JPH095808A - Optical second higher harmonic generator - Google Patents

Optical second higher harmonic generator

Info

Publication number
JPH095808A
JPH095808A JP15641495A JP15641495A JPH095808A JP H095808 A JPH095808 A JP H095808A JP 15641495 A JP15641495 A JP 15641495A JP 15641495 A JP15641495 A JP 15641495A JP H095808 A JPH095808 A JP H095808A
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
optical
wave
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15641495A
Other languages
Japanese (ja)
Inventor
Keisuke Shinozaki
啓助 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15641495A priority Critical patent/JPH095808A/en
Publication of JPH095808A publication Critical patent/JPH095808A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To make SHG operation possible with high conversion efficiency by forming the refractive index distribution structure of an optical waveguide in such a manner that the refractive index on the periphery of the optical waveguide is equal to the refractive index of a substrate crystal and is made gentle toward the central part of the optical waveguide. CONSTITUTION: The refractive index distribution structure of the optical waveguide 12 of an optical second higher harmonic generating(SHG) element having the optical waveguide 12 is formed so as to be equal to the refractive index of the substrate 11 crystal on the periphery 12A of the optical waveguide 12 and to be made gentle toward the central part of the optical waveguide 12 or to be made higher in the refractive index finely stepwise. As a result, a cut-off condition is less severe and the higher mode is correspondingly cut off even if the width of the optical waveguide 12 is set wide. Namely, the propagation mode of the basic wave and the propagation mode of the optical second higher harmonic wave(SH wave) are more easily regulated to the same lower order mode even if the width of the optical waveguide 12 is set wide in order to enhance the coupling efficiency with a semiconductor laser.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基本波の光源として半
導体レーザ(LD)を使用する光第2高周波発生(SH
G)素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical second high frequency generation (SH) using a semiconductor laser (LD) as a light source of a fundamental wave.
G) The present invention relates to an element.

【0002】[0002]

【従来の技術】従来、LDを基本波光源とする素子は、
疑似位相整合(QPM)に基づくSHG素子が主流であ
る。図4はかかる従来のSHG素子の構成図である。こ
の図に示すように、基板1に光導波路2を形成し、この
光導波路2に交差するように周期的な分極反転領域3を
形成する。ここで、基板1としては、LiNbO3 、L
iTaO3 あるいはKTiOPO4 (KTP)等が使わ
れる。
2. Description of the Related Art Conventionally, an element using an LD as a fundamental wave light source is
SHG devices based on quasi phase matching (QPM) are the mainstream. FIG. 4 is a block diagram of such a conventional SHG element. As shown in this figure, an optical waveguide 2 is formed on a substrate 1, and a periodically domain-inverted region 3 is formed so as to intersect the optical waveguide 2. Here, as the substrate 1, LiNbO 3 , L
iTaO 3 or KTiOPO 4 (KTP) is used.

【0003】このような素子では、基本波(角周波数
ω)を光導波路2に入射させ、この光導波路2を伝播す
る間に、基本波のエネルギーの一部が角周波数2ωの光
第2高調波(SH波)に変換される。位相整合は周期的
分極反転構造によって実現される。基本波のエネルギー
をPωとして、SH波のエネルギーをP2 ωとしたと
き、SHG素子の長さLの二乗L2 で規格化した ηNOR =Pω/(P2 ω・L2 ) …(1) を絶対変換効率と言う。
In such an element, a fundamental wave (angular frequency ω) is made incident on the optical waveguide 2, and while propagating through the optical waveguide 2, part of the energy of the fundamental wave is the second harmonic of the optical wavelength 2ω. Wave (SH wave). Phase matching is realized by a periodically poled structure. When the energy of the fundamental wave is Pω and the energy of the SH wave is P 2 ω, normalized by the square L 2 of the length L of the SHG element η NOR = Pω / (P 2 ω · L 2 ) (1 ) Is called the absolute conversion efficiency.

【0004】SHG素子の開発においては、目的の一つ
がこの絶対変換効率の向上である。また、理論的な計算
で、この絶対変換効率は次式で与えられることが知られ
ている。〔例えば、Applied Physics
Letters Vol.64(1994)、pp.3
208〜3209に開示されている。〕 ηNOR =C・|J|2 …(2) ここで、Cは基本波、SH波、非線形光学定数、誘電
率、SH波の波長等で決まる定数で、Jは次式で与えら
れる重複積分である。
In the development of SHG devices, one of the objectives is to improve the absolute conversion efficiency. It is also known from theoretical calculation that this absolute conversion efficiency is given by the following equation. [For example, Applied Physics
Letters Vol. 64 (1994), pp. 3
No. 208-3209. ] Η NOR = C · | J | 2 (2) Here, C is a constant determined by the fundamental wave, SH wave, nonlinear optical constant, dielectric constant, wavelength of SH wave, etc., and J is an overlap given by the following equation. It is an integral.

【0005】[0005]

【数1】 [Equation 1]

【0006】ここで、E2 ω(x,z)及びEω(x,
z)は、それぞれ規格化された基本波及びSH波の光導
波路内での振幅分布を与える関数である。以上の説明か
ら絶対変換効率を大きくするには上記(3)式で与えら
れる重複積分の値を大きくすることがポイントとなる。
そのためには、E2 ω(x,z)とEω(x,z)とが
できるだけ相似形であることが求められる。すなわち基
本波とSH波の伝播モードが同一であることが要請され
る。
Here, E 2 ω (x, z) and E ω (x,
z) is a function that gives the amplitude distributions of the standardized fundamental wave and SH wave in the optical waveguide, respectively. From the above description, in order to increase the absolute conversion efficiency, the point is to increase the value of the overlap integral given by the above equation (3).
For that purpose, E 2 ω (x, z) and Eω (x, z) are required to be as similar as possible. That is, it is required that the propagation modes of the fundamental wave and the SH wave are the same.

【0007】光の伝播モードは、主に光導波路の寸法
(形状)及び導波される光の波長で決定される。一般に
光導波路幅が広い程、また、波長が短い程、高次の伝播
モードが選択される。一方、光導波路の幅は、基本波を
できるだけ多く光導波路に入射させるために(結合効率
を大きくするため)、広くすることが望ましい。しか
し、基本波の波長とSH波の波長は正確に2倍の差があ
るので、基本波が基本モードあるいは1次以上の高次の
伝播モードとしてもSH波は、これよりも更に高次のモ
ードが選択されることがある。すなわち、基本波とSH
波の伝播モードを同一にすることが難しい。
The propagation mode of light is mainly determined by the size (shape) of the optical waveguide and the wavelength of the guided light. In general, the wider the optical waveguide width and the shorter the wavelength, the higher-order propagation mode is selected. On the other hand, it is desirable that the width of the optical waveguide be wide so that the fundamental wave is incident on the optical waveguide as much as possible (in order to increase the coupling efficiency). However, since the wavelength of the fundamental wave and the wavelength of the SH wave are exactly doubled, even if the fundamental wave is the fundamental mode or a higher-order propagation mode higher than the first order, the SH wave is higher The mode may be selected. That is, the fundamental wave and SH
It is difficult to make the wave propagation modes the same.

【0008】[0008]

【発明が解決しようとする課題】従来のSHG素子の光
導波路構造は、上記問題点についての対策が取られてい
なかった。すなわち、光導波路の幅が広く基本波の光導
波路への入射効率が高く、しかも、基本波とSH波の伝
播モードを同一にするための積極的な対策は取られてい
なかった。この点を改善すれば、変換効率を一段と高め
ることができるようになる。
In the conventional optical waveguide structure of the SHG element, no measures have been taken against the above problems. That is, the width of the optical waveguide is wide and the efficiency of incidence of the fundamental wave on the optical waveguide is high, and no positive measures have been taken to make the propagation modes of the fundamental wave and the SH wave the same. If this point is improved, the conversion efficiency can be further improved.

【0009】そこで、本発明は、上記問題点を除去し、
基本波とSH波の伝播モードを同一にできる構造を持っ
た光導波路を備え、変換効率の向上を図り得る光第2高
周波発生素子を提供することを目的とする。
Therefore, the present invention eliminates the above problems,
An object of the present invention is to provide an optical second high frequency generating element that includes an optical waveguide having a structure capable of making the propagation modes of the fundamental wave and the SH wave the same, and that can improve conversion efficiency.

【0010】[0010]

【課題を解決するための手段】本発明は、上記目的を達
成するために、非線形光学結晶基板に周期的分極反転構
造と光導波路とが形成されて成る光第2高周波発生素子
において、前記光導波路の周辺が基板結晶の屈折率に等
しく、その光導波路の中心部分に向かうにしたがってな
だらかに、あるいは細かいステップ状に屈折率が高くな
るように形成するようにしたものである。
In order to achieve the above object, the present invention provides an optical second high frequency generating element comprising a nonlinear optical crystal substrate on which a periodic domain inversion structure and an optical waveguide are formed. The periphery of the waveguide is equal to the refractive index of the substrate crystal, and the refractive index is gradually or finely stepped toward the center of the optical waveguide.

【0011】[0011]

【作用】本発明によれば、上記したように、光導波路を
有するSHG素子において、光導波路の屈折率分布構造
を、光導波路(12)の周辺(12A)が基板結晶の屈
折率に等しく、この光導波路(12)の中心部分に向か
うにしたがってなだらかに、あるいは細かいステップ状
に屈折率が高くなるように形成するようにしたので、カ
ットオフ条件が甘くなり、それだけ光導波路(12)の
幅を広く設定しても高次モードがカットオフされる。
According to the present invention, as described above, in the SHG element having the optical waveguide, the refractive index distribution structure of the optical waveguide is such that the periphery (12A) of the optical waveguide (12) is equal to the refractive index of the substrate crystal. Since the refractive index is gradually or finely increased toward the center of the optical waveguide (12), the cut-off condition becomes weaker, and the width of the optical waveguide (12) is reduced. Higher mode is cut off even if is set wide.

【0012】すなわち、半導体レーザとのカップリング
効率を高くする目的で光導波路(12)の幅を広く設定
しても、基本波の伝播モードとSH波の伝播モードとを
同一の低次モードに規定し易くなる。
That is, even if the width of the optical waveguide (12) is set wide for the purpose of increasing the coupling efficiency with the semiconductor laser, the propagation mode of the fundamental wave and the propagation mode of the SH wave become the same low-order mode. It becomes easier to specify.

【0013】[0013]

【実施例】以下、本発明の実施例について図面を参照し
ながら詳細に説明する。図1は本発明の実施例を示すS
HG素子の構成図、図2はそのSHG素子の光導波路の
屈折率を示す図である。この図において、非線形光学結
晶基板であるLiNbO3 基板11に光導波路12を形
成し、この光導波路12に交差するように周期的な分極
反転領域13を形成する。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention S
FIG. 2 is a configuration diagram of the HG element, and FIG. 2 is a diagram showing the refractive index of the optical waveguide of the SHG element. In this figure, an optical waveguide 12 is formed on a LiNbO 3 substrate 11 which is a nonlinear optical crystal substrate, and a periodic domain inversion region 13 is formed so as to intersect with the optical waveguide 12.

【0014】このような素子では、基本波(角周波数
ω)を光導波路12に入射させ、この光導波路12を伝
播する間に、基本波のエネルギーの一部が角周波数2ω
の光第2高調波(SH波)に変換される。位相整合は周
期的分極反転構造によって実現される。そこで、本発明
の実施例では、その光導波路12の周辺12Aが基板結
晶の屈折率に等しく、この光導波路12の中心部分に向
かうに従ってなだらかに、あるいは細かいステップ状に
屈折率が高くなるように形成する。
In such an element, a fundamental wave (angular frequency ω) is made incident on the optical waveguide 12, and while propagating through the optical waveguide 12, a part of the energy of the fundamental wave becomes an angular frequency 2ω.
Is converted into the second harmonic (SH wave) of light. Phase matching is realized by a periodically poled structure. Therefore, in the embodiment of the present invention, the periphery 12A of the optical waveguide 12 is equal to the refractive index of the substrate crystal, and the refractive index is gradually or gradually increased toward the central portion of the optical waveguide 12. Form.

【0015】すなわち、図2に示すような、なだらかな
屈折率分布、あるいは細かいステップ状に屈折率が高く
なるように形成される光導波路12,12Aをもって構
成する。以下、具体的な本発明のSHG素子について説
明する。因みに、従来の場合、図5に示すようなステッ
プ状の屈折率分布をもつ光導波路の実効屈折率は図6に
示すようになる。
That is, the optical waveguides 12 and 12A are formed so that the refractive index distribution is gentle as shown in FIG. 2 or the refractive index is increased in fine steps. Hereinafter, a specific SHG element of the present invention will be described. Incidentally, in the conventional case, the effective refractive index of the optical waveguide having the stepwise refractive index distribution as shown in FIG. 5 is as shown in FIG.

【0016】すなわち、図6において、伝播モードをN
で表しており、N=0が基本モード、N=1が1次モー
ド、その他同様に表している。縦軸のbは規格化された
実効屈折率を表しており、各モード毎に与えられている
実効屈折率曲線が横軸と交わる点がカットオフ条件であ
る。横軸Vは、V=k0 1 a(2Δ)1/2 として与え
られる規格化された光導波路幅の半分の値に対応する値
である。ここに、Δ≒(n1 −n2 )/n1 であり、ま
たn1 ,n2 ,k0 はそれぞれ光導波路の屈折率、基板
の屈折率、真空中での伝播光の波数である。
That is, in FIG. 6, the propagation mode is set to N.
, N = 0 is the basic mode, N = 1 is the primary mode, and so on. The b on the vertical axis represents the normalized effective refractive index, and the point where the effective refractive index curve given for each mode intersects the horizontal axis is the cutoff condition. The horizontal axis V is a value corresponding to half the standardized optical waveguide width value given as V = k 0 n 1 a (2Δ) 1/2 . Here, Δ≈ (n 1 −n 2 ) / n 1 , and n 1 , n 2 , and k 0 are the refractive index of the optical waveguide, the refractive index of the substrate, and the wave number of propagating light in vacuum, respectively. .

【0017】この実施例の図2に示すような、なだらか
な屈折率分布をもつ光導波路を形成するには、イオン交
換法あるいはTi熱拡散法いずれの方法で作るにして
も、幅の狭いマスクを用いて光導波路を形成した後、こ
れに重ねて幅が前回より僅かに広いマスクを用いて再び
光導波路を形成することで、光導波路の周辺が基板結晶
の屈折率に等しく、光導波路の中心部分に向かうにした
がって、細かいステップ状に屈折率が高くなるように形
成できる。これを更にアニールすることで、細かいステ
ップ状の屈折率がなだらかに変化する形状とすることが
できる。
In order to form an optical waveguide having a gentle refractive index distribution as shown in FIG. 2 of this embodiment, the mask having a narrow width may be formed by either the ion exchange method or the Ti thermal diffusion method. After the optical waveguide is formed using, the optical waveguide is formed again by using a mask with a slightly wider width than the previous time, so that the periphery of the optical waveguide is equal to the refractive index of the substrate crystal, The refractive index can be increased in fine steps toward the central portion. By further annealing this, it is possible to form a fine step-like shape in which the refractive index changes gently.

【0018】いずれにしても細かいステップ状の屈折率
をもつ光導波路でも、なだらかに変化する形状をした光
導波路でも、同様にカットオフ条件を甘くできる。ただ
し、なだらかに屈折率が変化するようにアニール処理を
加えた加工をした方が、よりカットオフ条件を甘くする
(カットオフがより広い導波路で起こる)効果が大き
い。
In any case, the cut-off condition can be similarly eased for an optical waveguide having a fine stepwise refractive index and an optical waveguide having a gently changing shape. However, the effect of softening the cut-off condition (the cut-off occurs in a wider waveguide) is greater when the annealing treatment is performed so that the refractive index changes gently.

【0019】以下、本発明の実施例を示す光第2高周波
発生素子の動作について説明する。FUNDAMENA
TLS OF MICROOPTICS(ACADEM
IC PRESS,1984)pp.40〜69によれ
ば、光導波路の幅が2aである場合、1次モードのカッ
トオフの条件V(規格化された光導波路幅の半分)は、 V=k0 1 a(2Δ)1/2 =π/2 …(4) で与えられる。
The operation of the optical second high frequency generating element according to the embodiment of the present invention will be described below. FUNDAMENA
TLS OF MICROOPTICS (ACADEM
IC PRESS, 1984) pp. According to 40 to 69, when the width of the optical waveguide is 2a, the condition V of the cutoff of the first mode (half of the standardized optical waveguide width) is V = k 0 n 1 a (2Δ) 1 / 2 = π / 2 It is given by (4).

【0020】ここで、 Δ≒(n1 −n2 )/n1 である。またn1 ,n2 ,k0 はそれぞれ光導波路の屈
折率、基板の屈折率、真空中での伝播光の波数である。
一方、光導波路の屈折率分布が、上記のように、ステッ
プ関数的でなく(x/a)a で表されるなだらかな関数
で与えられるように形成されていれば、カットオフ条件
Vは次式(5)で近似的に与えられるVcに変わる。
Here, Δ≈ (n 1 −n 2 ) / n 1 . Further, n 1 , n 2 , and k 0 are the refractive index of the optical waveguide, the refractive index of the substrate, and the wave number of propagating light in vacuum, respectively.
On the other hand, if the refractive index distribution of the optical waveguide is formed so as not to have a step function but to have a gentle function represented by (x / a) a as described above, the cutoff condition V is It changes to Vc which is approximately given by the equation (5).

【0021】 Vc={(1/6)+〔1/(α+2)〕−〔3/(α+3)〕+(4/3) 〔1/(α+4)〕}-1/4 …(5) この関係を表したのが図3である。光導波路の屈折率分
布構造がステップ的である場合とはαが無限大であるこ
とに対応する。この場合、上記(4)式、(5)式から
V=1.57である。また、放物線的にαが2である
と、Vc=2.28と大きくなる。
Vc = {(1/6) + [1 / (α + 2)]-[3 / (α + 3)] + (4/3) [1 / (α + 4)]} -1/4 (5) The relationship is shown in FIG. The case where the refractive index distribution structure of the optical waveguide is stepwise corresponds to that α is infinite. In this case, V = 1.57 from the above equations (4) and (5). Further, when α is 2 parabolicly, Vc increases to 2.28.

【0022】ここで、1次モードをカットオフするため
に必要な光導波路の幅2aについて考察する。上記
(4)式からa=V/〔n1 0 (2Δ)1/2 〕である
から、屈折率分布がステップ的である場合の光導波路幅
を2a、放物線的である場合を2acとすると、(2a
c)/(2a)=Vc/V=2.28/1.57=1.
45であるから、ステップ関数的である場合は、放物線
的である場合と比べて、ほぼ1.5倍の光導波路幅とす
ることができることを意味する。
Here, the width 2a of the optical waveguide required to cut off the first-order mode will be considered. Since a = V / [n 1 k 0 (2Δ) 1/2 ] from the above formula (4), the optical waveguide width is 2a when the refractive index distribution is stepwise, and 2ac when it is parabolic. Then, (2a
c) / (2a) = Vc / V = 2.28 / 1.57 = 1.
Since it is 45, it means that the width of the optical waveguide can be approximately 1.5 times as large as that in the case of being parabolic in the case of the step function.

【0023】上記したように、図1に示されるような光
導波路12,12Aを有するSHG素子において、上記
したようにカットオフ条件が、光導波路の屈折率分布構
造を、図2に示すように構成することで甘くすることが
でき、それだけ光導波路の幅を広く設定しても高次モー
ドがカットオフされる。すなわち、LDとのカップリン
グ効率を高くする目的で光導波路の幅を広く設定して
も、基本波の伝播モードとSH波の伝播モードとを同一
の低次モードに規定し易くなる。
As described above, in the SHG element having the optical waveguides 12 and 12A as shown in FIG. 1, the cutoff condition is that the refractive index distribution structure of the optical waveguide is as shown in FIG. It can be made sweet by the configuration, and even if the width of the optical waveguide is set wider, the higher-order mode is cut off. That is, even if the width of the optical waveguide is set wide for the purpose of increasing the coupling efficiency with the LD, it becomes easy to define the propagation mode of the fundamental wave and the propagation mode of the SH wave in the same low-order mode.

【0024】なお、上記したように、本発明は光導波路
を構成要素とするSHG素子に応用できる。すなわち、
図1に示したように、LiTaO3 やKTPを用いるS
HG素子に応用することにより、同様に高変換効率をも
つSHG素子を実現できる。基板としては、LiNbO
3 の他に、LiTaO3 あるいはKTiOPO4 (KT
P)等を用いるようにしてもよい。
As described above, the present invention can be applied to an SHG element having an optical waveguide as a constituent element. That is,
As shown in FIG. 1, S using LiTaO 3 or KTP
By applying it to the HG element, an SHG element having high conversion efficiency can be realized as well. As a substrate, LiNbO
3 other than LiTaO 3 or KTiOPO 4 (KT
P) or the like may be used.

【0025】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above-described embodiment, and various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0026】[0026]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。光導
波路を有するSHG素子において、光導波路の屈折率分
布構造を、光導波路の周辺が基板結晶の屈折率に等し
く、この光導波路の中心部分に向かうにしたがってなだ
らかに、あるいは細かいステップ状に屈折率が高くなる
ように形成するようにしたので、カットオフ条件が甘く
なり、それだけ光導波路の幅を広く設定しても高次モー
ドがカットオフされる。
As described in detail above, according to the present invention, the following effects can be achieved. In an SHG element having an optical waveguide, the refractive index distribution structure of the optical waveguide is such that the periphery of the optical waveguide is equal to the refractive index of the substrate crystal and the refractive index is gradually or finely stepped toward the center of the optical waveguide. Since it is formed so as to be high, the cut-off condition becomes weak, and even if the width of the optical waveguide is set wider, the higher-order mode is cut off.

【0027】すなわち、半導体レーザとのカップリング
効率を高くする目的で光導波路の幅を広く設定しても、
基本波の伝播モードとSH波の伝播モードとを同一の低
次モードに規定し易くなる。したがって、基本波とSH
波とを同一のモードで導波することができ、これにより
高変換効率のSHG動作が可能となる。
That is, even if the width of the optical waveguide is set wide for the purpose of increasing the coupling efficiency with the semiconductor laser,
It becomes easy to define the propagation mode of the fundamental wave and the propagation mode of the SH wave in the same low-order mode. Therefore, the fundamental wave and SH
Waves can be guided in the same mode, which enables SHG operation with high conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すSHG素子の構成図であ
る。
FIG. 1 is a configuration diagram of an SHG element showing an embodiment of the present invention.

【図2】本発明の実施例を示すSHG素子の光導波路の
屈折率を示す図である。
FIG. 2 is a diagram showing a refractive index of an optical waveguide of an SHG element showing an example of the present invention.

【図3】本発明の実施例を示すSHG素子の分布インデ
ックス平面導波路のシングルモード条件を示す図であ
る。
FIG. 3 is a diagram showing a single mode condition of a distributed index planar waveguide of an SHG element showing an example of the present invention.

【図4】従来のSHG素子の構成図である。FIG. 4 is a configuration diagram of a conventional SHG element.

【図5】従来のステップ状の屈折率分布をもつ光導波路
の屈折率を示す図である。
FIG. 5 is a diagram showing the refractive index of a conventional optical waveguide having a stepwise refractive index distribution.

【図6】従来のステップ状の屈折率分布をもつ光導波路
の実効屈折率を示す図である。
FIG. 6 is a diagram showing an effective refractive index of a conventional optical waveguide having a stepwise refractive index distribution.

【符号の説明】[Explanation of symbols]

11 LiNbO3 基板 12 光導波路 12A 光導波路の周辺 13 分極反転領域11 LiNbO 3 substrate 12 Optical waveguide 12A Periphery of optical waveguide 13 Polarization inversion region

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学結晶基板に周期的分極反転構
造と光導波路とが形成されて成る光第2高周波発生素子
において、 前記光導波路の周辺が基板結晶の屈折率に等しく、前記
光導波路の中心部分に向かうにしたがってなだらかに、
あるいは細かいステップ状に屈折率が高くなるように形
成することを特徴とする光第2高周波発生素子。
1. An optical second high-frequency generating device comprising a periodic polarization inversion structure and an optical waveguide formed on a nonlinear optical crystal substrate, wherein the periphery of the optical waveguide is equal to the refractive index of the substrate crystal. Gently toward the center,
Alternatively, the optical second high frequency generating element is characterized in that it is formed so that the refractive index is increased in fine steps.
JP15641495A 1995-06-22 1995-06-22 Optical second higher harmonic generator Pending JPH095808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15641495A JPH095808A (en) 1995-06-22 1995-06-22 Optical second higher harmonic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15641495A JPH095808A (en) 1995-06-22 1995-06-22 Optical second higher harmonic generator

Publications (1)

Publication Number Publication Date
JPH095808A true JPH095808A (en) 1997-01-10

Family

ID=15627236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15641495A Pending JPH095808A (en) 1995-06-22 1995-06-22 Optical second higher harmonic generator

Country Status (1)

Country Link
JP (1) JPH095808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950591B2 (en) * 2002-05-16 2005-09-27 Corning Incorporated Laser-written cladding for waveguide formations in glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6950591B2 (en) * 2002-05-16 2005-09-27 Corning Incorporated Laser-written cladding for waveguide formations in glass

Similar Documents

Publication Publication Date Title
JPH05333395A (en) Optical wavelength conversion device
WO2009015474A1 (en) Method of ferroelectronic domain inversion and its applications
JP2685969B2 (en) Second harmonic generator
CN103605248A (en) Multiplier enhancing method based on periodically poled lithium niobate
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JPH06102552A (en) Diffraction grating and its manufacture, and 2nd harmonic generating device
JP2725302B2 (en) Waveguide type wavelength conversion element
Wu et al. Optimal design for broadband quasi-phase-matched second-harmonic generation using simulated annealing
JPH095808A (en) Optical second higher harmonic generator
US5205904A (en) Method to fabricate frequency doubler devices
KR100749871B1 (en) Wavelength conversion tunable device with optical waveguide and optical modulated electrode
JP2643735B2 (en) Wavelength conversion element
JP3049986B2 (en) Optical wavelength conversion element
JP2658381B2 (en) Waveguide type wavelength conversion element
JP2666540B2 (en) Waveguide type wavelength conversion element
JPH07261211A (en) Second harmonic generating element
JPH03213832A (en) Second higher harmonics generating element and production thereof
Wang et al. Fourier transform analysis on random quasi-phase matching problems
US5018810A (en) Method for producing a second harmonic wave generating device
JPH0643513A (en) Wavelength converting element
JPH02189527A (en) Waveguide type wavelength converting element
JPH0331828A (en) Wavelength converting element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH03132628A (en) Wavelength converting element
JPH06289448A (en) Second harmonic generating element

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040924

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060307

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

RD04 Notification of resignation of power of attorney

Effective date: 20061013

Free format text: JAPANESE INTERMEDIATE CODE: A7424