JPH0667237A - Second harmonic wave generating element and its production - Google Patents

Second harmonic wave generating element and its production

Info

Publication number
JPH0667237A
JPH0667237A JP2137992A JP2137992A JPH0667237A JP H0667237 A JPH0667237 A JP H0667237A JP 2137992 A JP2137992 A JP 2137992A JP 2137992 A JP2137992 A JP 2137992A JP H0667237 A JPH0667237 A JP H0667237A
Authority
JP
Japan
Prior art keywords
substrate
periodic
polarization
polarization inversion
linbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2137992A
Other languages
Japanese (ja)
Inventor
Hiroaki Endo
弘明 遠藤
Yoshihiro Sanpei
義広 三瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Measurement Technology Development Co Ltd
Original Assignee
Optical Measurement Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Measurement Technology Development Co Ltd filed Critical Optical Measurement Technology Development Co Ltd
Priority to JP2137992A priority Critical patent/JPH0667237A/en
Publication of JPH0667237A publication Critical patent/JPH0667237A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable the easy inversion of polarization without damaging a ferroelectric substance substrate by providing the surface of this substrate with periodic grids consisting of a metallic material in contact with the surface of the substrate and thermally oxidizing the periodic grids, thereby forming the polarization inversion. CONSTITUTION:The periodic grids 2 consisting of the metallic material are provided in contact with the surface of the dielectric substance substrate 1. The periodic grids 2 are thermally oxidized and the formed oxides are removed to form the polarization inversion layers 3. An optical waveguide 4 is formed by ion exchange or Ti diffusion in these layers. An LiNbO3 substrate is suitable as the dielectric substance substrate 1. The -C surface of the LiNbO3 is provided with the periodic grids 2 in the case of using the LiNbO3. The Ti is suitable as the material of the periodic grids 2. The pitch of the periodic grids 2 is set at a coherence length or integer times this length. The temp. of the thermal oxidation is sufficient with 500 to 600 deg.C. As a result, the damages of the crystal are decreased and the out-diffusion of Li does not arise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は短波長光の発生に利用す
る。特に、入射基本波光に対して二次高調波光を発生す
る二次高調波発生素子に関する。さらに詳しくは、基本
波光と二次高調波光との位相を疑似的に整合させるた
め、光導波路に沿って周期的に分極を反転させる方法に
関する。
BACKGROUND OF THE INVENTION The present invention is used to generate short wavelength light. In particular, the present invention relates to a second harmonic generation element that generates second harmonic light with respect to incident fundamental wave light. More specifically, the present invention relates to a method of periodically inverting the polarization along the optical waveguide in order to make the phases of the fundamental wave light and the second harmonic light pseudo match.

【0002】[0002]

【従来の技術】LiNbO3 などの強誘電体は、二次の
非線形光学特性をもつことから、二次高調波発生素子と
して利用されている。このような素子では、効率よく二
次高調波を発生させるため、基本波の位相と二次高調波
の位相とを少なくとも疑似的に整合させる必要がある。
2. Description of the Related Art Ferroelectric materials such as LiNbO 3 are used as a second harmonic generation element because they have second-order nonlinear optical characteristics. In such an element, in order to efficiently generate the second harmonic, it is necessary to at least pseudo-match the phase of the fundamental wave with the phase of the second harmonic.

【0003】二つの波の位相を疑似的に整合させる構造
のひとつとして、光導波路に沿って分極を周期的に反転
させたものが知られている。分極を反転させる方法とし
ては、LiNbO3 の場合、Ti拡散法、SiO2 装荷
法、電子打ち込み法などが知られている。また、LiT
aO3 の分極を反転させる方法としては、プロトン交換
法が知られている。SiO2 装荷法、電子打ち込み法お
よびプロトン交換法は比較的新しい方法であり、それぞ
れ、1991年第38回応物春季予稿集28a−SF−
14、同29p−PB−8、同28a−SF−13に詳
しく説明されている。
As one of the structures for pseudo-matching the phases of two waves, a structure in which polarization is periodically inverted along an optical waveguide is known. As a method of reversing the polarization, in the case of LiNbO 3 , a Ti diffusion method, a SiO 2 loading method, an electron implantation method and the like are known. Also, LiT
A proton exchange method is known as a method for reversing the polarization of aO 3 . The SiO 2 loading method, the electron implantation method, and the proton exchange method are relatively new methods, and the 38th Bibliographical Spring Proceedings of 1991, 28a-SF-, respectively.
14, 29p-PB-8 and 28a-SF-13.

【0004】[0004]

【発明が解決しようとする課題】しかし、Ti拡散法
は、LiNbO3 中にTiを拡散させるので、その部分
に屈折率差が生じ、二次高調波発生のための分極反転位
相整合には適していない。SiO2 装荷法は、1000
℃以上の高温処理を行うため、LiNbO3 からLiイ
オンが脱離してSiO2 に拡散するアウトディフュージ
ョンの問題がある。電子打ち込み法は、反転部の境界が
ぼける傾向があり、また、装置が大がかりとなって量産
には向いていない。
However, since the Ti diffusion method diffuses Ti in LiNbO 3 , a difference in refractive index is generated in that portion, and it is suitable for polarization inversion phase matching for generating a second harmonic. Not not. The SiO 2 loading method is 1000
Since the high temperature treatment of ℃ or more is performed, there is a problem of out diffusion in which Li ions are desorbed from LiNbO 3 and diffused into SiO 2 . The electron implantation method has a tendency that the boundary of the inversion portion is blurred, and the device is large in size, and is not suitable for mass production.

【0005】また、プロトン交換法は、Liイオンをプ
ロトンに置換するため、Ti拡散の場合と同様に屈折率
差が生じ、しかも反転形状が最適なものとはいえない。
Further, in the proton exchange method, since Li ions are replaced by protons, a difference in refractive index occurs as in the case of Ti diffusion, and the inverted shape cannot be said to be optimal.

【0006】本発明は、このような課題を解決し、基板
に損傷を与えることなく簡単に分極を反転させることの
できる方法を提供することを目的とする。
It is an object of the present invention to solve such problems and provide a method capable of easily reversing the polarization without damaging the substrate.

【0007】[0007]

【課題を解決するための手段】本発明の第一の観点は二
次高調波発生素子の製造方法であり、強誘電体基板の表
面に接して金属材料による周期格子を設け、この周期格
子を熱酸化することにより分極反転を形成することを特
徴とする。
A first aspect of the present invention is a method of manufacturing a second harmonic generation element, which comprises providing a periodic grating made of a metal material in contact with the surface of a ferroelectric substrate, and It is characterized in that polarization inversion is formed by thermal oxidation.

【0008】周期格子のピッチは、コヒーレンス長また
はその整数倍にする。
The pitch of the periodic grating is the coherence length or an integral multiple thereof.

【0009】強誘電体基板としてはLiNbO3 基板が
よく、そのときには−C面に周期的な分極反転が形成さ
れる。
A LiNbO 3 substrate is preferably used as the ferroelectric substrate, in which case periodic polarization inversion is formed on the −C plane.

【0010】本発明の第二の観点はこの方法により製造
される素子であり、強誘電体基板に形成された周期的な
分極反転層と、この周期的な分極反転層と交差するよう
に前記強誘電体基板に形成された光導波路とを備えた二
次高調波発生素子において、強誘電体基板はLiNbO
3 基板であり、分極反転層は、このLiNbO3 基板の
−C面に、その基板の厚さに比べて十分に薄く形成され
たことを特徴とする。
A second aspect of the present invention is an element manufactured by this method, wherein the periodic domain-inverted layer formed on the ferroelectric substrate and the periodic domain-inverted layer are crossed with each other. In a second harmonic generation device including an optical waveguide formed on a ferroelectric substrate, the ferroelectric substrate is LiNbO
3 is a substrate, the polarization inversion layer, the -C surface of the LiNbO 3 substrate, and characterized in that it is sufficiently thin compared to the thickness of the substrate.

【0011】[0011]

【作用】本発明者らの研究によれば、LiNbO3 基板
上に金属膜を設け、それを熱酸化すると、基板に分極反
転が形成されることが判明した。分極反転が形成される
領域は膜の周囲であった。また、分極反転が生じるのは
−C面であった。−C面に分極反転を生じさせる方法と
しては電子打ち込み法が知られているが、電子打ち込み
法では基板の裏面まで分極が反転し、本発明のように表
面近傍だけを反転させることはできない。−C面に分極
反転を形成する他の方法は現在のところ知られていな
い。
According to the research conducted by the present inventors, it was found that when a metal film is provided on a LiNbO 3 substrate and the film is thermally oxidized, polarization inversion is formed on the substrate. The region where the polarization reversal was formed was around the membrane. In addition, polarization inversion occurred on the -C plane. An electron implantation method is known as a method of causing polarization inversion on the −C plane, but in the electron implantation method, the polarization is inverted to the back surface of the substrate, and only the vicinity of the surface cannot be inverted as in the present invention. No other method is currently known for forming a polarization reversal in the -C plane.

【0012】この分極反転は表面に接した金属が酸化す
るときに生じるものであり、熱酸化の温度も600℃以
下でよい。基板表面に膜を設けて加熱する点では従来の
SiO2 装荷法に似ているが、温度がかなり低く、80
0℃以上で生じるLiのアウトディフュージョンもない
ことから、全く別の現象であることがわかる。
This polarization inversion occurs when the metal in contact with the surface is oxidized, and the temperature of thermal oxidation may be 600 ° C. or lower. It is similar to the conventional SiO 2 loading method in that a film is provided on the substrate surface and heated, but the temperature is considerably low and
Since there is no Li out-diffusion that occurs at 0 ° C. or higher, it can be seen that this is a completely different phenomenon.

【0013】[0013]

【実施例】図1は本発明を実施した製造方法を示す図で
あり、三つの工程における斜視図を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram showing a manufacturing method embodying the present invention, showing perspective views in three steps.

【0014】(a)に示す工程では、誘電体基板1の表
面に接して、金属材料による周期格子2を設ける。この
周期格子2を熱酸化し、生成された酸化物を除去する
と、(b)に示すように、酸化物の周囲に分極反転層3
が形成される。これに、イオン交換またはTi拡散によ
り光導波路4を形成し、二次高調波発生素子を得る。
In the step shown in (a), the periodic grating 2 made of a metal material is provided in contact with the surface of the dielectric substrate 1. When the periodic lattice 2 is thermally oxidized to remove the produced oxide, the polarization inversion layer 3 is formed around the oxide as shown in (b).
Is formed. An optical waveguide 4 is formed on this by ion exchange or Ti diffusion to obtain a second harmonic generation element.

【0015】誘電体基板1としてはLiNbO3 が適し
ている。LiNbO3 を用いる場合には、その−C面に
周期格子2を設ける。周期格子2の材料としてはTiが
適している。周期格子2のピッチはコヒーレンス長また
はその整数倍とする。
LiNbO 3 is suitable for the dielectric substrate 1. When LiNbO 3 is used, the periodic grating 2 is provided on the −C plane. Ti is suitable as a material for the periodic grating 2. The pitch of the periodic grating 2 is the coherence length or an integral multiple thereof.

【0016】熱酸化の温度は500〜600℃で十分で
ある。
A temperature of 500 to 600 ° C. is sufficient for the thermal oxidation.

【0017】図2は金属の膜厚および酸化温度と分極反
転との関係の一例を示す図である。この例は、LiNb
3 基板の−C面にTi膜を設け、そのTi膜を熱酸化
させたときの条件を示す。酸化時間は、酸化温度が42
0℃の場合には4時間、それより高温度の場合には2時
間とした。分極反転はTi膜の側部のLiNbO3 に生
じた。Ti膜が薄い場合には、分極反転が形成されない
(図には×印で示す)か、または薄いもの(図には△印
で示す)しか形成されなかった。また、Ti膜が厚すぎ
る場合には、この範囲の酸化時間では完全に酸化させる
ことができず、分極反転は形成されなかった。しかし、
Ti膜の厚さがある程度以上あり、しかもTi膜が完全
に酸化されたときには、十分な分極反転が形成された。
FIG. 2 is a diagram showing an example of the relationship between the film thickness and oxidation temperature of the metal and the polarization reversal. In this example, LiNb
O 3 and Ti film is provided -C surface of the substrate, showing the condition when the Ti film was thermally oxidized. The oxidation time is 42
When it was 0 ° C., it was 4 hours, and when it was higher, it was 2 hours. The polarization reversal occurred in LiNbO 3 on the side of the Ti film. When the Ti film was thin, no polarization reversal was formed (indicated by X in the figure) or only thin (indicated by Δ in the figure) was formed. Further, when the Ti film was too thick, it could not be completely oxidized within this range of oxidation time, and polarization inversion was not formed. But,
When the Ti film had a certain thickness or more and the Ti film was completely oxidized, sufficient polarization reversal was formed.

【0018】図3は分極反転が形成されたLiNbO3
の断面写真であり、図4はそれを説明する図である。図
3の写真は、Ti膜の厚さ150nm、酸化温度580
℃、酸化時間2時間の条件で分極反転を形成し、−Y面
をエッチングした状態のものである。分極反転層の厚さ
dは2〜3μm、ピッチΛは約20μmである。
FIG. 3 shows that LiNbO 3 with polarization inversion formed.
4 is a cross-sectional photograph of FIG. 4, and FIG. 4 is a diagram for explaining it. The photograph in FIG. 3 shows a Ti film having a thickness of 150 nm and an oxidation temperature of 580.
The polarization inversion was formed under the conditions of the temperature of 2 ° C. and the oxidation time of 2 hours, and the −Y plane was etched. The domain inversion layer has a thickness d of 2 to 3 μm and a pitch Λ of about 20 μm.

【0019】[0019]

【発明の効果】以上説明したように、本発明の二次高調
波発生素子の製造方法は、金属を熱酸化することにより
それに接する強誘電体の分極を反転させることができ
る。熱酸化の温度は従来からの分極反転方法に比較して
低く、温度による結晶の損傷は少なく、Liのアウトデ
ィフュージョンも生じない。また、分極反転のために外
部電界を印加する必要もない。さらに、屈折率の変化も
なく、すぐれた二次高調波発生特性を得ることができ
る。
As described above, according to the method of manufacturing the second harmonic generating element of the present invention, the polarization of the ferroelectric substance in contact with the metal can be inverted by thermally oxidizing the metal. The temperature of the thermal oxidation is lower than that of the conventional polarization inversion method, the crystal is less damaged by the temperature, and the Li out diffusion does not occur. Further, it is not necessary to apply an external electric field for reversing the polarization. Further, it is possible to obtain excellent second harmonic generation characteristics without changing the refractive index.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した製造方法を示す図。FIG. 1 is a diagram showing a manufacturing method embodying the present invention.

【図2】金属の膜厚および酸化温度と分極反転との関係
の一例を示す図。
FIG. 2 is a diagram showing an example of a relationship between a metal film thickness and an oxidation temperature and polarization reversal.

【図3】分極反転が形成されたLiNbO3 の断面写
真。
FIG. 3 is a cross-sectional photograph of LiNbO 3 in which polarization inversion is formed.

【図4】図3の構造を説明する図。FIG. 4 is a diagram illustrating the structure of FIG.

【符号の説明】[Explanation of symbols]

1 誘電体基板 2 周期格子 3 分極反転層 4 光導波路 1 Dielectric Substrate 2 Periodic Lattice 3 Polarization Inversion Layer 4 Optical Waveguide

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年2月10日[Submission date] February 10, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図3[Name of item to be corrected] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図3】 ─────────────────────────────────────────────────────
[Figure 3] ─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月11日[Submission date] December 11, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施した製造方法を示す図。FIG. 1 is a diagram showing a manufacturing method embodying the present invention.

【図2】金属の膜厚および酸化温度と分極反転との関係
の一例を示す図。
FIG. 2 is a diagram showing an example of a relationship between a metal film thickness and an oxidation temperature and polarization reversal.

【図3】LiNbO基板上に形成された微細な分極反
転のパターンを表す断面写真。
FIG. 3 is a cross-sectional photograph showing a fine domain-inverted pattern formed on a LiNbO 3 substrate.

【図4】図3の構造を説明する図。FIG. 4 is a diagram illustrating the structure of FIG.

【符号の説明】 1 誘電体基板 2 周期格子 3 分極反転層 4 光導波路[Explanation of Codes] 1 Dielectric Substrate 2 Periodic Lattice 3 Polarization Inversion Layer 4 Optical Waveguide

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 強誘電体基板に周期的な分極反転を形成
し、 この周期的な分極反転と交差するように前記強誘電体基
板に光導波路を形成する二次高調波発生素子の製造方法
において、 前記強誘電体基板の表面に接して金属材料による周期格
子を設け、この周期格子を熱酸化することにより前記分
極反転を形成することを特徴とする二次高調波発生素子
の製造方法。
1. A method for manufacturing a second harmonic generation element, wherein a periodic polarization inversion is formed on a ferroelectric substrate, and an optical waveguide is formed on the ferroelectric substrate so as to intersect with the periodic polarization inversion. 2. A method for manufacturing a second harmonic generation element, wherein a periodic grating made of a metal material is provided in contact with the surface of the ferroelectric substrate, and the polarization inversion is formed by thermally oxidizing the periodic grating.
【請求項2】 強誘電体基板はLiNbO3 基板であ
り、−C面に周期的な分極反転を形成する請求項1記載
の二次高調波発生素子の製造方法。
2. The method for manufacturing a second harmonic generation element according to claim 1, wherein the ferroelectric substrate is a LiNbO 3 substrate, and periodic polarization inversion is formed on the −C plane.
【請求項3】 強誘電体基板に形成された周期的な分極
反転層と、 この周期的な分極反転層と交差するように前記強誘電体
基板に形成された光導波路とを備えた二次高調波発生素
子において、 前記強誘電体基板はLiNbO3 基板であり、 前記分極反転層は、このLiNbO3 基板の−C面に、
その基板の厚さに比べて十分に薄く形成されたことを特
徴とする二次高調波発生素子。
3. A secondary device comprising a periodic domain-inverted layer formed on a ferroelectric substrate, and an optical waveguide formed on the ferroelectric substrate so as to intersect with the periodic domain-inverted layer. In the harmonic generating device, the ferroelectric substrate is a LiNbO 3 substrate, and the polarization inversion layer is on the −C plane of the LiNbO 3 substrate.
A second harmonic generation element characterized by being formed sufficiently thinner than the thickness of the substrate.
JP2137992A 1992-02-06 1992-02-06 Second harmonic wave generating element and its production Pending JPH0667237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2137992A JPH0667237A (en) 1992-02-06 1992-02-06 Second harmonic wave generating element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137992A JPH0667237A (en) 1992-02-06 1992-02-06 Second harmonic wave generating element and its production

Publications (1)

Publication Number Publication Date
JPH0667237A true JPH0667237A (en) 1994-03-11

Family

ID=12053463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137992A Pending JPH0667237A (en) 1992-02-06 1992-02-06 Second harmonic wave generating element and its production

Country Status (1)

Country Link
JP (1) JPH0667237A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191332A (en) * 1989-12-20 1991-08-21 Matsushita Electric Ind Co Ltd Production of optical waveguide and optical wavelength converting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191332A (en) * 1989-12-20 1991-08-21 Matsushita Electric Ind Co Ltd Production of optical waveguide and optical wavelength converting element

Similar Documents

Publication Publication Date Title
JP2750231B2 (en) Method of manufacturing waveguide type second harmonic generation element
JP3052501B2 (en) Manufacturing method of wavelength conversion element
JP2969787B2 (en) Domain control method for nonlinear ferroelectric optical materials
JP3578469B2 (en) Optical wavelength conversion element and method for producing the same
JP4579417B2 (en) Optical waveguide manufacturing
JP2000066050A (en) Production of optical waveguide parts and optical waveguide parts
JPH02242236A (en) Optical apparatus for light wave processing,manufacture thereof and frequency doubling apparatus
TW201237531A (en) Nonlinear optical crystal optical waveguide and method for manufacturing the same
JPH0667237A (en) Second harmonic wave generating element and its production
JP2660217B2 (en) Manufacturing method of wavelength conversion element
US5668578A (en) Method for fabricating ferrolelectric domain reversals, and optical wavelength converter element
JP2502818B2 (en) Optical wavelength conversion element
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JP7286225B2 (en) Method for manufacturing optical waveguide device
JP2010078639A (en) Wavelength conversion element and manufacturing method thereof
US7394588B2 (en) Wavelength converter structure and method for preparing the same
JP2004109915A (en) Wavelength conversion element
JPH07120798A (en) Formation of optical wavelength conversion element
JP3347771B2 (en) Method for forming proton exchange layer
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
KR0161897B1 (en) Fabrication method of pole-inversion layer of lithium niobate crystal
JP2921209B2 (en) Manufacturing method of wavelength conversion element
JPH05289129A (en) Lithium niobate single crystal substrate having partial polarization inversion structure and its production
JPH03164725A (en) Formation of microcycle domain reversing structure