JPH07120798A - Formation of optical wavelength conversion element - Google Patents

Formation of optical wavelength conversion element

Info

Publication number
JPH07120798A
JPH07120798A JP5266197A JP26619793A JPH07120798A JP H07120798 A JPH07120798 A JP H07120798A JP 5266197 A JP5266197 A JP 5266197A JP 26619793 A JP26619793 A JP 26619793A JP H07120798 A JPH07120798 A JP H07120798A
Authority
JP
Japan
Prior art keywords
substrate
wavelength conversion
crystal
conversion element
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5266197A
Other languages
Japanese (ja)
Inventor
Yasukazu Nihei
靖和 二瓶
Akinori Harada
明憲 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP5266197A priority Critical patent/JPH07120798A/en
Publication of JPH07120798A publication Critical patent/JPH07120798A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To easily form the optical wavelength conversion element having high light damage resistance and uniform domain inversion parts by forming the domain inversion parts on an oxide ferroelectric crystal having a nonlinear optical effect and heat treating the. crystal in a pressurized oxygen atmosphere. CONSTITUTION:A Cr thin film 2 is formed as a grounding electrode by vapor deposition on the +z face of the substrate (LN substrate) 1 of the LiNbO3 crystal which is the oxide ferroelectric substance having the nonlinear optical effect. The substrate 1 is then locally irradiated with the electron beams 3 emitted from an electron beam irradiation device from its -z face. The domain inversion parts 9 of the patterns repeating at prescribed period are formed on the substrate 1 through the rear surface of the substrate by the irradiation with the electron beams. Thereafter, the x face and -x face of the LN substrate 1 are polished. Next, the Cr thin film 2 is removed and thereafter, the substrate 1 is put into a heating furnace 5 and is heat treated in the pressurized oxygen atmosphere. Thereafter, the substrate 1 is taken out of the heating furnace 5 and the optical wavelength conversion element having the x face and -x face of the polished substrate 1 as light transmission surfaces is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、基本波を第2高調波等
に変換する光波長変換素子、特に詳細には、非線形光学
効果を有する強誘電体結晶に周期ドメイン反転構造が形
成されてなる光波長変換素子を作成する方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion element for converting a fundamental wave into a second harmonic, and more particularly, a periodic domain inversion structure is formed in a ferroelectric crystal having a nonlinear optical effect. The present invention relates to a method for producing a light wavelength conversion element.

【0002】[0002]

【従来の技術】非線形光学効果を有する強誘電体の自発
分極(ドメイン)を周期的に反転させた領域を設けた光
波長変換素子を用いて、基本波を第2高調波に波長変換
する方法が既にBleombergenらによって提案されている
(Phys.Rev.,vol.127,No.6,1918(1962)参照)。
この方法においては、ドメイン反転部の周期Λを、 Λc=2π/{β(2ω)−2β(ω)} ……(1) ただしβ(2ω)は第2高調波の伝搬定数 2β(ω)は基本波の伝搬定数 で与えられるコヒーレント長Λcの整数倍になるように
設定することで、基本波と第2高調波との位相整合を取
ることができる。非線形光学材料のバルク結晶を用いて
波長変換する場合は、位相整合する波長が結晶固有の特
定波長に限られるが、上記の方法によれば、任意の波長
に対して(1) 式を満足する周期Λを選択することによ
り、効率良く位相整合を取ることが可能となる。
2. Description of the Related Art A method of converting a fundamental wave into a second harmonic using an optical wavelength conversion element provided with a region in which spontaneous polarization (domain) of a ferroelectric substance having a nonlinear optical effect is periodically inverted. Have already been proposed by Bleombergen et al. (See Phys. Rev., vol. 127, No. 6, 1918 (1962)).
In this method, the period Λ of the domain inversion part is represented by Λc = 2π / {β (2ω) -2β (ω)} (1) where β (2ω) is the propagation constant 2β (ω) of the second harmonic. Is set to be an integral multiple of the coherent length Λc given by the propagation constant of the fundamental wave, so that the fundamental wave and the second harmonic can be phase-matched. When wavelength conversion is performed using a bulk crystal of a nonlinear optical material, the phase matching wavelength is limited to a specific wavelength peculiar to the crystal, but according to the above method, equation (1) is satisfied for any wavelength. By selecting the period Λ, it is possible to efficiently achieve phase matching.

【0003】[0003]

【発明が解決しようとする課題】上述のような強誘電体
からなる光波長変換素子においては、発生した第2高調
波等の波長変換波により強誘電体結晶に光損傷が生じる
という問題が認められている。例えば強誘電体結晶とし
て酸化物強誘電体であるLiNbO3 (LN)の結晶を
用い、そこに周期ドメイン反転構造を設けてなる光波長
変換素子にあっては、2mW出力の第2高調波(波長:
477 nm)によって光損傷が生じることもある。このよ
うに低出力の波長変換波によって光損傷を生じてしまう
光波長変換素子は、実用的価値がさほど高いとは言えな
い。
In the optical wavelength conversion element made of a ferroelectric material as described above, there is a problem that the ferroelectric crystal is optically damaged by the generated wavelength converted wave such as the second harmonic wave. Has been. For example, in a light wavelength conversion element in which a crystal of LiNbO 3 (LN), which is an oxide ferroelectric, is used as the ferroelectric crystal, and a periodic domain inversion structure is provided therein, the second harmonic of 2 mW output ( wavelength:
477 nm) may also cause optical damage. Such an optical wavelength conversion element that causes optical damage due to a low-output wavelength conversion wave cannot be said to be of high practical value.

【0004】そこで従来より、耐光損傷性を向上させる
ために、上記のLNやLiTaO3(LT)の結晶に、
結晶生成段階からMgO、Zn等をドープさせることが
行なわれている。
Therefore, conventionally, in order to improve the light damage resistance, the above LN and LiTaO 3 (LT) crystals are
Doping with MgO, Zn, or the like is performed from the stage of crystal formation.

【0005】しかしこのようにMgO、Zn等をドープ
させた結晶は、反転ドメイン形成条件が、ドープさせな
い結晶のそれと著しく異なるため、ドメイン反転部を均
一に形成することが難しいという問題があった。このよ
うに光損傷に強くても、ドメイン反転部が均一に形成さ
れていない光波長変換素子は、高い波長変換効率を得る
ことができないので、やはり実用的価値がさほど高いと
は言えない。
However, the crystal doped with MgO, Zn, etc. as described above has a problem that it is difficult to uniformly form the domain inversion portion because the inversion domain forming condition is significantly different from that of the undoped crystal. As described above, an optical wavelength conversion element in which the domain inversion part is not uniformly formed cannot obtain high wavelength conversion efficiency even if it is resistant to optical damage, and therefore it cannot be said that it has a very high practical value.

【0006】また、同様に耐光損傷性を向上させるため
に、強誘電体結晶を加温したりそこに電場を印加する方
法(特願平5-56613 号明細書参照)や、強誘電体結晶表
面に導電性膜やプロトン交換層等の低抵抗層を形成する
構成(特願平5-29207 号明細書参照)も提案されてい
る。このような手法は耐光損傷性を向上させる上で確か
に効果的であるが、その半面、光波長変換デバイスの構
成が複雑化したり、光波長変換素子の作成方法が煩雑化
するという問題も認められる。
Similarly, in order to improve the light damage resistance, a method of heating a ferroelectric crystal or applying an electric field thereto (see Japanese Patent Application No. 5-56613) or a ferroelectric crystal is used. There has also been proposed a structure in which a low resistance layer such as a conductive film or a proton exchange layer is formed on the surface (see Japanese Patent Application No. 5-29207). Although such a method is certainly effective in improving the light damage resistance, on the other hand, it is also recognized that the structure of the light wavelength conversion device becomes complicated and the method of making the light wavelength conversion element becomes complicated. To be

【0007】本発明は上記の事情に鑑みてなされたもの
であり、耐光損傷性が高く、またドメイン反転部が均一
な光波長変換素子を簡単に作成できる方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of easily producing a light wavelength conversion element having high light damage resistance and having a uniform domain inversion portion. Is.

【0008】[0008]

【課題を解決するための手段】本発明による光波長変換
素子の作成方法は、非線形光学効果を有するLN、LT
等の酸化物強誘電体結晶に周期的に繰り返すドメイン反
転部が形成されてなり、これらのドメイン反転部の並び
方向に入射した基本波を波長変換する光波長変換素子を
作成する際、上記酸化物強誘電体結晶にドメイン反転部
を形成した後、該結晶を加圧酸素雰囲気中で熱処理する
ことを特徴とするものである。
A method of manufacturing an optical wavelength conversion element according to the present invention is a method for producing an optical wavelength conversion element such as LN and LT having a nonlinear optical effect.
When an optical wavelength conversion element for wavelength-converting a fundamental wave that is formed by periodically repeating domain inversion parts is formed in an oxide ferroelectric crystal such as After the domain inversion part is formed in the ferroelectric crystal, the crystal is heat-treated in a pressurized oxygen atmosphere.

【0009】[0009]

【作用および発明の効果】酸化物強誘電体結晶に対し
て、上述のような加圧酸素雰囲気中での熱処理を施す
と、その耐光損傷性が著しく向上する。これは、酸化物
強誘電体結晶中の酸素欠陥が少なくなって、結晶性が向
上するためであると考えられる。
When the oxide ferroelectric crystal is subjected to the heat treatment in the pressurized oxygen atmosphere as described above, its optical damage resistance is remarkably improved. It is considered that this is because oxygen defects in the oxide ferroelectric crystal are reduced and the crystallinity is improved.

【0010】また、本発明による光波長変換素子の作成
方法は、耐光損傷性向上のための熱処理を施す前に酸化
物強誘電体結晶にドメイン反転部を形成するものである
から、ドメイン反転部の形成に、耐光損傷性向上のため
の処理が影響することがない。よって本発明方法によれ
ば、反転ドメイン形成条件は従来から知られている最適
条件に設定して、均一なドメイン反転部を形成すること
ができ、それと耐光損傷性向上とを両立させることがで
きる。
Further, in the method of manufacturing the optical wavelength conversion element according to the present invention, since the domain inversion portion is formed in the oxide ferroelectric crystal before the heat treatment for improving the light damage resistance, the domain inversion portion is formed. The treatment for improving the light damage resistance does not affect the formation of the. Therefore, according to the method of the present invention, the inversion domain forming condition can be set to the conventionally known optimum condition to form a uniform domain inversion portion, and it is possible to achieve both of the improvement and the light damage resistance. .

【0011】また、上記の熱処理は結晶のアニールを兼
ねることになるので、ドメイン反転部の屈折率段差が減
少し、内部損失を著しく低下させる効果も得られる。
Further, since the above heat treatment also serves as annealing of the crystal, the step of the refractive index of the domain inversion portion is reduced, and the effect of significantly reducing the internal loss can be obtained.

【0012】[0012]

【実施例】以下、図面に示す実施例に基づいて本発明を
詳細に説明する。図1は、本発明の一実施例により光波
長変換素子を作成する工程を示すものである。図中、1
は非線形光学効果を有する酸化物強誘電体であるLiN
bO3 (以下、LNと称する)結晶の基板である。この
LN基板1は単分極化処理がなされて厚さ0.2 mmに形
成され、最も大きい非線形光学材料定数d33が有効に利
用できるように、z面で光学研磨されたz板が使用され
ている。そして同図(a)に示すように、この基板1の
+z面にはアース電極として、厚さ30nmのCr薄膜2
が蒸着により形成される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the embodiments shown in the drawings. FIG. 1 shows a process of producing an optical wavelength conversion device according to an embodiment of the present invention. 1 in the figure
Is LiN, which is an oxide ferroelectric having a nonlinear optical effect
It is a substrate of bO 3 (hereinafter, referred to as LN) crystal. The LN substrate 1 is monopolarized to have a thickness of 0.2 mm, and a z-plate optically polished in the z-plane is used so that the largest nonlinear optical material constant d 33 can be effectively utilized. . Then, as shown in FIG. 3A, the + z surface of the substrate 1 is provided with a Cr thin film 2 having a thickness of 30 nm as a ground electrode.
Are formed by vapor deposition.

【0013】次いで同図(b)に示すように、公知の電
子線照射装置(図示せず)から発せられた電子線3を、
基板1に−z面から局所的に照射する。この際の電子線
加速電圧は一例として20〜30kV、照射電流は0.1 〜1
nAに設定される。この電子線照射により基板1には、
基板裏まで貫通し、所定周期Λで繰り返すパターンのド
メイン反転部9が形成される。なお図1(b)の矢印10
は、分極の方向を示している。ここで上記周期Λは、L
Nの屈折率の波長分散を考慮して、基板1のx方向に沿
って946 nm近辺で1次の周期となるように4.7 μmと
した。その後、このLN基板1のx面および−x面を研
磨する。
Then, as shown in FIG. 1B, an electron beam 3 emitted from a known electron beam irradiation device (not shown) is
The substrate 1 is locally irradiated from the −z plane. The electron beam acceleration voltage at this time is 20 to 30 kV as an example, and the irradiation current is 0.1 to 1
Set to nA. By this electron beam irradiation, the substrate 1 is
A domain inversion portion 9 is formed in a pattern that penetrates to the back of the substrate and repeats at a predetermined period Λ. The arrow 10 in FIG. 1 (b)
Indicates the direction of polarization. Here, the period Λ is L
Considering the wavelength dispersion of the refractive index of N, the thickness was set to 4.7 μm along the x direction of the substrate 1 so as to have a first-order period near 946 nm. Then, the x-plane and the -x-plane of this LN substrate 1 are polished.

【0014】次に同図(c)に示すように、Cr薄膜2
を除去した後、この基板1を加圧炉5内に収め、加圧酸
素雰囲気6中で熱処理する。このときの条件は、一例と
して酸素圧力を9気圧、昇温速度を10℃/分、熱処理は
550 ℃×1時間、降温速度を−10℃/分とする。なお一
般には、酸素圧力を2〜10気圧の範囲内に設定すると、
好ましい結果が得られる。
Next, as shown in FIG. 1C, the Cr thin film 2
Then, the substrate 1 is placed in a pressure furnace 5 and heat-treated in a pressure oxygen atmosphere 6. The conditions at this time are, for example, an oxygen pressure of 9 atm, a heating rate of 10 ° C./min, and a heat treatment
550 ℃ × 1 hour, the rate of temperature decrease is -10 ℃ / min. Generally, when the oxygen pressure is set within the range of 2 to 10 atmospheres,
Good results are obtained.

【0015】その後基板1を加圧炉5から取り出し、上
記のように研磨された該基板1のx面および−x面をそ
れぞれ光通過面20a、20bとすることにより、図2に示
すようなバルク結晶型の光波長変換素子20が得られる。
After that, the substrate 1 is taken out of the pressure furnace 5, and the x-plane and the -x-plane of the substrate 1 polished as described above are used as the light passage planes 20a and 20b, respectively, as shown in FIG. A bulk crystal type optical wavelength conversion element 20 is obtained.

【0016】この周期ドメイン反転構造を有するバルク
結晶型光波長変換素子20を、図2に示すレーザダイオー
ド励起YAGレーザの共振器内に配置した。このレーザ
ダイオード励起YAGレーザは、波長809 nmのポンピ
ング光としてのレーザビーム13を発するレーザダイオー
ド14と、発散光状態のレーザビーム13を収束させる集光
レンズ15と、Nd(ネオジウム)がドープされたレーザ
媒質であって上記レーザビーム13の収束位置に配された
YAG結晶16と、このYAG結晶16の前方側(図中右
方)に配された共振器ミラー17とからなる。光波長変換
素子20は結晶長が1mmとされ、この共振器ミラー17と
YAG結晶16との間に配置されている。
The bulk crystal type optical wavelength conversion device 20 having the periodic domain inversion structure is arranged in the resonator of the laser diode pumped YAG laser shown in FIG. The laser diode pumped YAG laser is doped with Nd (neodymium), a laser diode 14 which emits a laser beam 13 as pumping light having a wavelength of 809 nm, a condenser lens 15 which converges the laser beam 13 in a divergent light state. It is composed of a YAG crystal 16 which is a laser medium and is arranged at the converging position of the laser beam 13, and a resonator mirror 17 which is arranged in front of the YAG crystal 16 (on the right side in the drawing). The light wavelength conversion element 20 has a crystal length of 1 mm and is arranged between the resonator mirror 17 and the YAG crystal 16.

【0017】YAG結晶16は波長809 nmのレーザビー
ム13により励起されて、波長946 nmのレーザビーム18
を発する。この固体レーザビーム18は、所定のコーティ
ングが施されたYAG結晶端面16aと共振器ミラー17の
ミラー面17aとの間で共振し、光波長変換素子20に入射
して波長が1/2すなわち473 nmの第2高調波19に変
換される。基本波としての固体レーザビーム18と第2高
調波19は、周期ドメイン反転領域において位相整合(い
わゆる疑似位相整合)し、ほぼこの第2高調波19のみが
共振器ミラー17から出射する。
The YAG crystal 16 is excited by a laser beam 13 having a wavelength of 809 nm to generate a laser beam 18 having a wavelength of 946 nm.
Emit. The solid-state laser beam 18 resonates between the YAG crystal end face 16a coated with a predetermined coating and the mirror surface 17a of the resonator mirror 17, and enters the optical wavelength conversion element 20 to have a wavelength of 1/2, that is, 473. converted into the second harmonic wave 19 of nm. The solid-state laser beam 18 as the fundamental wave and the second harmonic wave 19 are phase-matched (so-called pseudo-phase matching) in the periodic domain inversion region, and substantially only the second harmonic wave 19 is emitted from the resonator mirror 17.

【0018】本例において、光波長変換素子20の光損傷
しきい値は100 mWであった。それに対して、前述の加
圧酸素雰囲気中での熱処理を行なう前の端面研磨(x面
および−x面の研磨)までがなされたLN基板1を、上
記レーザダイオード励起YAGレーザの共振器内に配置
して光波長変換素子として使用したときの光損傷しきい
値は10mWであった。つまり上記の熱処理により、耐光
損傷性は10倍に向上している。
In this example, the optical damage threshold value of the optical wavelength conversion element 20 was 100 mW. On the other hand, the LN substrate 1 that has been subjected to end face polishing (polishing of the x-plane and the −x-plane) before performing the heat treatment in the above-described pressurized oxygen atmosphere is placed in the resonator of the laser diode pumped YAG laser. The optical damage threshold value when it was arranged and used as a light wavelength conversion element was 10 mW. That is, the heat treatment improves the light damage resistance ten times.

【0019】また、上記熱処理の前になされるドメイン
反転部9の形成においては、この熱処理と何ら関わりな
く反転ドメイン形成条件を最適に設定して、均一なドメ
イン反転部9を形成することができる。さらに、上記の
熱処理はLN基板1のアニールを兼ねることになるの
で、ドメイン反転部9の屈折率段差が減少し、内部損失
を著しく低減する効果も得られる。
Further, in forming the domain inversion portion 9 before the heat treatment, it is possible to form the uniform domain inversion portion 9 by optimally setting the inversion domain forming conditions regardless of the heat treatment. . Further, since the above heat treatment also serves as annealing of the LN substrate 1, the refractive index step of the domain inversion portion 9 is reduced, and the effect of significantly reducing the internal loss is also obtained.

【0020】なお上記の実施例においては、酸化物強誘
電体結晶を加圧酸素のみからなる雰囲気中で熱処理して
いるが、安全性を考慮して、酸素と例えば窒素等の不活
性ガスとの混合ガスを加圧した雰囲気中で熱処理するよ
うにしても構わない。
In the above embodiments, the oxide ferroelectric crystal is heat-treated in an atmosphere consisting only of pressurized oxygen, but oxygen and an inert gas such as nitrogen are used in consideration of safety. You may make it heat-process in the atmosphere which pressurized the mixed gas of this.

【0021】また以上は、酸化物強誘電体結晶としてL
Nを用いる場合に適用した実施例について説明したが、
本発明はそれ以外の酸化物強誘電体結晶、例えば前述の
LT等から光波長変換素子を作成する場合にも同様に適
用可能である。
The above is L as an oxide ferroelectric crystal.
The embodiment applied when N is used has been described.
The present invention can be similarly applied to the case of producing an optical wavelength conversion element from other oxide ferroelectric crystals such as LT described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例により光波長変換素子を作成
する様子を示す概略図
FIG. 1 is a schematic view showing how an optical wavelength conversion element is manufactured according to an embodiment of the present invention.

【図2】上記光波長変換素子を備えた固体レーザの側面
FIG. 2 is a side view of a solid-state laser including the optical wavelength conversion element.

【符号の説明】[Explanation of symbols]

1 LiNbO3 単分極化基板(z板) 2 Cr薄膜 3 電子線 5 加圧炉 6 加圧酸素雰囲気 9 ドメイン反転部 13 レーザビーム(ポンピング光) 14 レーザダイオード 15 集光レンズ 16 YAG結晶 17 共振器ミラー 18 レーザビーム(基本波) 19 第2高調波 20 バルク結晶型光波長変換素子1 LiNbO 3 monopolarized substrate (z plate) 2 Cr thin film 3 electron beam 5 pressure furnace 6 pressurized oxygen atmosphere 9 domain inversion part 13 laser beam (pumping light) 14 laser diode 15 condenser lens 16 YAG crystal 17 resonator Mirror 18 Laser beam (fundamental wave) 19 Second harmonic 20 Bulk crystal type optical wavelength conversion element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学効果を有する酸化物強誘電体
結晶に周期的に繰り返すドメイン反転部が形成されてな
り、これらのドメイン反転部の並び方向に入射した基本
波を波長変換する光波長変換素子の作成方法であって、 前記酸化物強誘電体結晶にドメイン反転部を形成した
後、該結晶を加圧酸素雰囲気中で熱処理することを特徴
とする光波長変換素子の作成方法。
1. An optical wavelength converter for converting a wavelength of a fundamental wave incident in a direction in which these domain inversion portions are arranged, wherein domain inversion portions which are periodically repeated are formed in an oxide ferroelectric crystal having a nonlinear optical effect. A method for producing an optical wavelength conversion element, comprising forming a domain inversion part in the oxide ferroelectric crystal and then heat-treating the crystal in a pressurized oxygen atmosphere.
【請求項2】 前記加圧酸素雰囲気の酸素圧力を2〜10
気圧の範囲内に設定することを特徴とする請求項1記載
の光波長変換素子の作成方法。
2. The oxygen pressure of the pressurized oxygen atmosphere is 2 to 10
The method for producing an optical wavelength conversion element according to claim 1, wherein the setting is made within the range of atmospheric pressure.
【請求項3】 前記酸化物強誘電体結晶が、LiNbx
Ta(1-x) 3 (0≦x≦1)の結晶であることを特徴
とする請求項1または2記載の光波長変換素子の作成方
法。
3. The oxide ferroelectric crystal is LiNb x
The method for producing an optical wavelength conversion element according to claim 1 or 2, wherein the crystal is Ta (1-x) O 3 (0≤x≤1).
JP5266197A 1993-10-25 1993-10-25 Formation of optical wavelength conversion element Withdrawn JPH07120798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5266197A JPH07120798A (en) 1993-10-25 1993-10-25 Formation of optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5266197A JPH07120798A (en) 1993-10-25 1993-10-25 Formation of optical wavelength conversion element

Publications (1)

Publication Number Publication Date
JPH07120798A true JPH07120798A (en) 1995-05-12

Family

ID=17427615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5266197A Withdrawn JPH07120798A (en) 1993-10-25 1993-10-25 Formation of optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JPH07120798A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063393A2 (en) * 1998-05-11 1999-12-09 California Institute Of Technology Method for pressurized annealing of lithium niobate and resulting lithium niobate structures
WO2008093545A1 (en) * 2007-01-29 2008-08-07 Panasonic Corporation Solid-state laser apparatus, display apparatus and wavelength converting element
US20180047844A1 (en) * 2013-09-20 2018-02-15 Monolith Semiconductor Inc. High voltage mosfet devices and methods of making the devices
CN114836837A (en) * 2022-05-27 2022-08-02 桂林百锐光电技术有限公司 Method for changing reversal domain width of potassium titanyl phosphate crystal material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999063393A2 (en) * 1998-05-11 1999-12-09 California Institute Of Technology Method for pressurized annealing of lithium niobate and resulting lithium niobate structures
WO1999063393A3 (en) * 1998-05-11 2000-09-21 California Inst Of Techn Method for pressurized annealing of lithium niobate and resulting lithium niobate structures
US6770132B1 (en) 1998-05-11 2004-08-03 California Institute Of Technology Method for pressurized annealing of lithium niobate and resulting lithium niobate structures
WO2008093545A1 (en) * 2007-01-29 2008-08-07 Panasonic Corporation Solid-state laser apparatus, display apparatus and wavelength converting element
JP5096379B2 (en) * 2007-01-29 2012-12-12 パナソニック株式会社 Solid-state laser device, display device, and wavelength conversion element
US20180047844A1 (en) * 2013-09-20 2018-02-15 Monolith Semiconductor Inc. High voltage mosfet devices and methods of making the devices
CN114836837A (en) * 2022-05-27 2022-08-02 桂林百锐光电技术有限公司 Method for changing reversal domain width of potassium titanyl phosphate crystal material

Similar Documents

Publication Publication Date Title
US5652674A (en) Method for manufacturing domain-inverted region, optical wavelength conversion device utilizing such domain-inverted region and method for fabricating such device
JP3529144B2 (en) Method of forming domain inversion structure of ferroelectric
JPH06242478A (en) Formation of domain inversion structure of ferroelectric substance
JPH052203A (en) Production of waveguide type second harmonic wave generating element
JP3059080B2 (en) Method for manufacturing domain-inverted region, optical wavelength conversion element and short wavelength light source using the same
JP3578469B2 (en) Optical wavelength conversion element and method for producing the same
EP0573712B1 (en) Method of manufacturing wavelength conversion device
JPH09218431A (en) Light wavelength conversion element and its formation as well as light wavelength conversion module
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JP2002501630A (en) Rib waveguide and process for manufacturing the same
JPH07120798A (en) Formation of optical wavelength conversion element
JP4081398B2 (en) Optical wavelength conversion element
JP3260457B2 (en) Method for forming domain inversion structure of ferroelectric
US5668578A (en) Method for fabricating ferrolelectric domain reversals, and optical wavelength converter element
JP2502818B2 (en) Optical wavelength conversion element
JP2962024B2 (en) Method for manufacturing optical waveguide and method for manufacturing optical wavelength conversion element
JP3429502B2 (en) Method for manufacturing domain-inverted region
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP3398144B2 (en) Method for manufacturing domain-inverted region
JP2001330866A (en) Method for manufacturing optical wavelength conversion element
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JPH06138506A (en) Formation of domain inversion structure of ferroelectric substance
JPH1096966A (en) Optical wavelength converting element and its production
JPH06342111A (en) Production of polarization inversion layer and wavelength conversion element
JPH04264534A (en) Production of wavelength converting element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001226