JP3052654B2 - Optical wavelength conversion element - Google Patents

Optical wavelength conversion element

Info

Publication number
JP3052654B2
JP3052654B2 JP5071441A JP7144193A JP3052654B2 JP 3052654 B2 JP3052654 B2 JP 3052654B2 JP 5071441 A JP5071441 A JP 5071441A JP 7144193 A JP7144193 A JP 7144193A JP 3052654 B2 JP3052654 B2 JP 3052654B2
Authority
JP
Japan
Prior art keywords
domain
layer
optical waveguide
optical
wavelength conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5071441A
Other languages
Japanese (ja)
Other versions
JPH06281981A (en
Inventor
康夫 北岡
和久 山本
公典 水内
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP5071441A priority Critical patent/JP3052654B2/en
Publication of JPH06281981A publication Critical patent/JPH06281981A/en
Application granted granted Critical
Publication of JP3052654B2 publication Critical patent/JP3052654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、光情報処理分野や光応
用計測制御分野に使用する波長変換素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element used in the field of optical information processing and the field of optical measurement and control.

【0002】[0002]

【従来の技術】図7に従来の光導波路を基本とした光波
長変換素子の構成図を示す。
2. Description of the Related Art FIG. 7 shows a configuration diagram of a conventional optical wavelength conversion device based on an optical waveguide.

【0003】以下0.84μmの波長の基本波に対する高調
波発生(波長0.42μm)について図を用いて詳しく述べ
る。(K.Mizuuchi, K.Yamamoto and T.Taniuchi, Appli
ed Physics Letters, Vol 58, 2732ページ, 1991年6月
号、参照)。
Hereinafter, generation of harmonics (wavelength 0.42 μm) with respect to a fundamental wave having a wavelength of 0.84 μm will be described in detail with reference to the drawings. (K. Mizuuchi, K. Yamamoto and T. Taniuchi, Appli
ed Physics Letters, Vol 58, p. 2732, June 1991, see).

【0004】図7に示されるようにLiTaO3基板701に
光導波路702が形成され、さらに光導波路702には
周期的に分極の反転した層703(分極反転層)が形成
されている。基本波P1と発生する高調波P2の伝搬定
数の不整合を分極反転層703および非分極反転層70
4の周期構造で補償することにより高効率に高調波P2
を出すことができる。光導波路702の入射面705に
基本波P1を入射すると、光導波路702の出射端面7
06から高調波P2が効率良く発生され、光波長変換素
子として動作する。
As shown in FIG. 7, an optical waveguide 702 is formed on a LiTaO 3 substrate 701, and a layer 703 (a domain-inverted layer) having periodically inverted polarization is formed on the optical waveguide 702. The mismatch between the propagation constant of the fundamental wave P1 and the generated harmonic wave P2 is determined by the polarization inversion layer 703 and the non-polarization inversion layer 70.
High efficiency harmonic P2 by compensating with the periodic structure of
Can be issued. When the fundamental wave P1 is incident on the incident surface 705 of the optical waveguide 702, the emission end face 7 of the optical waveguide 702
The harmonic P2 is efficiently generated from 06 and operates as an optical wavelength conversion element.

【0005】このような従来の光波長変換素子はプロト
ン交換法により作製された光導波路702を基本構成要
素としていた。この素子の製造方法について説明する。
まずLiTaO3基板701に通常のフォトプロセスとドライ
エッチングを用いてTaを周期状にパターニングする。
次にTaパターンが形成されたLiTaO3基板701に26
0℃、30分間プロトン交換を行いTaで覆われていな
いスリット直下に厚み0.8μmのプロトン交換層を形
成する。次に590℃の温度で10分間熱処理する。熱
処理の上昇レートは10℃/分、冷却レートは50℃/
分である。これにより分極反転層703が形成される。
プロトン交換層直下はLiが減少しておりキュリー温度
が低下するため部分的に分極反転を行うことができる。
次にHF:HNF3の1:1混合液にて2分間エッチン
グしTaを除去する。さらに上記分極反転層703中に
プロトン交換を用いて光導波路702を形成する。光導
波路用マスクとしてTaをストライプ状にパターニング
を行うことでTaマスクに幅4μm、長さ12mmのス
リットを形成する。このTaマスクで覆われた基板70
1に260℃、16分間プロトン交換を行い0.5μm
の高屈折率層を形成する。Taマスクを除去した後38
0℃で10分間熱処理を行う。プロトン交換された保護
マスクのスリット直下の領域は屈折率が0.02程度上
昇した光導波路702となる。この従来の方法により作
製される光波長変換素子は波長0.84μmの基本波P1に
対して、光導波路702の長さを9mm、基本波P1の
パワーを40mWの基本波に対して高調波2.6mW
(162%/W)が達成できている。
[0005] Such a conventional optical wavelength conversion element has an optical waveguide 702 produced by a proton exchange method as a basic component. A method for manufacturing this device will be described.
First, Ta is periodically patterned on the LiTaO 3 substrate 701 using a normal photo process and dry etching.
Next, the LiTaO 3 substrate 701 having the Ta pattern
Proton exchange is performed at 0 ° C. for 30 minutes to form a 0.8 μm-thick proton exchange layer immediately below the slit not covered with Ta. Next, heat treatment is performed at a temperature of 590 ° C. for 10 minutes. The rate of heat treatment is 10 ° C / min and the cooling rate is 50 ° C / min.
Minutes. Thus, a domain-inverted layer 703 is formed.
Immediately below the proton exchange layer, Li is reduced and the Curie temperature is lowered, so that domain inversion can be partially performed.
Next, Ta is removed by etching with a 1: 1 mixed solution of HF: HNF 3 for 2 minutes. Further, an optical waveguide 702 is formed in the domain-inverted layer 703 by using proton exchange. By patterning Ta in a stripe shape as an optical waveguide mask, a slit having a width of 4 μm and a length of 12 mm is formed in the Ta mask. The substrate 70 covered with this Ta mask
1 was subjected to proton exchange at 260 ° C. for 16 minutes, and 0.5 μm
Is formed. After removing the Ta mask 38
Heat treatment is performed at 0 ° C. for 10 minutes. The area immediately below the slit of the proton-exchanged protective mask becomes the optical waveguide 702 whose refractive index has increased by about 0.02. The optical wavelength conversion device manufactured by this conventional method has a wavelength of 0.84 μm, a length of the optical waveguide 702 of 9 mm, and a power of the fundamental wave P1 of 40 mW. 6mW
(162% / W).

【0006】[0006]

【発明が解決しようとする課題】非線形光学結晶がLi
NbxTa1ーxO3(0≦x≦1)やKTP等の他の誘電体
結晶基板である場合、高出力の高調波に対して光誘起屈
折率変化(光損傷)を生じる。光誘起屈折率変化とは光
の照射によりトラップ状態にあった電子が励起され内部
電界により分極方向に移動し、このために新しく空間電
荷電界が生じ、電気光学効果により局所的に屈折率変化
が生じるというものである。光損傷は短波長領域で生じ
易く、光の強度が高いほど大きな屈折率低下が生じる現
象である。
The nonlinear optical crystal is Li
In the case of another dielectric crystal substrate such as Nb x Ta 1 -x O 3 (0 ≦ x ≦ 1) or KTP, a photo-induced refractive index change (optical damage) occurs for a high-power harmonic. The light-induced change in refractive index means that electrons trapped by light irradiation are excited and move in the direction of polarization due to the internal electric field, and a new space charge electric field is generated. It will happen. Optical damage is likely to occur in a short wavelength region, and is a phenomenon in which the higher the light intensity, the more the refractive index decreases.

【0007】現状の数mW程度の高調波出力では光損傷
の影響も少なく安定に高調波を得ることができる。しか
しながら入射パワーを高くして20mW以上の高調波光
が得られる場合には、光損傷の影響を受け、得られる高
調波の出力が不安定になる。
With the current harmonic output of about several mW, it is possible to stably obtain a harmonic with little influence of optical damage. However, when higher harmonic power of 20 mW or more is obtained by increasing the incident power, the output of the obtained harmonic becomes unstable due to the influence of optical damage.

【0008】高出力の高調波光を安定に得るためには、
基板である非線形結晶の耐光損傷性を向上させる必要が
ある。しかし、結晶に不純物混入したり、育成条件を
いろいろと変えたりしているがあまり良い結果は得られ
ていない。
In order to stably obtain high-output harmonic light,
It is necessary to improve the light damage resistance of the nonlinear crystal as the substrate. However, although impurities have been mixed into the crystal and various growth conditions have been changed, very good results have not been obtained.

【0009】光損傷のメカニズムは電子の内部電界によ
る電荷の移動により生ずる空間電荷電界が原因になって
いる。そのため、図8のように分極反転構造をもつ非線
形光学結晶では、得られる空間内部電荷が補償し合うた
め、光損傷が低減できる。
[0009] The mechanism of photodamage is caused by the space charge electric field generated by the movement of charges by the internal electric field of electrons. Therefore, in a nonlinear optical crystal having a domain-inverted structure as shown in FIG. 8, the obtained space internal charges compensate each other, so that optical damage can be reduced.

【0010】そこで本発明は、光損傷に対して強い小型
で且つ安定高効率な短波長光源や計測用光源等で用いら
れる光波長変換素子を提供することを目的とする。
It is an object of the present invention to provide a light wavelength conversion element that is resistant to optical damage and that is small, stable, and efficient, and that is used in a short wavelength light source, a measurement light source, and the like.

【0011】[0011]

【課題を解決するための手段】本発明は、上記問題点を
解決するため光波長変換素子に、位相整合に寄与しない
第2の分極反転層あるいはプロトン交換層を設けるとい
新たな工夫を加えることにより耐光損傷性の向上した
高効率変換可能な光波長変換素子を提供するものであ
る。つまり、本発明は (1)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、分極反転層中に周期の短い分
極反転層を有することで、空間電荷電界の電荷同士の補
償が起こり易く、耐光損傷性に優れた高効率光波長変換
素子を提供するものである。 (2)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、光導波路の上部または底部ま
たは内部に分極反転の周期が分極反転層の周期よりも短
い分極反転層を有することで、空間電荷電界の電荷同士
の補償が起こり易く、耐光損傷性に優れた高効率光波長
変換素子を提供するものである。 (3)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、分極反転層が光導波路の進行
方向に対し左右が非対称であるため、空間電荷電界の電
荷同士の補償が起こり易く、耐光損傷性に優れた高効率
光波長変換素子を提供するものである。 (4)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、光導波路の内部に光導波路の
進行方向に対し平行に分極反転層があるため、空間電荷
電界の電荷同士の補償が起こり易く、耐光損傷性に優れ
た高効率光波長変換素子を提供するものである。 (5)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、前記分極反転層内部の分極方
向がマルチ化しているため、空間電荷電界の電荷同士の
補償が起こり易く、耐光損傷性に優れた高効率光波長変
換素子を提供するものである。 (6)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、前記光導波路の内部に光導波
路の進行方向に対し平行にプロトン交換層があるため、
空間電荷電界の電荷同士の補償が起こり易く、耐光損傷
性に優れた高効率光波長変換素子を提供するものであ
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention does not contribute to the phase matching of the optical wavelength conversion element.
Providing a second domain inversion layer or a proton exchange layer
Cormorant is to provide a highly efficient convertible optical wavelength conversion device with improved optical damage resistance by adding a new twist. In other words, the present invention provides: (1) In a device in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer, by providing a domain-inverted layer having a short period in the domain-inverted layer, compensation of charges of the space charge electric field is achieved It is intended to provide a high-efficiency optical wavelength conversion element which is liable to occur and has excellent light damage resistance. (2) In an element in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer, a domain-inverted layer having a domain inversion cycle shorter than the domain-inverted layer cycle at the top, bottom, or inside of the optical waveguide. Another object of the present invention is to provide a high-efficiency optical wavelength conversion element that easily compensates for the electric charges of the space charge electric field and has excellent light damage resistance. (3) In an element in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer, since the domain-inverted layer is asymmetric on the left and right with respect to the traveling direction of the optical waveguide, compensation of the space charge electric field is likely to occur. Another object of the present invention is to provide a high-efficiency optical wavelength conversion element having excellent light damage resistance. (4) In a device in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer, since the domain-inverted layer is provided inside the optical waveguide in parallel to the traveling direction of the optical waveguide, compensation of electric charges in the space charge electric field is performed. It is intended to provide a high-efficiency optical wavelength conversion element which is liable to occur and has excellent light damage resistance. (5) In a device in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer, since the polarization directions inside the domain-inverted layer are multiplied, the charges of the space charge electric field are likely to be compensated, and light damage is prevented. An object of the present invention is to provide a high-efficiency optical wavelength conversion element having excellent performance. (6) In a device in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer, a proton exchange layer is provided inside the optical waveguide in parallel to the traveling direction of the optical waveguide.
It is an object of the present invention to provide a high-efficiency optical wavelength conversion element that easily compensates for electric charges in a space charge electric field and has excellent light damage resistance.

【0012】[0012]

【作用】本発明の光波長変換素子は、光照射によって発
生する電子の空間電荷分布を分極反転構造により補償(c
ompensation)しようとするもので、分極反転層中や光導
波路中に短周期の分極反転層を形成するこよにより、耐
光損傷性の優れ、高出力の高調波光を発生させるもので
ある。
According to the light wavelength conversion element of the present invention, the space charge distribution of electrons generated by light irradiation is compensated for by the domain inversion structure (c
A short-period domain-inverted layer is formed in a domain-inverted layer or in an optical waveguide to generate high-power harmonic light with excellent light damage resistance.

【0013】[0013]

【実施例】本発明の光波長変換素子の分極反転層中に、
位相整合に寄与しない第2の分極反転層として短い周期
の分極反転層を有する光波長変換素子を図1に示す。概
略構成図1を用いて素子の形成方法について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a polarization inversion layer of an optical wavelength conversion device of the present invention,
FIG. 1 shows an optical wavelength conversion element having a short-period domain-inverted layer as a second domain-inverted layer that does not contribute to phase matching . A method for forming an element will be described with reference to FIG.

【0014】102は分極反転層である。分極反転層の
形成はまずLiTaO3基板101に通常のフォトプロセスと
ドライエッチングを用いてTaを周期状にパターニング
する。波長870nmの基本波に対して1次の分極反転の周
期は4.0μmである。Taによるパターンが形成されたL
iTaO3基板101に260℃、20分間プロトン交換を
行いスリット直下に厚み0.8μmのプロトン交換層を
形成した後、540℃の温度で30秒間熱処理する。熱
処理の上昇レートは80℃/秒、冷却レートは50℃/
分である。これにより分極反転層102が形成される。
冷却レートが遅いと不均一反転が生じるので30℃/分
以上が望ましい。プロトン交換層はLiが減少しており
キュリー温度が低下するため部分的に分極反転ができ
る。TaはHF:HNF3の2:1混合液にて2分間エ
ッチングで除去される。
Reference numeral 102 denotes a domain-inverted layer. First, Ta is periodically patterned on the LiTaO 3 substrate 101 using a normal photo process and dry etching. The period of the primary polarization reversal with respect to the fundamental wave having a wavelength of 870 nm is 4.0 μm. L with pattern formed by Ta
Proton exchange is performed on the iTaO 3 substrate 101 at 260 ° C. for 20 minutes to form a proton exchange layer having a thickness of 0.8 μm immediately below the slit, and then heat-treated at a temperature of 540 ° C. for 30 seconds. The rate of heat treatment is 80 ° C / sec and the cooling rate is 50 ° C / sec.
Minutes. Thereby, the domain-inverted layer 102 is formed.
If the cooling rate is slow, non-uniform reversal occurs, so that the cooling rate is preferably 30 ° C./min or more. In the proton exchange layer, since Li is reduced and the Curie temperature is lowered, polarization inversion can be partially performed. Ta is removed by etching with a 2: 1 mixture of HF: HNF 3 for 2 minutes.

【0015】103は分極反転層102上に形成された
光導波路を示している。光導波路103は分極反転層1
02に対してプロトン交換を用いて形成した。光導波路
用マスクとしてTaをストライプ状にパターニングを行
った後、Taマスクに幅4μm、長さ12mmのスリッ
トが形成されたものに260℃、16分間ピロ燐酸中で
プロトン交換を行った。これにより厚み0.45μmの
プロトン交換層が形成される。Taマスクを除去した
後、赤外線加熱装置を用いて420℃で1分間熱処理を
行った。熱処理により均一化されロスが減少し、深さ
1.9μmの導波路が形成される。
Reference numeral 103 denotes an optical waveguide formed on the domain-inverted layer 102. The optical waveguide 103 is the domain-inverted layer 1
02 was formed using proton exchange. After patterning Ta in a stripe shape as an optical waveguide mask, proton exchange was performed in pyrophosphoric acid at 260 ° C. for 16 minutes on a Ta mask having a slit having a width of 4 μm and a length of 12 mm. Thus, a proton exchange layer having a thickness of 0.45 μm is formed. After removing the Ta mask, heat treatment was performed at 420 ° C. for 1 minute using an infrared heating device. The heat treatment makes the waveguide uniform and reduces the loss, thereby forming a waveguide having a depth of 1.9 μm.

【0016】次に、得られた光波長変換素子の分極反転
層102中に、より短周期の分極反転層104を、位相
整合に寄与しない第2の分極反転層として形成する。フ
ォトプロセスのマスクに短周期のマスクを用いれば分極
反転層102を作製するプロセスと同じ過程で得られ
る。しかし、ここではEB(electron beam scanin
g)を用いて作製した。得られた分極反転層104の幅
は0.5μmであった。
Next, the polarization in the inversion layer 102 of the resultant optical wavelength conversion element, a polarization inversion layer 104 in a shorter period, the phase
It is formed as a second domain-inverted layer that does not contribute to matching . If a short-period mask is used as a mask for the photo process, it can be obtained in the same process as the process for manufacturing the domain-inverted layer 102. However, here, EB (electron beam scanin)
g). The width of the obtained domain-inverted layer 104 was 0.5 μm.

【0017】入射及び出射端面を研磨し、波長0.87μm
に対し無反射コードを施し、長さ9mmの光波長変換素
子が得られる。基本波として半導体レーザ光(波長0.
87μm)を入射部より導波させたところシングルモー
ド伝搬し、波長0.435μmの高調波が1次モードで
出射部より基板外部に取り出された。基本波40mWの
入力で3mWの高調波(波長0.42μm)を得た。T
i:Sapphireレーザーを用いて、100mWの基本波に対
して25mWの高調波出力を得た。従来までのサンプル
では20mWの高調波が出射されると出力光のパワーが
光損傷により揺らいでいたが、本発明の波長変換素子で
は安定な高調波出力が得られた。
The input and output end faces are polished to a wavelength of 0.87 μm.
Is subjected to a non-reflection code to obtain a light wavelength conversion element having a length of 9 mm. Semiconductor laser light (wavelength 0.
(87 μm) was guided from the incident part, propagated in single mode, and a harmonic having a wavelength of 0.435 μm was extracted from the emission part to the outside of the substrate in the primary mode. A harmonic of 3 mW (wavelength 0.42 μm) was obtained by inputting a fundamental wave of 40 mW. T
Using an i: Sapphire laser, a harmonic output of 25 mW was obtained for a fundamental wave of 100 mW. In a conventional sample, the power of output light fluctuated due to optical damage when a harmonic of 20 mW was emitted, but a stable harmonic output was obtained with the wavelength conversion element of the present invention.

【0018】概略構成図1の光波長変換素子では分極反
転層102中に作製された分極反転層104の幅が0.
5μmであり深さも1.9μm程度であった。分極反転
層104の幅はできれば分極反転層102の周期の1/
10(0.4μm)以下が高出力安定化のためには望まし
い。
Schematic Configuration In the optical wavelength conversion element shown in FIG. 1, the width of the domain-inverted layer 104 formed in the domain-inverted layer 102 is set to 0.
It was 5 μm and the depth was about 1.9 μm. Preferably, the width of the domain-inverted layer 104 is 1/100 of the period of the domain-inverted layer 102.
10 (0.4 μm) or less is desirable for high output stabilization.

【0019】さらに概略構成図2(a)(b)のように光導波
路の上部、底部、内部に、位相整合に寄与しない第2の
分極反転層として分極反転層204を作製しても効果が
得られた。上部に分極反転層204を形成する場合、通
常の分極反転層202の作製プロセスと同様の課程を経
る。フォトプロセスのマスクの周期を0.4μm程度に
すれば、深さが0.4μm程度の分極反転層204が光
導波路上部に形成された。分極反転層を作らず、プロト
ン交換のみを行っても耐光損傷の向上は見られた。プロ
トン交換層は電子の移動度が大きいため電荷の補償に優
れているからである。
Further, as shown in FIGS. 2 (a) and 2 (b), a second portion which does not contribute to phase matching is provided at the top, bottom and inside of the optical waveguide .
Even when the domain-inverted layer 204 was formed as the domain-inverted layer, an effect was obtained. In the case of forming the domain-inverted layer 204 on the upper part, a process similar to that of a normal manufacturing process of the domain-inverted layer 202 is performed. When the period of the photo process mask was set to about 0.4 μm, a domain-inverted layer 204 having a depth of about 0.4 μm was formed above the optical waveguide. Even when only proton exchange was performed without forming a domain-inverted layer, improvement in light damage was observed. This is because the proton exchange layer has a high electron mobility and thus is excellent in charge compensation.

【0020】一方、光導波路の内部や底部に分極反転層
205を作製する場合、作製方法が少し異なる。通常の
分極反転層の形成は、まずLiTaO3基板に通常のフォトプ
ロセスとドライエッチングを用いてTaを周期状にパタ
ーニングし、Taによるパターンが形成されたLiTaO3
板1に260℃、20分間プロトン交換を行いスリット
直下に厚み0.8μmのプロトン交換層を形成した後、
540℃の温度で30秒間熱処理する。分極反転の形成
はプロトン交換された底部より始まるので、光導波路の
内部に分極反転層を形成する場合、熱処理を行う前にア
ニールを行い、プロトン交換層を内部までひろげてお
く。アニールは350℃で10分程度行い、その後57
0℃で30秒間熱処理し、分極反転205が形成され
る。内部に分極反転層を作製すると、電界分布の大きな
ところ、つまり電子の発生が多いところで電荷の補償が
行われるのでその効果は大きい。
On the other hand, when manufacturing the domain-inverted layer 205 inside or at the bottom of the optical waveguide, the manufacturing method is slightly different. Formation of a normal polarization inversion layer, first LiTaO 3 substrate using conventional photo process and dry etching to pattern the Ta to periodic, Ta LiTaO 3 substrate 1 to 260 ° C. which a pattern is formed by a proton 20 minutes After performing exchange and forming a proton exchange layer having a thickness of 0.8 μm immediately below the slit,
Heat treatment at a temperature of 540 ° C. for 30 seconds. Since the formation of the domain inversion starts from the proton-exchanged bottom, when forming a domain-inverted layer inside the optical waveguide, annealing is performed before the heat treatment, and the proton exchange layer is extended to the inside. Annealing is performed at 350 ° C. for about 10 minutes, and then performed for 57 minutes.
Heat treatment is performed at 0 ° C. for 30 seconds to form domain inversion 205. When a domain-inverted layer is formed inside, electric charge is compensated for at a place where the electric field distribution is large, that is, at a place where many electrons are generated, so that the effect is large.

【0021】概略構成図3のように、分極反転層302
が光導波路303の進行方向に対し左右が非対称である
様な光波長変換素子についても耐光損傷性の向上が見ら
れた。作製方法はLiTaO3基板301上にTaを作製する
際に用いられるフォトマスクの形状が違っているだけで
ある。概略構成図3のように各分極反転層が電荷を補償
しやすいように分極反転層302を形成することで耐光
損傷性の向上が見られる。
Schematic configuration As shown in FIG.
However, the light wavelength conversion element whose right and left are asymmetrical with respect to the traveling direction of the optical waveguide 303 also has improved light damage resistance. The manufacturing method is different only in the shape of the photomask used when manufacturing Ta on the LiTaO3 substrate 301. Schematic Configuration As shown in FIG. 3, by forming the domain-inverted layer 302 so that each domain-inverted layer easily compensates for electric charges, improvement in light damage resistance can be seen.

【0022】概略構成図4のように、光導波路403の
内部に光導波路403の進行方向に対し平行に、位相整
合に寄与しない第2の分極反転層として分極反転層40
を形成した光波長変換素子においても耐光損傷性の向
上が見られた。概略構成図1の素子と同様のプロセスに
より得られる。分極反転層404の幅は0.5μmであ
り、EBを用いて分極反転が行われた。この場合、概略
構成図1から3に示される素子に比べて電荷の補償が充
分に行われるため耐光損傷性の向上は大きかった。ま
た、その効果は小さいが概略構成図5のようにプロトン
交換層を形成しても耐光損傷性の向上は見られた。プロ
トン交換層は電子の移動度が大きいため電荷の補償に優
れているからである。図1から4では、位相整合に寄与
しない第2の分極反転層を光導波路に形成したが、プロ
トン交換層を図1から4のように配置しても同様の効果
が得られる。
Schematic Configuration As shown in FIG. 4, the phase adjustment is performed inside the optical waveguide 403 in parallel with the traveling direction of the optical waveguide 403.
Domain inversion layer 40 as a second domain inversion layer that does not contribute to
Also in the light wavelength conversion element in which No. 4 was formed, improvement in light damage resistance was observed. Schematic configuration It is obtained by a process similar to that of the device of FIG. The width of the domain inversion layer 404 was 0.5 μm, and domain inversion was performed using EB. In this case, the charge compensation was sufficiently performed as compared with the elements shown in the schematic configuration diagrams of FIGS. 1 to 3, so that the improvement of the light damage resistance was large. Although the effect is small, improvement in light damage resistance was observed even when a proton exchange layer was formed as shown in FIG. This is because the proton exchange layer has a high electron mobility and thus is excellent in charge compensation. 1 to 4 contribute to phase matching
Although the second domain-inverted layer is not formed in the optical waveguide,
The same effect can be obtained by disposing the ton exchange layer as shown in FIGS.
Is obtained.

【0023】概略構成図6のように、分極反転層602
がマルチドメインであってもその耐光損傷性は向上し
た。
Schematic structure As shown in FIG.
Even when is a multi-domain, its light damage resistance was improved.

【0024】なお、本実施例ではLiTaO3基板を用いた波
長変換素子について説明したが、LiNbO3やKTP(KTiOPO4)
のような他の無機非線形光学結晶や有機非線形光学結晶
を用いた分極反転素子においても同様の効果が見られ
る。
In this embodiment, the wavelength conversion element using the LiTaO3 substrate has been described, but LiNbO3 or KTP (KTiOPO4)
Similar effects can be obtained in a domain-inverted element using another inorganic nonlinear optical crystal or organic nonlinear optical crystal.

【0025】[0025]

【発明の効果】分極反転構造をもつ光波長変換素子に電
荷の補償が行われ易くするためにさらに分極反転構造を
光導波路の上部、内部や分極反転層の内部に作製するこ
とで、光波長変換素子の耐光損傷性が向上し、光損傷に
強い高効率で安定な波長変換が実現される。
According to the present invention, in order to facilitate charge compensation in an optical wavelength conversion element having a domain-inverted structure, a domain-inverted structure is further formed on the optical waveguide, inside or inside the domain-inverted layer. The light damage resistance of the conversion element is improved, and highly efficient and stable wavelength conversion resistant to light damage is realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の光波長変換素子の概略構成図FIG. 1 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図2】本発明の光波長変換素子の概略構成図FIG. 2 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図3】本発明の光波長変換素子の概略構成図FIG. 3 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図4】本発明の光波長変換素子の概略構成図FIG. 4 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図5】本発明の光波長変換素子の概略構成図FIG. 5 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図6】本発明の光波長変換素子の概略構成図FIG. 6 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図7】従来の光波長変換素子の概略構成図FIG. 7 is a schematic configuration diagram of a conventional optical wavelength conversion element.

【図8】分極反転構造をもつ光波長変換素子における電
荷補償メカニズムの説明図
FIG. 8 is an explanatory diagram of a charge compensation mechanism in an optical wavelength conversion element having a domain-inverted structure.

【符号の説明】[Explanation of symbols]

101 LiTaO3基板 102 分極反転層 103 光導波路 104 分極反転層 201 LiTaO3基板 202 分極反転層 203 光導波路 204 分極反転層 205 分極反転層 301 LiTaO3基板 302 分極反転層 303 光導波路 401 LiTaO3基板 402 分極反転層 403 光導波路 404 分極反転層 501 LiTaO3基板 502 分極反転層 503 光導波路 601 LiTaO3基板 602 分極反転層 603 光導波路 701 LITaO3基板 702 光導波路 703 分極反転層 704 非分極反転層 705 入射面 706 出射面 801 LITaO3基板 802 分極反転層 803 光導波路101 LiTaO 3 substrate 102 domain-inverted layer 103 optical waveguide 104 domain-inverted layer 201 LiTaO 3 substrate 202 domain-inverted layer 203 optical waveguide 204 domain-inverted layer 205 domain-inverted layer 301 LiTaO 3 substrate 302 domain-inverted layer 303 optical waveguide 401 LiTaO 3 substrate 402 Polarization inversion layer 403 Optical waveguide 404 Polarization inversion layer 501 LiTaO 3 substrate 502 Polarization inversion layer 503 Optical waveguide 601 LiTaO 3 substrate 602 Polarization inversion layer 603 Optical waveguide 701 LITaO 3 substrate 702 Optical waveguide 703 Polarization inversion layer 704 Non-polarization inversion layer 705 Incident Surface 706 Emission surface 801 LITaO 3 substrate 802 Domain-inverted layer 803 Optical waveguide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 誠 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (58)調査した分野(Int.Cl.7,DB名) G02F 1/377 JICSTファイル(JOIS)────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Makoto Kato 1006 Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (58) Field surveyed (Int. Cl. 7 , DB name) G02F 1/377 JICST File (JOIS)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 位相整合を満足させる分極反転層を有す
る非線形光学結晶中に光導波路を形成した素子におい
て、前記分極反転層の各層中に周期が前記分極反転層よ
り短く位相整合に寄与しない分極反転層を有することを
特徴とする光波長変換素子。
1. A device forming an optical waveguide in a nonlinear optical crystal having a polarization inversion layer to satisfy the phase matching period in each of the polarization inversion layer does not contribute to the short rather phase matching than the polarization inversion layer An optical wavelength conversion element having a domain-inverted layer.
【請求項2】 位相整合を満足させる分極反転層を有す
る非線形光学結晶中に光導波路を形成した素子におい
て、前記光導波路の上部または底部または内部の一部分
に分極反転の周期が前記分極反転層の周期よりも短く位
相整合に寄与しない分極反転層を有することを特徴とす
る光波長変換素子。
2. An element in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer that satisfies phase matching, wherein the domain of the domain-inverted layer has a period of domain inversion at the top, bottom, or a part of the inside of the optical waveguide. tank position than the period
An optical wavelength conversion element having a domain-inverted layer that does not contribute to phase matching .
【請求項3】 位相整合を満足させる分極反転層を有す
る非線形光学結晶中に光導波路を形成した素子におい
て、前記光導波路の内部に光導波路の進行方向に対し平
行に位相整合に寄与しない分極反転層があることを特徴
とする光波長変換素子。
3. An element in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer that satisfies phase matching , wherein the domain inversion does not contribute to the phase matching inside the optical waveguide in parallel to the traveling direction of the optical waveguide. An optical wavelength conversion element comprising a layer.
【請求項4】 位相整合を満足させる分極反転層を有す
る非線形光学結晶中に光導波路を形成した素子におい
て、前記光導波路の内部に光導波路の進行方向に対し平
行にプロトン交換層があることを特徴とする光波長変換
素子。
4. An element in which an optical waveguide is formed in a nonlinear optical crystal having a domain-inverted layer satisfying phase matching , wherein a proton exchange layer is provided inside the optical waveguide in parallel to a traveling direction of the optical waveguide. Characteristic light wavelength conversion element.
【請求項5】 非線形光学結晶がLiNbxTa1ーxO
3(0≦x≦1)基板であることを特徴とする請求項1
から4いずれか1項に記載の光導波路。
5. The nonlinear optical crystal is LiNbxTa1-xO.
3. The substrate according to claim 1, wherein the substrate is a 3 (0 ≦ x ≦ 1) substrate.
5. The optical waveguide according to any one of items 4 to 4 .
JP5071441A 1993-03-30 1993-03-30 Optical wavelength conversion element Expired - Fee Related JP3052654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071441A JP3052654B2 (en) 1993-03-30 1993-03-30 Optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071441A JP3052654B2 (en) 1993-03-30 1993-03-30 Optical wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH06281981A JPH06281981A (en) 1994-10-07
JP3052654B2 true JP3052654B2 (en) 2000-06-19

Family

ID=13460635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071441A Expired - Fee Related JP3052654B2 (en) 1993-03-30 1993-03-30 Optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JP3052654B2 (en)

Also Published As

Publication number Publication date
JPH06281981A (en) 1994-10-07

Similar Documents

Publication Publication Date Title
Mizuuchi et al. Second‐harmonic generation of blue light in a LiTaO3 waveguide
EP0573712B1 (en) Method of manufacturing wavelength conversion device
US7170671B2 (en) High efficiency wavelength converters
US6926770B2 (en) Method of fabricating two-dimensional ferroelectric nonlinear crystals with periodically inverted domains
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JPH06242479A (en) Optical wavelength conversion element and its formation
JP3052654B2 (en) Optical wavelength conversion element
JP2910370B2 (en) Optical wavelength conversion element and short wavelength laser light source using the same
JP2718259B2 (en) Short wavelength laser light source
JP4578710B2 (en) Method of creating domain-inverted structure by femtosecond laser irradiation
JP3049986B2 (en) Optical wavelength conversion element
JP3260457B2 (en) Method for forming domain inversion structure of ferroelectric
JP2502818B2 (en) Optical wavelength conversion element
JPH0566440A (en) Laser light source
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
JPH07244307A (en) Short-wavelength light generator
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2973642B2 (en) Manufacturing method of optical wavelength conversion element
JPH07120798A (en) Formation of optical wavelength conversion element
JPH06265951A (en) Optical wavelength converter
Chen et al. Ultra-efficient and highly tunable frequency conversion in Z-cut periodically poled lithium niobate nanowaveguides
JP3316987B2 (en) Method of forming domain-inverted grating and optical waveguide
JP3036243B2 (en) Optical wavelength conversion element
JP2921209B2 (en) Manufacturing method of wavelength conversion element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees