JPH07270838A - Higher harmonic wave generating element - Google Patents

Higher harmonic wave generating element

Info

Publication number
JPH07270838A
JPH07270838A JP8100794A JP8100794A JPH07270838A JP H07270838 A JPH07270838 A JP H07270838A JP 8100794 A JP8100794 A JP 8100794A JP 8100794 A JP8100794 A JP 8100794A JP H07270838 A JPH07270838 A JP H07270838A
Authority
JP
Japan
Prior art keywords
light
incident light
refractive index
polarization inversion
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8100794A
Other languages
Japanese (ja)
Inventor
Kazuo Suzuki
和雄 鈴木
Yukihiro Yamamoto
幸弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8100794A priority Critical patent/JPH07270838A/en
Publication of JPH07270838A publication Critical patent/JPH07270838A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an element having high efficiency with a mask of only the straight parts by providing a nonlinear optical material with periodic polarization inversion parts and non-inversion parts to form optical waveguides of a discrete type and specifying the refractive index of the polarization inversion parts. CONSTITUTION:The substrate 7 of a higher harmonic generating element which makes coherent light incident on a nonlinear optical material and converts the incident light to higher harmonic waves of (n) order having a halve or smaller wavelength is formed with the rectangular polarization inversion parts 8 to invert the direction of the nonlinear polarization of the nonlinear optical material by the period of coherence length with respect to the progressing direction of the incident light, by which the phase of the incident light and the phase of the generated higher harmonics waves of the (n) order are spuriously matched. The refractive index distribution of the polarization inversion parts 8 is max. in the central part in the direction perpendicular to the optical axis of the optical waveguides and is gradually decreased toward the peripheral part. As a result, the effect of focusing light is generated and the loss by scattering of light is lessened in spite of the optical waveguides of the discrete type. The efficiency of generating and converting the second harmonic waves is thus enhanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、短い波長のコヒーレン
ト光を得ようとする場合、レーザなどの安定で高出力の
コヒーレント光源を用い、その波長を半分以下とするた
めの高調波発生素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a harmonic generating element for obtaining a coherent light having a short wavelength by using a stable and high output coherent light source such as a laser and reducing the wavelength to half or less. .

【0002】[0002]

【従来の技術】変換効率の高い高調波発生素子、例えば
第二高調波発生(SHG)素子を得るためには、素子中
で入射光と発生するSHG光の間の位相を合わせること
が重要であり、バルク素子の場合にはSHG結晶の屈折
率異方性を利用して、結晶の光軸に対する角度を調整す
ることで、位相整合が取られている。またSHG発生効
率をより高めるため、光導波路構造により光強度を高め
る方法が採用されている。導波路構造での位相整合の方
法としては、Appl.Phys.Lett.21(1072)140に示される周
期構造を用いて疑似的に位相を整合させるものがある。
2. Description of the Related Art In order to obtain a harmonic generating element having a high conversion efficiency, for example, a second harmonic generating (SHG) element, it is important to match the phase between incident light and SHG light generated in the element. In the case of a bulk device, phase matching is achieved by adjusting the angle of the SHG crystal with respect to the optical axis using the refractive index anisotropy of the crystal. Further, in order to further increase the SHG generation efficiency, a method of increasing the light intensity by an optical waveguide structure is adopted. As a method of phase matching in the waveguide structure, there is a method of pseudo phase matching using a periodic structure shown in Appl.Phys.Lett.21 (1072) 140.

【0003】この導波路構造における疑似的な位相整合
の方法の中でAppl.Phys.Lett.588(1990)1725に発表され
た離散型の導波路構造は、プロセスが簡単であり、疑似
位相整合の構造を有するSHG素子としては最も実用的
なものの一つである。
Among the methods of quasi phase matching in this waveguide structure, the discrete waveguide structure disclosed in Appl. Phys. Lett. 588 (1990) 1725 is simple in process and quasi phase matching. This is one of the most practical SHG elements having the structure of.

【0004】本願の発明者による特願平5−16401
7号において離散型導波路構造の問題点であった、導波
路伝搬に伴う光の回折損失と、効率の低下を改善する
為、分極反転部と非反転部の境界を略曲面にした。この
集束機能を有する離散型導波路構造を持つ疑似位相整合
型のSHG素子を図2に示す。基板(1)に曲面を有す
る分極反転部(2)が形成されている。入射光(3)は
SHG素子端面(4)に集束される。図3は図2の発明
における導波路構造を拡大して示す。基板(1)に対し
て、分極反転部(2)の屈折率が大きく、また境界
(5)が曲面であるため、境界で光の集束効果が生じ、
導波路の伝搬光(6)は離散型の構造にもかかわらず、
低損失で伝搬される。しかしこの発明では分極反転の領
域を曲面で形成することが必須である。以上より離散型
導波路構造に光集束機能を持たせたSHG素子を提案
し、大幅なSHG変換効率の改善と、SHG出力光の散
乱を減少させることができた。
Japanese Patent Application No. 5-16401 by the inventor of the present application
The boundary between the polarization inversion part and the non-inversion part was formed into a substantially curved surface in order to improve the diffraction loss of light and the efficiency decrease due to waveguide propagation, which were problems of the discrete waveguide structure in No. 7. FIG. 2 shows a quasi-phase matching SHG element having a discrete waveguide structure having this focusing function. A domain-inverted portion (2) having a curved surface is formed on a substrate (1). Incident light (3) is focused on the end surface (4) of the SHG element. FIG. 3 is an enlarged view of the waveguide structure in the invention of FIG. Since the polarization inversion part (2) has a large refractive index with respect to the substrate (1) and the boundary (5) is a curved surface, a light focusing effect occurs at the boundary,
Although the propagating light (6) in the waveguide has a discrete structure,
Propagated with low loss. However, in the present invention, it is essential to form the domain of domain inversion with a curved surface. As described above, the SHG device in which the discrete waveguide structure has the light focusing function was proposed, and the SHG conversion efficiency was significantly improved and the scattering of the SHG output light could be reduced.

【0005】[0005]

【発明が解決しようとする課題】しかし離散型導波路構
造において分極反転部は通常フォトレジストとフォトマ
スクを用いた露光工程により形成される。分極反転部と
非反転部の境界を略球面とするためには曲線部を多く有
するフォトマスクが必要となりかつ、曲線部は導波路内
部でレンズとして作用する部分を形成する為、極めて滑
らかに作成する必要がある。その為、マスクの製造が困
難であり、精度が低く、製造が困難であるという問題点
があった。
However, in the discrete waveguide structure, the domain-inverted portion is usually formed by an exposure process using a photoresist and a photomask. In order to make the boundary between the polarization inversion part and the non-inversion part a substantially spherical surface, a photomask with many curved parts is required, and the curved part forms the part that acts as a lens inside the waveguide, so it is extremely smooth. There is a need to. Therefore, there are problems that the mask is difficult to manufacture, the accuracy is low, and the manufacture is difficult.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
する為、非線形光学材料に周期的な分極反転部と非反転
部を形成して、入射光とn次高調波の位相の疑似的な整
合を図り、かつ離散型の光導波路を形成する構造の高調
波発生素子において、分極反転部の屈折率が、導波路の
光軸と直角方法に見て、中心部が最大で、周辺部に向か
うに従って徐々に減少する様な手段を設けたものであ
る。
In order to solve the above-mentioned problems, the present invention forms a periodic polarization inversion part and a non-inversion part in a non-linear optical material to make a pseudo phase of incident light and an nth harmonic. In a harmonic wave generation element with a structure that forms a perfect match and forms a discrete optical waveguide, the refractive index of the domain-inverted part is the maximum in the central part and the peripheral part when viewed in a direction orthogonal to the optical axis of the waveguide. It is provided with a means to gradually decrease toward the.

【0007】[0007]

【作用】本発明の高調波発生素子によれば、光が集束
し、光の散乱による損失が減じ、SHG変換効率が高い
ものを容易に製造することができる。
According to the harmonic generating element of the present invention, light is converged, loss due to light scattering is reduced, and a high SHG conversion efficiency can be easily manufactured.

【0008】[0008]

【実施例】図1は本発明の実施例であり、基板(7)に
矩形の分極反転部(8)が形成されている。この分極反
転部の屈折率が導波路の光軸に対して中心から離れるに
従って小さくなる様にすることで、光の集束効果が生
じ、導波路の伝搬光は離散型の構造にもかかわらず、低
損失で伝搬される。
EXAMPLE FIG. 1 shows an example of the present invention in which a rectangular domain-inverted portion (8) is formed on a substrate (7). By making the refractive index of this polarization inversion part smaller with distance from the center with respect to the optical axis of the waveguide, a light converging effect occurs, and the propagation light of the waveguide is a discrete type structure, Propagated with low loss.

【0009】図4は本発明の原理を示すための、第1の
実施例における分極反転部の構造の拡大図である。光軸
に対して直角方向から見た分極反転部の屈折率の分布
(9)は中心部が最大で、中心部から離れるにつれて減
少する様に形成されている。本実施例では屈折率は光軸
からの距離のほぼ2乗に比例して減少し、周辺の端部で
は基板(7)の屈折率(10)と等しい屈折率分布が形
成されている。光軸部での屈折率が高く、光軸から遠ざ
かるに従って屈折率が減少する媒質での光伝搬について
は、いわゆるグレーデッドインデックス型光ファイバー
における光の伝搬モードで詳細な解析が行われており、
レンズと同様の光の集束作用を持つことが知られてい
る。伝搬光(11)は分極反転部(8)で集束作用を受
け、基板部(7)で回折効果による発散作用を受け、図
4に示す様に、集束、発散を繰り返しながら、低損失で
伝搬する。
FIG. 4 is an enlarged view of the structure of the polarization inversion portion in the first embodiment for showing the principle of the present invention. The distribution (9) of the refractive index of the domain-inverted portion when viewed from the direction orthogonal to the optical axis is formed so that the central portion has the maximum value and decreases as the distance from the central portion increases. In this embodiment, the refractive index decreases in proportion to the square of the distance from the optical axis, and a refractive index distribution equal to the refractive index (10) of the substrate (7) is formed at the peripheral edge. The high refractive index in the optical axis portion, for the light propagation in the medium whose refractive index decreases as it moves away from the optical axis, detailed analysis has been performed in the propagation mode of light in the so-called graded index optical fiber,
It is known to have the same light focusing effect as a lens. The propagating light (11) is subjected to a focusing action in the polarization inversion part (8) and a diverging action due to the diffraction effect in the substrate part (7), and propagates with low loss while repeating focusing and divergence as shown in FIG. To do.

【0010】図5は本発明の実施例である素子の作成方
法を示す図である。高調波発生素子の非線形光学材料と
してはKTP(KTiOPO4 )を用いる。先ず図5
(a)に示すKTP基板(12)にTiの薄膜(13)
を形成する(同図(b))。その後フォトマスクとフォ
トレジストによる露光、現像、工程を経た後、分極反転
部の幅で周期的にTiをパターンニング(14)し、他
の部分を化学エッチング法で除去する(同図(c))。
さらにその上からSiO2 (15)をコーティングする
(同図(d))。
FIG. 5 is a diagram showing a method of manufacturing an element which is an embodiment of the present invention. KTP (KTiOPO 4 ) is used as the nonlinear optical material of the harmonic wave generating element. First of all,
A thin film of Ti (13) on the KTP substrate (12) shown in (a)
Are formed ((b) in the figure). After that, after exposure, development, and steps with a photomask and a photoresist, Ti is patterned (14) periodically with the width of the domain-inverted portion, and the other portion is removed by a chemical etching method (FIG. 7C). ).
Further, SiO 2 (15) is coated on it (FIG. 3D).

【0011】図6は図5の工程の次の工程を示すため
の、Ti膜のパターンニング部分の拡大図である。再
び、フォトレジストによる露光、現像とSiO2 (1
5)のHFを用いて選択的エッチングにより、SiO2
(15)に開口部(16)を形成する。
FIG. 6 is an enlarged view of the patterning portion of the Ti film for showing the next step of the step of FIG. Again, photoresist exposure, development and SiO 2 (1
5) By selective etching using HF, SiO 2
An opening (16) is formed in (15).

【0012】図7は図6を光軸に対して直角方向からみ
た断面構造図である。酸を用いて選択的化学エッチング
法によりTi膜(14)を溶解する。この場合エッチン
グ液の回り込みにより、Ti膜(14)に開口部(1
6)よりも大きいアンダーカット部(18)が形成され
る。
FIG. 7 is a sectional structural view of FIG. 6 seen from the direction perpendicular to the optical axis. The Ti film (14) is dissolved by the selective chemical etching method using acid. In this case, the etching solution wraps around the Ti film (14) to form an opening (1
An undercut portion (18) larger than 6) is formed.

【0013】図8は図7の工程のイオン交換プロセスを
示す図である。RbNO3 、Ba(NO3 2 の混合溶
液を用いて約800℃中で熱処理をし、KTP基板(1
2)のKイオンをRbイオンで置換する。混合溶液は開
口部(16)からアンダーカット部(18)に浸入す
る。KTP基板中のイオン置換プロセスは拡散律則にも
とづいて進行するが、溶液中では、溶液の流動や対流の
ため常に一定量のRbイオンが開口部(16)に供給さ
れている。一方アンダーカット部(18)では溶液の流
動が起こりにくいので、拡散律則によってRbイオンが
供給される。従ってアンダーカット部(18)を通って
KTP基板(12)へ深く侵入する程、置換の為のRb
イオンが不足する。結果として、Rbイオンは基板(1
2)中に拡散し、置換されるRbイオンの量(19)は
中心部で最大になり、中心部から遠ざかるにつれイオン
量は減少する。
FIG. 8 is a diagram showing the ion exchange process of the step of FIG. Heat treatment was performed at about 800 ° C. using a mixed solution of RbNO 3 and Ba (NO 3 ) 2 , and the KTP substrate (1
The K ion in 2) is replaced with Rb ion. The mixed solution enters the undercut portion (18) through the opening (16). The ion substitution process in the KTP substrate proceeds based on the diffusion law, but in the solution, a constant amount of Rb ions is constantly supplied to the opening (16) due to the flow and convection of the solution. On the other hand, since the solution does not easily flow in the undercut portion (18), Rb ions are supplied according to the diffusion law. Therefore, the deeper it penetrates into the KTP substrate (12) through the undercut portion (18), the more the Rb for replacement becomes.
There is a shortage of ions. As a result, Rb ions are transferred to the substrate (1
The amount (19) of Rb ions diffused into and substituted in 2) becomes maximum in the central part, and the amount of ions decreases as the distance from the central part increases.

【0014】図9は最終的に形成された素子の分極反転
部の拡大図である。SiO2 、Ti膜を除去した後に素
子が完成する。イオンの置換量に比例して屈折率が上が
る為、分極反転部(20)の光軸中央部の屈折率が最大
になり、その周辺部では屈折率が小さくなる分布が素子
に形成される。尚、図9では、この分極反転部(20)
の屈折率が徐々に変化する様子を濃淡で示している。
FIG. 9 is an enlarged view of the polarization inversion portion of the finally formed element. The device is completed after removing the SiO 2 and Ti films. Since the refractive index increases in proportion to the amount of ions replaced, the refractive index at the center of the optical axis of the polarization inversion part (20) is maximized, and a distribution where the refractive index is small at the peripheral part is formed in the element. Incidentally, in FIG. 9, this polarization inversion part (20)
The gradation of the refractive index of is shown in shades.

【0015】上述した作成方法により、KTPのZ面を
用いて、分極反転部の長さ3μm、非反転部の長さ1.
5μm、分極反転部の幅5μmのSHG素子を作成した
結果、1064nmのYAGレーザ光の波長を530n
mに変換し、YAGレーザの入力100mWに対してS
HG出力10mW以上で、変換効率が10%を越えるこ
とが可能となった。
According to the above-described manufacturing method, the length of the polarization inversion part is 3 μm and the length of the non-inversion part is 1.
As a result of creating an SHG element having a polarization inversion part width of 5 μm and a width of 5 μm, the wavelength of the YAG laser light of 1064 nm is 530 n
converted to m, and S for the input of 100mW of the YAG laser
With an HG output of 10 mW or higher, the conversion efficiency can exceed 10%.

【0016】[0016]

【発明の効果】以上説明した様に、本発明によれば、従
来の光集束効果を持つ離散型分極反転構造による高調波
発生素子作成上で問題点であった、曲面を持つマスクの
製造の困難さが改善され、直線部のみのマスクで高効率
の高調波発生素子を得ることが可能となった。また実際
に伝搬される光の幅に比べて導波路幅を広くとることが
可能となり、高調波発生素子の入射端面における光結合
効率も大きくすることが可能であった。結果として本発
明の高調波発生素子と半導体レ−ザを組み合わせること
で、従来困難であった小型の青−緑色の波長の光源を、
安価に得ることができる。
As described above, according to the present invention, it is possible to manufacture a mask having a curved surface, which has been a problem in producing a harmonic generating element having a discrete polarization inversion structure having a conventional light focusing effect. The difficulty has been improved, and it has become possible to obtain a high-efficiency harmonic generating element with a mask having only a straight line portion. In addition, the width of the waveguide can be made wider than the width of light that is actually propagated, and the optical coupling efficiency at the incident end face of the harmonic generating element can be increased. As a result, by combining the harmonic generating element of the present invention with a semiconductor laser, a light source of a small blue-green wavelength, which has been difficult in the past, can be obtained.
It can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す高調波発生素子の構造図
である。
FIG. 1 is a structural diagram of a harmonic wave generating element showing an embodiment of the present invention.

【図2】従来の高調波発生素子の構造図である。FIG. 2 is a structural diagram of a conventional harmonic wave generating element.

【図3】図2の導波路構造を拡大して示す図である。3 is an enlarged view of the waveguide structure of FIG.

【図4】本発明の実施例の分極反転部の構造を拡大した
図である。
FIG. 4 is an enlarged view of the structure of the polarization inversion section according to the embodiment of the present invention.

【図5】本発明の実施例の素子の作成方法を示す図であ
る。
FIG. 5 is a diagram showing a method for manufacturing an element according to an example of the present invention.

【図6】素子作成工程におけるTi膜のパターンニング
部分の拡大図である。
FIG. 6 is an enlarged view of a patterning portion of a Ti film in a device manufacturing process.

【図7】図6の断面構造を示す図である。7 is a diagram showing a cross-sectional structure of FIG.

【図8】イオン交換プロセスを示す図である。FIG. 8 is a diagram showing an ion exchange process.

【図9】最終的に形成された素子の分極反転部の拡大図
である。
FIG. 9 is an enlarged view of a domain-inverted portion of a finally formed element.

【符号の説明】[Explanation of symbols]

1 従来のSHG素子における基板 2 従来のSHG素子における分極反転部 3 従来のSHG素子における入射光 4 従来のSHG素子端面 5 従来のSHG素子の分極反転部の境界 6 従来のSHG素子の伝搬光 7 本発明の実施例の基板 8 本発明の実施例の分極反転部 9 本発明の実施例において分極反転部の屈折率分布 10 本発明の実施例における基板の屈折率 11 本発明の実施例における素子中の伝搬光 12 KTP基板 13 Ti薄膜 14 パターンニングされたTi薄膜 15 SiO2 薄膜 16 SiO2 薄膜の小窓 17 光軸に直角方向の断面 18 アンダーカット部分 19 置換されるイオンの量 20 最終的な分極反転部1 Substrate in Conventional SHG Element 2 Polarization Inverted Portion in Conventional SHG Element 3 Incident Light in Conventional SHG Element 4 Conventional SHG Element End Face 5 Boundary of Polarization Inverted Portion in Conventional SHG Element 6 Propagation Light in Conventional SHG Element 7 Substrate of Example of the Present Invention 8 Polarization Reversal Portion of Example of the Present Invention 9 Refractive Index Distribution of Polarization Reversal Portion of Example of the Present Invention 10 Refractive Index of Substrate in Example of the Present Invention 11 Element of Example of the Present Invention Medium propagating light 12 KTP substrate 13 Ti thin film 14 Patterned Ti thin film 15 SiO 2 thin film 16 Small window of SiO 2 thin film 17 Cross section perpendicular to the optical axis 18 Undercut portion 19 Amount of ions to be replaced 20 Final Polarization inversion part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学材料に、コヒーレント光を入
射させ、該入射光を半分以下の波長を有するn次の高調
波に変換するような高調波発生素子において、 該入射光の進行方向に対して、該非線形光学材料の非線
形分極の向きをコヒーレンス長の周期で反転させること
で、該入射光の位相と、発生する該n次高調波の位相を
疑似的に整合する機構を持ち、 該周期的な非線形分極の反転部の屈折率が非反転部の屈
折率に比べて高いことを利用して、離散型の光導波路を
構成するような構造を持ち、 該非線形分極の反転部の屈折率分布が、該光導波路の光
軸に対して垂直方向では該光導波路の光軸部において最
大であり、周辺部に向かって徐々に減少していることを
特徴とする、高調波発生素子。
1. A harmonic generation element for injecting coherent light into a non-linear optical material and converting the incident light into an n-th harmonic having a wavelength of half or less, in a traveling direction of the incident light. Then, by inverting the direction of the nonlinear polarization of the nonlinear optical material at a cycle of the coherence length, it has a mechanism for pseudo matching between the phase of the incident light and the phase of the generated nth harmonic. By utilizing the fact that the refractive index of the non-inverted part of the non-linear polarization is higher than that of the non-inverted part, it has a structure that constitutes a discrete optical waveguide. A harmonic generating element, wherein the distribution is maximum in the optical axis portion of the optical waveguide in the direction perpendicular to the optical axis of the optical waveguide and gradually decreases toward the peripheral portion.
【請求項2】 前記非線形光学材料として、KTPを用
い、周期的な非線形分極をKTPの中のKイオンの一部
をその他の金属イオンと交換することで達成することを
特徴とする請求項1記載の高調波発生素子。
2. The KTP is used as the non-linear optical material, and periodic non-linear polarization is achieved by exchanging a part of K ions in KTP with other metal ions. The harmonic generating element described.
JP8100794A 1994-03-28 1994-03-28 Higher harmonic wave generating element Pending JPH07270838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8100794A JPH07270838A (en) 1994-03-28 1994-03-28 Higher harmonic wave generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8100794A JPH07270838A (en) 1994-03-28 1994-03-28 Higher harmonic wave generating element

Publications (1)

Publication Number Publication Date
JPH07270838A true JPH07270838A (en) 1995-10-20

Family

ID=13734462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8100794A Pending JPH07270838A (en) 1994-03-28 1994-03-28 Higher harmonic wave generating element

Country Status (1)

Country Link
JP (1) JPH07270838A (en)

Similar Documents

Publication Publication Date Title
JPH01105220A (en) Optical wavelength converting element
JPH052203A (en) Production of waveguide type second harmonic wave generating element
US7170671B2 (en) High efficiency wavelength converters
JP2725302B2 (en) Waveguide type wavelength conversion element
JPH10142645A (en) Wavelength converter
JPH07270838A (en) Higher harmonic wave generating element
US7177070B2 (en) Wavelength conversion element
JP2658381B2 (en) Waveguide type wavelength conversion element
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP2012208393A (en) Wavelength conversion element and manufacturing method for the same
JP3448350B2 (en) Harmonic generator
JP4237932B2 (en) Optical waveguide device and optical wavelength converter
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH07253603A (en) Second harmonic generating element
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH04340525A (en) Wavelength conversion element
JPH07261211A (en) Second harmonic generating element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2003302665A (en) Harmonic wave generating element
JPH0713210A (en) Wavelength conversion element
JPH095808A (en) Optical second higher harmonic generator
JPH05341341A (en) Optical waveguide type second higher harmonic generating element
JPH07168224A (en) Formation of polarization inversion grating and optical waveguide and second harmonic wave generating element
Kajal Design and Implementation of Novel Nonlinear Processes in Bulk and Waveguide Periodic Structures

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030603