JPH07283430A - Method for manufacturing solar cell - Google Patents

Method for manufacturing solar cell

Info

Publication number
JPH07283430A
JPH07283430A JP6073136A JP7313694A JPH07283430A JP H07283430 A JPH07283430 A JP H07283430A JP 6073136 A JP6073136 A JP 6073136A JP 7313694 A JP7313694 A JP 7313694A JP H07283430 A JPH07283430 A JP H07283430A
Authority
JP
Japan
Prior art keywords
group
thin film
solar cell
film
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6073136A
Other languages
Japanese (ja)
Other versions
JP3408618B2 (en
Inventor
Takayuki Negami
卓之 根上
Mikihiko Nishitani
幹彦 西谷
Takahiro Wada
隆博 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP07313694A priority Critical patent/JP3408618B2/en
Publication of JPH07283430A publication Critical patent/JPH07283430A/en
Application granted granted Critical
Publication of JP3408618B2 publication Critical patent/JP3408618B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To suppress the diffusion of excessive I element to a substrate thin film by forming a compound thin film of III element and IV element with a slow diffusion speed and then supplying I and VI elements. CONSTITUTION:ITO is applied to a glass substrate and ZnO and Al2O3 are deposited on it successively to form a transparent, substrate 1. III element In is deposited on the substrate 1 and In thin film 2 is deposited. VI element 3 (Se) is heattreated and III-Vi thin film 4 (Im2Se3) is formed. I element Cu is deposited and Cu thin film 5 is deposited and then VI element 3 (Se) is heat- treated to form I-III-VI2 thin film 6 (CuInSe2). The mutual diffusion between chalcopyrite structure (CIS) and Al2O3 is not generated due to high-temperature heat treatment since the excessive diffusion of Cu due to the formation of In2Se3 layer is suppressed and Al of Al2O3 and In of In2Oe3 are same III elements and cannot be diffused mutually and Al can be strongly connected to oxygen, thus suppressing the diffusion of excessive I element to the substrate thin film.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エネルギー変換効率の
高い太陽電池、特にその光吸収層の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell having high energy conversion efficiency, and more particularly to a method for producing a light absorbing layer thereof.

【0002】[0002]

【従来の技術】I族元素、III族元素およびVI族元素から
なるカルコパイライト構造半導体薄膜としてCuInS
2を光吸収層に用いた薄膜太陽電池は、高いエネルギ
ー変換効率を示し、光照射等による効率の劣化がないと
いう利点を有していることが報告されている。CuIn
Se2薄膜太陽電池は、膜の堆積工程により以下の2つ
のタイプに分類される。一つは、絶縁体基板上に形成さ
れた金属電極上にp形CuInSe2薄膜を堆積し、そ
の上にn形窓層と透明電極層を堆積した構成である(以
下、この構成をサブストレート形と記す)。もう一つ
は、ガラス等の透明絶縁体基板上に透明導電膜を形成
し、その上にn形窓層とCuInSe2膜を順に形成し
た後、金属電極を形成する構成である(以下、この構成
をスーパストレート形と記す)。
2. Description of the Related Art CuInS as a chalcopyrite structure semiconductor thin film composed of a group I element, a group III element and a group VI element
It has been reported that a thin-film solar cell using e 2 as a light absorption layer has advantages that it exhibits high energy conversion efficiency and does not deteriorate in efficiency due to light irradiation or the like. CuIn
Se 2 thin film solar cells are classified into the following two types depending on the film deposition process. One is a structure in which a p-type CuInSe 2 thin film is deposited on a metal electrode formed on an insulating substrate, and an n-type window layer and a transparent electrode layer are deposited thereon (hereinafter, this configuration is referred to as a substrate. Written as a shape). The other is a structure in which a transparent conductive film is formed on a transparent insulating substrate such as glass, an n-type window layer and a CuInSe 2 film are sequentially formed on the transparent conductive film, and then a metal electrode is formed. The structure is described as a super straight type).

【0003】現在、主にサブストレート形構成の太陽電
池について活発に研究開発されており、既に太陽電池モ
ジュールの試作結果が報告されている(例えば、モント
ルーでの1992年10月12日〜16日の第11回ヨ
ーロッパ光起電力太陽エネルギー会議における(11th
E.C. Phtovoltaic Solar Energy Conference)、バソー
ル(B.M.Basol)等による ”CuInSe2 CELLS AND MODUL
ES FABRICATED USINGTHE SELENIZATION TECHNIQU
E)”)。これに対し、スーパストレート形太陽電池の
報告例は少ない。しかし、この構成は、光入射側が基板
であることから、太陽電池モジュールへのパッケージが
容易である点、基板との密着性が良好である点、さら
に、製造工程を簡単化できる点等の利点を有しており、
太陽電池の大面積化や量産化あるいは低コスト化に優れ
た構成であることが指摘されている。
At present, active research and development are mainly carried out on solar cells having a substrate type structure, and the results of trial manufacture of solar cell modules have already been reported (for example, October 12 to 16, 1992 in Montreux). At the 11th European Photovoltaic Solar Energy Conference (11th
"CuInSe 2 CELLS AND MODUL" by EC Phtovoltaic Solar Energy Conference), BAMBASOL, etc.
ES FABRICATED USING THE SELENIZATION TECHNIQU
E) ”). On the other hand, there are few reports of superstrate type solar cells. However, this configuration is easy to package into a solar cell module because the substrate is on the light incident side. It has advantages such as good adhesion and further simplification of the manufacturing process.
It has been pointed out that the solar cell has a large area, mass production, and cost reduction.

【0004】また、光吸収層であるI族元素、III族元素
およびVI族元素からなるカルコパイライト構造半導体薄
膜の製造方法としては、大きく分類すると蒸着法とセレ
ン化(または硫化)法がある。カルコパイライト構造半
導体薄膜は、構成元素の組成比により電気特性が異なる
ため、組成制御に優れた蒸着法、特に3元同時蒸着法で
作製した膜で高い変換効率が得られている。しかし、3
元蒸着法では精密な組成制御ができる面積が狭いことか
ら、太陽電池の大面積化及び量産化を指向した工業化に
は適していない。これに対し、I族元素とIII族元素から
なる薄膜を堆積した後に、セレン(または硫黄)蒸気あ
るいはセレン(または硫黄)のガス状化合物中で熱処理
することにより、カルコパイライト構造半導体薄膜を形
成するセレン化(または硫化)法は、精密な組成制御に
は劣るものの大面積での均一性に優れており、エネルギ
ー用太陽電池の生産に適した手法である。しかしなが
ら、セレンを含むガス(主にH2Se)の有毒性や基板
上の金属膜とカルコパイライト薄膜との弱い密着性が問
題となっている。
Further, as a method for producing a chalcopyrite structure semiconductor thin film composed of a group I element, a group III element and a group VI element which is a light absorption layer, there are roughly classified a vapor deposition method and a selenization (or sulfurization) method. Since the electrical characteristics of the chalcopyrite structure semiconductor thin film differ depending on the composition ratio of the constituent elements, a high conversion efficiency is obtained with a film formed by a vapor deposition method excellent in composition control, particularly a ternary simultaneous vapor deposition method. But 3
The original vapor deposition method is not suitable for industrialization aiming at increasing the area and mass production of solar cells because the area where precise composition control is possible is small. On the other hand, a chalcopyrite structure semiconductor thin film is formed by depositing a thin film composed of a group I element and a group III element and then heat-treating it in selenium (or sulfur) vapor or a gaseous compound of selenium (or sulfur). The selenization (or sulfurization) method is inferior to precise composition control, but is excellent in uniformity over a large area, and is a method suitable for production of energy solar cells. However, there are problems with the toxicity of gas containing selenium (mainly H 2 Se) and the weak adhesion between the metal film on the substrate and the chalcopyrite thin film.

【0005】[0005]

【発明が解決しようとする課題】前記した内容から、セ
レン化(または硫化)法により作製したカルコパイライ
ト構造半導体薄膜を光吸収層に用いたスーパストレート
形構成の太陽電池が最も生産性に優れることがわかる。
しかしながら、スーパストレート形太陽電池に用いるカ
ルコパイライト構造半導体薄膜の作製法は主に3元同時
蒸着法であり、セレン化法を用いたスーパストレート形
太陽電池の報告例はほとんどない。前記の第11回ヨー
ロッパ光起電力太陽エネルギー会議において、吉田(T.
Yoshida)等による報告( ”FABRICATION OF CuInSe2
SOLAR CELLS IN A SUPERSTRATE CONFIGURATION”)で
初期的な実験結果が示されているのみである。この報告
では、CdS膜上にSe、In、Cuの順に薄膜を堆積
し、セレン蒸気下で400℃・1時間の熱処理(セレン
化)を行うことにより、CuInSe2膜を作製してい
る。得られた膜では、CdSとCuInSe2間でCd
あるいはCu、Inの相互拡散が生じいること及びCu
InS2やCuInSeS等の混合膜が存在することが
観測されている。これらの結果として、変換効率1.5
%という低い値しか得られていない。
From the above contents, a solar cell having a superstrate type structure using a chalcopyrite structure semiconductor thin film prepared by a selenization (or sulfurization) method as a light absorption layer is most excellent in productivity. I understand.
However, the production method of the chalcopyrite structure semiconductor thin film used for the superstrate type solar cell is mainly a ternary co-evaporation method, and there are few reports of the superstrate type solar cell using the selenization method. At the 11th European Solar Photovoltaics Conference, Yoshida (T.
Yoshida) and others ("FABRICATION OF CuInSe 2
SOLAR CELLS IN A SUPERSTRATE CONFIGURATION ”) only shows the initial experimental results. In this report, a thin film of Se, In, and Cu was deposited in this order on a CdS film, and 400 ° C. A CuInSe 2 film is produced by performing a heat treatment (selenization) for 1 hour, and in the obtained film, CdS and CuInSe 2 are separated by CdS.
Alternatively, the mutual diffusion of Cu and In occurs, and Cu
It has been observed that a mixed film of InS 2 or CuInSeS exists. As a result of these, the conversion efficiency is 1.5
Only a low value of% has been obtained.

【0006】従って、工業化に適したスーパストレート
形太陽電池を製造するためには、基板あるいは基板上を
被覆した薄膜との相互拡散を抑制し、不純物の混入がな
い結晶性に優れたカルコパイライト構造半導体薄膜をセ
レン化(または硫化)法により作製することが重要とな
る。
Therefore, in order to manufacture a superstrate type solar cell suitable for industrialization, a chalcopyrite structure excellent in crystallinity which suppresses mutual diffusion with a substrate or a thin film covering the substrate and is free from impurities is mixed. It is important to manufacture a semiconductor thin film by a selenization (or sulfurization) method.

【0007】[0007]

【課題を解決するための手段】本発明の太陽電池の製造
方法は、透明基体上にIII族元素とVI族元素からなる化
合物の薄膜を形成する工程と、前記化合物の薄膜にI族
元素とVI族元素を供給することによりI族元素、III族元
素およびVI族元素からなるカルコパイライト構造半導体
薄膜を作製する工程を含むものである。ここで、透明基
体上に形成されたIII族元素とVI族元素の化合物の薄膜
に、I族元素とVI族元素を供給する方法として、以下の
方法をとる。
A method of manufacturing a solar cell according to the present invention comprises a step of forming a thin film of a compound composed of a group III element and a group VI element on a transparent substrate, and a group I element in the thin film of the compound. It includes a step of producing a chalcopyrite structure semiconductor thin film composed of a group I element, a group III element and a group VI element by supplying a group VI element. Here, as a method of supplying the group I element and the group VI element to the thin film of the compound of the group III element and the group VI element formed on the transparent substrate, the following method is used.

【0008】第1は、III族元素とVI族元素からなる化
合物の薄膜上に、I族元素を堆積し、VI族元素を含む雰
囲気中で熱処理する方法である。第2は、III族元素とV
I族元素からなる化合物の薄膜上に、I族元素とVI族元素
を同時に堆積する方法である。第3は、III族元素とVI
族元素からなる化合物の薄膜上にI族元素とVI族元素を
個別に堆積し、熱処理する方法である。第4は、III族
元素とVI族元素からなる化合物の薄膜上にI族元素とVI
族元素からなる化合物を蒸発し、堆積する方法である。
The first method is a method of depositing a group I element on a thin film of a compound composed of a group III element and a group VI element, and performing heat treatment in an atmosphere containing the group VI element. Second, Group III elements and V
This is a method of simultaneously depositing a group I element and a group VI element on a thin film of a compound composed of a group I element. Third, Group III elements and VI
This is a method in which a group I element and a group VI element are separately deposited on a thin film of a compound composed of a group element and then heat-treated. Fourth, group I element and VI are formed on the thin film of the compound composed of group III element and group VI element.
It is a method of evaporating and depositing a compound consisting of a group element.

【0009】また、本発明においては、透明基体上にII
I族元素とVI族元素からなる化合物を薄膜を形成する工
程として、以下の工程を用いる。第1は、透明基体上に
III族元素を堆積した後、VI族元素を含む雰囲気中で熱
処理する工程である。第2は、透明基体上にIII族元素
とVI族元素を同時に堆積する工程である。第3は、透明
基体上にIII族元素とVI族元素を個別に堆積し、熱処理
する工程である。第4は、透明基体上にIII族元素とVI
族元素の化合物を蒸発させ堆積する工程である。
Further, in the present invention, II on the transparent substrate
The following steps are used as a step of forming a thin film of a compound composed of a group I element and a group VI element. First, on a transparent substrate
In this step, a Group III element is deposited and then heat-treated in an atmosphere containing a Group VI element. The second is a step of simultaneously depositing a group III element and a group VI element on the transparent substrate. The third is a step of individually depositing the group III element and the group VI element on the transparent substrate and heat-treating them. Fourth, Group III elements and VI on the transparent substrate
It is a step of evaporating and depositing a compound of a group element.

【0010】上記における熱処理温度は、300℃以上
で好ましい結果が得られる。また、この熱処理温度は、
当然ながら得られる化合物および基板の融点より低い温
度である。さらに、この熱処理の雰囲気は、不活性ガス
や酸素または水素中など特に制限されない。また、上記
のIII族元素とVI族元素からなる化合物の薄膜上にI族元
素とVI族元素を個別に堆積し、熱処理する方法において
は、VI族元素を含む雰囲気中で行うことが好ましい。さ
らに、前記透明基体上にIII族元素とVI族元素を個別に
堆積し、熱処理する工程における熱処理は、VI族元素を
含む雰囲気中で行うことが好ましい。ここにおいて、VI
族元素を含む雰囲気とは、VI族元素の蒸気またはVI族元
素のガス状化合物を含む雰囲気である。
A preferable result is obtained when the heat treatment temperature is 300 ° C. or higher. The heat treatment temperature is
As a matter of course, the temperature is lower than the melting point of the obtained compound and substrate. Furthermore, the atmosphere of this heat treatment is not particularly limited, such as an inert gas, oxygen or hydrogen. Further, in the method of individually depositing the group I element and the group VI element on the thin film of the compound including the group III element and the group VI element and performing the heat treatment, it is preferable to perform the method in an atmosphere containing the group VI element. Furthermore, it is preferable that the heat treatment in the step of separately depositing the group III element and the group VI element on the transparent substrate and performing the heat treatment is performed in an atmosphere containing the group VI element. Where VI
The atmosphere containing a group element is an atmosphere containing a vapor of a group VI element or a gaseous compound of a group VI element.

【0011】また、前記透明基体としては、透明導電
膜、透明絶縁体膜、およびII族元素とVI族元素からなる
化合物薄膜よりなる群から選択される少なくとも一つの
薄膜で被覆された透明絶縁体基板であることが好まし
い。前記透明導電膜としては、酸化錫、酸化錫インジウ
ム、およびIII族元素と水素のうち少なくとも一方を含
有した酸化亜鉛よりなる群から選択される少なくとも一
つで構成された薄膜であることが好ましい。さらに、前
記透明絶縁体膜としては、酸化亜鉛、酸化アルミニウ
ム、酸化珪素、酸化イットリウム、および酸化チタンよ
りなる群から選択される少なくとも一つで構成された薄
膜であることが好ましい。
As the transparent substrate, a transparent insulator covered with at least one thin film selected from the group consisting of a transparent conductive film, a transparent insulator film, and a compound thin film containing a group II element and a group VI element. It is preferably a substrate. The transparent conductive film is preferably a thin film composed of at least one selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide containing at least one of a Group III element and hydrogen. Further, the transparent insulator film is preferably a thin film composed of at least one selected from the group consisting of zinc oxide, aluminum oxide, silicon oxide, yttrium oxide, and titanium oxide.

【0012】[0012]

【作用】I族元素、III族元素およびVI族元素からなるカ
ルコパイライト構造半導体薄膜(以下に、I-III-VI2
膜と記す)を反応性の高い基板、例えば、II族元素とVI
族元素とからなる薄膜(以下にII-VI族薄膜と記す)上
に堆積すると、成膜温度によりI族元素およびIII族元素
とII族元素の拡散が生じる。この場合、III族元素に比
べI族元素の反応速度(拡散速度)が速いため、I族元素
がII-VI族薄膜中に深く浸透する。そして、I-III-VI2
膜中のI族元素が欠けた空格子点をII族元素が埋めるこ
となる。このような過程による相互拡散が高い確率で生
じていると考えられる。従って、本発明のように拡散速
度の遅いIII族元素とVI族元素の化合物薄膜(以下III−
VI族薄膜と記す)を基体薄膜(薄膜で覆われた基板)上
に形成した後、I族元素とVI族元素を供給する方法を用
いると、基体薄膜への過剰なI族元素の拡散を抑制する
ことが可能となる。従って、基体薄膜を構成する元素の
混入が少ない結晶性に優れたI-III-VI2薄膜を得ること
ができる。
[Function] A chalcopyrite structure semiconductor thin film composed of a group I element, a group III element and a group VI element (hereinafter referred to as I-III-VI 2 thin film) is a highly reactive substrate, for example, a group II element and a VI.
When deposited on a thin film composed of a group element (hereinafter referred to as a II-VI group thin film), the group I element and the group III element and the group II element are diffused depending on the film forming temperature. In this case, since the reaction rate (diffusion rate) of the group I element is higher than that of the group III element, the group I element penetrates deeply into the group II-VI thin film. Then, the group II element fills the vacancy in which the group I element is lacking in the I-III-VI 2 thin film. It is considered that mutual diffusion due to such a process occurs with a high probability. Therefore, as in the present invention, a compound thin film of a group III element and a group VI element having a slow diffusion rate (hereinafter
When a method of supplying a group I element and a group VI element after forming a group VI thin film) on a substrate thin film (a substrate covered with a thin film) is used, an excessive diffusion of the group I element into the substrate thin film is achieved. It becomes possible to suppress. Therefore, it is possible to obtain an I-III-VI 2 thin film that is excellent in crystallinity with less mixing of the element that constitutes the base thin film.

【0013】III-VI族薄膜上にI族元素とVI族元素を供
給する方法として、I族元素とVI族元素を同時に堆積す
る方法、およびI-VI族化合物を蒸発させ堆積する方法
は、I-III-VI2薄膜の組成比を制御することに適した方
法であり、特に、I族元素とVI族元素の同時蒸着は再現
性に優れている。また、III-VI族薄膜上にI族元素とVI
族元素を供給する方法として、I族元素薄膜を堆積した
後にVI族元素を含む雰囲気中で熱処理する方法、および
I族元素とVI族元素を個別に堆積した後に熱処理する方
法は、大面積での均一性に優れたI-III-VI2薄膜が得ら
れる。このうち、前者の方法では結晶性に優れたI-III-
VI2膜が得られ、後者の方法では、成膜速度を速めるこ
とが可能となる。
As a method for supplying the group I element and the group VI element on the group III-VI thin film, a method of simultaneously depositing the group I element and the group VI element and a method of vaporizing and depositing the group I-VI compound are This method is suitable for controlling the composition ratio of the I-III-VI 2 thin film, and in particular, co-evaporation of group I element and group VI element has excellent reproducibility. In addition, Group I elements and VI
As a method of supplying a group I element, a method of depositing a thin film of a group I element and then performing heat treatment in an atmosphere containing a group VI element, and
The method of individually depositing the group I element and the group VI element and then performing the heat treatment can obtain an I-III-VI 2 thin film having excellent uniformity in a large area. Of these, the former method provides excellent crystallinity for I-III-
A VI 2 film can be obtained, and the latter method can increase the film formation rate.

【0014】さらに、透明基体上にIIIーVI族薄膜を形
成する工程として、III族元素とVI族元素を個別に堆積
し、熱処理する工程、およびIIIーVI族化合物を蒸発さ
せ堆積する工程は、膜中に各元素が均一に分布したIII
ーVI族薄膜の作製に適している。また、透明基体上にII
IーVI族薄膜を形成する工程として、III族元素を堆積し
た後、VI族元素を含む雰囲気中で熱処理する工程、およ
びIII族元素とVI族元素を個別に堆積し、熱処理する工
程は、大面積での均一性に優れたIII-VI薄膜が得られ
る。このうち、前者によると、結晶性に優れたIII-VI膜
が得られ、後者によると、成膜速度を速めることが可能
となる。
Further, as a step of forming a group III-VI thin film on a transparent substrate, a step of individually depositing a group III element and a group VI element and heat treatment, and a step of vaporizing and depositing a group III-VI compound are performed. , Even distribution of each element in the film III
-Suitable for group VI thin films. II on a transparent substrate
As a step of forming a group I-VI thin film, a step of depositing a group III element, followed by a heat treatment in an atmosphere containing a group VI element, and a step of separately depositing a group III element and a group VI element and performing heat treatment include A III-VI thin film excellent in uniformity over a large area can be obtained. Among these, according to the former, a III-VI film having excellent crystallinity can be obtained, and according to the latter, the film forming rate can be increased.

【0015】さらにまた、透明性基体として、透明導電
膜、透明絶縁体膜、およびII族元素とVI族元素からなる
化合物薄膜よりなる群から選択される単層膜あるいは積
層膜で被覆された透明絶縁体基板を用いると、太陽光損
失の少ない窓層を構成できる。従って、光起電流が増大
する。以上により、高いエネルギー変換効率が得られる
生産性に優れた太陽電池を提供できる。
Furthermore, as the transparent substrate, a transparent conductive film, a transparent insulator film, and a transparent film coated with a single-layer film or a laminated film selected from the group consisting of compound thin films containing group II elements and group VI elements. If an insulating substrate is used, a window layer with less sunlight loss can be formed. Therefore, the photovoltaic current increases. As described above, it is possible to provide a solar cell having a high energy conversion efficiency and excellent productivity.

【0016】[0016]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。 [実施例1]図1は本実施例における太陽電池の製造過
程の中のカルコパイライト構造半導体薄膜の製造工程を
模式的に示す。ここで、透光性基体1としてガラス基板
上に透明導電膜酸化錫インジウム(ITO)を被覆し、
その上に透明絶縁体膜である酸化亜鉛(ZnO)と酸化
アルミニウム(Al23)を順に堆積した基体を用い
た。それぞれの膜厚は0.2、0.1、0.05μmであ
る。この透光性基体(基板)を10-5Torr以下の真空度
に保持された容器に入れ、基板上にIII族元素であるI
nを蒸着することによりIn薄膜2を0.45μm堆積
した。次に、VI族元素3であるSeを蒸発させながら、
基板温度を500℃に保持し、熱処理を10分行いIII-
VI族薄膜4であるIn2Se3を形成した。次いで、I族
元素であるCuを電子ビーム蒸着することによりCu薄
膜5を0.2μm堆積した。その後、VI族元素3である
Seを蒸発させながら、基板温度を550℃に保持し、
熱処理を10分行いI-III-VI2薄膜6であるCuInS
2(以下CISで表す)を作製した。なお、前記プロ
セスは同一真空中で行われている。
Embodiments of the present invention will be described below with reference to the drawings. [Embodiment 1] FIG. 1 schematically shows a manufacturing process of a chalcopyrite structure semiconductor thin film in a manufacturing process of a solar cell in this embodiment. Here, as a transparent substrate 1, a transparent conductive film of indium tin oxide (ITO) is coated on a glass substrate,
A substrate on which zinc oxide (ZnO) and aluminum oxide (Al 2 O 3 ) which are transparent insulator films were sequentially deposited thereon was used. The respective film thicknesses are 0.2, 0.1 and 0.05 μm. This translucent substrate (substrate) was placed in a container kept at a vacuum degree of 10 -5 Torr or less, and the group III element I
By depositing n, the In thin film 2 was deposited to 0.45 μm. Next, while evaporating Se which is the group VI element 3,
Hold the substrate temperature at 500 ℃ and perform heat treatment for 10 minutes III-
In 2 Se 3 which is a group VI thin film 4 was formed. Next, Cu, which is a group I element, was electron beam evaporated to deposit a Cu thin film 5 to a thickness of 0.2 μm. Then, the substrate temperature is kept at 550 ° C. while evaporating Se which is the group VI element 3,
After heat treatment for 10 minutes, CuInS which is the I-III-VI 2 thin film 6
e 2 (hereinafter represented by CIS) was produced. The above process is performed in the same vacuum.

【0017】X線回折から、得られた膜がCu−Se系
やIn−Se系の化合物を含まないカルコパイライト構
造CISのみで構成されていることが確認された。図2
は、オージェ電子分光法により測定した膜厚方向の金属
元素の分布を示す。横軸のスパッタリング時間(t)は
膜厚に相当し、t=50、65、90分で、それぞれC
ISとAl23、Al23とZnO、ZnOとITOの
界面に達している。また、t=0分は、CIS膜厚0.
2μmの地点の組成比を表している。t=50分のCI
SとAl23との界面付近に着目すると、CIS側でC
uが徐々に減少し、Inが徐々に増加している。これ
は、In2Se3表面から拡散するCuが界面付近まで充
分拡散しないことによると考えられる。このことは、C
IS太陽電池にとっては利点となる。その理由は、ジャ
ーナル オブ アプライド フィズィクス(Journal of
Applied Physics)第73巻、第6号、第2902〜2
909頁に記載されているように、p形CIS膜の表面
にn形のIn過剰のCu−In−Se系薄膜、例えば、
CuIn3Se5等が形成されると、Cu−In−Se系
のみによる擬ホモ接合が得られ、開放端電圧が向上する
ためである。
From the X-ray diffraction, it was confirmed that the obtained film was composed only of the chalcopyrite structure CIS containing no Cu-Se type or In-Se type compound. Figure 2
Shows the distribution of the metal element in the film thickness direction measured by Auger electron spectroscopy. The sputtering time (t) on the horizontal axis corresponds to the film thickness. At t = 50, 65, 90 minutes, C
It reaches the interface between IS and Al 2 O 3 , Al 2 O 3 and ZnO, and ZnO and ITO. Also, at t = 0 minutes, the CIS film thickness is 0.1.
The composition ratio at the point of 2 μm is shown. CI for t = 50 minutes
Focusing on the vicinity of the interface between S and Al 2 O 3 , C on the CIS side
u is gradually decreased and In is gradually increased. It is considered that this is because Cu diffusing from the In 2 Se 3 surface does not sufficiently diffuse to the vicinity of the interface. This means that
This is an advantage for IS solar cells. The reason for this is the Journal of Applied Physics.
Applied Physics) Volume 73, No. 6, 2902-2
As described on page 909, an n-type In-excess Cu—In—Se-based thin film on the surface of the p-type CIS film, for example,
This is because when CuIn 3 Se 5 or the like is formed, a pseudo homojunction only by the Cu—In—Se system is obtained and the open-circuit voltage is improved.

【0018】また、Al、CuとInの相互拡散はほと
んど観測されない。信号のすその重なりは測定の分解能
が劣ることによって生じており、元素の拡散が生じてい
るわけではない。同様に、Al23とZnO界面及びZ
nOとITO界面においても相互拡散は観測されていな
い。500℃以上の高温での熱処理によってもCISと
Al23の相互拡散が生じない理由としては、前述した
In2Se3層の形成によるCuの過剰拡散の抑制とAl
23のAlとIn2Se3のInが同じIII族元素であり
相互拡散しにくく、かつAlの方が酸素との結合が強い
ためである。従って、本発明の製造方法を用いると、基
板となる薄膜との相互拡散がほとんど生じない結晶性に
優れたカルコパイライト構造半導体薄膜を作製すること
ができる。
Al, Cu and In interdiffusion is hardly observed. The overlap of the signals is caused by the poor measurement resolution, and does not mean that element diffusion occurs. Similarly, Al 2 O 3 and ZnO interface and Z
No mutual diffusion was observed at the interface between nO and ITO. The reason why the mutual diffusion of CIS and Al 2 O 3 does not occur even by the heat treatment at a high temperature of 500 ° C. or higher is that the above-described formation of the In 2 Se 3 layer suppresses the excessive diffusion of Cu and Al
This is because Al of 2 O 3 and In of In 2 Se 3 are the same group III elements and are difficult to mutually diffuse, and Al has a stronger bond with oxygen. Therefore, by using the manufacturing method of the present invention, it is possible to manufacture a chalcopyrite structure semiconductor thin film having excellent crystallinity in which mutual diffusion with a thin film which becomes a substrate hardly occurs.

【0019】本発明の有効性を確認するために、得られ
たCIS膜上に電極となるAuを蒸着し、太陽電池を作
製した。空気中で200℃・1時間熱処理した後に、A
M1.5、100mW/cm2の光を照射し電流−電圧特
性を測定した結果、変換効率10%以上が得られた。こ
れは従来のスーパストレート形太陽電池(変換効率6〜
7%)より高い値となっている。また、ガラスを被覆し
たITO上にZnOを堆積し、Al23膜を装荷せずに
前記プロセスと同じ条件でCIS膜を作製したところ、
CISとZnOの界面付近でCuとZnの相互拡散が観
測された。この膜を用いて作製した太陽電池の変換効率
は2%前後の低い値を示した。これに対し、ガラス/I
TO/ZnO基板上にIn2Se3を形成する時と、Cu
とSeを蒸着させCISを形成する時の基板温度を40
0℃に保持し、それぞれ30分と1時間熱処理した場
合、得られたCISとZnOの相互拡散は観測されなか
った。この膜を用いた太陽電池の変換効率は約9%であ
った。従って、相互拡散を抑制することにより変換効率
が向上することがわかる。なお、本実施例では、VI族元
素であるSeの供給法としてSe蒸気を用いているが、
Seのガス状化合物、例えばH2Seを用いても同様な
CIS膜を作製できる。
In order to confirm the effectiveness of the present invention, Au serving as an electrode was vapor-deposited on the obtained CIS film to prepare a solar cell. After heat treatment in air at 200 ° C for 1 hour, A
As a result of measuring the current-voltage characteristics by irradiating with light of M1.5, 100 mW / cm 2 , conversion efficiency of 10% or more was obtained. This is a conventional super straight solar cell (conversion efficiency 6 ~
7%). Moreover, when ZnO was deposited on the ITO coated with glass and a CIS film was prepared under the same conditions as the above process without loading an Al 2 O 3 film,
Mutual diffusion of Cu and Zn was observed near the interface between CIS and ZnO. The conversion efficiency of the solar cell produced using this film showed a low value of around 2%. On the other hand, glass / I
When forming In 2 Se 3 on the TO / ZnO substrate and Cu
Substrate temperature at the time of forming CIS by evaporating Se and Se is 40
When kept at 0 ° C. and heat-treated for 30 minutes and 1 hour, respectively, no interdiffusion of the obtained CIS and ZnO was observed. The conversion efficiency of the solar cell using this film was about 9%. Therefore, it can be seen that the conversion efficiency is improved by suppressing the mutual diffusion. In the present embodiment, Se vapor is used as a supply method of the Group VI element Se.
A similar CIS film can be prepared by using a gaseous compound of Se, such as H 2 Se.

【0020】[実施例2]図3は本実施例における太陽
電池の製造過程の中のカルコパイライト構造半導体薄膜
の製造工程を示す模式図である。ここで、透光性基体1
として、AlをドープしたZnOからなる透明導電膜
(ZnO:Al)と透明絶縁体膜Al23を順にそれぞ
れ1.5μmと0.05μm堆積したガラス基板を用い
た。10-5Torr以下の真空中でIII族元素7であるGa
とVI族元素3であるSeを同時に、450℃に保持した
透光性基板上に蒸着し、III-VI族薄膜4であるGa2
3を形成した。次に、I族元素5であるCuとVI族元素
3であるSeを同時に蒸発させGa2Se3膜上に照射
し、I-III-VI2薄膜6であるCuGaSe2(以下CGS
で表す)を形成した。この時の基板温度は500℃に保
持した。オージェ電子分光分析から、CGS膜とAl2
3膜との相互拡散はほとんど観測されなかった。
[Embodiment 2] FIG. 3 is a schematic view showing a manufacturing process of a chalcopyrite structure semiconductor thin film in a manufacturing process of a solar cell in this embodiment. Here, the transparent substrate 1
As a glass substrate, a transparent conductive film (ZnO: Al) made of ZnO doped with Al and a transparent insulator film Al 2 O 3 were deposited in order of 1.5 μm and 0.05 μm, respectively. Ga which is a group III element 7 in a vacuum of 10 -5 Torr or less
And Group VI element 3 Se are simultaneously vapor-deposited on a transparent substrate kept at 450 ° C. to form a III-VI group thin film 4 of Ga 2 S.
e 3 was formed. Next, Cu, which is the group I element 5, and Se, which is the group VI element 3, are simultaneously vaporized and irradiated onto the Ga 2 Se 3 film, and CuGaSe 2 (hereinafter referred to as CGS) which is the I-III-VI 2 thin film 6 is irradiated.
Represented by). The substrate temperature at this time was kept at 500 ° C. From Auger electron spectroscopy analysis, CGS film and Al 2
Almost no mutual diffusion with the O 3 film was observed.

【0021】さらに、このCGS膜上に実施例1と同様
な手順でIn2Se3膜を形成した後にCu膜を蒸着し、
Se蒸気中で熱処理してCu(Ga,In)Se2(以
下CIGSで表す)膜を作製した。CIGS膜中の金属
元素の分布を図4に示す。スパッタリング時間t=0は
CIGS膜表面を表し、t=600分の地点はAl23
膜との界面を表す。Cuの分布は膜中でほぼ一定であ
り、Al23界面でやや減少している。InはCIGS
膜表面付近に多量に存在し、Al23界面に近づくにつ
れ徐々に減少し、Al23界面付近では少量となってい
る。これとは対照的にGaはCIGS膜表面では少量で
あり、Al23界面に近づくにつれ増加している。Ga
混入量の多い方がバンドギャップが広いことから、作製
したCIGS膜では表面からAl23界面へとバンドギ
ャップが徐々に広がっていることになる。このような構
造は、接合界面付近のワイドギャップ化による開放端電
圧(Voc)の向上と光吸収層内部のエネルギーバンド勾
配の形成による短絡光電流(Jsc)の向上という2つの
効果を有しており、太陽電池性能の向上をもたらす。C
IGS膜上に電極膜としてPtを蒸着し太陽電池を作製
した。空気中で200℃・1時間の熱処理を行った後、
実施例1と同様な条件で光照射時の電流−電圧特性を測
定したところ、変換効率11%以上が得られた。開放端
電圧と短絡光電流の向上により実施例1以上の変換効率
を得ることができた。
Further, an In 2 Se 3 film was formed on this CGS film by the same procedure as in Example 1, and then a Cu film was vapor-deposited.
Treated at Se vapor Cu (Ga, In) (expressed by the following CIGS) Se 2 to produce a membrane. The distribution of the metal element in the CIGS film is shown in FIG. The sputtering time t = 0 represents the CIGS film surface, and the point at t = 600 minutes is Al 2 O 3
It represents the interface with the membrane. The distribution of Cu is almost constant in the film, and slightly decreases at the Al 2 O 3 interface. In is CIGS
Large amount present near the film surface gradually decreases as it approaches the Al 2 O 3 interface has a small amount in the vicinity Al 2 O 3 interface. In contrast, Ga is small in amount on the surface of the CIGS film and increases as it approaches the Al 2 O 3 interface. Ga
Since the band gap is wider as the mixed amount is larger, the band gap gradually expands from the surface to the Al 2 O 3 interface in the manufactured CIGS film. Such a structure has two effects of improving the open circuit voltage (Voc) by widening the gap near the junction interface and improving the short circuit photocurrent (Jsc) by forming an energy band gradient inside the light absorption layer. And improve the solar cell performance. C
Pt was vapor-deposited on the IGS film as an electrode film to manufacture a solar cell. After heat treatment at 200 ° C for 1 hour in air,
When the current-voltage characteristics during light irradiation were measured under the same conditions as in Example 1, a conversion efficiency of 11% or higher was obtained. The conversion efficiency of Example 1 or higher could be obtained by improving the open circuit voltage and the short circuit photocurrent.

【0022】[実施例3]図5は本実施例における太陽
電池の製造過程の中のカルコパイライト構造半導体薄膜
の製造工程を示す。ここで、透光性基体1として、透明
導電膜ZnO:Al、透明絶縁体膜ZnO、II-VI族半
導体薄膜CdSを順にそれぞれ1.5μm、0.1μmと
0.05μm堆積したガラス基板を用いた。表面がCd
Sで被覆された基板上にVI族元素であるSeを蒸着して
Se薄膜9を約0.5μm堆積した後、III族元素である
InをAr雰囲気中のスパッタリングにて0.45μm
の薄膜2を堆積した。その後、Arガスで希釈した5%
2S雰囲気中で450℃・30分熱処理を行いIII-VI
族薄膜4であるIn2(S,Se)3を形成した。この化
合物膜上にVI族元素3であるSeを蒸着で、I族元素5
であるCuをスパッタリングでそれぞれ約1μmと0.
2μm堆積した後、Seを蒸発させた窒素雰囲気中にて
400℃で30分熱処理し、I-III-VI2薄膜6であるC
uIn(S,Se)2膜(以下CISSで表す)を作製
した。
[Embodiment 3] FIG. 5 shows a manufacturing process of a chalcopyrite structure semiconductor thin film in a manufacturing process of a solar cell in this embodiment. Here, as the translucent substrate 1, a glass substrate on which a transparent conductive film ZnO: Al, a transparent insulator film ZnO, and a II-VI group semiconductor thin film CdS are deposited in order of 1.5 μm, 0.1 μm and 0.05 μm, respectively, is used. I was there. The surface is Cd
After depositing Se which is a group VI element on the substrate coated with S to deposit Se thin film 9 of about 0.5 μm, In which is a group III element is 0.45 μm by sputtering in an Ar atmosphere.
Thin film 2 was deposited. Then, 5% diluted with Ar gas
Heat treatment at 450 ℃ for 30 minutes in H 2 S atmosphere III-VI
In 2 (S, Se) 3 , which is the group thin film 4, was formed. By depositing Se which is a group VI element 3 on this compound film, a group I element 5 is formed.
The Cu is about 1 μm and 0.1 by sputtering.
After depositing 2 μm, heat treatment was performed at 400 ° C. for 30 minutes in a nitrogen atmosphere in which Se was evaporated to form I-III-VI 2 thin film 6, C
A uIn (S, Se) 2 film (hereinafter referred to as CISS) was produced.

【0023】得られたCISS膜は、X線回折からCu
InSe2とCuInS2が固溶した膜であることが確認
された。また、光透過特性の測定から光吸収端波長は
1.0μmであり、CIS膜のそれ(1.2μm)より短
波長側にずれていることがわかった。また、オージェ電
子分光分析から、CuとInは、CISSとCdS界面
付近を除き膜中にほぼ一様に分布していることがわかっ
た。これに対し、Se(S)はCISS表面(CdS界
面)付近に多量に存在し、CdS界面(CISS表面)
へと徐々に減少している。CuInS2の方がバンドギ
ャップが広いため実施例2と同様な効果により太陽電池
性能の向上が期待できる。CISS表面にAu電極を形
成し太陽電池を作製した。空気中で200℃・1時間熱
処理した後、実施例1と同様な条件の光を照射して電流
−電圧特性を測定した結果、変換効率約11%が得られ
た。
The obtained CISS film was Cu-based by X-ray diffraction.
It was confirmed that the film was a solution of InSe 2 and CuInS 2 . Further, it was found from the measurement of the light transmission characteristics that the light absorption edge wavelength was 1.0 μm, which was shifted to the shorter wavelength side than that of the CIS film (1.2 μm). Also, from Auger electron spectroscopy analysis, it was found that Cu and In were distributed almost uniformly in the film except in the vicinity of the CISS-CdS interface. On the other hand, Se (S) is present in a large amount near the CISS surface (CdS interface) and the CdS interface (CISS surface) is present.
Is gradually decreasing. Since CuInS 2 has a wider band gap, improvement in solar cell performance can be expected due to the same effect as in Example 2. An Au electrode was formed on the CISS surface to manufacture a solar cell. After heat treatment in air at 200 ° C. for 1 hour, light under the same conditions as in Example 1 was irradiated to measure current-voltage characteristics, and as a result, conversion efficiency of about 11% was obtained.

【0024】[実施例4]本実施例では、前記実施例と
は異なるI-III-VI2薄膜の作製法について述べる。ガラ
ス基板上にSnO2膜、(Si,Ti)O2膜を順にそれ
ぞれ2μm、0.1μm堆積した透光性基板1を用い、
その上に基板温度20〜30℃にてIII族とVI族元素の
化合物であるIn2Se3を蒸発させ堆積した。次に、I
族元素とVI族元素の化合物であるCu2SeとAg2Se
を同時に蒸着し、基板温度550℃にてIn2Se3と反
応させI-III-VI2薄膜である(Cu,Ag)InSe2
を作製した。CuとAgは(Cu,Ag)InSe2
中にほぼ一様に分布していた。この(Cu,Ag)In
Se2膜上にAu膜を蒸着し太陽電池を作製した。前記
実施例と同様な条件で電流−電圧特性を測定した結果、
変換効率約10%が得られた。
[Embodiment 4] In this embodiment, a method of manufacturing an I-III-VI 2 thin film different from the above-mentioned embodiment will be described. A transparent substrate 1 was used in which a SnO 2 film and a (Si, Ti) O 2 film were sequentially deposited on a glass substrate in an amount of 2 μm and 0.1 μm, respectively.
Then, In 2 Se 3 which is a compound of group III and group VI elements was evaporated and deposited at a substrate temperature of 20 to 30 ° C. Then I
Cu 2 Se and Ag 2 Se, which are compounds of group VI elements and group VI elements
Was simultaneously vapor-deposited and reacted with In 2 Se 3 at a substrate temperature of 550 ° C. to form a (Cu, Ag) InSe 2 film which is an I-III-VI 2 thin film. Cu and Ag were distributed almost uniformly in the (Cu, Ag) InSe 2 film. This (Cu, Ag) In
An Au film was vapor-deposited on the Se 2 film to manufacture a solar cell. As a result of measuring the current-voltage characteristics under the same conditions as in the above example,
A conversion efficiency of about 10% was obtained.

【0025】なお、III族とVI族の化合物及びI族元素と
VI族元素の化合物を蒸着する際に、化合物の構成元素で
あるVI族元素を同時に蒸発させることが有効である。こ
れは、VI族元素の蒸気圧が一般に高いことから、VI族元
素を含む化合物を蒸着させるとVI族元素が欠損した化合
物薄膜が堆積されるためであり、形成されたI-III-VI2
薄膜においてもVI族元素が欠損するからである。上記実
施例において、Cu2SeとAg2Seを蒸着させる際
に、同時にSeを蒸着して作製した(Cu,Ag)In
Se2膜を用いた太陽電池は、Seを同時に蒸着せずに
作製した膜を用いたものより高い変換高率が得られた。
In addition, the group III and VI compounds and the group I elements
When depositing the compound of the group VI element, it is effective to evaporate the group VI element which is a constituent element of the compound at the same time. This is because the vapor pressure of the VI group element is generally high, and therefore, when a compound containing the VI group element is vapor-deposited, a compound thin film lacking the VI group element is deposited, and the formed I-III-VI 2
This is because the group VI element is also lost in the thin film. In the above example, (Cu, Ag) In was prepared by depositing Se at the same time as depositing Cu 2 Se and Ag 2 Se.
The solar cell using the Se 2 film obtained a higher conversion efficiency than the solar cell using the film prepared without simultaneously depositing Se.

【0026】[実施例5]前記実施例1〜4では、III-
VI族薄膜とI-III-VI2薄膜の形成法が同じプロセスを用
いてきた。例えば、実施例1では、III-VI族薄膜とI-II
I-VI2薄膜の両方とも金属(I族元素とIII族元素)薄膜
を堆積した後にSe(VI族元素)を蒸発させ熱処理して
形成する方法を用いている。しかし、本発明ではIII-VI
族薄膜とI-III-VI2薄膜の形成法は同様なプロセスを用
いることに限定するものではない。そこで、本実施例で
は、III-VI族薄膜とI-III-VI2薄膜の形成法が異なる例
を示す。
[Embodiment 5] In Embodiments 1 to 4, III-
The same process has been used to form Group VI thin films and I-III-VI 2 thin films. For example, in Example 1, a III-VI thin film and I-II
Both of the I-VI 2 thin films use a method of depositing a metal (group I element and group III element) thin film and then evaporating and heat-treating Se (group VI element). However, in the present invention, III-VI
The method for forming the group thin film and the I-III-VI 2 thin film is not limited to using the same process. Therefore, in this example, an example in which the method for forming the III-VI thin film and the method for forming the I-III-VI 2 thin film are different is shown.

【0027】実施例3と同様な透光性基体1として、透
明導電膜ZnO:Al、透明絶縁体膜ZnO、II-VI族
半導体薄膜CdSを順にそれぞれ1.5μm、0.1μm
と0.05μm堆積したガラス基板を用いた。この表面
がCdSで被覆された基板上にIII族元素とVI族元素の
化合物であるIn2Se3をAr雰囲気中のスパッタリン
グにて0.75μm堆積した。この膜の上に、I族元素で
あるCuを0.2μmスパッタリングにて堆積した後、V
I族元素であるSeをCu膜上に蒸発させつつ基板温度
を450℃に保持し、I-III-VI2薄膜であるCuInS
2(CIS)膜を形成した。このCIS膜上にAu膜
を蒸着し太陽電池素子を作製した。この太陽電池素子を
空気中で200℃・1時間熱処理した後に前記実施例1
と同様な光照度で特性を測定した。その結果、変換効率
10%以上が得られた。
A transparent conductive film ZnO: Al, a transparent insulating film ZnO, and a II-VI group semiconductor thin film CdS were formed in the order of 1.5 μm and 0.1 μm, respectively, as a transparent substrate 1 similar to that in Example 3.
And a glass substrate having a thickness of 0.05 μm was used. The surface was 0.75μm deposited an In 2 Se 3 is a compound of a group III element and a group VI element on a substrate coated with CdS by sputtering in Ar atmosphere. Cu, which is a group I element, was deposited on this film by 0.2 μm sputtering, and then V
While keeping the substrate temperature at 450 ° C. while evaporating Se which is a group I element onto the Cu film, CuInS which is an I-III-VI 2 thin film
An e 2 (CIS) film was formed. An Au film was vapor-deposited on this CIS film to produce a solar cell element. This solar cell element was heat treated in air at 200 ° C. for 1 hour, and then the above-mentioned Example 1 was used.
The characteristics were measured with the same light illuminance. As a result, a conversion efficiency of 10% or more was obtained.

【0028】このように、III-VI族薄膜とI-III-VI2
膜の作製法は、作製するI-III-VI2膜の構成元素、基板
材料、製造コストあるいは安全性等の面から最適な方法
を選択することができる。なお、実施例中では、III-VI
族薄膜としてIn2Se3やGa2Se3等のIII族元素とV
I族元素の比が2:3の化合物を用いているが、本発明
の製造法では必ずしも前記組成比の薄膜を用いる必要は
ない。例えば、III族元素とVI族元素の組成比が1:1
の薄膜(例えば、InSe)や無定形のIII-VI族薄膜を
用いても良好な結晶性を有するI-III-VI2薄膜を作製す
ることができる。
As described above, the method for producing the III-VI thin film and the I-III-VI 2 thin film is different from the viewpoint of the constituent elements of the I-III-VI 2 film to be produced, the substrate material, the manufacturing cost, the safety, etc. The most suitable method can be selected. In the examples, III-VI
Group III elements such as In 2 Se 3 and Ga 2 Se 3 and V
Although a compound having a group I element ratio of 2: 3 is used, it is not always necessary to use a thin film having the above composition ratio in the production method of the present invention. For example, the composition ratio of the group III element and the group VI element is 1: 1.
The thin film (for example, InSe) or the amorphous III-VI thin film can be used to produce the I-III-VI 2 thin film having good crystallinity.

【0029】[0029]

【発明の効果】本発明によれば、相互拡散等の不純物汚
染がない結晶性に優れたI族元素、III族元素およびVI族
元素からなるカルコパイライト構造半導体薄膜を形成す
ることが可能となり、生産性に優れたス−パ−ストレ−
ト形太陽電池の高効率化を図ることができる。
According to the present invention, it is possible to form a chalcopyrite structure semiconductor thin film composed of a group I element, a group III element and a group VI element which is excellent in crystallinity and is free from impurity contamination such as mutual diffusion. Superstrate with excellent productivity
The efficiency of the solar cell can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例におけるカルコパイライト構
造半導体薄膜の製造工程を模式的に示す図である。
FIG. 1 is a diagram schematically showing a manufacturing process of a chalcopyrite structure semiconductor thin film in an example of the present invention.

【図2】本発明の実施例で作製した薄膜についてオージ
ェ電子分光により測定した膜厚方向の金属元素の分布を
示す図である。
FIG. 2 is a diagram showing the distribution of metal elements in the film thickness direction measured by Auger electron spectroscopy for the thin films produced in the examples of the present invention.

【図3】本発明の他の実施例におけるカルコパイライト
構造半導体薄膜の製造工程を模式的に示す図である。
FIG. 3 is a diagram schematically showing a manufacturing process of a chalcopyrite structure semiconductor thin film in another example of the present invention.

【図4】本発明の実施例で作製した薄膜についてオージ
ェ電子分光により測定した膜厚方向の金属元素の分布を
示す図である。
FIG. 4 is a diagram showing the distribution of metal elements in the film thickness direction measured by Auger electron spectroscopy for the thin films produced in the examples of the present invention.

【図5】本発明の他の実施例におけるカルコパイライト
構造半導体薄膜の製造工程を模式的に示す図である。
FIG. 5 is a diagram schematically showing a manufacturing process of a chalcopyrite structure semiconductor thin film in another example of the present invention.

【符号の説明】[Explanation of symbols]

1 透明基体 2 III族元素からなる薄膜 3 VI族元素 4 III族とVI族元素からなる化合物薄膜 5 I族元素 6 I族、III族とVI族元素からなるカルコパイライト構
造半導体薄膜 7 III族元素 8 I族元素からなる薄膜 9 VI族元素からなる薄膜
1 transparent substrate 2 thin film made of III group element 3 VI group element 4 compound thin film made of III group and VI element 5 I group element 6 chalcopyrite structure semiconductor thin film made of I group, III group and VI element 7 group III element 8 Thin film made of Group I element 9 Thin film made of Group VI element

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/363 8719−4M Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/363 8719-4M

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 透明基体上にIII族元素とVI族元素から
なる化合物の薄膜を形成した後に、前記薄膜上にI族元
素を堆積し、VI族元素を含む雰囲気中で熱処理すること
により、I族元素、III族元素およびVI族元素からなるカ
ルコパイライト構造半導体薄膜を形成する工程を含む太
陽電池の製造方法。
1. A thin film of a compound comprising a group III element and a group VI element is formed on a transparent substrate, a group I element is deposited on the thin film, and heat treatment is performed in an atmosphere containing the group VI element. A method for manufacturing a solar cell, which comprises a step of forming a chalcopyrite structure semiconductor thin film composed of a group I element, a group III element and a group VI element.
【請求項2】 透明基体上にIII族元素とVI族元素から
なる化合物の薄膜を形成した後に、前記薄膜上にI族元
素とVI族元素を同時に堆積することにより、I族元素、I
II族元素およびVI族元素からなるカルコパイライト構造
半導体薄膜を形成する工程を含む太陽電池の製造方法。
2. A group I element, a group I element, and a group I element by simultaneously depositing a group I element and a group VI element on the thin film after forming a thin film of a compound including a group III element and a group VI element on a transparent substrate.
A method for manufacturing a solar cell, which includes a step of forming a chalcopyrite structure semiconductor thin film composed of a group II element and a group VI element.
【請求項3】 透明基体上にIII族元素とVI族元素から
なる化合物の薄膜を形成した後に、前記薄膜上にI族元
素とVI族元素を個別に堆積し、熱処理することにより、
I族元素、III族元素およびVI族元素からなるカルコパイ
ライト構造半導体薄膜を形成する工程を含む太陽電池の
製造方法。
3. A thin film of a compound consisting of a group III element and a group VI element is formed on a transparent substrate, and then a group I element and a group VI element are separately deposited on the thin film and heat-treated,
A method for manufacturing a solar cell, which comprises a step of forming a chalcopyrite structure semiconductor thin film composed of a group I element, a group III element and a group VI element.
【請求項4】 透明基体上にIII族元素とVI族元素から
なる化合物の薄膜を形成した後に、前記薄膜上にI族元
素とVI族元素からなる化合物を蒸発させ堆積することに
より、I族元素、III族元素およびVI族元素からなるカル
コパイライト構造半導体薄膜を形成する工程を含む太陽
電池の製造方法。
4. A group I element is formed by forming a thin film of a compound consisting of a group III element and a group VI element on a transparent substrate and then evaporating and depositing a compound consisting of a group I element and a group VI element on the thin film. A method for manufacturing a solar cell, which comprises a step of forming a chalcopyrite structure semiconductor thin film composed of an element, a group III element and a group VI element.
【請求項5】 III族元素とVI族元素からなる化合物の
薄膜を形成する工程が、透明基体上にIII族元素を堆積
した後、VI族元素を含む雰囲気中で熱処理することから
なる請求項1〜4のいずれかに記載の太陽電池の製造方
法。
5. The step of forming a thin film of a compound consisting of a group III element and a group VI element comprises depositing the group III element on a transparent substrate and then performing a heat treatment in an atmosphere containing the group VI element. The method for manufacturing a solar cell according to any one of 1 to 4.
【請求項6】 III族元素とVI族元素からなる化合物の
薄膜を形成する工程が、透明基体上にIII族元素とVI族
元素を同時に堆積することからなる請求項1〜4のいず
れかに記載の太陽電池の製造方法。
6. The method according to claim 1, wherein the step of forming a thin film of a compound comprising a group III element and a group VI element comprises depositing the group III element and the group VI element simultaneously on a transparent substrate. A method for manufacturing the solar cell described.
【請求項7】 III族元素とVI族元素からなる化合物の
薄膜を形成する工程が、透明基体上にIII族元素とVI族
元素を個別に堆積し、熱処理することからなる請求項1
〜4のいずれかに記載の太陽電池の製造方法。
7. The step of forming a thin film of a compound consisting of a group III element and a group VI element comprises depositing the group III element and the group VI element individually on a transparent substrate and heat-treating them.
5. The method for manufacturing a solar cell according to any one of 4 to 4.
【請求項8】 III族元素とVI族元素からなる化合物の
薄膜を形成する工程が、透明基体上にIII族元素とVI族
元素の化合物を蒸発させ堆積することからなる請求項1
〜4のいずれかに記載の太陽電池の製造方法。
8. The step of forming a thin film of a compound consisting of a group III element and a group VI element comprises evaporating and depositing a compound of the group III element and a group VI element on a transparent substrate.
5. The method for manufacturing a solar cell according to any one of 4 to 4.
【請求項9】 前記熱処理が、VI族元素を含む雰囲気中
で行われる請求項3または7記載の太陽電池の製造方
法。
9. The method for manufacturing a solar cell according to claim 3, wherein the heat treatment is performed in an atmosphere containing a Group VI element.
【請求項10】 前記透明基体が、透明導電膜、透明絶
縁体膜、およびII族元素とVI族元素からなる化合物薄膜
よりなる群から選択される少なくとも一つの薄膜で被覆
された透明絶縁体基板である請求項1〜4のいずれかに
記載の太陽電池の製造方法。
10. A transparent insulator substrate in which the transparent substrate is covered with at least one thin film selected from the group consisting of a transparent conductive film, a transparent insulator film, and a compound thin film containing a group II element and a group VI element. The method for manufacturing a solar cell according to any one of claims 1 to 4.
【請求項11】 前記透明導電膜が、酸化錫、酸化錫イ
ンジウム、およびIII族元素と水素のうち少なくとも一
方を含有した酸化亜鉛よりなる群から選択される少なく
とも一つで構成された薄膜である請求項10記載の太陽
電池の製造方法。
11. The transparent conductive film is a thin film composed of at least one selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide containing at least one of a Group III element and hydrogen. The method for manufacturing a solar cell according to claim 10.
【請求項12】 前記透明絶縁体膜が、酸化亜鉛、酸化
アルミニウム、酸化珪素、酸化イットリウム、および酸
化チタンよりなる群から選択される少なくとも一つで構
成された薄膜である請求項10記載の太陽電池の製造方
法。
12. The sun according to claim 10, wherein the transparent insulator film is a thin film composed of at least one selected from the group consisting of zinc oxide, aluminum oxide, silicon oxide, yttrium oxide, and titanium oxide. Battery manufacturing method.
JP07313694A 1994-04-12 1994-04-12 Solar cell manufacturing method Expired - Lifetime JP3408618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07313694A JP3408618B2 (en) 1994-04-12 1994-04-12 Solar cell manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07313694A JP3408618B2 (en) 1994-04-12 1994-04-12 Solar cell manufacturing method

Publications (2)

Publication Number Publication Date
JPH07283430A true JPH07283430A (en) 1995-10-27
JP3408618B2 JP3408618B2 (en) 2003-05-19

Family

ID=13509495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07313694A Expired - Lifetime JP3408618B2 (en) 1994-04-12 1994-04-12 Solar cell manufacturing method

Country Status (1)

Country Link
JP (1) JP3408618B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424899C (en) * 2006-10-24 2008-10-08 南开大学 Preparing high conductivity suede non-blended ZnO film by MOCVD method
JP2008255444A (en) * 2007-04-06 2008-10-23 Hoya Corp SUBSTRATES WITH ZnCuSe THIN FILM, AND ITS MANUFACTURING METHOD
WO2009030281A1 (en) * 2007-09-07 2009-03-12 ETH Zürich Method of forming thin film solar cell
JP2012119350A (en) * 2010-11-29 2012-06-21 Kyocera Corp Photoelectric conversion element, method of manufacturing the same, and photoelectric conversion device
WO2012090339A1 (en) * 2010-12-28 2012-07-05 東北精機工業株式会社 Process for production of compound having chalcopyrite structure
JP2014112633A (en) * 2012-11-06 2014-06-19 Showa Shell Sekiyu Kk Compound-based thin film solar cell and manufacturing method of the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102034612B (en) * 2010-12-01 2012-12-05 北京科技大学 Method for preparing Al2O3-ZnO nanorod array composite electrode
CN102005305B (en) * 2010-12-01 2012-12-05 北京科技大学 Method for preparing Al2O3 modified ZnO nano porous thin film combined electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100424899C (en) * 2006-10-24 2008-10-08 南开大学 Preparing high conductivity suede non-blended ZnO film by MOCVD method
JP2008255444A (en) * 2007-04-06 2008-10-23 Hoya Corp SUBSTRATES WITH ZnCuSe THIN FILM, AND ITS MANUFACTURING METHOD
WO2009030281A1 (en) * 2007-09-07 2009-03-12 ETH Zürich Method of forming thin film solar cell
JP2012119350A (en) * 2010-11-29 2012-06-21 Kyocera Corp Photoelectric conversion element, method of manufacturing the same, and photoelectric conversion device
WO2012090339A1 (en) * 2010-12-28 2012-07-05 東北精機工業株式会社 Process for production of compound having chalcopyrite structure
JP5756899B2 (en) * 2010-12-28 2015-07-29 株式会社ハッピージャパン Method for producing compound having chalcopyrite structure
JP2014112633A (en) * 2012-11-06 2014-06-19 Showa Shell Sekiyu Kk Compound-based thin film solar cell and manufacturing method of the same

Also Published As

Publication number Publication date
JP3408618B2 (en) 2003-05-19

Similar Documents

Publication Publication Date Title
US5078804A (en) I-III-VI2 based solar cell utilizing the structure CuInGaSe2 CdZnS/ZnO
JP3249408B2 (en) Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
US5626688A (en) Solar cell with chalcopyrite absorber layer
US5125984A (en) Induced junction chalcopyrite solar cell
US6534704B2 (en) Solar cell
US4523051A (en) Thin films of mixed metal compounds
EP0067860B1 (en) Methods and apparatus for forming thin-film heterojunction solar cells from i-iii-vi2 chalcopyrite compounds, and solar cells produced thereby
JP6096790B2 (en) Conductive substrate for photovoltaic cells
EP1492169A2 (en) Solar cell
JPH04233772A (en) Manufacture of chacopyrite solar battery
EP1836736A2 (en) Process and photovoltaic device using an akali-containing layer
KR20180005730A (en) A preparation method of solar cell using ZnS buffer layer
JP2922465B2 (en) Manufacturing method of thin film solar cell
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
JP3484259B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
JP3408618B2 (en) Solar cell manufacturing method
JP3311873B2 (en) Manufacturing method of semiconductor thin film
JP3519543B2 (en) Precursor for forming semiconductor thin film and method for producing semiconductor thin film
JP2004047860A (en) Thin film solar cell and its manufacture
JPH07122762A (en) Thin film photovoltaic device
JPH09172193A (en) Thin film solar battery
JP3468328B2 (en) Manufacturing method of semiconductor thin film
JPH0555615A (en) Manufacture of thin film solar battery
JP2003008039A (en) Method for manufacturing compound solar battery
US9601642B1 (en) CZTSe-based thin film and method for preparing the same, and solar cell using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

EXPY Cancellation because of completion of term