JPH04340525A - Wavelength conversion element - Google Patents

Wavelength conversion element

Info

Publication number
JPH04340525A
JPH04340525A JP11162891A JP11162891A JPH04340525A JP H04340525 A JPH04340525 A JP H04340525A JP 11162891 A JP11162891 A JP 11162891A JP 11162891 A JP11162891 A JP 11162891A JP H04340525 A JPH04340525 A JP H04340525A
Authority
JP
Japan
Prior art keywords
polarization inversion
wavelength conversion
inversion layer
period
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11162891A
Other languages
Japanese (ja)
Inventor
Kiminori Mizuuchi
公典 水内
Hiroaki Yamamoto
博昭 山本
Kazuhisa Yamamoto
和久 山本
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11162891A priority Critical patent/JPH04340525A/en
Publication of JPH04340525A publication Critical patent/JPH04340525A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the wavelength conversion element which has high efficiency and can make short wavelength conversion relating to the structure of the wavelength conversion element for which a nonlinear optical effect is utilized. CONSTITUTION:Polarity inversion layers of a width W are formed at every polarity inversion period A2 of second order on an LiTaO3 substrate 1 of a -C plate which is the wavelength conversion element. A proton exchange optical waveguide 5 is formed across these polarity inversion layers 4. The element is so constituted as to satisfy the relation of the polarity inversion period LAMBDA2=lambda/(N2omega-Nomega) for the execution refractive index Nomega to basic light 6 (having lambda wavelength) propagating in the waveguide 5 and the execution refractive index N2omega to SHG light 7 (having lambda/2 wavelength). The max. value of the conversion efficiency is obtd. if the width W of the polarity inversion layers 4 is between LAMBDA2/2<W<LAMBDA2 by this constitution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、コヒーレント光源を応
用した光情報処理、光応用計測制御分野に使用される波
長変換素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element used in the fields of optical information processing and optical applied measurement control using a coherent light source.

【0002】0002

【従来の技術】誘電体の分極を強制的に反転させる分極
反転は誘電体に周期的な分極反転層を形成することによ
り表面弾性波を利用した光周波数変調器や非線形分極の
分極反転を利用した波長変換素子などに利用される。特
に非線形光学物質の非線形分極を周期的に反転すること
が可能になれば非常に変換効率の高い第二高調波発生素
子を作製することができる。これによって半導体レーザ
などの光を変換すると小型の短波長光源が実現でき、印
刷、光情報処理、光応用計測制御分野などに応用できる
ため盛んに研究が行われている。
[Background Art] Polarization inversion, which forcibly inverts the polarization of a dielectric material, uses an optical frequency modulator that uses surface acoustic waves and polarization inversion of nonlinear polarization by forming a periodic polarization inversion layer on the dielectric material. It is used for wavelength conversion elements, etc. In particular, if it becomes possible to periodically invert the nonlinear polarization of a nonlinear optical material, a second harmonic generating element with extremely high conversion efficiency can be produced. By converting light from semiconductor lasers and other sources, it is possible to create compact, short-wavelength light sources, which can be applied to fields such as printing, optical information processing, and optical applied measurement and control, and are therefore being actively researched.

【0003】このような分極反転を利用した従来の波長
変換素子としては、例えば、(エレクトロニクスレター
(Electron.Lett.)1989年25号P
731の)E.J.Lim氏による分極反転型の波長変
換素子がある。これはLiNbO3基板表面に周期的に
Tiを拡散することにより、LiNbO3基板に周期的
な分極反転層を形成し、この周期的な分極反転層を横切
るように光導波路を形成して波長変換素子を構成するも
のである。図10はこの従来の波長変換素子の構成図で
ある。図10(a)において21はLiNbO3基板、
22はプロトン交換導波路、23分極反転層、24は基
本光、25は第二高調波(以下SHG光とする)、26
は分極反転層の1次の周期Λ1、27は分極反転層の幅
である。図10(b)はこの波長変換素子を導波路22
に沿って切断した断面である。図10(b)において、
22はプロトン導波路、23は分極反転層で、光導波路
22は深さDを有し、また分極反転層23は周期Λ1、
幅Wで三角形状をしており、深さはdである。この分極
反転層の1次の周期Λ1は基本光(波長をλとする)に
対する実効屈折率Nωと前記光導波路を導波するSHG
光(波長をλ/2とする)に対する実効屈折率N2ωに
対して、Λ1=λ/2/(N2ω−Nω)の関係を満た
している。周期的に形成された分極反転層によって導波
路内を伝搬する基本光はSHG光に変換される。素子長
1mmのとき、SHG変換効率は37%/W/cm2で
ある。また基本光の波長依存性は半値全幅0.5nmで
ある。この半値全幅は素子長に反比例する。
[0003] As a conventional wavelength conversion element using such polarization inversion, for example, (Electron. Lett., 1989, No. 25, P.
731)E. J. There is a polarization inversion type wavelength conversion element by Mr. Lim. In this method, a periodic polarization inversion layer is formed on the LiNbO3 substrate by periodically diffusing Ti on the surface of the LiNbO3 substrate, and an optical waveguide is formed across this periodic polarization inversion layer to form a wavelength conversion element. It consists of FIG. 10 is a configuration diagram of this conventional wavelength conversion element. In FIG. 10(a), 21 is a LiNbO3 substrate,
22 is a proton exchange waveguide, 23 is a polarization inversion layer, 24 is a fundamental light, 25 is a second harmonic wave (hereinafter referred to as SHG light), 26
is the first period Λ1 of the polarization inversion layer, and 27 is the width of the polarization inversion layer. FIG. 10(b) shows how this wavelength conversion element is connected to the waveguide 22.
This is a cross section taken along the . In FIG. 10(b),
22 is a proton waveguide, 23 is a polarization inversion layer, the optical waveguide 22 has a depth D, and the polarization inversion layer 23 has a period Λ1,
It has a triangular shape with a width W and a depth d. The first period Λ1 of this polarization inversion layer is the effective refractive index Nω for the fundamental light (wavelength is λ) and the SHG guided through the optical waveguide.
The relationship Λ1=λ/2/(N2ω−Nω) is satisfied for the effective refractive index N2ω for light (wavelength is λ/2). Fundamental light propagating within the waveguide is converted into SHG light by periodically formed polarization inversion layers. When the element length is 1 mm, the SHG conversion efficiency is 37%/W/cm2. Further, the wavelength dependence of the fundamental light is a full width at half maximum of 0.5 nm. This full width at half maximum is inversely proportional to the element length.

【0004】0004

【発明が解決しようとする課題】LiNbO3結晶には
光損傷という問題があり、光のパワー密度を上げると導
波路内の屈折率変化が発生し、高出力時の出力安定化が
難しいという問題がある。また、図10(b)に示すよ
うに、分極反転層の深さdは導波路の深さDに対し約1
/2以下になる、これは分極反転層の深さdと幅Wの比
が一定の相似形となるからである。しかし、青色光の発
生を行うためには、約3μmの分極反転周期Λ1が必要
になり、このため分極反転層深さdは分極反転幅Wに規
制され、光導波路に対し充分深い反転層が形成できなく
なる。非線形光学効果による波長変換は基本光、SHG
光、分極反転層深さの3つの重なり積分に依存するため
、このような浅い分極反転層しか形成できないと変換効
率が非常に低くなってしまい、高効率の波長変換が実現
しないという問題がある。
[Problems to be solved by the invention] LiNbO3 crystals have the problem of optical damage, and increasing the optical power density causes a change in the refractive index within the waveguide, making it difficult to stabilize the output at high outputs. be. Furthermore, as shown in FIG. 10(b), the depth d of the polarization inversion layer is approximately 1 with respect to the depth D of the waveguide.
/2 or less, because the ratio of the depth d and the width W of the polarization inversion layer becomes a constant similarity. However, in order to generate blue light, a polarization inversion period Λ1 of approximately 3 μm is required, and therefore, the polarization inversion layer depth d is regulated by the polarization inversion width W, and the polarization inversion layer is deep enough for the optical waveguide. It becomes impossible to form. Wavelength conversion by nonlinear optical effect is fundamental light, SHG
Since it depends on the overlapping integral of three factors: light and polarization inversion layer depth, if only such a shallow polarization inversion layer can be formed, the conversion efficiency will be extremely low, and there is a problem that highly efficient wavelength conversion cannot be achieved. .

【0005】そこで、本発明は分極反転の周期をΛ2(
=2Λ1)とし、これによって、導波路に対し十分深い
分極反転層を得ることによって高効率の波長変換素子を
製造することを目的とする。
Therefore, the present invention sets the period of polarization inversion to Λ2(
=2Λ1), and thereby the purpose is to manufacture a highly efficient wavelength conversion element by obtaining a sufficiently deep polarization inversion layer with respect to the waveguide.

【0006】[0006]

【課題を解決するための手段】誘電体の基板と、前記基
板表面近傍に形成した2次の周期Λ2で非線形分極が反
転している幅Wの分極反転層と、前記基板表面近傍に形
成した前記分極反転層に直行する光導波路と、前記光導
波路の両端面に形成した入射部および出射部とを備え、
かつ前記分極反転層の周期Λが前記光導波路を導波する
基本光(波長をλとする)に対する実行屈折率Nωと前
記光導波路を導波するSHG光(波長をλ/2とする)
に対する実行屈折率N2ωに対して、Λ2=λ/(N2
ω−Nω)の関係を満足し、かつ前記分極反転層の幅W
がΛ2/2<W<Λ2の関係を満足している波長変換素
子である。
[Means for Solving the Problems] A dielectric substrate, a polarization inversion layer having a width W in which nonlinear polarization is inverted with a second-order period Λ2 formed near the surface of the substrate, and comprising an optical waveguide extending perpendicularly to the polarization inversion layer, and an input part and an output part formed on both end surfaces of the optical waveguide,
and the period Λ of the polarization inversion layer is the effective refractive index Nω for the fundamental light (wavelength is λ) guided through the optical waveguide and the SHG light (wavelength is λ/2) guided through the optical waveguide.
Λ2=λ/(N2
ω−Nω), and the width W of the polarization inversion layer
is a wavelength conversion element that satisfies the relationship Λ2/2<W<Λ2.

【0007】[0007]

【作用】本発明は前述した構成により、2次の分極反転
周期を用いた波長変換素子を構成する。ここで1次と2
次の分極反転について説明する。
[Operation] The present invention constructs a wavelength conversion element using a second-order polarization inversion period with the above-described structure. Here, the first and second
The next polarization inversion will be explained.

【0008】図8(a)に波長変換素子の素子長と素子
内で変換されたSHG出力の関係を示す。図8(b)は
1次の分極反転の分極の様子、図8(c)(d)は2次
の分極反転の分極の様子である。図8(b)(c)(d
)において矢印は分極の向きである。
FIG. 8(a) shows the relationship between the element length of the wavelength conversion element and the SHG output converted within the element. FIG. 8(b) shows the state of polarization in the first-order polarization inversion, and FIGS. 8(c) and (d) show the state of polarization in the second-order polarization inversion. Figure 8(b)(c)(d)
), the arrow indicates the direction of polarization.

【0009】今、図8(b)のように周期Λ1で分極の
向きが交互に反転するとSHG出力は図8(a)中の(
b)の曲線で示すように距離の2乗に比例して増加する
Now, as shown in FIG. 8(b), if the direction of polarization is alternately reversed with a period Λ1, the SHG output will be as shown in FIG. 8(a).
As shown by the curve b), it increases in proportion to the square of the distance.

【0010】この周期が2倍のΛ2(=Λ1)になった
ら2次の分極反転である。しかし図8(c)に示すよう
に周期Λ2で分極の向きが交互に反転すると図8(a)
中の(c)に示すようにSHG出力は距離によって増加
せず高効率のSHG出力は得られない。ところが同じ周
期Λ2でも1周期Λ2内の分極の反転している割合を1
:3に変えるとSHG出力は図8(a)中の(d)に示
すように距離の2乗に比例して増加し高効率の変換が行
える。
[0010] When this period becomes twice Λ2 (=Λ1), it is a second-order polarization inversion. However, as shown in Fig. 8(c), if the direction of polarization is alternately reversed with a period of Λ2, Fig. 8(a)
As shown in (c), the SHG output does not increase with distance, and a highly efficient SHG output cannot be obtained. However, even with the same period Λ2, the ratio of polarization reversal within one period Λ2 is 1
:3, the SHG output increases in proportion to the square of the distance, as shown in (d) in FIG. 8(a), allowing highly efficient conversion.

【0011】これによって、分極反転層の周期を1次の
周期Λ1の2倍に拡大して分極反転層形成の許容度を増
し、作製を容易にする。また、分極反転層深さは分極反
転層幅に依存するため、分極反転層の幅を分極反転周期
の1/2より大きくすることにより、より深い分極反転
層の形成を可能にして、光導波路とのオーバーラップを
増大させ、変換効率を向上させる。さらに分極反転層と
非反転層間の比率を調整することにより変換効率をより
増大させ高出力の波長変換素子を構成することができる
[0011] As a result, the period of the domain-inverted layer is expanded to twice the first-order period Λ1, increasing the tolerance for forming the domain-inverted layer and facilitating its manufacture. In addition, since the depth of the polarization inversion layer depends on the width of the polarization inversion layer, by making the width of the polarization inversion layer larger than 1/2 of the polarization inversion period, it is possible to form a deeper polarization inversion layer, thereby forming an optical waveguide. This increases the overlap between the two and improves the conversion efficiency. Furthermore, by adjusting the ratio between the polarization inversion layer and the non-inversion layer, the conversion efficiency can be further increased and a high output wavelength conversion element can be constructed.

【0012】0012

【実施例】図1に第1の実施例における波長変換素子の
構成図を示す。1は−C板のLiTaO3基板、4は分
極反転層、5はプロトン交換導波路、6は波長800n
mの基本光、7は波長400nmのSHG光である。図
1において分極反転層4とは基板に対し、分極の方向が
逆転している部分である。本実施例の波長変換素子の分
極反転層の周期Λ2は2次であり、1次の周期Λ1の2
倍の周期をもつ(Λ2=Λ1*2)。この分極反転層の
2次の周期Λ2は基本光(波長をλとする)に対する実
効屈折率Nωと前記光導波路を導波するSHG光(波長
をλ/2とする)に対する実効屈折率N2ωに対して、
Λ2=λ/(N2ω−Nω)の関係を満たしている。実
効屈折率とは光が実際に感じる屈折率のことである。L
iTaO3の場合、基本光の波長が800nmのとき1
次の周期Λ1が約4μm、2次で約8μmである(基本
光とSHG光の位相整合がとれSHG光が発生するのは
、分極反転層の周期が1次の分極反転周期Λ1の整数倍
に一致したときのみである。)。図2は、第1の実施例
における波長変換素子の製造方法の工程図を示すもので
分極反転層の形成方法である。図2において、1は−C
板のLiTaO3基板、2はTaマスク、3はプロトン
交換層、4は分極反転層、8はマスクの幅W、9は2次
の周期Λ2である。 以下、その製造方法を説明する。(a)−C板のLiT
aO3基板1上にスパッタリング法によりTa膜を30
0A形成する。(b)Ta膜上にフォトレジストを塗布
した後、通常のフォトリソグラフィ法により周期Λごと
に幅Wのストライプを基板のY伝搬方向に形成する(周
期Λは7μmとした)。(c)CF4雰囲気中でドライ
エッチングでTaマスクにレジストのパターンを転写す
る。(d)260℃のピロ燐酸中で20分間熱処理しプ
ロトン交換層3を形成する。(e)加熱装置でLiTa
O3基板を加熱した。
Embodiment FIG. 1 shows a configuration diagram of a wavelength conversion element in a first embodiment. 1 is a -C plate LiTaO3 substrate, 4 is a polarization inversion layer, 5 is a proton exchange waveguide, and 6 is a wavelength of 800n.
7 is the fundamental light of m, and SHG light with a wavelength of 400 nm. In FIG. 1, the polarization inversion layer 4 is a portion in which the direction of polarization is reversed with respect to the substrate. The period Λ2 of the polarization inversion layer of the wavelength conversion element of this example is quadratic, and is 2nd-order of the first-order period Λ1.
It has twice the period (Λ2=Λ1*2). The second-order period Λ2 of this polarization inversion layer is determined by the effective refractive index Nω for the fundamental light (wavelength is λ) and the effective refractive index N2ω for the SHG light (wavelength is λ/2) guided through the optical waveguide. for,
The relationship Λ2=λ/(N2ω−Nω) is satisfied. The effective refractive index is the refractive index that light actually feels. L
In the case of iTaO3, when the fundamental light wavelength is 800 nm, 1
The next period Λ1 is approximately 4 μm, and the second period is approximately 8 μm (the phase matching between the fundamental light and the SHG light is achieved and the SHG light is generated because the period of the polarization inversion layer is an integer multiple of the first polarization inversion period Λ1). ). FIG. 2 shows a process diagram of a method of manufacturing a wavelength conversion element in the first embodiment, which is a method of forming a polarization inversion layer. In Figure 2, 1 is -C
2 is a Ta mask, 3 is a proton exchange layer, 4 is a polarization inversion layer, 8 is a mask width W, and 9 is a second-order period Λ2. The manufacturing method will be explained below. (a)-C plate LiT
A 30% Ta film is deposited on the aO3 substrate 1 by sputtering.
0A is formed. (b) After coating a photoresist on the Ta film, stripes with a width W are formed in the Y propagation direction of the substrate at intervals of Λ by a normal photolithography method (the period Λ is set to 7 μm). (c) Transfer the resist pattern to the Ta mask by dry etching in a CF4 atmosphere. (d) A proton exchange layer 3 is formed by heat treatment in pyrophosphoric acid at 260° C. for 20 minutes. (e) LiTa with heating device
The O3 substrate was heated.

【0013】ここで、分極反転処理とは、LiTaO3
結晶をキュリー温度近くまで温度を上げて、一定方向に
そろっている結晶の分極を部分的に反転させる処理であ
る。この分極反転のメカニズムとして考えられるのは、
まず第1にプロトン交換によってプロトン交換層のLi
濃度が低減し、これによって、プロトン交換層のキュリ
ー点が低下する。そこで基板をLiTaO3結晶のキュ
リー点とプロトン交換LiTaO3のキュリー点の間で
熱処理するとプロトン交換部分のみキュリー状態にする
ことができる。さらにプロトン交換層内のイオンと基板
内のイオンの間発生する電界によってキュリー状態にあ
るプロトン交換層の分極反転が逆転し、分極反転層が形
成される。
[0013] Here, the polarization inversion treatment refers to LiTaO3
This is a process in which the temperature of the crystal is raised to near the Curie temperature, and the polarization of the crystal, which is aligned in a certain direction, is partially reversed. The possible mechanism for this polarization reversal is
First of all, by proton exchange, Li in the proton exchange layer is
The concentration decreases, which lowers the Curie point of the proton exchange layer. Therefore, if the substrate is heat-treated between the Curie point of the LiTaO3 crystal and the Curie point of the proton-exchanged LiTaO3, only the proton-exchanged portion can be brought into the Curie state. Further, the polarization of the proton exchange layer in the Curie state is reversed by an electric field generated between ions in the proton exchange layer and ions in the substrate, thereby forming a polarization inversion layer.

【0014】図3には、作製した分極反転上に形成する
光導波路の作製方法を示す。図3において(a)図2(
e)にある分極反転形成のためのTaマスク2を除去す
る。 (b)LiTaO3基板1表面にTa膜をスパッタリン
グ法により340A成膜する。 (c)フォトリソおよびドライエッチングによりマスク
パターンを形成する。(d)260℃のピロ燐酸中で1
0分間熱処理するとプロトン交換光導波路5が形成され
る。Taマスクを酸により除去し、導波路の両端面を光
学研磨し波長変換素子を形成した。
FIG. 3 shows a method for producing an optical waveguide formed on the produced polarization inversion. In Figure 3, (a) Figure 2 (
The Ta mask 2 for polarization inversion formation shown in e) is removed. (b) A Ta film of 340 A is formed on the surface of the LiTaO3 substrate 1 by sputtering. (c) Form a mask pattern by photolithography and dry etching. (d) 1 in pyrophosphoric acid at 260°C
When the heat treatment is performed for 0 minutes, a proton exchange optical waveguide 5 is formed. The Ta mask was removed with acid, and both end faces of the waveguide were optically polished to form a wavelength conversion element.

【0015】次に波長変換素子の動作について説明する
。光導波路導波路に入射された基本波は分極反転層にお
いてSHG光に変換され、波長800nmの基本光を入
射すると波長400nmの青色のSHG光を発生するこ
とができる。理論的に光導波路に対し充分深い分極反転
層が形成できるとき反転周期は変換効率に影響し、2次
の分極反転層の効率は1次の分極反転層の効率の約1/
4になる。しかし、1次の分極反転においては、分極反
転周期が短いため光導波路に対し充分深い分極反転層は
形成できない。これは分極反転層が大きさに依存せず、
相似形状をとるため、分極反転層幅が小さな短周期の分
極反転層においては深い分極反転層が形成できない。そ
れに対し2次の分極反転層周期は1次の周期の2倍の周
期をとるため、分極反転層幅が拡大し深い分極反転層が
形成できる。これを図4、5で説明する。
Next, the operation of the wavelength conversion element will be explained. The fundamental wave incident on the optical waveguide is converted into SHG light in the polarization inversion layer, and when the fundamental light with a wavelength of 800 nm is incident, blue SHG light with a wavelength of 400 nm can be generated. Theoretically, when a domain-inverted layer deep enough for an optical waveguide can be formed, the inversion period affects the conversion efficiency, and the efficiency of the second-order domain-inverted layer is approximately 1/1 of the efficiency of the first-order domain-inverted layer.
It becomes 4. However, in the first-order polarization inversion, since the polarization inversion period is short, a sufficiently deep polarization inversion layer cannot be formed in the optical waveguide. This is because the polarization inversion layer does not depend on the size.
Because of the similar shapes, a deep domain-inverted layer cannot be formed in a domain-inverted layer with a short period and a small domain-inverted layer width. On the other hand, since the period of the second-order polarization inversion layer is twice the period of the first-order period, the width of the polarization inversion layer is expanded and a deep polarization inversion layer can be formed. This will be explained using FIGS. 4 and 5.

【0016】図4(a)は1次の分極反転周期を有する
波長変換素子を導波路5に沿って切断した断面である。 1は−C板のLiTaO3基板、4は分極反転層、5は
プロトン交換導波路、10は波長800nmの基本光の
電界分布、11は波長400nmのSHG光の電界分布
、12は基本光とSHG光の分極反転層内における電界
のオーバラップである。図5(a)は2次の分極反転周
期を有する波長変換素子を導波路5に沿って切断した断
面である。1は−C板のLiTaO3基板、4は分極反
転層、5はプロトン交換導波路、10は波長800nm
の基本光の電界分布、11は波長400nmのSHG光
の電界分布、13は基本光とSHG光の分極反転層内に
おける電界のオーバラップである。SHG出力は分極反
転層内での基本光6とSHG光7の電界のオーバーラッ
プ12,13に比例する。このため図5(b)に示すよ
うに2次の分極反転周期の波長変換素子における場合の
基本光6とSHG光7の分極反転層内における電界のオ
ーバーラップ13は図4(b)に示すとおり1次の分極
反転周期の波長変換素子の電界のオーバラップ12に比
べ非常に大きいため、高効率の波長変換が行える。
FIG. 4(a) is a cross section of a wavelength conversion element having a first-order polarization inversion period taken along the waveguide 5. 1 is a -C plate LiTaO3 substrate, 4 is a polarization inversion layer, 5 is a proton exchange waveguide, 10 is an electric field distribution of fundamental light with a wavelength of 800 nm, 11 is an electric field distribution of SHG light with a wavelength of 400 nm, 12 is the fundamental light and SHG This is the overlap of the electric fields within the optical polarization inversion layer. FIG. 5(a) is a cross section of a wavelength conversion element having a second-order polarization inversion period taken along the waveguide 5. 1 is a -C plate LiTaO3 substrate, 4 is a polarization inversion layer, 5 is a proton exchange waveguide, and 10 is a wavelength of 800 nm.
11 is the electric field distribution of the SHG light with a wavelength of 400 nm, and 13 is the overlap of the electric fields in the polarization inversion layer of the fundamental light and the SHG light. The SHG output is proportional to the overlap 12, 13 of the electric fields of the fundamental light 6 and the SHG light 7 within the polarization inversion layer. Therefore, as shown in FIG. 5(b), in the case of a wavelength conversion element with a second-order polarization period, the electric field overlap 13 of the fundamental light 6 and SHG light 7 in the polarization inversion layer is shown in FIG. 4(b). This is much larger than the electric field overlap 12 of a wavelength conversion element with a first-order polarization inversion period, so highly efficient wavelength conversion can be performed.

【0017】例えば波長800nm、出力40mWの半
導体レーザの基本光6を集光光学系により集光し作製し
た波長変換素子に入射した。導波路より、出射される基
本波及びSHG光をレンズでコリメートしパワーメータ
で測定した。その結果を図6に示す。図6は基本光の出
力とSHG光の出力を示したもので横軸は基本光出力、
縦軸はSHG出力である。2次の分極反転周期の波長変
換素子におけるSHG光の出力は2mWであり、このと
きの変換効率は60%/W・cm2という非常に高効率
の波長変換が行われた。またこの値は1次の分極反転周
期のSHG出力の約2倍であった。さらに基本光のパワ
ーを増大させて200mWまで導波させたが光損傷によ
る変動は観測されなかった。以上の結果安定で高効率な
波長変換素子が作製できた。
For example, the fundamental light 6 of a semiconductor laser having a wavelength of 800 nm and an output of 40 mW was focused by a focusing optical system and made incident on a fabricated wavelength conversion element. The fundamental wave and SHG light emitted from the waveguide were collimated with a lens and measured with a power meter. The results are shown in FIG. Figure 6 shows the basic light output and the SHG light output, where the horizontal axis is the basic light output;
The vertical axis is the SHG output. The output of the SHG light in the wavelength conversion element with the second-order polarization inversion period was 2 mW, and the conversion efficiency at this time was 60%/W·cm 2 , which was very high efficiency wavelength conversion. Further, this value was approximately twice the SHG output in the first polarization inversion period. Furthermore, although the power of the fundamental light was increased to 200 mW, no fluctuation due to optical damage was observed. As a result of the above, a stable and highly efficient wavelength conversion element was fabricated.

【0018】分極反転層の幅とSHGの関係を説明する
。図7は2次の分極反転周期の波長変換素子において分
極反転層の幅WとSHG出力の関係を示したものである
。図7において、横軸は分極反転層の幅W、縦軸はSH
G出力である。2次の分極反転周期をΛ2とするとSH
G出力は図7のようになる。SHG出力は分極反転層の
幅WがΛ2/4近傍と3Λ2/4近傍で極大となるが、
SHG出力が最大となるのは0<W<Λ2/2の間では
なくΛ2/2<W<Λ2の間である。
The relationship between the width of the polarization inversion layer and SHG will be explained. FIG. 7 shows the relationship between the width W of the polarization inversion layer and the SHG output in a wavelength conversion element with a second-order polarization inversion period. In FIG. 7, the horizontal axis is the width W of the polarization inversion layer, and the vertical axis is SH
It is G output. If the second-order polarization inversion period is Λ2, then SH
The G output is as shown in FIG. The SHG output reaches its maximum when the width W of the polarization inversion layer is near Λ2/4 and 3Λ2/4, but
The SHG output becomes maximum not between 0<W<Λ2/2 but between Λ2/2<W<Λ2.

【0019】この理由を図9を用いて説明する。図9(
a)は波長変換素子の素子長と、SHG出力の関係を示
している。図9(b),(c),(d),(d)は導波
路と分極反転層を示しており導波路内の分極の方向は上
向,反転層内の分極の方向は下向である。
The reason for this will be explained using FIG. 9. Figure 9 (
a) shows the relationship between the element length of the wavelength conversion element and the SHG output. Figures 9(b), (c), (d), and (d) show the waveguide and the polarization inversion layer; the direction of polarization in the waveguide is upward, and the direction of polarization in the inversion layer is downward. be.

【0020】図9(b),(c),(d)において、分
極反転の周期はΛ2、分極反転層の巾及び深さは、それ
ぞれW,d,導波路深さはDである。SHG出力は分極
反転の深さdと導波路深さDとのオーバラップで決まる
In FIGS. 9(b), (c), and (d), the period of polarization inversion is Λ2, the width and depth of the polarization inversion layer are W and d, respectively, and the depth of the waveguide is D. The SHG output is determined by the overlap between the polarization inversion depth d and the waveguide depth D.

【0021】図9(b)は分極反転層の巾Wが0<W<
Λ2/2のときでありこのときSHG出力は距離によっ
て増加するが導波路の深さDに対し、分極反転の深さd
が小さいためSHG出力は図9(a)中の(b)に示す
ように低いSHG変換効率しか得られない。
FIG. 9(b) shows that the width W of the polarization inversion layer is 0<W<
Λ2/2, and in this case the SHG output increases with distance, but the polarization inversion depth d with respect to the waveguide depth D
Since the SHG output is small, only a low SHG conversion efficiency can be obtained as shown in (b) in FIG. 9(a).

【0022】図9(c)は分極反転層の巾WがW=Λ2
/2のときである。このときSHG出力は図9(a)中
の(c)となりSHGの出力はほとんど0になる。
FIG. 9(c) shows that the width W of the polarization inversion layer is W=Λ2
/2. At this time, the SHG output becomes (c) in FIG. 9(a), and the SHG output becomes almost zero.

【0023】ところが図9(d)に示すようにΛ2/2
<W<Λ2のとき分極反転層の巾Wが大きくなるため分
極反転層の深さdは導波路深さDに対し十分深くなる。
However, as shown in FIG. 9(d), Λ2/2
When <W<Λ2, the width W of the polarization inversion layer becomes large, so the depth d of the polarization inversion layer becomes sufficiently deep with respect to the waveguide depth D.

【0024】これによってSHG出力は図9(a)中の
(d)に示すように高い変換効率が得られる。
[0024] As a result, high conversion efficiency of the SHG output can be obtained as shown in (d) in Fig. 9(a).

【0025】それに対しΛ2/2<W<Λ2の間では分
極反転層の幅が広いため深さが導波路に対し充分深くな
りかつ、SHG出力が最大となる点を有するため、非常
に高い変換効率を実現できる。
On the other hand, in the range Λ2/2<W<Λ2, the width of the polarization inversion layer is wide, so the depth is sufficiently deep to the waveguide, and there is a point where the SHG output is maximum, resulting in a very high conversion. Efficiency can be achieved.

【0026】なお、本実施例では分極反転層の作製方向
をY伝搬方向としたがX伝搬方向でも同様な素子が作製
できる。
In this example, the polarization inversion layer was fabricated in the Y propagation direction, but a similar device can also be fabricated in the X propagation direction.

【0027】なお、本実施例では基板にLiTaO3基
板を用いたが他にMgO、Nb、Ndなどをドープした
LiTaO3基板でも同様な素子が作製できる。
Although a LiTaO3 substrate was used as the substrate in this embodiment, a similar device can also be fabricated using a LiTaO3 substrate doped with MgO, Nb, Nd, or the like.

【0028】なお、本実施例では、イオン交換にピロ燐
酸を用いたが、他にオルト燐酸、安息香酸、硫酸、など
も用いることができる。
In this example, pyrophosphoric acid was used for ion exchange, but other materials such as orthophosphoric acid, benzoic acid, and sulfuric acid can also be used.

【0029】なお、本実施例では耐イオン化のマスクと
して、Ta膜を用いたが、他にTa2O5、Pt、Au
など耐酸性を有する膜なら用いることができる。
In this example, a Ta film was used as an ionization-resistant mask, but other materials such as Ta2O5, Pt, and Au
Any film having acid resistance, such as, can be used.

【0030】なお、本実施例では光導波路としてプロト
ン交換導波路を用いたが、他にTi拡散導波路、Nb拡
散導波路、イオン注入導波路など他の光導波路も用いる
ことができる。
Although a proton exchange waveguide was used as the optical waveguide in this embodiment, other optical waveguides such as a Ti diffusion waveguide, a Nb diffusion waveguide, and an ion implantation waveguide can also be used.

【0031】[0031]

【発明の効果】以上説明したように、2次の分極反転周
期を用いて分極反転形の波長変換素子を構成しすること
により、分極反転周期が1次の周期の2倍になって作製
が容易になる。また分極反転層の幅が広がるため、光導
波路に対して充分深い分極反転層を形成できるため、分
極反転層内における基本光とSHG光の電界分布のオー
バーラップが増大し、SHG光への変換効率が増大する
。さらに分極反転層の幅を分極反転周期Λの1/2より
大きくすることにより、より深い分極反転層が形成でき
、SHG変換効率の増大が図れると共に、SHG出力の
分極反転層幅依存性により2次の分極反転周期のSHG
出力の最大値をとれるため、高効率でかつ短波長変換が
可能かつ作製が容易な分極反転型の波長変換素子を構成
することができ、その実用効果は大きい。
[Effects of the Invention] As explained above, by constructing a polarization-inverted wavelength conversion element using a second-order polarization inversion period, the polarization inversion period becomes twice that of the first-order period, and fabrication becomes easier. becomes easier. In addition, since the width of the polarization inversion layer is increased, it is possible to form a sufficiently deep polarization inversion layer with respect to the optical waveguide, which increases the overlap between the electric field distributions of the fundamental light and SHG light within the polarization inversion layer, resulting in conversion to SHG light. Efficiency increases. Furthermore, by making the width of the polarization inversion layer larger than 1/2 of the polarization inversion period Λ, a deeper polarization inversion layer can be formed, and the SHG conversion efficiency can be increased. SHG of next polarization reversal period
Since the maximum output value can be obtained, it is possible to construct a polarization-inverted wavelength conversion element that is highly efficient, capable of short wavelength conversion, and easy to manufacture, and has great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の波長変換素子の構成斜視図FIG. 1 is a perspective view of the configuration of a wavelength conversion element according to an embodiment of the present invention.


図2】本発明の波長変換素子の分極反転層の製造工程断
面図
[
Figure 2: Cross-sectional view of the manufacturing process of the polarization inversion layer of the wavelength conversion element of the present invention

【図3】本発明の波長変換素子のプロトン交換導波路の
製造工程斜視図
[Fig. 3] A perspective view of the manufacturing process of the proton exchange waveguide of the wavelength conversion element of the present invention.

【図4】(a)1次の分極反転周期の波長変換素子の構
造断面図 (b)1次の分極反転周期の波長変換素子における基本
光とSHG光の電界分布のオーバーラップを示す図
[Figure 4] (a) Structural cross-sectional view of a wavelength conversion element with a first-order polarization inversion period (b) Diagram showing the overlap of electric field distributions of fundamental light and SHG light in a wavelength conversion element with a first-order polarization inversion period

【図
5】(a)2次の分極反転周期の波長変換素子の構造断
面図 (b)2次の分極反転周期の波長変換素子における基本
光とSHG光の電界分布のオーバーラップを示す図
[Figure 5] (a) Structural cross-sectional view of a wavelength conversion element with a second-order polarization inversion period (b) Diagram showing the overlap of electric field distributions of fundamental light and SHG light in a wavelength conversion element with a second-order polarization inversion period

【図
6】基本光に対するSHG出力を示す図
[Figure 6] Diagram showing SHG output for fundamental light

【図7】分極反
転層の幅Wに対するSHG出力を示す図
[Figure 7] Diagram showing SHG output versus width W of polarization inversion layer

【図8】(a)
1次の分極反転周期と2次の分極反転周期の素子長に対
するSHG出力を示す図(b)波長変換素子の1次の分
極反転周期Λ1を示す図(c)波長変換素子の2次の分
極反転周期Λ2(非分極反転層と分極反転層の幅Wの比
が1:1)を示す図(d)波長変換素子の2次の分極反
転周期Λ2(非分極反転層と分極反転層の幅Wの比が1
:3)を示す図
[Figure 8] (a)
Diagram showing the SHG output versus element length for the first-order polarization inversion period and the second-order polarization inversion period (b) Diagram showing the first-order polarization inversion period Λ1 of the wavelength conversion element (c) Second-order polarization of the wavelength conversion element Diagram (d) showing the inversion period Λ2 (the ratio of the width W of the non-polarization inversion layer and the polarization inversion layer is 1:1). The ratio of W is 1
:3) Diagram showing

【図9】(a)2次の分極反転層幅の素
子長に対するSHG出力係を示す図 (b)分極反転層幅Wが0<W<Λ2であるときの分極
反転層幅Wに対する分極反転層の深さdを示す波長変換
素子の断面図 (c)分極反転層幅WがW=Λ2/2であるときの分極
反転層幅Wに対する分極反転層の深さdを示す波長変換
素子の断面図 (d)分極反転層幅WがΛ2/2<W<Λ2であるとき
の分極反転層幅Wに対する分極反転層の深さdを示す波
長変換素子の断面図
FIG. 9 (a) A diagram showing the SHG output relationship of the second-order polarization inversion layer width with respect to the device length. (b) Polarization inversion with respect to the polarization inversion layer width W when the polarization inversion layer width W satisfies 0<W<Λ2. Cross-sectional view of the wavelength conversion element showing the depth d of the layer (c) Cross-sectional view of the wavelength conversion element showing the depth d of the polarization inversion layer with respect to the polarization inversion layer width W when the polarization inversion layer width W is W=Λ2/2 Cross-sectional view (d) Cross-sectional view of the wavelength conversion element showing the depth d of the polarization inversion layer with respect to the polarization inversion layer width W when the polarization inversion layer width W satisfies Λ2/2<W<Λ2

【図10】(a)従来の波長変換素子の構成図(b)従
来の波長変換素子の断面図
FIG. 10 (a) Configuration diagram of a conventional wavelength conversion element (b) Cross-sectional diagram of a conventional wavelength conversion element

【符号の説明】[Explanation of symbols]

1  −C板のLiTaO3基板 2  Taマスク 3  プロトン交換層 4  分極反転層 5  プロトン交換導波路 6  波長800nmの基本光 7  波長400nmの第二高調波(SHG光)8  
マスクの幅W 9  周期Λ 10  波長800nmの基本光の電界分布11  波
長400nmのSHG光の電界分布12  基本光とS
HG光の分極反転層内における電界のオーバラップ 13  基本光とSHG光の分極反転層内における電界
のオーバラップ 21  LiNbO3基板 22  プロトン交換導波路 23  分極反転層 24  基本光 25  第二高調波(SHG光) 26  分極反転層の周期 27  分極反転層の幅 28  基本光の電界分布 29  SHG光の電界分布
1 -C plate LiTaO3 substrate 2 Ta mask 3 Proton exchange layer 4 Polarization inversion layer 5 Proton exchange waveguide 6 Fundamental light with a wavelength of 800 nm 7 Second harmonic (SHG light) with a wavelength of 400 nm 8
Mask width W 9 Period Λ 10 Electric field distribution of fundamental light with a wavelength of 800 nm 11 Electric field distribution of SHG light with a wavelength of 400 nm 12 Fundamental light and S
Overlap of electric fields in the polarization inversion layer of HG light 13 Overlap of electric fields in the polarization inversion layer of fundamental light and SHG light 21 LiNbO3 substrate 22 Proton exchange waveguide 23 polarization inversion layer 24 Fundamental light 25 Second harmonic (SHG) (light) 26 Period of polarization inversion layer 27 Width of polarization inversion layer 28 Electric field distribution of basic light 29 Electric field distribution of SHG light

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】誘電体の基板と、前記基板表面近傍に形成
した2次の周期Λ2で非線形分極が反転している幅Wの
分極反転層と、前記基板表面近傍に形成した前記分極反
転層に直行する光導波路と、前記光導波路の両端面に形
成した入射部および出射部とを備え、前記分極反転層の
2次の周期Λ2が前記光導波路を導波する基本光(波長
をλとする)に対する実行屈折率Nωと前記光導波路を
導波する高調波(波長をλ/2とする)に対する実行屈
折率N2ωに対して、Λ2=λ/(N2ω−Nω)の関
係を満足し、かつ前記分極反転層の幅WがΛ2/2<W
<Λ2の関係を満足していることを特徴とする波長変換
素子。
1. A dielectric substrate, a domain-inverted layer having a width W in which non-linear polarization is inverted with a second-order period Λ2 formed near the surface of the substrate, and the domain-inverted layer formed near the surface of the substrate. an optical waveguide that is perpendicular to the optical waveguide, and an input section and an output section formed on both end surfaces of the optical waveguide, and the second-order period Λ2 of the polarization inversion layer is such that the fundamental light (wavelength is λ) guided through the optical waveguide is provided. satisfies the relationship Λ2=λ/(N2ω−Nω) with respect to the effective refractive index Nω for the harmonic (wavelength is λ/2) guided in the optical waveguide; and the width W of the polarization inversion layer satisfies Λ2/2<W
A wavelength conversion element characterized by satisfying the relationship <Λ2.
JP11162891A 1991-05-16 1991-05-16 Wavelength conversion element Pending JPH04340525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11162891A JPH04340525A (en) 1991-05-16 1991-05-16 Wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11162891A JPH04340525A (en) 1991-05-16 1991-05-16 Wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH04340525A true JPH04340525A (en) 1992-11-26

Family

ID=14566141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11162891A Pending JPH04340525A (en) 1991-05-16 1991-05-16 Wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH04340525A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052203A (en) * 1990-11-05 1993-01-08 Fujitsu Ltd Production of waveguide type second harmonic wave generating element
US5303247A (en) * 1992-03-11 1994-04-12 Matsushita Electric Industrial Co., Ltd. Optical harmonic generating device for generating harmonic wave from fundamental wave and shorter wavelength laser generating apparatus in which fundamental wave of laser is converted to harmonic wave with the device
US5412502A (en) * 1992-01-24 1995-05-02 Hitachi Metals, Ltd. Second harmonic generating element and the production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052203A (en) * 1990-11-05 1993-01-08 Fujitsu Ltd Production of waveguide type second harmonic wave generating element
US5412502A (en) * 1992-01-24 1995-05-02 Hitachi Metals, Ltd. Second harmonic generating element and the production method thereof
US5303247A (en) * 1992-03-11 1994-04-12 Matsushita Electric Industrial Co., Ltd. Optical harmonic generating device for generating harmonic wave from fundamental wave and shorter wavelength laser generating apparatus in which fundamental wave of laser is converted to harmonic wave with the device

Similar Documents

Publication Publication Date Title
US5036220A (en) Nonlinear optical radiation generator and method of controlling regions of ferroelectric polarization domains in solid state bodies
CN105264726B (en) Waveguide laser
US5274727A (en) Second harmonic generator and method of fabrication thereof
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JP3052501B2 (en) Manufacturing method of wavelength conversion element
US7170671B2 (en) High efficiency wavelength converters
US6952307B2 (en) Electric field poling of ferroelectric materials
JPH0419719A (en) Domain control method for nonlinear ferrodielectric optical material
JPH04340525A (en) Wavelength conversion element
JP3006309B2 (en) Optical wavelength conversion element and short wavelength laser light source
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JP2718259B2 (en) Short wavelength laser light source
JPH06347630A (en) Diffraction element and its production and optical wavelength conversion element and its production
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JP2658381B2 (en) Waveguide type wavelength conversion element
JP3616138B2 (en) Waveguide type wavelength conversion element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JPH04356031A (en) Incidence tapered optical waveguide and wavelength converting element using the same
JP2973963B2 (en) Short wavelength light source
JPH04276725A (en) Wavelength conversion element
JPH04264534A (en) Production of wavelength converting element
JP3036243B2 (en) Optical wavelength conversion element
JPH0331828A (en) Wavelength converting element