JPH0729996A - Semiconductor memory device - Google Patents

Semiconductor memory device

Info

Publication number
JPH0729996A
JPH0729996A JP5171814A JP17181493A JPH0729996A JP H0729996 A JPH0729996 A JP H0729996A JP 5171814 A JP5171814 A JP 5171814A JP 17181493 A JP17181493 A JP 17181493A JP H0729996 A JPH0729996 A JP H0729996A
Authority
JP
Japan
Prior art keywords
pair
data
nmos
gate
bit line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5171814A
Other languages
Japanese (ja)
Inventor
Masahiko Nakajima
雅彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5171814A priority Critical patent/JPH0729996A/en
Publication of JPH0729996A publication Critical patent/JPH0729996A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To guarantee operations at a low voltage to sufficiently cope with a power source electric potential of 3.0V+ or -10% which is a market requirement. CONSTITUTION:A threshold value voltage in a bit line load circuit 11, a column gate 13, a write gate 14, a data transfer gate 12 of a memory cell, and a data bus load circuit 17 is set lower than that of other NMOSs. Incidentally, in order to reduce Vth, after an N channel doping step of forming a normal NMOS channel is completed, a mask of an NMOS channel part for reducing Vth is made to form it by performing a channel doping step again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体記憶装置、特にS
RAM(スタティック・ランダムアクセス・メモリ)の
低電圧での動作保証に関する。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor memory device, and more particularly to an S memory device.
The present invention relates to guaranteeing an operation of a RAM (Static Random Access Memory) at a low voltage.

【0002】[0002]

【従来の技術】図2に従来の一実施例を示す。図2でB
L、XBLは1対のビット線、21はNMOS構成の1
対のビット線負荷回路で、そのソースは電源電位に接続
されドレインはビット線の一端に接続されゲートはビッ
ト線負荷制御信号LDに接続されている。DB、XDB
は1対のデータバス、23はNMOS構成の1対のカラ
ムゲートで、そのソースはビット線の他の一端に、ドレ
インはデータバスの一端に、ゲートはカラム選択信号C
Gにそれぞれ接続されている。15はデータ記憶回路で
1対の高抵抗負荷素子151、152と1対のNMOS
素子153、154で構成され、高抵抗負荷素子の一端
は電源電位に、他の一端はNMOS素子のドレインM
C、XMCに接続され、NMOS素子のソースは接地さ
れ、153のゲートはMCに、154のゲートはXMC
に接続されている。22はNMOS構成の1対のデータ
転送ゲートで、そのソースは該ビット線に、ドレインは
該データ記憶回路のNMOS素子のドレインMC、XM
Cに、ゲートはワード線選択信号WLにそれぞれ接続さ
れている。WB、XWBは1対のデータ書き込みバス、
24はNMOS構成の1対の書き込みゲートで、ソース
は該データ書き込みバスの一端に、ドレインは該データ
バスの他の一端に、ゲートはデータ書き込み制御信号W
Gにそれぞれ接続されている。16は入出力回路で該デ
ータ書き込みバスの他の一端と接続している。27はN
MOS構成の1対のデータバス負荷回路でソースとゲー
トは電源電位に、ドレインは該データバスの一端にそれ
ぞれ接続されている。該ビット線対は1対のデータバス
にそれぞれ1対のカラムゲートを介して複数対接続され
ている。またデータ記憶回路は1対のビット線にそれぞ
れ1対のデータ転送ゲートを介して複数個接続されてい
る。
2. Description of the Related Art FIG. 2 shows a conventional embodiment. B in FIG.
L and XBL are a pair of bit lines, 21 is an NMOS 1
In the pair of bit line load circuits, the source is connected to the power supply potential, the drain is connected to one end of the bit line, and the gate is connected to the bit line load control signal LD. DB, XDB
Is a pair of data buses, and 23 is a pair of column gates having an NMOS structure, the source of which is the other end of the bit line, the drain is one end of the data bus, and the gate is the column selection signal C.
It is connected to G respectively. Reference numeral 15 is a data storage circuit, which is a pair of high resistance load elements 151 and 152 and a pair of NMOS.
The high resistance load element is composed of the elements 153 and 154. One end of the high resistance load element is at the power supply potential, and the other end is the drain M of the NMOS element.
The source of the NMOS element is grounded, the gate of 153 is MC, and the gate of 154 is XMC.
It is connected to the. 22 is a pair of NMOS data transfer gates, the source of which is the bit line and the drain of which is the drain MC, XM of the NMOS element of the data storage circuit.
The gate is connected to C and the gate is connected to the word line selection signal WL. WB and XWB are a pair of data write buses,
Reference numeral 24 denotes a pair of write gates having an NMOS structure, the source being one end of the data write bus, the drain being the other end of the data bus, and the gate being the data write control signal W.
It is connected to G respectively. An input / output circuit 16 is connected to the other end of the data write bus. 27 is N
In a pair of MOS data bus load circuits, the source and gate are connected to the power supply potential, and the drain is connected to one end of the data bus. A plurality of bit line pairs are connected to a pair of data buses via a pair of column gates. A plurality of data storage circuits are connected to a pair of bit lines via a pair of data transfer gates.

【0003】以上のような構成の半導体記憶装置に於い
て該データ記憶回路にデータを書き込む際の動作及び伝
搬されるデータ電位について図4を使って説明する。
The operation of writing data to the data storage circuit and the data potential to be propagated in the semiconductor memory device having the above-mentioned structure will be described with reference to FIG.

【0004】NMOS素子はソースからドレインに電位
が伝送される際、しきい値電圧VthN分の電位が下が
る。つまりソース側に電源電位VDDが与えられた場
合、ドレイン側ではVDD―VthNの電位になる。以
下の説明ではビット線負荷回路21、カラムゲート2
3、書き込みゲート24のしきい値電位をVthN、デ
ータ転送ゲート22、NMOS素子153、154のし
きい値電圧をVthMとし、バックゲート効果などを無
視している。
In the NMOS element, when the potential is transmitted from the source to the drain, the potential corresponding to the threshold voltage VthN decreases. That is, when the power supply potential VDD is applied to the source side, the potential becomes VDD-VthN on the drain side. In the following description, the bit line load circuit 21 and the column gate 2
3, the threshold voltage of the write gate 24 is VthN, the threshold voltage of the data transfer gate 22, the NMOS elements 153 and 154 is VthM, and the back gate effect is ignored.

【0005】入出力回路16からデータ書き込みバス対
WB、XWBにそれぞれVDDと0Vが与えられる。デ
ータバスDB、XDBの電位はデータバス負荷回路27
が常時オンの状態にあるためVDD−VthNに保たれ
ている。データ書き込み制御信号WGがVDD電位(以
下”H”と略す)になった時書き込みゲート24がオン
となりデータ書き込みバスWB、XWBの電位がデータ
バスDB、XDBに電送される。この時データバスの電
位はそれぞれVDD―VthNと0Vになる。カラムゲ
ート選択信号CGが接地電位(以下”L”と略す)の間
にビット線負荷制御信号LDは”H”になり、ビット線
負荷回路21がオンとなりビット線BL、XBLの電位
は共にVDD―VthNとなる。次にビット線負荷制御
信号LDが”L”となりビット線負荷回路21がオフ
し、カラムゲート選択信号CGが”H”でカラムゲート
23がオンとなりデータバスDB、XDBの電位とビッ
ト線BL、XBLの電位がイコライズされる。この時ビ
ット線の電位はそれぞれVDD―VthNと0Vにな
る。次にワード線選択信号WLが”H”でデータ転送ゲ
ート22がオンとなりビット線BL、XBLの電位がデ
ータ記憶回路のNMOS素子153、154のドレイン
MC、XMCに電送される。この時MC、XMCの電位
はVDD―VthN―VthMと0Vになる。
VDD and 0V are applied from the input / output circuit 16 to the data write bus pair WB and XWB, respectively. The potentials of the data buses DB and XDB are the data bus load circuit 27.
Is always on, and therefore is kept at VDD-VthN. When the data write control signal WG reaches the VDD potential (hereinafter abbreviated as “H”), the write gate 24 is turned on and the potentials of the data write buses WB and XWB are transferred to the data buses DB and XDB. At this time, the potential of the data bus becomes VDD-VthN and 0V, respectively. While the column gate selection signal CG is at the ground potential (hereinafter abbreviated as “L”), the bit line load control signal LD becomes “H”, the bit line load circuit 21 is turned on, and the potentials of the bit lines BL and XBL are both VDD. -It becomes VthN. Next, the bit line load control signal LD becomes "L", the bit line load circuit 21 is turned off, the column gate selection signal CG is "H", the column gate 23 is turned on, and the potentials of the data buses DB and XDB and the bit line BL, The potential of XBL is equalized. At this time, the potentials of the bit lines become VDD-VthN and 0V, respectively. Next, when the word line selection signal WL is "H", the data transfer gate 22 is turned on and the potentials of the bit lines BL and XBL are transferred to the drains MC and XMC of the NMOS elements 153 and 154 of the data storage circuit. At this time, the potentials of MC and XMC become VDD-VthN-VthM and 0V.

【0006】[0006]

【発明が解決しようとする課題】このデータ記憶回路に
この電位が保持されるためには、NMOS素子153、
154のしきい値電圧VthMが次のような関係になけ
ればならない。
In order to hold this potential in the data storage circuit, the NMOS element 153,
The threshold voltage VthM of 154 must have the following relationship.

【0007】VthM<VDD―VthN―VthM つまりこのデータ記憶回路にデータが保持できる動作下
限電源電位はVthN+2×VthM以上である。ここ
で仮にVthN=0.90V、VthM=1.00Vと
すると、動作下限電源電位は2.90V以上となる。ま
た現実的にはバックゲート効果の影響も加味されるので
さらに高くなる。市場ニーズとして電源電位3.0V±
10%での動作が求められる中で、この動作下限電源電
位では対応することはできない。
VthM <VDD-VthN-VthM That is, the operation lower limit power supply potential capable of holding data in this data storage circuit is VthN + 2 × VthM or more. If VthN = 0.90V and VthM = 1.00V, the operation lower limit power supply potential becomes 2.90V or higher. Further, in reality, the influence of the back gate effect is also added, so that it becomes even higher. Power supply potential of 3.0V ± as market needs
While the operation at 10% is required, this operation lower limit power supply potential cannot be applied.

【0008】本発明はかかる点を改善し、低電圧での動
作を保証できる半導体記憶装置を提供しようとするもの
である。
The present invention aims to improve the above points and provide a semiconductor memory device capable of guaranteeing operation at a low voltage.

【0009】[0009]

【課題を解決するための手段】本発明の半導体記憶装置
は、1対のビット線と、該ビット線に接続されるNチャ
ンネルMOS型FET(以下NMOSと略す)で構成さ
れた1対のビット線負荷回路と、該ビット線と1対のデ
ータバスの間に接続されるNMOSで構成された1対の
カラムゲートと、該ビット線とデータ記憶回路の間に接
続されるNMOSで構成された1対のデータ転送ゲート
と、該データバスと1対のデータ書き込みバスの間に接
続されるNMOSで構成される1対の書き込みゲート
と、該データバスに接続されるNMOSで構成された1
対のデータバス負荷回路で構成される半導体記憶装置に
おいて、該ビット線負荷回路と該カラムゲートと該デー
タ転送ゲートと該書き込みゲートと該データバス負荷回
路のNMOSのしきい値電圧をその他のNMOSのしき
い値電圧よりも低くしたことを特徴とする。
A semiconductor memory device of the present invention includes a pair of bits composed of a pair of bit lines and an N channel MOS type FET (hereinafter abbreviated as NMOS) connected to the bit lines. A line load circuit, a pair of column gates composed of an NMOS connected between the bit line and a pair of data buses, and an NMOS connected between the bit line and a data storage circuit 1 composed of a pair of data transfer gates, a pair of write gates composed of an NMOS connected between the data bus and a pair of data write buses, and 1 composed of an NMOS connected to the data bus
In a semiconductor memory device including a pair of data bus load circuits, the bit line load circuit, the column gate, the data transfer gate, the write gate, and the NMOS threshold voltage of the data bus load circuit are set to other NMOSs. It is characterized in that it is lower than the threshold voltage of.

【0010】[0010]

【実施例】本発明の実施例を図1、図3を使って説明す
る。図1において図2と共通の記号については説明を省
く。図1で11はNMOS構成で「しきい値電圧をその
他のNMOSのしきい値電圧よりも低くした」(以下
「低Vth化した」と略す)1対のビット線負荷回路で
図2の21に置き替わる。12はNMOS構成の低Vt
h化した1対のデータ転送ゲートで図2の22に置き替
わる。13はNMOS構成の低Vth化した1対のカラ
ムゲートで図2の23に置き替わる。14はNMOS構
成の低Vth化した1対の書き込みゲートで図2の24
に置き替わる。17はNMOS構成の低Vth化した1
対のデータバス負荷回路で図2の27に置き替わる。1
1、12、13、14、17のしきい値電圧は図2の対
応する21、22、23、24、27のしきい値電圧に
対しΔVth低く設定されている。つまり11、13、
14、17のしきい値電圧はVthN―ΔVth、12
のしきい値電圧はVthM―ΔVthとなる。なお低V
th化するには通常のNMOSチャンネルを形成するN
チャンネルドープ工程の後、低Vth化するNMOSの
チャンネル部分のマスクを作成し、再度チャンネルドー
プ工程を行なうことにより形成する。
Embodiments of the present invention will be described with reference to FIGS. In FIG. 1, description of the symbols common to FIG. 2 is omitted. Reference numeral 11 in FIG. 1 denotes a pair of bit line load circuits "having a threshold voltage lower than that of other NMOS" (hereinafter abbreviated as "lowered Vth") 11 in the NMOS configuration, and 21 in FIG. Will be replaced. 12 is a low Vt of NMOS configuration
A pair of data transfer gates that are converted into h replaces 22 in FIG. Reference numeral 13 denotes a pair of column gates having a low Vth and having an NMOS structure, which replaces 23 in FIG. Reference numeral 14 denotes a pair of write gates having a low Vth and having an NMOS structure.
Will be replaced. 17 is an NMOS structure having a low Vth 1
The pair of data bus load circuits replaces 27 in FIG. 1
The threshold voltages of 1, 12, 13, 14, 17 are set lower by ΔVth than the corresponding threshold voltages of 21, 22, 23, 24, 27 in FIG. That is 11, 13,
The threshold voltage of 14 and 17 is VthN-ΔVth, 12
Has a threshold voltage of VthM-ΔVth. Low V
N to form a normal NMOS channel
After the channel doping step, a mask for the channel portion of the NMOS for lowering Vth is created, and the channel doping step is performed again to form the mask.

【0011】以上のような構成の半導体記憶装置に於い
て該データ記憶回路にデータを書き込む際の動作及び伝
搬されるデータ電位について図3を使って説明する。
The operation of writing data in the data storage circuit and the data potential to be propagated in the semiconductor memory device having the above configuration will be described with reference to FIG.

【0012】低Vth化したNMOS素子はソースから
ドレインに電位が伝送される際、しきい値電圧(Vth
N―ΔVth)分の電位が下がる。つまりソース側に電
源電位VDDが与えられた場合、ドレイン側ではVDD
―VthN+ΔVthの電位になる。以下の説明ではビ
ット線負荷回路11、カラムゲート13、書き込みゲー
ト14のしきい値電位をVthN―ΔVth、データ転
送ゲート12のしきい値電位をVthM―ΔVth、N
MOS素子153、154のしきい値電圧をVthMと
し、バックゲート効果などを無視している。
The NMOS device having a reduced Vth has a threshold voltage (Vth) when a potential is transmitted from the source to the drain.
The potential for N-ΔVth) decreases. That is, when the power supply potential VDD is applied to the source side, VDD is applied to the drain side.
The potential becomes −VthN + ΔVth. In the following description, the threshold potentials of the bit line load circuit 11, the column gate 13, and the write gate 14 are VthN-ΔVth, and the threshold potential of the data transfer gate 12 is VthM-ΔVth, N.
The threshold voltage of the MOS elements 153 and 154 is set to VthM, and the back gate effect and the like are ignored.

【0013】入出力回路16からデータ書き込みバス対
WB、XWBにそれぞれVDDと0Vが与えられる。デ
ータバスDB、XDBの電位はデータバス負荷回路17
が常時オンの状態にあるためVDD−VthN+ΔVt
hに保たれている。データ書き込み制御信号WGが”
H”になった時書き込みゲート14がオンとなりデータ
書き込みバスWB、XWBの電位がデータバスDB、X
DBに電送される。この時データバスの電位はそれぞれ
VDD―VthN+ΔVthと0Vになる。カラムゲー
ト選択信号CGが”L”の間にビット線負荷制御信号L
Dは”H”になり、ビット線負荷回路11がオンとなり
ビット線BL、XBLの電位は共にVDD―VthN+
ΔVthとなる。次にビット線負荷制御信号LDが”
L”となりビット線負荷回路11がオフし、カラムゲー
ト選択信号CGが”H”でカラムゲート13がオンとな
りデータバスDB、XDBの電位とビット線BL、XB
Lの電位がイコライズされる。この時ビット線の電位は
それぞれVDD―VthN+ΔVthと0Vになる。次
にワード線選択信号WLが”H”でデータ転送ゲート1
2がオンとなりビット線BL、XBLの電位がデータ記
憶回路のNMOS素子153、154のドレインMC、
XMCに電送される。この時MC、XMCの電位はVD
D―VthN―VthM+2×ΔVthと0Vになる。
VDD and 0V are applied from the input / output circuit 16 to the data write bus pair WB and XWB, respectively. The potentials of the data buses DB and XDB are the data bus load circuit 17
Is always on, VDD-VthN + ΔVt
It is kept at h. The data write control signal WG is "
When it becomes "H", the write gate 14 is turned on and the potentials of the data write buses WB and XWB are set to the data buses DB and X.
It is transmitted to the DB. At this time, the potential of the data bus becomes VDD-VthN + ΔVth and 0V, respectively. While the column gate selection signal CG is "L", the bit line load control signal L
D becomes "H", the bit line load circuit 11 is turned on, and the potentials of the bit lines BL and XBL are both VDD-VthN +.
It becomes ΔVth. Next, the bit line load control signal LD is "
The bit line load circuit 11 is turned off, the column gate selection signal CG is turned "H", the column gate 13 is turned on, and the potentials of the data buses DB and XDB and the bit lines BL and XB are turned on.
The potential of L is equalized. At this time, the potentials of the bit lines become VDD-VthN + ΔVth and 0V, respectively. Next, when the word line selection signal WL is "H", the data transfer gate 1
2 is turned on, and the potentials of the bit lines BL and XBL become the drains MC of the NMOS elements 153 and 154 of the data storage circuit.
It is transmitted to XMC. At this time, the potential of MC and XMC is VD
D-VthN-VthM + 2 × ΔVth, which is 0V.

【0014】[0014]

【発明の効果】データ記憶回路のMCのノードに保持さ
れた電位を従来例と比較すると2×ΔVth高く書き込
まれたことになる。すなわちこのデータ記憶回路にデー
タが保持できる動作下限電源電位はVthN+2×Vt
hM―2×ΔVthとなり、従来例よりも2×ΔVth
低い電源電位まで動作保証することができる。ここで仮
にVth=0.90V、VthM=1.00V、ΔVt
h=0.30Vとすると、動作下限電位は2.30V以
上となる。これにより市場ニーズの電源電位3.0V±
10%を十分に保証できる半導体記憶装置を供給可能と
なる。
As compared with the conventional example, the potential held in the node MC of the data storage circuit is written higher by 2 × ΔVth. That is, the operation lower limit power supply potential that can hold data in this data storage circuit is VthN + 2 × Vt.
hM-2 × ΔVth, which is 2 × ΔVth more than the conventional example.
Operation can be guaranteed up to a low power supply potential. Here, it is assumed that Vth = 0.90V, VthM = 1.00V, and ΔVt.
When h = 0.30V, the operation lower limit potential becomes 2.30V or higher. As a result, the power supply potential of the market needs 3.0V ±
It is possible to supply a semiconductor memory device that can sufficiently guarantee 10%.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す回路図である。FIG. 1 is a circuit diagram showing an embodiment of the present invention.

【図2】従来の実施例を示す回路図である。FIG. 2 is a circuit diagram showing a conventional embodiment.

【図3】図1の動作説明用の波形図である。FIG. 3 is a waveform diagram for explaining the operation of FIG.

【図4】図2の動作説明用の波形図である。FIG. 4 is a waveform diagram for explaining the operation of FIG.

【符号の説明】[Explanation of symbols]

11 低Vth化したビット線負荷回路 12 低Vth化したデータ転送ゲート 13 低Vth化したカラムゲート 14 低Vth化した書き込みゲート 15 データ記憶回路 151、152 高抵抗負荷素子 153、154 NMOS素子 16 入出力回路 17 低Vth化したデータバス負荷回路 21 ビット線負荷回路 22 データ転送ゲート 23 カラムゲート 24 書き込みゲート 27 データバス負荷回路 MC、XMC データ記憶回路端子 BL、XBL ビット線 DB、XDB データバス WB、XWB データ書き込みバス LD ビット線負荷制御信号 WL ワード線選択信号 CG カラムゲート選択信号 WG データ書き込み制御信号 11 Bit line load circuit with low Vth 12 Data transfer gate with low Vth 13 Column gate with low Vth 14 Write gate with low Vth 15 Data storage circuit 151, 152 High resistance load element 153, 154 NMOS element 16 Input / output Circuit 17 Low Vth data bus load circuit 21 Bit line load circuit 22 Data transfer gate 23 Column gate 24 Write gate 27 Data bus load circuit MC, XMC Data storage circuit terminal BL, XBL Bit line DB, XDB Data bus WB, XWB Data write bus LD Bit line load control signal WL Word line selection signal CG Column gate selection signal WG Data write control signal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】1対のビット線と、該ビット線に接続され
るNチャンネルMOS型FET(以下NMOSと略す)
で構成された1対のビット線負荷回路と、該ビット線と
1対のデータバスの間に接続されるNMOSで構成され
た1対のカラムゲートと、該ビット線とデータ記憶回路
の間に接続されるNMOSで構成された1対のデータ転
送ゲートと、該データバスと1対のデータ書き込みバス
の間に接続されるNMOSで構成される1対の書き込み
ゲートと、該データバスに接続されるNMOSで構成さ
れた1対のデータバス負荷回路で構成される半導体記憶
装置において、該ビット線負荷回路と該カラムゲートと
該データ転送ゲートと該書き込みゲートと該データバス
負荷回路のNMOSのしきい値電圧をその他のNMOS
のしきい値電圧よりも低くしたことを特徴とする半導体
記憶装置。
1. A pair of bit lines and an N-channel MOS type FET (hereinafter abbreviated as NMOS) connected to the bit lines.
A pair of bit line load circuits, a pair of column gates composed of NMOS connected between the bit lines and the pair of data buses, and a pair of bit line load circuits between the bit lines and the data storage circuit. Connected to the data bus is a pair of data transfer gates made up of NMOSs, a pair of write gates made up of NMOSs connected between the data bus and a pair of data write buses. In a semiconductor memory device including a pair of data bus load circuits configured by NMOSs, the bit line load circuit, the column gate, the data transfer gate, the write gate, and the NMOS of the data bus load circuit. Threshold voltage for other NMOS
A semiconductor memory device characterized by being made lower than the threshold voltage of.
JP5171814A 1993-07-12 1993-07-12 Semiconductor memory device Pending JPH0729996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5171814A JPH0729996A (en) 1993-07-12 1993-07-12 Semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5171814A JPH0729996A (en) 1993-07-12 1993-07-12 Semiconductor memory device

Publications (1)

Publication Number Publication Date
JPH0729996A true JPH0729996A (en) 1995-01-31

Family

ID=15930231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5171814A Pending JPH0729996A (en) 1993-07-12 1993-07-12 Semiconductor memory device

Country Status (1)

Country Link
JP (1) JPH0729996A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267837A (en) * 2004-02-20 2005-09-29 Renesas Technology Corp Semiconductor device
US7408231B2 (en) 1999-06-29 2008-08-05 Renesas Technology Corp. SRAM memory semiconductor integrated circuit device
JP2010114705A (en) * 2008-11-07 2010-05-20 Audio Technica Corp Unidirectional dynamic microphone
US20110142265A1 (en) * 2009-12-16 2011-06-16 Hiroshi Akino Capacitor microphone unit and capacitor microphone

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7408231B2 (en) 1999-06-29 2008-08-05 Renesas Technology Corp. SRAM memory semiconductor integrated circuit device
JP2005267837A (en) * 2004-02-20 2005-09-29 Renesas Technology Corp Semiconductor device
JP4646636B2 (en) * 2004-02-20 2011-03-09 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2010114705A (en) * 2008-11-07 2010-05-20 Audio Technica Corp Unidirectional dynamic microphone
US20110142265A1 (en) * 2009-12-16 2011-06-16 Hiroshi Akino Capacitor microphone unit and capacitor microphone
US8526664B2 (en) 2009-12-16 2013-09-03 Kabushiki Kaisha Audio-Technica Capacitor microphone unit and capacitor microphone

Similar Documents

Publication Publication Date Title
JP2007328900A (en) Static semiconductor memory
KR970023375A (en) Data holding circuit
US6771550B2 (en) Semiconductor memory device with stable precharge voltage level of data lines
US6897684B2 (en) Input buffer circuit and semiconductor memory device
KR19980080153A (en) Memory device and fast write recovery method for fast write recovery
US6466501B2 (en) Semiconductor memory device having sense amplifier and method for driving sense amplifier
KR860008562A (en) Bitline Driver and Transistor Combination
KR100618066B1 (en) Semiconductor memory device
JPH0729996A (en) Semiconductor memory device
JP2937719B2 (en) Semiconductor storage device
JPS5813519Y2 (en) semiconductor storage device
JPH0660665A (en) Bit line load circuit of semiconductor static ram
JPS6260190A (en) Semiconductor storage device
KR100662215B1 (en) Sram circuit and operating method thereof
JP2738793B2 (en) Semiconductor storage device
JP2525728B2 (en) Semiconductor memory device
KR100386620B1 (en) Circuit for Controlling Power Voltage of Static Random Access Memory
JPH087998B2 (en) Memory-circuit
KR920001051Y1 (en) Semiconductor memory device having isolation tr
JPH06150656A (en) Semiconductor memory device
JP3162783B2 (en) Semiconductor storage device
JPH0544757B2 (en)
JPS6322388B2 (en)
JPH11176153A (en) Semiconductor integrated circuit
JPH0580760B2 (en)