JPH07283429A - Method for manufacturing thin-film solar cell - Google Patents

Method for manufacturing thin-film solar cell

Info

Publication number
JPH07283429A
JPH07283429A JP6065863A JP6586394A JPH07283429A JP H07283429 A JPH07283429 A JP H07283429A JP 6065863 A JP6065863 A JP 6065863A JP 6586394 A JP6586394 A JP 6586394A JP H07283429 A JPH07283429 A JP H07283429A
Authority
JP
Japan
Prior art keywords
layer
thin film
solar cell
film solar
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6065863A
Other languages
Japanese (ja)
Inventor
Shinichi Muramatsu
信一 村松
Hiroshi Kajiyama
博司 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6065863A priority Critical patent/JPH07283429A/en
Publication of JPH07283429A publication Critical patent/JPH07283429A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To form a high-quality crystal thin film at a lower temperature than a thermal crystallizability temperature by forming one portion of a crystal semiconductor thin film as an amorphous layer and applying X ray to the amorphous layer. CONSTITUTION:P<+> type polycrystalline silicon 3 is formed on a metal substrate 2 and p-type amorphous silicon 4 is formed by monosilane and hydrogen-diluted diborane by the plasma CVD method. Then, X ray is applied in vacuum to crystallize amorphous silicon. The crystal evaluation by the Raman spectral method reveals that only a peak peculiar to a crystal according to Si-Si crystal is recognizable, a crystal particle diameter is 3mum on average, and the specific resistance of the thin film is 2OMEGAcm, thus forming a high-quality crystal thin film. X ray is photon, does not have mass, and does not disturb the atom array due to the application of ions and electrons, and hence crystallizability proceeds due to the application of X ray at a lower temperature than a thermal crystallizability temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光電変換素子の一つであ
る太陽電池の製造に係り、特に、熱的な結晶化温度より
も低い温度で高品質な結晶薄膜を形成することのでき
る、薄膜結晶太陽電池の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the production of a solar cell, which is one of photoelectric conversion elements, and in particular it is possible to form a high quality crystalline thin film at a temperature lower than the thermal crystallization temperature. The present invention relates to a method for manufacturing a thin film crystal solar cell.

【0002】[0002]

【従来の技術】一般に結晶太陽電池は光電変換効率が高
いが、高温プロセスを必要とし、かつ結晶基板に素子を
作り込むために数百μm程度の厚さを必要とするため、
比較的高価である。このため、安価な別基板上に薄膜結
晶を形成し、これを太陽電池とする試みが続けられてい
る。例えば、高品質の薄膜結晶シリコンを形成する方法
として、SiO2膜上でゾーンメルティングする方法が、H.
Naomoto,S.Hamamoto,A.Takami,S.Arimoto,T.Ishihara,
H.Kumabe,T.Murotani and S.Mitsui ; TechnicalDigest
of the International PVSEC‐7 , Nagoya , Japan ,
1993 に報告されている。しかし、基板を1200℃以上に
加熱する必要があることから、基板は殆ど結晶シリコン
に限られる。このため、低コスト化のためにガラス基板
などの安価な基板上に薄膜結晶層を形成し、これを素子
化することが試みられている。しかし、高品質の結晶、
特にシリコンや GaAs のようなIV族、III‐V族半導体の
薄膜を、結晶基板以外の基板上に直接形成することは極
めて困難である。
2. Description of the Related Art Generally, a crystalline solar cell has a high photoelectric conversion efficiency, but it requires a high temperature process and a thickness of several hundreds of μm in order to form an element on a crystalline substrate.
It is relatively expensive. For this reason, attempts have been made to form thin film crystals on a low-priced another substrate and use them as solar cells. For example, as a method of forming high quality thin film crystalline silicon, a method of zone melting on a SiO 2 film is described in H.
Naomoto, S.Hamamoto, A.Takami, S.Arimoto, T.Ishihara,
H.Kumabe, T.Murotani and S.Mitsui; TechnicalDigest
of the International PVSEC-7, Nagoya, Japan,
Reported in 1993. However, since it is necessary to heat the substrate to 1200 ° C. or higher, the substrate is mostly limited to crystalline silicon. Therefore, in order to reduce the cost, it has been attempted to form a thin film crystal layer on an inexpensive substrate such as a glass substrate and make it an element. But high quality crystals,
In particular, it is extremely difficult to directly form a thin film of a group IV or III-V semiconductor such as silicon or GaAs on a substrate other than a crystal substrate.

【0003】このような問題点を解消するための一つの
方法として、半導体を非晶質状態で堆積し、固相エピタ
キシャル技術やレーザアニール技術のような熱工程によ
って結晶化する方法が検討されている。しかし、これら
の方法も、熱的な手段によって結晶化させるため、必ず
かなりの高温にさらされる。例えば、T.Matsuyama,T.Ba
ba,T.Tanaka,S.Tsuda and S.Nakano ; Technical Diges
t of the International PVSEC‐7,Nagoya , Japan ,
1993 には、非晶質シリコンの固相での結晶化によっ
て、薄膜結晶シリコン太陽電池を形成する方法が示され
ている。しかし、この場合も結晶化のためには500〜600
℃の熱処理が必要である。
As one method for solving such a problem, a method of depositing a semiconductor in an amorphous state and crystallizing it by a thermal process such as a solid phase epitaxial technique or a laser annealing technique has been studied. There is. However, since these methods also cause crystallization by thermal means, they are always exposed to a considerably high temperature. For example, T.Matsuyama, T.Ba
ba, T.Tanaka, S.Tsuda and S.Nakano; Technical Diges
t of the International PVSEC-7, Nagoya, Japan,
In 1993, a method of forming a thin film crystalline silicon solar cell by solid phase crystallization of amorphous silicon is shown. However, even in this case, 500 to 600 is required for crystallization.
Heat treatment at ℃ is required.

【0004】より低温で非晶質材料を結晶化して素子化
する方法として。X線照射を用いることが、佐藤史郎、
平野喜之、後藤克幸、河田洋、千川純一により、第54回
応用物理学会学術講演会講演予稿集第2分冊、1993年、
第838頁に示されている。しかしながら、絶縁物上に形
成される結晶シリコン太陽電池のような、10μm程度以
上の膜厚を有しかつ高品質な結晶性を必要とする場合に
ついては何も述べられていない。
As a method of crystallizing an amorphous material at a lower temperature to form an element. Shiro Sato, using X-ray irradiation
By Yoshiyuki Hirano, Katsuyuki Goto, Hiroshi Kawada, Junichi Chikawa, Proceedings of the 54th JSAP Academic Lecture, Second Volume, 1993,
It is shown on page 838. However, nothing is mentioned about the case of having a film thickness of about 10 μm or more and requiring high quality crystallinity, such as a crystalline silicon solar cell formed on an insulator.

【0005】[0005]

【発明が解決しようとする課題】熱プロセスにより非晶
質層を結晶化する方法では、上記したように、必ず600
℃程度以上の高温にさらされることになり、安価な基板
例えばガラス基板などは使用できないという問題があっ
た。また、材料によって熱的性質が異なるため、温度差
が大きいプロセスでは膜はがれが問題となる。特に、太
陽電池のように低コストかつ大面積を必要とする場合に
は重要な問題となる。
In the method of crystallizing the amorphous layer by the thermal process, as described above, it is necessary to always produce 600
Since it is exposed to a high temperature of about ° C or higher, there is a problem that an inexpensive substrate such as a glass substrate cannot be used. In addition, since the thermal properties differ depending on the material, film peeling becomes a problem in the process where the temperature difference is large. In particular, it becomes an important problem when a low cost and a large area are required like a solar cell.

【0006】本発明の目的は、上記従来技術の有してい
た課題を解決して、熱的な結晶化温度よりも低い温度で
高品質な結晶薄膜を形成することのできる薄膜結晶太陽
電池の製造方法を提供することにある。
The object of the present invention is to solve the problems of the prior art described above, and to provide a thin film crystalline solar cell capable of forming a high quality crystalline thin film at a temperature lower than the thermal crystallization temperature. It is to provide a manufacturing method.

【0007】[0007]

【課題を解決するための手段】上記目的は、少なくとも
基板の主面上に結晶半導体薄膜と電極とを備えてなる薄
膜太陽電池の製造において、まず上記結晶半導体薄膜の
一部を非晶質層もしくは微結晶層として形成し、次いで
該層にX線を照射することによって結晶化させることを
特徴とする薄膜太陽電池の製造方法とすることによって
達成することができる。これによって、単結晶や多結晶
基板を用いた結晶太陽電池に匹敵する高効率低コスト太
陽電池を得ることができる。
The above object is to manufacture a thin film solar cell comprising a crystalline semiconductor thin film and an electrode on at least a main surface of a substrate, and first, a part of the crystalline semiconductor thin film is an amorphous layer. Alternatively, it can be achieved by providing a method for producing a thin-film solar cell, which is characterized in that it is formed as a microcrystalline layer and then the layer is irradiated with X-rays for crystallization. This makes it possible to obtain a highly efficient and low cost solar cell comparable to a crystalline solar cell using a single crystal or polycrystalline substrate.

【0008】[0008]

【作用】X線照射による結晶化については、事実は確認
されているものの、そのメカニズムは必ずしも明らかに
なっていない。有力な議論として、下記のようなものが
ある。X線照射は原子空孔形成の活性化エネルギーを下
げる効果がある。すなわち、X線照射の効果は高密度の
原子空孔を生成させることにあり、この状態を経由して
結晶化が進行する。X線照射による結晶化の有利な点
は、X線が光子であり、質量を持たず、イオンや電子の
照射で起きるような原子配列を乱そうとする作用のない
ことである。このため、照射によって結晶化が進むこと
になる。このことは、熱的な損傷が少ないことを意味
し、また、基板からのはがれのような問題も起きにくい
ことを示している。
Although the fact has been confirmed regarding the crystallization by X-ray irradiation, the mechanism is not always clear. The following are some of the strong arguments. X-ray irradiation has the effect of lowering the activation energy for forming atomic vacancies. That is, the effect of X-ray irradiation is to generate high-density atomic vacancies, and crystallization proceeds through this state. The advantages of crystallization by X-ray irradiation are that X-rays are photons, have no mass, and do not act to disturb the atomic arrangement that occurs with irradiation of ions or electrons. Therefore, crystallization will proceed by irradiation. This means that there is little thermal damage, and that problems such as peeling from the substrate are unlikely to occur.

【0009】X線源としては高照射量であるシンクロト
ロン放射光を用いることが好ましい。シンクロトロン放
射光では、X線は電子蓄積リングから接戦方向に放射さ
れる。従って、X線取り出し位置を任意個数設置するこ
とにより、複数個(例えば、10個以上)の同時処理が可能
である。このことは量産に適したプロセスであることを
示している。
As the X-ray source, it is preferable to use synchrotron radiation having a high dose. In synchrotron radiation, X-rays are emitted from the electron storage ring in a close direction. Therefore, by setting an arbitrary number of X-ray extraction positions, a plurality of (for example, 10 or more) simultaneous processes can be performed. This indicates that the process is suitable for mass production.

【0010】しかし、このような連続光源のピークエネ
ルギーは数 keV 付近にあり、この領域では半導体(例え
ば、シリコン)中での吸収が大きいため、10μm程度の膜
厚になると膜厚方向に均一なX線の照射が困難になり、
部分的に結晶性の良くない領域が生じる。特に、太陽電
池のように薄膜の全体を能動領域として用いかつ膜厚方
向にキャリアを輸送する素子では、これは致命的であ
る。
However, the peak energy of such a continuous light source is in the vicinity of several keV, and since absorption in a semiconductor (eg, silicon) is large in this region, it becomes uniform in the film thickness direction at a film thickness of about 10 μm. X-ray irradiation becomes difficult,
A region with poor crystallinity partially occurs. This is especially fatal in a device such as a solar cell in which the entire thin film is used as an active region and carriers are transported in the film thickness direction.

【0011】従って、本発明では、これを避けるため
に、X線照射による結晶化を厚さ5μm程度以下の薄膜
状態で行うこととした。これによって、高品質かつ均一
な結晶薄膜が形成される。その後、化学気相成長法など
により半導体を成長させれば、配向性の良い結晶薄膜が
得られることが明らかとなり、これによって高効率の薄
膜結晶太陽電池の形成が可能となった。
Therefore, in the present invention, in order to avoid this, crystallization by X-ray irradiation is performed in a thin film state having a thickness of about 5 μm or less. As a result, a high quality and uniform crystal thin film is formed. After that, it has been clarified that a crystalline thin film with good orientation can be obtained by growing a semiconductor by a chemical vapor deposition method or the like, which makes it possible to form a highly efficient thin film crystalline solar cell.

【0012】[0012]

【実施例】以下、本発明薄膜結晶太陽電池の製造方法の
構成について実施例によって具体的に説明する。
EXAMPLES The constitution of the method for producing a thin film crystal solar cell of the present invention will be specifically described below with reference to examples.

【0013】〔実施例1〕図1は本発明方法の一実施例
のフローチャート、図2は該方法によって得られた薄膜
結晶太陽電池の概略構造を示す断面図である。まず、金
属基板2上に熱 CVD 法によってp+型(B : 8×1020/cm
3)の多結晶シリコンを厚さ200nm形成した。この成膜に
は、モノシラン、p型のドーピングガスとして水素希釈
のジボランを用いた。次に、プラズマ CVD 法によっ
て、モノシランと水素希釈のジボランからp型の非晶質
シリコン4を1μm形成した。このとき、ガス中での Si
: B は1:10-5とした。引続き、真空中400℃でX線照
射を7分間行い、非晶質シリコンの結晶化を行った。X
線は3keV付近にピークを有する連続X線であり、照射
したフォトン数は3keV付近で5×1016/cm2であった。
ラマン分光法により結晶評価を行ったところ、Si‐Si結
合による結晶特有のピークしか見られなかった。また、
結晶粒径は平均3μmであった。また、このときの薄膜
の比抵抗は2Ωcmであった。
Example 1 FIG. 1 is a flow chart of an example of the method of the present invention, and FIG. 2 is a sectional view showing a schematic structure of a thin film crystal solar cell obtained by the method. First, p + type (B: 8 × 10 20 / cm 2 is formed on the metal substrate 2 by the thermal CVD method.
The polycrystalline silicon of 3 ) was formed to a thickness of 200 nm. For this film formation, monosilane and diborane diluted with hydrogen as a p-type doping gas were used. Next, p-type amorphous silicon 4 was formed to a thickness of 1 μm from monosilane and diborane diluted with hydrogen by plasma CVD. At this time, Si in gas
: B was set to 1:10 -5 . Subsequently, X-ray irradiation was performed in vacuum at 400 ° C. for 7 minutes to crystallize amorphous silicon. X
The line was a continuous X-ray having a peak near 3 keV, and the number of irradiated photons was 5 × 10 16 / cm 2 near 3 keV.
When the crystals were evaluated by Raman spectroscopy, only peaks peculiar to the crystals due to the Si-Si bond were observed. Also,
The average crystal grain size was 3 μm. The specific resistance of the thin film at this time was 2 Ωcm.

【0014】次に、減圧下での熱 CVD 法により、550℃
でp型の結晶半導体層5を厚さ20μm形成した。成膜に
は、ジシラン及びドーピングガスとして10ppmのジボラ
ン(水素希釈)を用いた。このとき、膜中での Si : B
比が1:2×10-6となるようにガス流量を設定した。さ
らに、同じ成膜法で、モノシラン及びドーピングガスと
しての10ppmのホスフィン(水素希釈)により200nmのn層
6を形成した。このとき、ガス中での Si : P が1:
5×10-4となるようにガス流量を設定した。次に、プラ
ズマ CVD 法により、シリコンテトラエトキシドから Si
O2、チタンテトライソプロポキシドから TiO2 を連続し
て形成し、パッシベーション膜7、無反射コート膜8と
して所定の膜厚に作製した。次に、周知のホトエッチン
グ法により、電極取りだし部に開口部を形成し、その
後、メタルマスクを用いて電極層9を形成した。
Next, by a thermal CVD method under reduced pressure, 550 ° C.
Then, a p-type crystal semiconductor layer 5 having a thickness of 20 μm was formed. For film formation, disilane and 10 ppm diborane (diluted with hydrogen) as a doping gas were used. At this time, Si: B in the film
The gas flow rate was set so that the ratio was 1: 2 × 10 −6 . Further, by the same film forming method, a 200 nm n-layer 6 was formed with monosilane and 10 ppm phosphine (diluted with hydrogen) as a doping gas. At this time, Si: P in the gas is 1:
The gas flow rate was set to be 5 × 10 −4 . Next, silicon tetraethoxide is converted into Si by plasma CVD.
TiO 2 was continuously formed from O 2 and titanium tetraisopropoxide, and the passivation film 7 and the antireflection coating film 8 were formed to have predetermined thicknesses. Next, an opening was formed in the electrode lead-out portion by a known photoetching method, and then the electrode layer 9 was formed using a metal mask.

【0015】得られた薄膜結晶太陽電池について太陽光
線照射1を行ったところ、短絡電流25mA/cm2、開放端電
圧0.62V、曲線因子0.71の値が得られた。n層6の形成
前に表面テクスチャーエッチングを行うと、さらに短絡
電流の増加がみられた。また、X線照射時に水素ガスを
導入し、減圧下でプラズマ放電処理をしたところ、曲線
因子の向上が見られた。通常プラズマ CVD 法で形成し
た非晶質膜は水素を多く含んでおり、熱処理すると膜剥
がれを生じ易いが、本発明の方法では最高熱処理温度は
550℃であり、多くの薄膜形成工程を要するが、膜剥が
れなどの問題は全く生じなかった。これも、X線照射に
よる結晶化の大きなメリットである。
When the obtained thin film crystal solar cell was irradiated with sunlight 1, a short circuit current of 25 mA / cm 2 , an open circuit voltage of 0.62 V and a fill factor of 0.71 were obtained. When the surface texture etching was performed before the formation of the n-layer 6, the short-circuit current was further increased. Further, when hydrogen gas was introduced during X-ray irradiation and plasma discharge treatment was performed under reduced pressure, an improvement in fill factor was observed. Usually, an amorphous film formed by the plasma CVD method contains a large amount of hydrogen, and film peeling easily occurs when heat-treated, but the maximum heat-treatment temperature in the method of the present invention is
The temperature was 550 ° C, and many thin film forming steps were required, but no problems such as film peeling occurred. This is also a great advantage of crystallization by X-ray irradiation.

【0016】〔実施例2〕本発明方法の第2の実施例に
ついて図3によって説明する。まず、ガラス基板に表面
凹凸加工を施し、約70度の頂角を有するV溝を形成して
ガラス加工基板10とした。凹凸部の高さの差は約40μm
であった。該表面上に、裏面電極層11としてシリコン入
りアルミニウム層を蒸着法によって形成した。次に、プ
ラズマ CVD 法により、モノシランと水素希釈のジボラ
ンとからp型の微結晶シリコンを100nm形成した。この
とき、ガス中での Si : B は1:10-2とした。引続
き、真空中300℃でX線照射を7分間行い、シリコンの
結晶化を行った。次に、同じプラズマ CVD 法により、
ガス中の Si : B を1:10-2として100nm、さらに1:
10-5として300nm形成した。引続き、真空中300℃でX線
照射を7分間行い、シリコンの結晶化を行った。さら
に、プラズマ CVD 法により、ガス中の Si : B を1:
10-5とする堆積とX線照射とを3回繰り返して行った。
これにより、厚さ200nmのp+層12と厚さ約2μmのp型
結晶シリコン層13とを形成した。この後、実施例1の場
合と同様にして、結晶半導体薄膜14、n層15を堆積し、
接合を形成した。次いで、パッシベーション膜、無反射
コート膜形成を行い、さらに、周知のホトエッチング法
により電極取り出し部に開口部を形成し、その後、メタ
ルマスクを用いて蒸着法により電極層を形成した。
[Embodiment 2] A second embodiment of the method of the present invention will be described with reference to FIG. First, a glass substrate was subjected to surface irregularity processing to form a V groove having an apex angle of about 70 degrees, and a glass processed substrate 10 was obtained. The difference in height of the uneven portion is about 40 μm
Met. An aluminum layer containing silicon was formed as a back electrode layer 11 on the surface by a vapor deposition method. Next, 100 nm of p-type microcrystalline silicon was formed from monosilane and diborane diluted with hydrogen by a plasma CVD method. At this time, Si: B in the gas was set to 1:10 -2 . Subsequently, X-ray irradiation was performed in vacuum at 300 ° C. for 7 minutes to crystallize silicon. Next, using the same plasma CVD method,
Si: B in gas is set to 1:10 -2 to 100 nm, and further 1:
The thickness was set to 10 −5 and formed to 300 nm. Subsequently, X-ray irradiation was performed in vacuum at 300 ° C. for 7 minutes to crystallize silicon. Furthermore, Si: B in the gas is 1: 1 by the plasma CVD method.
Deposition at 10 −5 and X-ray irradiation were repeated three times.
As a result, a p + layer 12 having a thickness of 200 nm and a p-type crystalline silicon layer 13 having a thickness of about 2 μm were formed. After that, in the same manner as in Example 1, the crystalline semiconductor thin film 14 and the n layer 15 are deposited,
A bond was formed. Then, a passivation film and a non-reflective coating film were formed, and an opening was formed in the electrode extraction portion by a well-known photoetching method, and then an electrode layer was formed by a vapor deposition method using a metal mask.

【0017】このようにして得られた試料は、実施例1
の場合に比べて、短絡電流が28mA/cm2と増加し、曲線因
子も0.76と向上が認められた。このように、表面の凹凸
が膜厚を上回るような場合においても、膜剥がれは全く
見られなかった。
The sample thus obtained is the same as in Example 1.
The short-circuit current was increased to 28 mA / cm 2 and the fill factor was also improved to 0.76 compared to the case of. As described above, even when the surface unevenness exceeds the film thickness, no film peeling was observed.

【0018】〔実施例3〕本発明方法の第3の実施例に
ついて図4によって説明する。セラミック基板16上に、
直列接続のため部分的に裏面電極17として金属層を形成
した。このとき、金属層表面に、形成条件の制御によっ
て、100nm以下の結晶化による細かな凹凸を形成した。
次に、分子線蒸着法によってn型の非晶質シリコンを50
0nm形成した。このとき、Si : P を1:10-2として100
nmの高濃度n型層18、1:10-5として400nmのn型層を
形成した。引続き、真空中300℃でX線照射を7分間行
い、非晶質シリコンの結晶化を行った。このとき、結晶
化は、金属表面の凹凸によって、平坦面の場合よりも促
進された。ZnO や SnO2の薄膜を形成しても同様の効果
が得られた。そして、その場合には、膜厚や材料の屈折
率を適宜選ぶことができるので、裏面での反射に都合の
良い状態を設定することができた。さらに、Si : P を
1:10-5として、1μmの堆積とX線照射を4回繰り返
し、4.4μmの結晶シリコンn型層19を形成した。次に、
プラズマ CVD 法により、ジシランと水素希釈のジボラ
ンとからp型の微結晶シリコン20を20nm形成した。この
とき、ガス中での Si : B は1:10-2とした。これに
よって、薄膜結晶シリコン太陽電池が形成された。
[Embodiment 3] A third embodiment of the method of the present invention will be described with reference to FIG. On the ceramic substrate 16,
A metal layer was partially formed as the back surface electrode 17 for serial connection. At this time, fine unevenness due to crystallization of 100 nm or less was formed on the surface of the metal layer by controlling the forming conditions.
Then, n-type amorphous silicon is removed by a molecular beam deposition method.
It was formed to 0 nm. At this time, set Si: P to 1:10 -2 to 100
An n-type layer having a thickness of 400 nm was formed as a high concentration n-type layer 18 having a thickness of 1:10 -5 . Subsequently, X-ray irradiation was performed in vacuum at 300 ° C. for 7 minutes to crystallize amorphous silicon. At this time, crystallization was promoted by the unevenness of the metal surface as compared with the case of a flat surface. The same effect was obtained by forming a thin film of ZnO or SnO 2 . Then, in that case, the film thickness and the refractive index of the material can be appropriately selected, so that a state convenient for reflection on the back surface can be set. Further, 1: m deposition and X-ray irradiation were repeated 4 times with Si: P of 1:10 -5 to form a 4.4 µm crystalline silicon n-type layer 19. next,
20 nm of p-type microcrystalline silicon 20 was formed from disilane and diborane diluted with hydrogen by the plasma CVD method. At this time, Si: B in the gas was set to 1:10 -2 . This formed a thin film crystalline silicon solar cell.

【0019】次に、プラズマ CVD 法により、30nmのn
型微結晶シリコン、100nmのi型非晶質シリコン、15nm
のp型非晶質シリコンカーバイドを堆積し、薄膜非晶質
シリコン21で太陽電池構造とした。最後に、基板上の各
素子を直列につなぐように、透明電極22として ITO (酸
化インジウムスズ)、集電電極及び取りだし電極23とし
てアルミニウムを、蒸着法によって形成した。
Next, by the plasma CVD method, n of 30 nm
Type microcrystalline silicon, 100 nm i-type amorphous silicon, 15 nm
P-type amorphous silicon carbide was deposited and the thin film amorphous silicon 21 was used to form a solar cell structure. Finally, ITO (indium tin oxide) was formed as the transparent electrode 22 and aluminum was formed as the collector electrode and the take-out electrode 23 by the vapor deposition method so that the respective elements on the substrate were connected in series.

【0020】その結果、10段直列で、太陽光照射1を行
ったところ、短絡電流12mA/cm2、開放端電圧14V、曲線
因子0.75の値を得ることができた。また、1か月の太陽
光照射を行っても、太陽電池特性の劣化は3%以下であ
り、安定性の高い太陽電池を作製することができた。
As a result, when solar light irradiation 1 was performed in 10 stages in series, a short circuit current of 12 mA / cm 2 , an open circuit voltage of 14 V and a fill factor of 0.75 were obtained. In addition, the solar cell characteristics were deteriorated by 3% or less even after irradiation of sunlight for one month, and a highly stable solar cell could be manufactured.

【0021】以上の例においては、薄膜結晶太陽電池と
して Si 系のみについて説明したが、シリコンを主体と
する合金系、例えば SiC 、SiGe 系でも同様な結果が得
られる。さらに、GaAs や InP のような二元系やそれ以
上の多元系非晶質半導体材料からも、同様に、結晶薄膜
太陽電池を作製できることは言うまでもない。
In the above examples, only the Si type was described as the thin film crystal solar cell, but similar results can be obtained with an alloy type mainly containing silicon, for example, SiC or SiGe type. Further, it goes without saying that a crystalline thin film solar cell can be similarly produced from a binary or more multi-component amorphous semiconductor material such as GaAs or InP.

【0022】[0022]

【発明の効果】以上述べてきたように、薄膜結晶太陽電
池の製造方法を本発明構成の方法とすることによって、
従来技術の有していた課題を解決して、熱的な結晶化温
度よりも低い温度で高品質な結晶薄膜を形成することの
できる薄膜結晶太陽電池の製造方法を提供することがで
きた。特に、配位数が大きいため結晶化の際に未結合手
のできやすいシリコンのような IV 族半導体の薄膜を結
晶基板以外の基板上に直接形成する技術として極めて有
力である。
As described above, the method of manufacturing a thin film crystal solar cell is the method of the present invention,
It has been possible to provide a method for manufacturing a thin film crystalline solar cell capable of forming a high quality crystalline thin film at a temperature lower than a thermal crystallization temperature by solving the problems of the conventional techniques. In particular, since it has a large coordination number, it is extremely effective as a technique for directly forming a thin film of a group IV semiconductor such as silicon, which is likely to have dangling bonds during crystallization, on a substrate other than a crystalline substrate.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1の製造工程を説明するフローチャー
ト。
FIG. 1 is a flowchart illustrating a manufacturing process of a first embodiment.

【図2】実施例1の製造方法によって形成した薄膜結晶
太陽電池の概略構成を示す断面図。
2 is a cross-sectional view showing a schematic configuration of a thin film crystal solar cell formed by the manufacturing method of Example 1. FIG.

【図3】実施例2の製造方法によって形成した薄膜結晶
太陽電池の概略構成を示す断面図。
3 is a cross-sectional view showing a schematic configuration of a thin film crystal solar cell formed by the manufacturing method of Example 2. FIG.

【図4】実施例3の製造方法によって形成した薄膜結晶
太陽電池の概略構成を示す断面図。
FIG. 4 is a cross-sectional view showing a schematic configuration of a thin film crystal solar cell formed by the manufacturing method of Example 3.

【符号の説明】[Explanation of symbols]

1…太陽光照射、2…金属基板、3…多結晶シリコン、
4…非晶質シリコン、5…結晶半導体薄膜、6…n層、
7…パッシベーション膜、8…無反射コート膜、9…電
極層、10…ガラス加工基板、11…裏面電極層、12…p+
層、13…p型結晶シリコン層、14…結晶半導体薄膜、15
…n層、16…セラミック基板、17…裏面電極、18…高濃
度n型層、19…結晶シリコンn型層、20…p型の微結晶
シリコン、21…薄膜非晶質シリコン、22…透明電極、23
…集電電極及び取りだし電極。
1 ... Solar irradiation, 2 ... Metal substrate, 3 ... Polycrystalline silicon,
4 ... Amorphous silicon, 5 ... Crystal semiconductor thin film, 6 ... N layer,
7 ... passivation film, 8 ... non-reflective coating film, 9 ... electrode layer, 10 ... glass processed substrate, 11 ... reverse electrode layer, 12 ... p +
Layer, 13 ... p-type crystalline silicon layer, 14 ... crystalline semiconductor thin film, 15
... n layer, 16 ... ceramic substrate, 17 ... back electrode, 18 ... high concentration n-type layer, 19 ... crystalline silicon n-type layer, 20 ... p-type microcrystalline silicon, 21 ... thin film amorphous silicon, 22 ... transparent Electrode, 23
... collection electrode and extraction electrode.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】少なくとも基板の主面上に結晶半導体薄膜
と電極とを備えてなる薄膜太陽電池の製造において、ま
ず上記結晶半導体薄膜の一部を非晶質層もしくは微結晶
層として形成し、次いで該層にX線を照射することによ
って結晶化させることを特徴とする薄膜太陽電池の製造
方法。
1. In the production of a thin film solar cell comprising a crystalline semiconductor thin film and an electrode on at least a main surface of a substrate, first, a part of the crystalline semiconductor thin film is formed as an amorphous layer or a microcrystalline layer, Next, a method for producing a thin-film solar cell, which comprises crystallizing the layer by irradiating it with X-rays.
【請求項2】少なくとも基板の主面上に結晶半導体薄膜
と電極とを備えてなる薄膜太陽電池の製造において、ま
ず上記結晶半導体薄膜の一部を厚さ0.1〜5μmの非晶質
層もしくは微結晶層として形成し、次いで該層にX線を
照射することによって結晶化させ、その後さらに結晶化
半導体層を成長させることを特徴とする薄膜太陽電池の
製造方法。
2. In the production of a thin film solar cell comprising a crystalline semiconductor thin film and an electrode on at least the main surface of a substrate, first, a part of the crystalline semiconductor thin film is an amorphous layer or a fine layer having a thickness of 0.1 to 5 μm. A method for producing a thin-film solar cell, which comprises forming a crystalline layer, crystallizing the layer by irradiating the layer with X-rays, and then further growing a crystallized semiconductor layer.
【請求項3】少なくとも基板の主面上に、1) n型ある
いはp型の多結晶もしくは微結晶からなる半導体層を形
成する工程、2) 厚さ0.1〜5μmの上記非晶質層もしく
は微結晶層を形成した後、X線を照射することによって
該層を結晶化させる工程、3)成長法によって結晶半導体
層を成長させる工程からなることを特徴とする薄膜太陽
電池の製造方法。
3. A step of 1) forming a semiconductor layer made of n-type or p-type polycrystalline or microcrystalline on at least the main surface of the substrate, and 2) the amorphous layer or microscopic layer having a thickness of 0.1-5 μm. A method for manufacturing a thin-film solar cell, comprising the steps of forming a crystal layer and then crystallizing the layer by irradiating X-rays, and 3) growing a crystal semiconductor layer by a growth method.
【請求項4】上記の非晶質層もしくは微結晶層がシリコ
ンを主成分とする層であることを特徴とする請求項1記
載の薄膜太陽電池の製造方法。
4. The method for manufacturing a thin film solar cell according to claim 1, wherein the amorphous layer or the microcrystalline layer is a layer containing silicon as a main component.
【請求項5】上記の結晶半導体薄膜を形成する基板表面
が凹凸形状化されていることを特徴とする請求項1記載
の薄膜太陽電池の製造方法。
5. The method for producing a thin film solar cell according to claim 1, wherein the surface of the substrate on which the crystalline semiconductor thin film is formed is made uneven.
【請求項6】上記のX線照射による結晶化が、基板を45
0℃以下に保ちながら行うX線照射であることを特徴と
する請求項1記載の薄膜太陽電池の製造方法。
6. The crystallization by the above X-ray irradiation is performed on the substrate 45.
The method for producing a thin-film solar cell according to claim 1, wherein the irradiation is X-ray irradiation while maintaining the temperature at 0 ° C or lower.
【請求項7】上記のX線照射による結晶化が、水素ガ
ス、ヘリウムガス、ハロゲンガス、ハロゲン水素化物ガ
スの何れかもしくはその混合物を導入しながら行うX線
照射であることを特徴とする請求項1記載の薄膜太陽電
池の製造方法。
7. The crystallization by X-ray irradiation is X-ray irradiation performed while introducing any one of hydrogen gas, helium gas, halogen gas, halogen hydride gas or a mixture thereof. Item 2. A method for manufacturing a thin-film solar cell according to Item 1.
【請求項8】上記のガスを導入しながら行うX線照射
が、該導入ガスをプラズマ放電しながら行うX線照射で
あることを特徴とする請求項7記載の薄膜太陽電池の製
造方法。
8. The method of manufacturing a thin-film solar cell according to claim 7, wherein the X-ray irradiation performed while introducing the gas is X-ray irradiation performed while plasma-discharging the introduced gas.
JP6065863A 1994-04-04 1994-04-04 Method for manufacturing thin-film solar cell Pending JPH07283429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6065863A JPH07283429A (en) 1994-04-04 1994-04-04 Method for manufacturing thin-film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6065863A JPH07283429A (en) 1994-04-04 1994-04-04 Method for manufacturing thin-film solar cell

Publications (1)

Publication Number Publication Date
JPH07283429A true JPH07283429A (en) 1995-10-27

Family

ID=13299275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6065863A Pending JPH07283429A (en) 1994-04-04 1994-04-04 Method for manufacturing thin-film solar cell

Country Status (1)

Country Link
JP (1) JPH07283429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114685A1 (en) * 2007-03-14 2008-09-25 Omron Corporation Method for manufacturing solar cell and solar cell
CN110770549A (en) * 2017-06-23 2020-02-07 镭射点有限公司 Electromagnetic radiation fast detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102310A (en) * 1986-10-20 1988-05-07 Sanyo Electric Co Ltd Formation of single crystal thin film
JPS63152177A (en) * 1986-12-17 1988-06-24 Fuji Electric Co Ltd Manufacture of solar cell
JPH02164077A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH02197177A (en) * 1989-01-26 1990-08-03 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02271611A (en) * 1989-04-13 1990-11-06 Sanyo Electric Co Ltd Production of polycrystalline silicon

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102310A (en) * 1986-10-20 1988-05-07 Sanyo Electric Co Ltd Formation of single crystal thin film
JPS63152177A (en) * 1986-12-17 1988-06-24 Fuji Electric Co Ltd Manufacture of solar cell
JPH02164077A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH02197177A (en) * 1989-01-26 1990-08-03 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH02271611A (en) * 1989-04-13 1990-11-06 Sanyo Electric Co Ltd Production of polycrystalline silicon

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114685A1 (en) * 2007-03-14 2008-09-25 Omron Corporation Method for manufacturing solar cell and solar cell
JPWO2008114685A1 (en) * 2007-03-14 2010-07-01 オムロン株式会社 Method for manufacturing solar cell and solar cell
CN110770549A (en) * 2017-06-23 2020-02-07 镭射点有限公司 Electromagnetic radiation fast detector
CN110770549B (en) * 2017-06-23 2023-04-14 镭射点有限公司 Electromagnetic radiation fast detector

Similar Documents

Publication Publication Date Title
US4433202A (en) Thin film solar cell
US6137048A (en) Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby
US6100466A (en) Method of forming microcrystalline silicon film, photovoltaic element, and method of producing same
JP4814307B2 (en) Method for producing photovoltaic cells based on thin film silicon
US6488995B1 (en) Method of forming microcrystalline silicon film, method of fabricating photovoltaic cell using said method, and photovoltaic device fabricated thereby
US6777714B2 (en) Crystalline silicon semiconductor device and method for fabricating same
JP3672754B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP3792376B2 (en) Silicon-based thin film photoelectric conversion device
JP2001250968A (en) Crystal silicon thin film semiconductor device, crystal silicon thin film photovoltaic element, and method of manufacturing for crystal silicon thin film semiconductor device
JPH07283429A (en) Method for manufacturing thin-film solar cell
JP4215697B2 (en) Photoelectric conversion device and manufacturing method thereof
JPH07283430A (en) Method for manufacturing solar cell
JPH07297428A (en) Thin film solar battery and its manufacture
WO1992012542A1 (en) Method for manufacturing solar cell by selective epitaxial growth
JP4335351B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP3364137B2 (en) Method for manufacturing silicon-based thin film photoelectric conversion device
JP3933334B2 (en) Silicon-based thin film photoelectric conversion device and manufacturing method thereof
JPH0282655A (en) Manufacture of photovolatic device
JP2000174309A (en) Tandem thin-film photoelectric conversion device and its manufacture
JPH11266027A (en) Silicon thin-film photoelectric conversion device
JP3672750B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JP4215694B2 (en) Photoelectric conversion device and manufacturing method thereof
JP2004111551A (en) Silicon photovoltaic device and method for manufacturing the same
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element
JPH04192373A (en) Photovoltaic element