JPH03191332A - Production of optical waveguide and optical wavelength converting element - Google Patents

Production of optical waveguide and optical wavelength converting element

Info

Publication number
JPH03191332A
JPH03191332A JP1330507A JP33050789A JPH03191332A JP H03191332 A JPH03191332 A JP H03191332A JP 1330507 A JP1330507 A JP 1330507A JP 33050789 A JP33050789 A JP 33050789A JP H03191332 A JPH03191332 A JP H03191332A
Authority
JP
Japan
Prior art keywords
manufacturing
optical
optical waveguide
wavelength conversion
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1330507A
Other languages
Japanese (ja)
Other versions
JPH0719004B2 (en
Inventor
Kazuhisa Yamamoto
和久 山本
Kunihiko Takeshige
竹重 邦彦
Tetsuo Yanai
哲夫 谷内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1330507A priority Critical patent/JPH0719004B2/en
Publication of JPH03191332A publication Critical patent/JPH03191332A/en
Publication of JPH0719004B2 publication Critical patent/JPH0719004B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To produce the efficient optical wavelength converting element by partially inverting polarization by a heat treatment and forming a high refractive index layer on a crystal after proton exchange and patterning. CONSTITUTION:An LiNbO3 substrate 1 is heat treated in phosphoric acid to form the proton exchange layer 5. The periodic patterns of an SiO2 mask 6 are formed thereon. The polarization inverting layer 3 is formed right under the SiO2 6 by executing the heat treatment. The proton exchange layer 5 is spread in thickness by the heat treatment and the Li is decreased, by which the Curie temp. is lowered; therefore, the polarization inversion is executed at a low temp. The SiO2 6 is then removed by etching and optical waveguides 2 are formed by using the proton exchange in the polarization inverting layer 3. The optical wavelength converting element having high efficiency is thus formed by the simple stage.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コヒーレント光を利用する光情報処理分野、
あるいは光応用計測制御分野に使用する光導波路および
光波長変換素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to the field of optical information processing using coherent light;
Alternatively, the present invention relates to a method of manufacturing an optical waveguide and an optical wavelength conversion element used in the field of optical measurement and control.

従来の技術 第7図に従来の光波長変換素子の構成図を示す。Conventional technology FIG. 7 shows a configuration diagram of a conventional optical wavelength conversion element.

以下1.06μmの波長の基本波に対する高調波発生(
波長0.53μm)について図を用いて詳しく述べる。
Harmonic generation for the fundamental wave with a wavelength of 1.06 μm (
The wavelength (0.53 μm) will be described in detail using figures.

 [E、J、Llm、 M、M、Fejer、 R,L
、Byer 、 ”Secondharmonic g
eneraHon of blue and gree
n lightIn perlodlcally−po
led planar Iltbium n1obat
e  waveguides”、 アイ シ′−夕゛)
゛リュー −オー  (IGWO)1988年、参照コ
、第7図に示されるようにLINbOs基板工に光基板
路2が形成され、さらに光導波路2には周期的に分極の
反転した層3(分極反転層)が形成されている。基本波
と発生する高調波の伝搬定数の不整合を分極反転層3の
周期構造で補償することにより高効率に高調波を出すこ
とができる。光導波路2の入射面10に基本波P1を入
射すると、光導波路2から高調波P2が効率良く発生さ
れ、光波長変換素子として動作する。
[E, J, Llm, M, M, Fejer, R, L
, Byer, “Secondharmonic g.
eneraHon of blue and green
n lightIn perlodlcally-po
led planar Iltbium n1obat
e waveguides”
IGWO (1988), as shown in Figure 7, an optical substrate path 2 is formed on a LINbOs substrate, and a layer 3 (polarization an inversion layer) is formed. By compensating for the mismatch between the propagation constants of the fundamental wave and the generated harmonics with the periodic structure of the polarization inversion layer 3, harmonics can be generated with high efficiency. When the fundamental wave P1 is incident on the entrance surface 10 of the optical waveguide 2, the harmonic wave P2 is efficiently generated from the optical waveguide 2, and the optical waveguide 2 operates as an optical wavelength conversion element.

このような従来の光波長変換素子は分極反転層3を形成
した構造を基本構成要素としていた。この素子の製造方
法について第8図を用いて説明する。同図(a)で非線
形光学結晶であるLiNbO2基板1にTi31のパタ
ーンをリフトオフと蒸着により幅数μmの周期で形成し
ていた。次に同図(b)で1100℃程度の温度で熱処
理を行いLINbOz基板1と分極が反対向きに反転し
た分極反転層3を形成した。次に同図(C)のように安
息香酸(200℃)中で30分熱処理を行った後350
℃でアニールを行い光導波路2を形成する。
Such a conventional optical wavelength conversion element had a structure in which a polarization inversion layer 3 was formed as a basic component. A method for manufacturing this element will be explained using FIG. 8. In the figure (a), a Ti pattern with a width of several μm was formed on a LiNbO2 substrate 1, which is a nonlinear optical crystal, by lift-off and vapor deposition. Next, as shown in FIG. 4B, heat treatment was performed at a temperature of about 1100° C. to form a polarization inversion layer 3 whose polarization was reversed to that of the LINbOz substrate 1. Next, as shown in the same figure (C), after 30 minutes of heat treatment in benzoic acid (200℃),
An optical waveguide 2 is formed by annealing at .degree.

上記安息香酸処理により作製される光波長変換素子は波
長1.06μmの基本波P1に対して、光導波路の長さ
を1mm5  基本波P1のパワーを1mWにしたとき
高調波P2のパワー0.5nWが得られていた。基本波
が40mW入射したとすると800nWの高調波出力が
可能である。この場合1cmの素子でのIW当りの変換
効率は5%/W・cmである。
The optical wavelength conversion element produced by the above benzoic acid treatment has an optical waveguide length of 1 mm5 for the fundamental wave P1 with a wavelength of 1.06 μm5, and when the power of the fundamental wave P1 is 1 mW, the power of the harmonic P2 is 0.5 nW. was obtained. If the fundamental wave is incident at 40 mW, a harmonic output of 800 nW is possible. In this case, the conversion efficiency per IW in a 1 cm element is 5%/W·cm.

発明が解決しようとする課題 上記のような分極反転層を基本とした光波長変換素子で
は理論値に比べて出力が10〜lOO分の1しか得られ
ていない。これは分極反転層作製の時に横方向拡散が生
じるため分極反転層3の形状が制御できず理想である幅
が細く、深さが深いものが形成できないことおよび処理
温度が1100℃とLiNbO2のキュリー温度113
0℃の近傍であり分極が不均一に反転することが影響し
ている。
Problems to be Solved by the Invention In the optical wavelength conversion element based on a polarization inversion layer as described above, the output is only 1/10 to 100 times lower than the theoretical value. This is because the shape of the domain-inverted layer 3 cannot be controlled due to lateral diffusion occurring during the fabrication of the domain-inverted layer, making it impossible to form the ideal narrow width and deep depth. temperature 113
This is due to the fact that the temperature is near 0°C and the polarization is non-uniformly reversed.

そのため光波長変換素子の変換効率は理論に比べて極端
に低かった。また、さらに分極反転層と分極反転されな
い層で屈折率変化を生じており、これが伝搬損失になり
さらに高調波出力を低下させることが判明した。
Therefore, the conversion efficiency of the optical wavelength conversion element was extremely low compared to theory. Furthermore, it has been found that a refractive index change occurs between the polarization inversion layer and the non-polation inversion layer, which causes propagation loss and further reduces harmonic output.

課題を解決するための手段 本発明は、上記問題点を解決するため分極反転構造を基
本とした光波長変換素子および導波路の製造方法に新た
な工夫を加えることにより高効率な光波長変換素子の製
造を可能とするものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides a highly efficient optical wavelength conversion element by adding new ideas to the manufacturing method of an optical wavelength conversion element and waveguide based on a polarization inversion structure. This makes it possible to manufacture

つまり、本発明は非線形光学結晶中にプロトン交換を行
う工程と前記基板上に誘電体膜をパターン化する工程と
よを行った後に、熱処理により部分的に分極を反転させ
る工程と前記基板に高屈折率層を形成する工程を施すと
いう手段を用いた光導波路および光波長変換素子を形成
するものである。
In other words, the present invention includes a step of performing proton exchange in a nonlinear optical crystal and a step of patterning a dielectric film on the substrate, and then a step of partially reversing the polarization by heat treatment, and a step of partially inverting the polarization by heat treatment. An optical waveguide and an optical wavelength conversion element are formed by using a step of forming a refractive index layer.

作用 本発明の光導波路および光波長変換素子の製造方法によ
り、非線形光学結晶中に形成される分極反転層は深くし
かも均一でありまた、処理温度を従来の方法に比べ大幅
に低減できるため分極反転用マスクの除去も容易になり
光導波路の伝搬損失が大幅に低減できる。この結果、高
効率な光波長変換素子を簡単な工程で製造することがで
きる。
Effect: By the method of manufacturing optical waveguides and optical wavelength conversion elements of the present invention, the polarization inversion layer formed in the nonlinear optical crystal is deep and uniform, and the processing temperature can be significantly reduced compared to conventional methods, resulting in polarization inversion. The mask can be easily removed, and the propagation loss of the optical waveguide can be significantly reduced. As a result, a highly efficient optical wavelength conversion element can be manufactured through simple steps.

実施例 実施例の一つとして本発明の光導波路の製造方法を図を
用いて説明する。まず本発明の光導波路の製造方法を第
1図に示す。また、本発明の製造方法を用いて作製した
光波長変換素子の第1の実施例の構造図を第2図に示す
。この実施例では分極反転型の光波長変換素子としてL
INbOa基板1中にプロトン交換を用いて作製した光
導波路を用いたもので、第2図(a)は光波長変換素子
の斜視図、 (b)は光導波路に平行な面で切った断面
図である。第2図で1は+Z板(Z軸と垂直に切り出さ
れた基板の+側)のLINbOs基板、2は形成された
光導波路、10は基本波P1の入射部、12は高調波P
2の出射部である。この光導波路2には分極反転層3お
よび分極反転されていない非分極反転層4による周期構
造が形成されている。燐酸中でのプロトン交換処理によ
り基板表面のLi濃度を低減しておき分極反転が低温で
おこるように前処理しプロトン交換層5が形成されてい
る。
Embodiment As one of the embodiments, a method for manufacturing an optical waveguide according to the present invention will be explained with reference to the drawings. First, a method for manufacturing an optical waveguide according to the present invention is shown in FIG. Further, FIG. 2 shows a structural diagram of a first example of an optical wavelength conversion element manufactured using the manufacturing method of the present invention. In this example, L is used as a polarization inversion type optical wavelength conversion element.
It uses an optical waveguide fabricated using proton exchange in the INbOa substrate 1. FIG. 2(a) is a perspective view of the optical wavelength conversion element, and FIG. 2(b) is a cross-sectional view taken along a plane parallel to the optical waveguide. It is. In Figure 2, 1 is the LINbOs substrate of the +Z plate (the + side of the substrate cut out perpendicular to the Z axis), 2 is the formed optical waveguide, 10 is the incident part of the fundamental wave P1, and 12 is the harmonic wave P
This is the second output section. This optical waveguide 2 has a periodic structure formed by a polarization inversion layer 3 and a non-polarization inversion layer 4 whose polarization is not inverted. The proton exchange layer 5 is formed by pretreatment such that the Li concentration on the substrate surface is reduced by proton exchange treatment in phosphoric acid and polarization inversion occurs at a low temperature.

同図(b)で光導波路2に入った基本波P1は位相整合
長しの長さを持った分極反転層3で高調波P2に変換さ
れ、次の同じくLの長さを持った非分極反転層4で高調
波パワーは増す事になる。このようにして光導波路2内
でパワーを増した高調波P2は出射部12より放射され
る。
In the figure (b), the fundamental wave P1 entering the optical waveguide 2 is converted into a harmonic wave P2 by the polarization inversion layer 3 having a length equal to the phase matching length, and then the next non-polarized wave P2 having the same length L. The harmonic power increases in the inversion layer 4. The harmonic wave P2 whose power has been increased in the optical waveguide 2 in this way is radiated from the output section 12.

次にこの光波長変換素子の製造方法について図を使って
説明する。第1図(a)でまず目NbO*基板1を燐酸
中で熱処理しプロトン交換層5を形成する。プロトン交
換層の厚みは0.2μmである。
Next, a method for manufacturing this optical wavelength conversion element will be explained using figures. In FIG. 1(a), first, a NbO* substrate 1 is heat treated in phosphoric acid to form a proton exchange layer 5. As shown in FIG. The thickness of the proton exchange layer is 0.2 μm.

次に同図(b)でプロトン交換されたLINbO,基板
1上に誘電体膜として厚み0. 2μmの5iO2Bを
スパッタにより蒸着した後、フォトエツチングにより5
to2マスク6の周期パターンを形成する。
Next, in the same figure (b), the proton-exchanged LINbO is placed on the substrate 1 as a dielectric film with a thickness of 0. After depositing 2 μm of 5iO2B by sputtering, 5iO2B was deposited by photoetching.
A periodic pattern of the TO2 mask 6 is formed.

次に同図(C)で1025℃、10秒間熱処理を行いS
 i 026直下に厚み1.4μmの分極反転層3を形
成する。熱処理の上昇レートは10℃/分、冷却レート
は50℃/分である。冷却レートが遅いと不均一反転が
生じるので30で7分以上が望ましい。この際プロトン
交換層5は厚みが熱処理により1.4μmまで広がる。
Next, heat treatment was performed at 1025°C for 10 seconds in the same figure (C).
A polarization inversion layer 3 with a thickness of 1.4 μm is formed directly under the i 026. The heat treatment ramp rate is 10°C/min, and the cooling rate is 50°C/min. If the cooling rate is slow, non-uniform inversion will occur, so a cooling rate of 7 minutes or more is desirable. At this time, the thickness of the proton exchange layer 5 increases to 1.4 μm due to the heat treatment.

また、Liが減少しておりプロトン交換処理していない
ものに比べ100″C程度キュリー温度が低下するため
低温で分極反転ができる。SiO*8直下のみが分極反
転するのはLINbO3基板1中のLiが5tOtに拡
散し非分極反転層4に比べさらにLiが少なく反転しや
すくなっているためと考えられる。分極反転層3の長さ
しは1.5μmである。次に同図Cd)でHF: HN
Faの1= 1混合液にて20分間エツチングしS i
 Oa6を除去する。次に上記分極反転層3中にプロト
ン交換を用いて光導波路を形成する。光導波路用マスク
としてTag’sをストライブ状にバターニングを行っ
た後、同図(e)においてTa206マスクに幅6 I
I ffh  長さ10mmのスリットが形成されたも
のに230°C,2分間プロトン交換を行った。最後に
マスクを除去した後350℃で1時間アニールを行った
。アニール処理により均一化されロスが減少した上にプ
ロトン交換層に非線形性が戻る。プロトン交換された保
護マスクのスリット直下の領域は屈折率が0.03程度
上昇した高屈折率層2となる。光は高屈折率層2を伝搬
し、これが光導波路となる。
In addition, since Li is reduced and the Curie temperature is lowered by about 100"C compared to the one without proton exchange treatment, polarization can be reversed at low temperature. The polarization can be reversed only directly under SiO*8 in the LINbO3 substrate 1. This is thought to be because Li is diffused to 5tOt, which makes it easier to invert because there is less Li than in the non-poling inversion layer 4.The length of the polarization inversion layer 3 is 1.5 μm.Next, in Figure Cd) HF: HN
Etched for 20 minutes with a 1=1 mixture of Fa and S i
Remove Oa6. Next, an optical waveguide is formed in the polarization inversion layer 3 using proton exchange. After patterning Tag's into a stripe shape as a mask for an optical waveguide, a Ta206 mask with a width of 6 I is shown in the same figure (e).
I ffh Proton exchange was performed at 230° C. for 2 minutes in a sample in which a slit with a length of 10 mm was formed. Finally, after removing the mask, annealing was performed at 350° C. for 1 hour. The annealing process uniformizes the layer, reduces loss, and restores nonlinearity to the proton exchange layer. The region immediately below the slit of the protective mask that has undergone proton exchange becomes a high refractive index layer 2 whose refractive index has increased by about 0.03. Light propagates through the high refractive index layer 2, which becomes an optical waveguide.

上記のような工程により光導波路が製造された。An optical waveguide was manufactured through the steps described above.

この光導波路2の厚みdは1. 2μmであり分極反転
層3の厚み1.4μmに比べ小さく有効に波長変換され
る。処理温度と分極反転層の厚みの関係を示すグラフを
第3図に示す。本発明の方法によれば、従来のプロトン
交換処理なしに比べ80℃低温で分極反転が生じなおか
つ、従来の倍程度の分極反転層の深さが得られることが
わかる。処理温度が1000℃以上、  1040℃以
下で深い分極反転層が形成できる。また、この光導波路
2の非分極反転層4と分極反転層3の屈折率変化はなく
、光が導波する場合の伝搬損失は小さい。光導波路2に
垂直な面を光学研磨し入射部10および出射部12を形
成した。このようにして第2図に示される光波長変換素
子が製造できる。また、この素子の長さは8mmである
。第2図(b)で基本波P1として半導体レーザ光(波
長0.84μm)を入射部10より導波させたところシ
ングルモード伝搬し、波長0.42μmの高調波P2が
出射部12より基板外部に取り出された。光導波路2の
伝搬損失は1dB/ctaと小さく高調波P2が有効に
取り出された。低損失化の原因の1つとして燐酸により
均一な光導波路が形成されたことがある。基本波40m
Wの入力で2mWの高調波(波長0.42μm)を得た
。この場合の変換効率は5%である。変換効率は従来の
分極反転型の光波長変換素子の2000倍、同じ長さに
して比較した場合でも20倍程度向上した。なお基本波
に対してマルチモード伝搬では高調波の出力が不安定で
実用的ではない。
The thickness d of this optical waveguide 2 is 1. The thickness is 2 μm, which is smaller than the thickness of the polarization inversion layer 3, which is 1.4 μm, and the wavelength can be converted effectively. A graph showing the relationship between the processing temperature and the thickness of the polarization inversion layer is shown in FIG. It can be seen that according to the method of the present invention, polarization inversion occurs at a lower temperature of 80° C. compared to the conventional method without proton exchange treatment, and the depth of the polarization inversion layer is about twice that of the conventional method. A deep polarization inversion layer can be formed at a processing temperature of 1000°C or higher and 1040°C or lower. Moreover, there is no change in the refractive index of the non-poling inversion layer 4 and the polarization inversion layer 3 of this optical waveguide 2, and the propagation loss when light is guided is small. A surface perpendicular to the optical waveguide 2 was optically polished to form an input section 10 and an output section 12. In this way, the optical wavelength conversion element shown in FIG. 2 can be manufactured. Further, the length of this element is 8 mm. In FIG. 2(b), when a semiconductor laser beam (wavelength 0.84 μm) is guided as a fundamental wave P1 from the input section 10, it propagates in a single mode, and a harmonic P2 with a wavelength of 0.42 μm is transmitted from the output section 12 to the outside of the substrate. It was taken out. The propagation loss of the optical waveguide 2 was as small as 1 dB/cta, and the harmonic P2 was effectively extracted. One of the reasons for the reduction in loss is that a uniform optical waveguide is formed using phosphoric acid. Fundamental wave 40m
A harmonic of 2 mW (wavelength 0.42 μm) was obtained by inputting W. The conversion efficiency in this case is 5%. The conversion efficiency is 2,000 times higher than that of conventional polarization-inverted optical wavelength conversion elements, and about 20 times higher when compared with the same length. Note that in multimode propagation, the harmonic output is unstable compared to the fundamental wave, making it impractical.

なお、0.65〜1.6μmの波長の基本波を用いて本
光波長変換素子による毘調波発生を確認した。
Incidentally, generation of biharmonic waves by the present optical wavelength conversion element was confirmed using a fundamental wave having a wavelength of 0.65 to 1.6 μm.

なお光導波路形成マスクにTag’sをもちいたがTa
5W等でもプロトン交換処理でき有効である。
Although Tag's was used as the mask for forming the optical waveguide, Ta
Even 5W etc. can perform proton exchange processing and are effective.

なお、本発明の光導波路の製造方法は第1.2図の光波
長変換素子だけではなく方向性結合器等の光スィッチあ
るいは光導波路を用いる他の装置にも応用可能である。
The method for manufacturing an optical waveguide of the present invention is applicable not only to the optical wavelength conversion element shown in FIG. 1.2 but also to other devices using optical switches such as directional couplers or optical waveguides.

次に本発明の光波長変換素子の製造方法の第2の実施例
を説明する。光波長変換素子の構成は実施例1と同様で
ある。本実施例ではLfNbOs基板に比べて光損傷に
強いMgOドープのLINbOsを用い1100℃で熱
処理し分極反転層を形成した。LINbOaに比べて処
理温度が高いのはキュリー温度がMgOドープすること
により80℃程度高いためである。又、光導波路には分
極反転層の形成時の熱処理温度に比べて低温処理が可能
であるプロトン交換光導波路を用いた。この実施例での
変換効率は40mW入力で4%であり、出力も非常に安
定していた。
Next, a second embodiment of the method for manufacturing an optical wavelength conversion element of the present invention will be described. The configuration of the optical wavelength conversion element is the same as in the first embodiment. In this example, MgO-doped LINbOs, which is more resistant to optical damage than an LfNbOs substrate, was used and heat-treated at 1100° C. to form a polarization inversion layer. The reason why the processing temperature is higher than that of LINbOa is because the Curie temperature is about 80° C. higher due to MgO doping. In addition, a proton exchange optical waveguide was used as the optical waveguide, which can be treated at a lower temperature than the heat treatment temperature when forming the polarization inversion layer. The conversion efficiency in this example was 4% at 40 mW input, and the output was also very stable.

次に本発明の光波長変換素子の製造方法の第3の実施例
を説明する。光波長変換素子の構成は実施例1と同様で
ある。本実施例ではL lNb0a基板の代わりにLI
TaOaを基板として用いた。LITaOaはキュリー
温度が630℃と低く低温で分極反転処理が可能である
。製造方法を第4図に示す。同図(a)でLiTa0a
基板1aに燐酸中で熱処理しプロトン交換層5を形成し
たものに5iCh8のパターンを形成した。次に同図(
b)で570℃の温度で熱処理し厚み1.8μmの分極
反転層3を形成した。その後、光導波路を燐酸を用いた
プロトン交換により形成した。光導波路の厚みは1.5
μmである。LITaO1基板1aにプロトン交換によ
り作製される光導波路は非線形性が大きいためアニール
処理を行う必要がない。この実施例での変換効率は40
mW入力で1%であり、LfTaOlを用いているため
光損傷はなく高調波出力は非常に安定していた。
Next, a third embodiment of the method for manufacturing an optical wavelength conversion element of the present invention will be described. The configuration of the optical wavelength conversion element is the same as in the first embodiment. In this example, LI
TaOa was used as a substrate. LITaOa has a low Curie temperature of 630° C., and polarization inversion processing can be performed at low temperatures. The manufacturing method is shown in FIG. In the same figure (a), LiTa0a
A pattern of 5iCh8 was formed on the substrate 1a, which was heat-treated in phosphoric acid to form a proton exchange layer 5. Next, the same figure (
In b), heat treatment was performed at a temperature of 570° C. to form a polarization inversion layer 3 having a thickness of 1.8 μm. Thereafter, an optical waveguide was formed by proton exchange using phosphoric acid. The thickness of the optical waveguide is 1.5
It is μm. The optical waveguide fabricated on the LITaO1 substrate 1a by proton exchange has large nonlinearity and therefore does not need to be annealed. The conversion efficiency in this example is 40
The mW input was 1%, and since LfTaOl was used, there was no optical damage and the harmonic output was very stable.

次に本発明の光導波路の製造方法の第4の実施例として
図を用いて説明を行う。この実施例ではパターンを形成
した後プロトン交換を行う。第5図に本実施例の光導波
路の製造工程図を示す。同図(a)でLINbOs基板
1上に厚み200AのTaを蒸着後、通常のフォトエツ
チングによりTa8aのスリット7のパターンを形成す
る。次に同図(b)において燐酸中でプロトン交換処理
し厚み0.1μmのプロトン交換層5をTaのスリット
7の直下に形成する。次に同図(C)において空気中1
130℃で熱処理し分極反転層3を形成する。熱処理中
にTa8aは酸化されTa20s6aに変化する。また
、プロトン交換層5は厚み1゜3μmに広がる。スリッ
ト7直下のLiは空気中に外拡散されその部分のLtは
低減する。また、SiO2と異なりTa2’sにはLi
は拡散しにくい。
Next, a fourth embodiment of the method for manufacturing an optical waveguide according to the present invention will be described with reference to the drawings. In this embodiment, proton exchange is performed after forming a pattern. FIG. 5 shows a manufacturing process diagram of the optical waveguide of this example. In the figure (a), after Ta is evaporated to a thickness of 200 Å on a LINbOs substrate 1, a pattern of Ta 8a slits 7 is formed by ordinary photoetching. Next, in FIG. 4B, proton exchange treatment is performed in phosphoric acid to form a proton exchange layer 5 having a thickness of 0.1 μm directly below the Ta slit 7. Next, in the same figure (C), 1 in the air
A polarization inversion layer 3 is formed by heat treatment at 130°C. During the heat treatment, Ta8a is oxidized and changed to Ta20s6a. Further, the proton exchange layer 5 spreads to a thickness of 1.3 μm. Li directly below the slit 7 is diffused out into the air, and Lt in that portion is reduced. Also, unlike SiO2, Ta2's contains Li
is difficult to spread.

そのためLiが低減したスリット7直下の分極が反転す
る。この厚みは1.3μmであった。その後Ta5os
を除去した後、プロトン交換により光導波路を形成した
Therefore, the polarization directly below the slit 7 where Li is reduced is reversed. This thickness was 1.3 μm. Then Ta5os
After removing , an optical waveguide was formed by proton exchange.

次に第5の実施例として本発明により製造された光波長
変換素子を光ディスクの読み取りに応用した例について
説明する。第6図にその構成を示す。半導体レーザ16
から出た基本波P1はコリメータレンズ17で平行光に
された後、フォーカシングレンズ18を用いて光波長変
換素子15に結合される。この基本波P1は光波長変換
素子15で高調波P2に変換され基板外に放射される。
Next, as a fifth embodiment, an example in which the optical wavelength conversion element manufactured according to the present invention is applied to reading an optical disc will be described. Figure 6 shows its configuration. Semiconductor laser 16
The fundamental wave P1 emitted from the light beam P1 is made into parallel light by the collimator lens 17, and then coupled to the optical wavelength conversion element 15 using the focusing lens 18. This fundamental wave P1 is converted into a harmonic wave P2 by the optical wavelength conversion element 15 and radiated to the outside of the substrate.

この高調波P2をコリメータレンズ19により平行光に
なるようにビーム整形を行う。この平行光にされた高調
波P2は偏光ビームスプリッタ20を通過後、フォーカ
シングレンズ21で集光され光デイスク22上に0.6
μmのスポットを結ぶ。
This harmonic P2 is beam-shaped by a collimator lens 19 so that it becomes parallel light. This parallel harmonic P2 passes through the polarizing beam splitter 20, is focused by the focusing lens 21, and is focused onto the optical disk 22 by 0.6
Connect the μm spots.

この反射信号は再び偏光ビームスプリッタ20を通過後
、受光器23に入射する。波長0.84μm、出力80
mWの半導体レーザ16を用い基本波P1として40m
Wを光波長変換素子15へ結合させた。これにより2m
Wの高調波P2が放射された。
This reflected signal passes through the polarizing beam splitter 20 again and then enters the light receiver 23. Wavelength 0.84μm, output 80
40m as fundamental wave P1 using mW semiconductor laser 16
W was coupled to the optical wavelength conversion element 15. As a result, 2m
A harmonic P2 of W was radiated.

このように本発明の光波長変換素子を用いることで従来
使用していた0、8μm帯の半導体レーザを用いた光デ
ィスクの読み取り系に比べて半分のスポットに絞ること
ができ光ディスクの記録密度を4倍に向上することがで
きる。また本発明では高調波を光導波路から出射するこ
とにより簡単に非点収差のないスポットを得ることがで
きる。
In this way, by using the optical wavelength conversion element of the present invention, the spot can be narrowed down to half that of the conventionally used optical disc reading system using a semiconductor laser in the 0.8 μm band, and the recording density of the optical disc can be reduced to 4. It can be improved twice. Furthermore, in the present invention, a spot free of astigmatism can be easily obtained by emitting harmonic waves from an optical waveguide.

なお実施例では非線形光学結晶としてLINbOa、L
ITaOaを用いたがKNbOs等の強誘電体、MNA
等の有機材料にも適用可能である。
In the examples, LINbOa and L are used as nonlinear optical crystals.
Although ITaOa was used, ferroelectric materials such as KNbOs, MNA
It is also applicable to organic materials such as

発明の詳細 な説明したように本発明の光導波路および光波長変換素
子の製造方法によれば、プロトン交換を前処理として行
い基板中のLiを減少させることによりその部分のキュ
リー点を低下させ低温でなおかつ深(均一な分極反転層
を形成できる。この分極反転層を周期的に配置し位相の
不整合を補償することで高効率な光波長変換素子を作製
することができる。
As described in detail, according to the method of manufacturing an optical waveguide and an optical wavelength conversion element of the present invention, proton exchange is performed as a pretreatment to reduce Li in the substrate, thereby lowering the Curie point of that portion and lowering the temperature. It is possible to form a deep and uniform domain-inverted layer. By periodically arranging this domain-inverted layer and compensating for phase mismatch, a highly efficient optical wavelength conversion element can be fabricated.

また、この製造方法により作製した光波長変換素子によ
り高調波を光導波路から取り出すことができ簡単に非点
収差のないスポットを得ることができ、その実用的効果
は極めて大きい。
Further, the optical wavelength conversion element manufactured by this manufacturing method can extract harmonic waves from the optical waveguide, and a spot without astigmatism can be easily obtained, and its practical effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の光導波路の製造方法を
用いた第1の実施例の工程断面図、第2図(a)、  
(b)は本発明の光波長変換素子の構成斜視図、断面図
、第3図は処理温度に対する分極反転層の深さ依存性を
示す図、第4図(a)。 (b)は本発明の光導波路の第3の実施例の製造工程断
面図、第5図(a)〜(c)は本発明の光導波路の第4
の実施例の製造工程断面図、第6図は本発明により製造
した光波長変換素子を応用した光デイスク系の概略図、
第7図(a)、  (b)は従来の光波長変換素子の構
成斜視図、断面図、第8図(a)〜(C)は従来の光波
長変換素子の製造工程断面図である。 1・・・LINbO,基板、2・・・光導波路、3・・
・分極反転層、4・・・非分極反転層、5・・・プロト
ン交換層、Pl・・・基本波、P2・・・高調波
1(a) to 1(e) are process cross-sectional views of the first embodiment using the optical waveguide manufacturing method of the present invention, FIG. 2(a),
(b) is a perspective view and a cross-sectional view of the structure of the optical wavelength conversion element of the present invention, FIG. 3 is a diagram showing the depth dependence of the polarization inversion layer on processing temperature, and FIG. 4 (a). (b) is a cross-sectional view of the manufacturing process of the third embodiment of the optical waveguide of the present invention, and FIGS. 5(a) to (c) are the fourth embodiment of the optical waveguide of the present invention.
FIG. 6 is a schematic diagram of an optical disk system to which the optical wavelength conversion element manufactured according to the present invention is applied;
FIGS. 7(a) and 7(b) are a perspective view and a cross-sectional view of the structure of a conventional optical wavelength conversion element, and FIGS. 8(a) to (C) are cross-sectional views of the manufacturing process of the conventional optical wavelength conversion element. 1... LINbO, substrate, 2... optical waveguide, 3...
・Polarization inversion layer, 4... Non-polarization inversion layer, 5... Proton exchange layer, Pl... Fundamental wave, P2... Harmonic wave

Claims (10)

【特許請求の範囲】[Claims] (1)非線形光学結晶中にプロトン交換を行う工程と前
記結晶上に誘電体膜をパターン化する工程とを行った後
に、熱処理により部分的に分極を反転させる工程と前記
結晶に高屈折率層を形成する工程とを行うことを特徴と
する光導波路の製造方法。
(1) After performing a step of performing proton exchange in a nonlinear optical crystal and a step of patterning a dielectric film on the crystal, a step of partially reversing polarization by heat treatment and a high refractive index layer on the crystal. 1. A method of manufacturing an optical waveguide, comprising the steps of: forming an optical waveguide.
(2)非線形光学結晶中にプロトン交換を行う工程と前
記結晶上に誘電体膜をパターン化する工程とを行った後
に、熱処理により部分的に分極を反転させる工程と前記
結晶に光導波路を形成する工程と基本波の入射部と高調
波の出射部を形成する工程を行うことを特徴とする光波
長変換素子の製造方法。
(2) After performing a step of exchanging protons in a nonlinear optical crystal and patterning a dielectric film on the crystal, a step of partially reversing polarization by heat treatment and forming an optical waveguide in the crystal. 1. A method of manufacturing an optical wavelength conversion element, comprising the steps of forming a fundamental wave entrance part and a harmonic output part.
(3)非線形光学結晶がLiNb_xTa_1_−_x
O_3(0≦X≦1)基板であることを特徴とする特許
請求の範囲第1項記載の光導波路の製造方法又は第2項
記載の光波長変換素子の製造方法。
(3) Nonlinear optical crystal is LiNb_xTa_1_-_x
The method for manufacturing an optical waveguide according to claim 1 or the method for manufacturing an optical wavelength conversion element according to claim 2, wherein the substrate is an O_3 (0≦X≦1) substrate.
(4)熱処理により誘電体膜直下の分極を反転させるこ
とを特徴とする特許請求の範囲第1項記載の光導波路の
製造方法又は第2項記載の光波長変換素子の製造方法。
(4) The method for manufacturing an optical waveguide according to claim 1 or the method for manufacturing an optical wavelength conversion element according to claim 2, wherein the polarization directly under the dielectric film is reversed by heat treatment.
(5)光導波路がプロトン交換光導波路であることを特
徴とする特許請求の範囲第1項記載の光導波路の製造方
法又は第2項記載の光波長変換素子の製造方法。
(5) The method for manufacturing an optical waveguide according to claim 1 or the method for manufacturing an optical wavelength conversion element according to claim 2, wherein the optical waveguide is a proton exchange optical waveguide.
(6)誘電体膜がSiO_2であることを特徴とする特
許請求の範囲第1項記載の光導波路の製造方法又は第2
項記載の光波長変換素子の製造方法。
(6) The method for manufacturing an optical waveguide according to claim 1 or 2, wherein the dielectric film is SiO_2.
A method for manufacturing an optical wavelength conversion element as described in 2.
(7)熱処理工程における非線形光学結晶の冷却を30
℃/分の以上のレートで行うことを特徴とする特許請求
の範囲第1項記載の光導波路の製造方法又は第2項記載
の光波長変換素子の製造方法。
(7) Cooling of the nonlinear optical crystal during the heat treatment process
The method for manufacturing an optical waveguide according to claim 1, or the method for manufacturing an optical wavelength conversion element according to claim 2, characterized in that the manufacturing method is carried out at a rate of at least .degree. C./min.
(8)熱処理の温度が1000℃以上1040℃以下で
あることを特徴とする特許請求の範囲第1項記載の光導
波路の製造方法又は第2項記載の光波長変換素子の製造
方法。
(8) The method for manufacturing an optical waveguide according to claim 1 or the method for manufacturing an optical wavelength conversion element according to claim 2, wherein the temperature of the heat treatment is 1000°C or more and 1040°C or less.
(9)燐酸を用いてプロトン交換することを特徴とする
特許請求の範囲第1項記載の光導波路の製造方法又は第
2項記載の光波長変換素子の製造方法。
(9) The method for manufacturing an optical waveguide according to claim 1 or the method for manufacturing an optical wavelength conversion element according to claim 2, characterized in that proton exchange is performed using phosphoric acid.
(10)光導波路がシングルモード伝搬することを特徴
とする特許請求の範囲第2項記載の光波長変換素子の製
造方法。
(10) The method for manufacturing an optical wavelength conversion element according to claim 2, wherein the optical waveguide propagates in a single mode.
JP1330507A 1989-12-20 1989-12-20 Optical wavelength conversion element and manufacturing method thereof Expired - Lifetime JPH0719004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330507A JPH0719004B2 (en) 1989-12-20 1989-12-20 Optical wavelength conversion element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330507A JPH0719004B2 (en) 1989-12-20 1989-12-20 Optical wavelength conversion element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH03191332A true JPH03191332A (en) 1991-08-21
JPH0719004B2 JPH0719004B2 (en) 1995-03-06

Family

ID=18233403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330507A Expired - Lifetime JPH0719004B2 (en) 1989-12-20 1989-12-20 Optical wavelength conversion element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0719004B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052203A (en) * 1990-11-05 1993-01-08 Fujitsu Ltd Production of waveguide type second harmonic wave generating element
JPH0667237A (en) * 1992-02-06 1994-03-11 Hikari Keisoku Gijutsu Kaihatsu Kk Second harmonic wave generating element and its production
JPH06208150A (en) * 1992-03-17 1994-07-26 Hikari Keisoku Gijutsu Kaihatsu Kk Manufacture of wavelength converting element
WO1996038757A1 (en) * 1995-06-02 1996-12-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189524A (en) * 1985-02-19 1986-08-23 Matsushita Electric Ind Co Ltd Optical wavelength converting element
JPH01172933A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Production of optical wavelength conversion element
JPH01238631A (en) * 1988-03-18 1989-09-22 Matsushita Electric Ind Co Ltd Light wavelength converting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189524A (en) * 1985-02-19 1986-08-23 Matsushita Electric Ind Co Ltd Optical wavelength converting element
JPH01172933A (en) * 1987-12-28 1989-07-07 Matsushita Electric Ind Co Ltd Production of optical wavelength conversion element
JPH01238631A (en) * 1988-03-18 1989-09-22 Matsushita Electric Ind Co Ltd Light wavelength converting element

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052203A (en) * 1990-11-05 1993-01-08 Fujitsu Ltd Production of waveguide type second harmonic wave generating element
JPH0667237A (en) * 1992-02-06 1994-03-11 Hikari Keisoku Gijutsu Kaihatsu Kk Second harmonic wave generating element and its production
JP2660217B2 (en) * 1992-03-17 1997-10-08 光計測技術開発株式会社 Manufacturing method of wavelength conversion element
JPH06208150A (en) * 1992-03-17 1994-07-26 Hikari Keisoku Gijutsu Kaihatsu Kk Manufacture of wavelength converting element
US6914918B2 (en) 1995-06-02 2005-07-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US6333943B1 (en) 1995-06-02 2001-12-25 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
WO1996038757A1 (en) * 1995-06-02 1996-12-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7101723B2 (en) 1995-06-02 2006-09-05 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7295583B2 (en) 1995-06-02 2007-11-13 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7339960B2 (en) 1995-06-02 2008-03-04 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7382811B2 (en) 1995-06-02 2008-06-03 Matsushita Electric Industrial Co., Ltd. Optical device, laser beam source, laser apparatus and method of producing optical device
US7570677B2 (en) 1995-06-02 2009-08-04 Panasonic Corporation Optical device, laser beam source, laser apparatus and method of producing optical device
US7623559B2 (en) 1995-06-02 2009-11-24 Panasonic Corporation Optical device, laser beam source, laser apparatus and method of producing optical device

Also Published As

Publication number Publication date
JPH0719004B2 (en) 1995-03-06

Similar Documents

Publication Publication Date Title
US5249191A (en) Waveguide type second-harmonic generation element and method of producing the same
US5373575A (en) Frequency doubler and short wave laser source using the same and optical data processing apparatus using the short wave laser source
US5323262A (en) Wavelength conversion device
JPH077135B2 (en) Optical waveguide, optical wavelength conversion element, and method for manufacturing short wavelength laser light source
US5205904A (en) Method to fabricate frequency doubler devices
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JP2502818B2 (en) Optical wavelength conversion element
JP2718259B2 (en) Short wavelength laser light source
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JPH0566440A (en) Laser light source
JPH05232538A (en) Wavelength converting element and its production
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
WO2024100865A1 (en) Optical waveguide element and method for manufacturing same
JPH0820655B2 (en) Optical wavelength conversion element
JP3616138B2 (en) Waveguide type wavelength conversion element
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JP3036243B2 (en) Optical wavelength conversion element
JPH04356031A (en) Incidence tapered optical waveguide and wavelength converting element using the same
JP3052654B2 (en) Optical wavelength conversion element
JPH02236505A (en) Incident tapered optical waveguide and wavelength converting element and manufacture of incident tapered optical waveguide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 15

EXPY Cancellation because of completion of term