 7 ... Positive side current collector 8 ... Negative side current collector 9 ... Gasket
フロントページの続き (72)発明者 小島 哲雄 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内 (72)発明者 上田 定夫 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内 (72)発明者 中野 稔 埼玉県富士見市水谷東3−11−1 富山薬 品工業株式会社志木工場内Continued on the front page (72) Inventor Tetsuo Kojima 3-11-1 Mizutani Higashi, Fujimi-shi, Saitama Toyama Pharmaceutical Industry Co., Ltd. Shiki Plant (72) Inventor Sadao Ueda 3-1-1-1, Mizutani Higashi, Fujimi-shi, Saitama Toyama (72) Inventor Minoru Nakano 3-11-1 Higashi Mizutani, Fujimi-shi, Saitama Toyama Pharmaceutical Co., Ltd.
Claims (3)
物を含む二次電池用非水電解液において、シリコ−ン系
消泡剤を添加してなることを特徴とする二次電池用非水
電解液。1. A non-aqueous electrolyte for a secondary battery comprising a non-aqueous solvent and a non-aqueous electrolyte for a secondary battery containing a lithium compound as an electrolyte, wherein a silicone-based defoaming agent is added. liquid.
解液中の濃度が、10ppm〜10重量%であることを
特徴とする、請求項1に記載の二次電池用非水電解液。2. The non-aqueous electrolyte for a secondary battery according to claim 1, wherein the concentration of the silicone-based defoamer in the non-aqueous electrolyte for the secondary battery is 10 ppm to 10% by weight. Water electrolyte.
れるシリコ−ン系消泡剤であることを特徴とする、請求
項1または2に記載の二次電池用非水電解液。 【式1】 但し、上記式中のR は、有機基もしくは水素原子であ
り、同一でも、異なっていてもよい。3. A silicone-based antifoaming agent represented by the following formula 1.
Characterized in that it is a silicone-based antifoaming agent
Item 3. The non-aqueous electrolyte for a secondary battery according to item 1 or 2. (Equation 1)However, in the above formula, R Is an organic group or a hydrogen atom
And may be the same or different.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9363895A JPH11185804A (en) | 1997-12-18 | 1997-12-18 | Nonaqueous electrolyte for secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9363895A JPH11185804A (en) | 1997-12-18 | 1997-12-18 | Nonaqueous electrolyte for secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11185804A true JPH11185804A (en) | 1999-07-09 |
Family
ID=18480459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9363895A Pending JPH11185804A (en) | 1997-12-18 | 1997-12-18 | Nonaqueous electrolyte for secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11185804A (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7226702B2 (en) | 2002-03-22 | 2007-06-05 | Quallion Llc | Solid polymer electrolyte and method of preparation |
WO2008023744A1 (en) | 2006-08-22 | 2008-02-28 | Mitsubishi Chemical Corporation | Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same |
WO2008133207A1 (en) | 2007-04-20 | 2008-11-06 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte, and rechargeable battery with the nonaqueous electrolyte |
US7473491B1 (en) | 2003-09-15 | 2009-01-06 | Quallion Llc | Electrolyte for electrochemical cell |
US7498102B2 (en) | 2002-03-22 | 2009-03-03 | Bookeun Oh | Nonaqueous liquid electrolyte |
US7588859B1 (en) | 2004-02-11 | 2009-09-15 | Bookeun Oh | Electrolyte for use in electrochemical devices |
US7695860B2 (en) | 2002-03-22 | 2010-04-13 | Quallion Llc | Nonaqueous liquid electrolyte |
US7718321B2 (en) | 2004-02-04 | 2010-05-18 | Quallion Llc | Battery having electrolyte including organoborate salt |
US8076032B1 (en) | 2004-02-04 | 2011-12-13 | West Robert C | Electrolyte including silane for use in electrochemical devices |
US8076031B1 (en) | 2003-09-10 | 2011-12-13 | West Robert C | Electrochemical device having electrolyte including disiloxane |
EP2476157A1 (en) * | 2009-09-08 | 2012-07-18 | Li-tec Battery GmbH | Additive for electrolytes in electrochemical cells |
WO2012105510A1 (en) | 2011-01-31 | 2012-08-09 | 三菱化学株式会社 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
US8715863B2 (en) | 2004-05-20 | 2014-05-06 | Quallion Llc | Battery having electrolyte with mixed solvent |
US9048508B2 (en) | 2007-04-20 | 2015-06-02 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
CN106976853A (en) * | 2017-04-18 | 2017-07-25 | 江苏国泰超威新材料有限公司 | A kind of preparation method of difluorophosphate |
US9786954B2 (en) | 2004-02-04 | 2017-10-10 | Robert C. West | Electrolyte including silane for use in electrochemical devices |
JP2021089807A (en) * | 2019-12-02 | 2021-06-10 | 株式会社Gsユアサ | Non-aqueous electrolyte, non-aqueous electrolyte power storage element, and manufacturing method thereof |
-
1997
- 1997-12-18 JP JP9363895A patent/JPH11185804A/en active Pending
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7226702B2 (en) | 2002-03-22 | 2007-06-05 | Quallion Llc | Solid polymer electrolyte and method of preparation |
US7498102B2 (en) | 2002-03-22 | 2009-03-03 | Bookeun Oh | Nonaqueous liquid electrolyte |
US7695860B2 (en) | 2002-03-22 | 2010-04-13 | Quallion Llc | Nonaqueous liquid electrolyte |
US8076031B1 (en) | 2003-09-10 | 2011-12-13 | West Robert C | Electrochemical device having electrolyte including disiloxane |
US7473491B1 (en) | 2003-09-15 | 2009-01-06 | Quallion Llc | Electrolyte for electrochemical cell |
US9786954B2 (en) | 2004-02-04 | 2017-10-10 | Robert C. West | Electrolyte including silane for use in electrochemical devices |
US7718321B2 (en) | 2004-02-04 | 2010-05-18 | Quallion Llc | Battery having electrolyte including organoborate salt |
US8076032B1 (en) | 2004-02-04 | 2011-12-13 | West Robert C | Electrolyte including silane for use in electrochemical devices |
US7588859B1 (en) | 2004-02-11 | 2009-09-15 | Bookeun Oh | Electrolyte for use in electrochemical devices |
US8715863B2 (en) | 2004-05-20 | 2014-05-06 | Quallion Llc | Battery having electrolyte with mixed solvent |
JP2013056829A (en) * | 2006-08-22 | 2013-03-28 | Mitsubishi Chemicals Corp | Method for producing lithium difluorophosphate, method for producing nonaqueous electrolyte, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery employing the nonaqueous electrolyte |
WO2008023744A1 (en) | 2006-08-22 | 2008-02-28 | Mitsubishi Chemical Corporation | Lithium difluorophosphate, electrolytic solution containing lithium difluorophosphate, process for producing lithium difluorophosphate, process for producing nonaqueous electrolytic solution, nonaqueous electrolytic solution, and nonaqueous-electrolytic-solution secondary cell employing the same |
US9653754B2 (en) | 2007-04-20 | 2017-05-16 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
WO2008133207A1 (en) | 2007-04-20 | 2008-11-06 | Mitsubishi Chemical Corporation | Nonaqueous electrolyte, and rechargeable battery with the nonaqueous electrolyte |
US9048508B2 (en) | 2007-04-20 | 2015-06-02 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
US9231277B2 (en) | 2007-04-20 | 2016-01-05 | Mitsubishi Chemical Corporation | Nonaqueous electrolytes and nonaqueous-electrolyte secondary batteries employing the same |
EP2476157B1 (en) * | 2009-09-08 | 2013-10-09 | Li-tec Battery GmbH | Additive for electrolytes in electrochemical cells |
EP2476157A1 (en) * | 2009-09-08 | 2012-07-18 | Li-tec Battery GmbH | Additive for electrolytes in electrochemical cells |
WO2012105510A1 (en) | 2011-01-31 | 2012-08-09 | 三菱化学株式会社 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
US9806375B2 (en) | 2011-01-31 | 2017-10-31 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
KR20190025032A (en) | 2011-01-31 | 2019-03-08 | 미쯔비시 케미컬 주식회사 | Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same |
US11688881B2 (en) | 2011-01-31 | 2023-06-27 | Mitsubishi Chemical Corporation | Nonaqueous electrolytic solution and nonaqueous electrolytic solution secondary battery using same |
CN106976853A (en) * | 2017-04-18 | 2017-07-25 | 江苏国泰超威新材料有限公司 | A kind of preparation method of difluorophosphate |
JP2021089807A (en) * | 2019-12-02 | 2021-06-10 | 株式会社Gsユアサ | Non-aqueous electrolyte, non-aqueous electrolyte power storage element, and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9673484B2 (en) | Non-aqueous electrolyte and secondary battery comprising the same | |
EP2206189B1 (en) | Non-aqueous electrolyte lithium secondary battery | |
US7678504B2 (en) | Lithium secondary battery and a method for preparing the same | |
KR100898857B1 (en) | Non-aqueous electrolyte and secondary battery using the same | |
US7976988B2 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
KR101211127B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
WO2005057713A1 (en) | Secondary battery | |
JPH11185804A (en) | Nonaqueous electrolyte for secondary battery | |
KR101297173B1 (en) | Lithium rechargeable battery | |
JP2001023687A (en) | Nonaqueous electrolyte battery | |
KR100573109B1 (en) | Organic electrolytic solution and lithium battery employing the same | |
KR101431259B1 (en) | Additive for non-aqueous electrolyte and secondary battery using the same | |
JP2004014351A (en) | Nonaqueous electrolyte secondary battery | |
JP2002302649A (en) | Agent forming film on electrode surface | |
US7306880B2 (en) | Electrolyte for a lithium ion battery and a lithium ion battery comprising the same | |
JP2001023690A (en) | Nonaqueous electrolyte for secondary battery | |
JP2001015156A (en) | Nonaqueous electrolyte battery | |
US20030148190A1 (en) | Non-aqueous electrolyte and lithium secondary battery using the same | |
JP4465499B2 (en) | Non-aqueous electrolyte for secondary batteries | |
JP2005190978A (en) | Nonaqueous electrolyte secondary battery | |
JP3704589B2 (en) | Non-aqueous electrolyte for secondary batteries | |
JP2004342575A (en) | Secondary battery | |
JPH11273732A (en) | Nanaqueous electrolyte for secondary battery | |
JP4706807B2 (en) | Non-aqueous electrolytic secondary battery | |
JP2000348763A (en) | Nonaqueous electrolytic solution for secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071121 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 5 Free format text: PAYMENT UNTIL: 20081121 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081121 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091121 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101121 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20101121 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111121 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121121 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131121 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |