JPH06281981A - Light wavelength conversion element - Google Patents

Light wavelength conversion element

Info

Publication number
JPH06281981A
JPH06281981A JP7144193A JP7144193A JPH06281981A JP H06281981 A JPH06281981 A JP H06281981A JP 7144193 A JP7144193 A JP 7144193A JP 7144193 A JP7144193 A JP 7144193A JP H06281981 A JPH06281981 A JP H06281981A
Authority
JP
Japan
Prior art keywords
inversion layer
polarization inversion
optical
optical waveguide
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7144193A
Other languages
Japanese (ja)
Other versions
JP3052654B2 (en
Inventor
Yasuo Kitaoka
康夫 北岡
Kazuhisa Yamamoto
和久 山本
Kiminori Mizuuchi
公典 水内
Makoto Kato
誠 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5071441A priority Critical patent/JP3052654B2/en
Publication of JPH06281981A publication Critical patent/JPH06281981A/en
Application granted granted Critical
Publication of JP3052654B2 publication Critical patent/JP3052654B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To facilitate the compensation between charges in the spatial charge electric field and to improve optical damage resistance by providing a plarization inversion layer with a short period in the polarization inversion layer. CONSTITUTION:The polarization inversion layer 104 with a shorter period is formed in the polarization inversion layer 102. This layer 104 is obtained in the same process as the process forming the polarization inversion layer 102 by using a short period mask as a photoprocess mask. The width of the polarization inversion layer 104 is 0.5mum. Then, incident and outgoing end surfaces are ground, and non inversion code is performed for a 0.87mum wavelength to obtain an optical wavelength conversion element with a 9mm length. When a semiconductor laser beam (0.87mum wavelength) is propagated from an incident part as a basic wave, the beam is single mode-propagated, and a harmonics with a 0.435mum wavelength is taken out from an outgoing part to the outside of a substrate at a first mode. At this time, though the power of output beam is flickered due to optical damage when the harmonics with 20mW is emitted in a usual sample, a stable harmonics output is obtained in the optical wavelength conversion element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報処理分野や光応
用計測制御分野に使用する波長変換素子に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength conversion element used in the fields of optical information processing and optical application measurement control.

【0002】[0002]

【従来の技術】図7に従来の光導波路を基本とした光波
長変換素子の構成図を示す。
2. Description of the Related Art FIG. 7 is a block diagram of a conventional optical wavelength conversion element based on an optical waveguide.

【0003】以下0.84μmの波長の基本波に対する高調
波発生(波長0.42μm)について図を用いて詳しく述べ
る。(K.Mizuuchi, K.Yamamoto and T.Taniuchi, Appli
ed Physics Letters, Vol 58, 2732ページ, 1991年6月
号、参照)。
The harmonic generation (wavelength 0.42 μm) with respect to the fundamental wave having a wavelength of 0.84 μm will be described in detail below with reference to the drawings. (K.Mizuuchi, K.Yamamoto and T.Taniuchi, Appli
ed Physics Letters, Vol 58, p. 2732, June 1991 issue).

【0004】図7に示されるようにLiTaO3基板701に
光導波路702が形成され、さらに光導波路702には
周期的に分極の反転した層703(分極反転層)が形成
されている。基本波P1と発生する高調波P2の伝搬定
数の不整合を分極反転層703および非分極反転層70
4の周期構造で補償することにより高効率に高調波P2
を出すことができる。光導波路702の入射面705に
基本波P1を入射すると、光導波路702の出射端面7
06から高調波P2が効率良く発生され、光波長変換素
子として動作する。
As shown in FIG. 7, an optical waveguide 702 is formed on a LiTaO 3 substrate 701, and a layer 703 (polarization inversion layer) whose polarization is periodically inverted is formed on the optical waveguide 702. The mismatch of the propagation constants of the fundamental wave P1 and the generated harmonic wave P2 is caused by the polarization inversion layer 703 and the non-polarization inversion layer 70.
By compensating with the periodic structure of 4, the harmonic P2 can be efficiently generated.
Can be issued. When the fundamental wave P1 is incident on the incident surface 705 of the optical waveguide 702, the output end surface 7 of the optical waveguide 702 is
The harmonic P2 is efficiently generated from 06 and operates as an optical wavelength conversion element.

【0005】このような従来の光波長変換素子はプロト
ン交換法により作製された光導波路702を基本構成要
素としていた。この素子の製造方法について説明する。
まずLiTaO3基板701に通常のフォトプロセスとドライ
エッチングを用いてTaを周期状にパターニングする。
次にTaパターンが形成されたLiTaO3基板701に26
0℃、30分間プロトン交換を行いTaで覆われていな
いスリット直下に厚み0.8μmのプロトン交換層を形
成する。次に590℃の温度で10分間熱処理する。熱
処理の上昇レートは10℃/分、冷却レートは50℃/
分である。これにより分極反転層703が形成される。
プロトン交換層直下はLiが減少しておりキュリー温度
が低下するため部分的に分極反転を行うことができる。
次にHF:HNF3の1:1混合液にて2分間エッチン
グしTaを除去する。さらに上記分極反転層703中に
プロトン交換を用いて光導波路702を形成する。光導
波路用マスクとしてTaをストライプ状にパターニング
を行うことでTaマスクに幅4μm、長さ12mmのス
リットを形成する。このTaマスクで覆われた基板70
1に260℃、16分間プロトン交換を行い0.5μm
の高屈折率層を形成する。Taマスクを除去した後38
0℃で10分間熱処理を行う。プロトン交換された保護
マスクのスリット直下の領域は屈折率が0.02程度上
昇した光導波路702となる。この従来の方法により作
製される光波長変換素子は波長0.84μmの基本波P1に
対して、光導波路702の長さを9mm、基本波P1の
パワーを40mWの基本波に対して高調波2.6mW
(162%/W)が達成できている。
Such a conventional optical wavelength conversion element has an optical waveguide 702 manufactured by a proton exchange method as a basic constituent element. A method of manufacturing this element will be described.
First, Ta is periodically patterned on the LiTaO 3 substrate 701 by using a normal photo process and dry etching.
Then, the LiTaO 3 substrate 701 on which the Ta pattern is formed is formed on the 26
Proton exchange is performed at 0 ° C. for 30 minutes to form a proton exchange layer having a thickness of 0.8 μm just below the slit not covered with Ta. Then, heat treatment is performed at a temperature of 590 ° C. for 10 minutes. Heat treatment increase rate is 10 ℃ / min, cooling rate is 50 ℃ /
Minutes. As a result, the domain inversion layer 703 is formed.
Just below the proton exchange layer, Li is reduced and the Curie temperature is lowered, so that polarization inversion can be partially performed.
Then, Ta is removed by etching with a 1: 1 mixed solution of HF: HNF 3 for 2 minutes. Further, an optical waveguide 702 is formed in the polarization inversion layer 703 by using proton exchange. By patterning Ta as an optical waveguide mask in a stripe shape, a slit having a width of 4 μm and a length of 12 mm is formed in the Ta mask. Substrate 70 covered with this Ta mask
0.5μm after proton exchange for 16 minutes at 260 ℃
To form a high refractive index layer. 38 after removing the Ta mask
Heat treatment is performed at 0 ° C. for 10 minutes. The region immediately below the slit of the proton-exchanged protective mask becomes an optical waveguide 702 having a refractive index increased by about 0.02. The optical wavelength conversion device manufactured by this conventional method has a fundamental wave P1 having a wavelength of 0.84 μm, a length of the optical waveguide 702 of 9 mm, and a power of the fundamental wave P1 of 40 mW. 6mW
(162% / W) has been achieved.

【0006】[0006]

【発明が解決しようとする課題】非線形光学結晶がLi
NbxTa1ーxO3(0≦x≦1)やKTP等の他の誘電体
結晶基板である場合、高出力の高調波に対して光誘起屈
折率変化(光損傷)を生じる。光誘起屈折率変化とは光
の照射によりトラップ状態にあった電子が励起され内部
電界により分極方向に移動し、このために新しく空間電
荷電界が生じ、電気光学効果により局所的に屈折率変化
が生じるというものである。光損傷は短波長領域で生じ
易く、光の強度が高いほど大きな屈折率低下が生じる現
象である。
The nonlinear optical crystal is Li
In the case of another dielectric crystal substrate such as Nb x Ta 1 -x O 3 (0 ≦ x ≦ 1) or KTP, a photo-induced refractive index change (optical damage) occurs with respect to high-power harmonics. What is photo-induced refractive index change? Electrons in a trapped state are excited by light irradiation and move in the polarization direction by an internal electric field, which causes a new space charge electric field, and the refractive index changes locally due to the electro-optic effect. It happens. Light damage is a phenomenon that is likely to occur in the short wavelength region, and the higher the light intensity, the greater the decrease in the refractive index.

【0007】現状の数mW程度の高調波出力では光損傷
の影響も少なく安定に高調波を得ることができる。しか
しながら入射パワーを高くして20mW以上の高調波光
が得られる場合には、光損傷の影響を受け、得られる高
調波の出力が不安定になる。
[0007] With the current output of several mW of harmonics, the harmonics can be stably obtained with little influence of optical damage. However, when the incident power is increased and harmonic light of 20 mW or more is obtained, the output of the obtained harmonic becomes unstable due to the influence of optical damage.

【0008】高出力の高調波光を安定に得るためには、
基板である非線形結晶の耐光損傷性を向上させる必要が
ある。しかし、結晶に不純物の混入したり、育成条件を
いろいろと変えたりしているがあまり良い結果は得られ
ていない。
In order to stably obtain high-output harmonic light,
It is necessary to improve the optical damage resistance of the nonlinear crystal that is the substrate. However, although impurities are mixed in the crystal and the growth conditions are variously changed, the good results have not been obtained.

【0009】光損傷のメカニズムは電子の内部電界によ
る電荷の移動により生ずる空間電荷電界が原因になって
いる。そのため、図8のように分極反転構造をもつ非線
形光学結晶では、得られる空間内部電荷が補償し合うた
め、光損傷が低減できる。
The mechanism of photodamage is caused by the space charge electric field generated by the movement of charges by the internal electric field of electrons. Therefore, in the nonlinear optical crystal having the polarization inversion structure as shown in FIG. 8, the obtained space internal charges compensate each other, so that the optical damage can be reduced.

【0010】そこで本発明は、光損傷に対して強い小型
で且つ安定高効率な短波長光源や計測用光源等で用いら
れる光波長変換素子を提供することを目的とする。
Therefore, an object of the present invention is to provide a light wavelength conversion element used in a short wavelength light source, a measurement light source, etc., which is small in size and resistant to light damage and which is stable and highly efficient.

【0011】[0011]

【課題を解決するための手段】本発明は、上記問題点を
解決するため光波長変換素子に新たな工夫を加えること
により耐光損傷性の向上した高効率変換可能な光波長変
換素子を提供するものである。つまり、本発明は (1)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、分極反転層中に周期の短い分
極反転層を有することで、空間電荷電界の電荷同士の補
償が起こり易く、耐光損傷性に優れた高効率光波長変換
素子を提供するものである。 (2)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、光導波路の上部または底部ま
たは内部に分極反転の周期が分極反転層の周期よりも短
い分極反転層を有することで、空間電荷電界の電荷同士
の補償が起こり易く、耐光損傷性に優れた高効率光波長
変換素子を提供するものである。 (3)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、分極反転層が光導波路の進行
方向に対し左右が非対称であるため、空間電荷電界の電
荷同士の補償が起こり易く、耐光損傷性に優れた高効率
光波長変換素子を提供するものである。 (4)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、光導波路の内部に光導波路の
進行方向に対し平行に分極反転層があるため、空間電荷
電界の電荷同士の補償が起こり易く、耐光損傷性に優れ
た高効率光波長変換素子を提供するものである。 (5)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、前記分極反転層内部の分極方
向がマルチ化しているため、空間電荷電界の電荷同士の
補償が起こり易く、耐光損傷性に優れた高効率光波長変
換素子を提供するものである。 (6)分極反転層を有する非線形光学結晶中に光導波路
を形成した素子において、前記光導波路の内部に光導波
路の進行方向に対し平行にプロトン交換層があるため、
空間電荷電界の電荷同士の補償が起こり易く、耐光損傷
性に優れた高効率光波長変換素子を提供するものであ
る。
The present invention provides an optical wavelength conversion element capable of highly efficient conversion with improved light damage resistance by adding a new device to the optical wavelength conversion element in order to solve the above problems. It is a thing. That is, the present invention is as follows: (1) Compensation for charges in a space-charge electric field by providing a polarization inversion layer having a short period in an element in which an optical waveguide is formed in a nonlinear optical crystal having a polarization inversion layer. The present invention provides a high-efficiency light wavelength conversion element that is easy to cause and has excellent light damage resistance. (2) In an element in which an optical waveguide is formed in a nonlinear optical crystal having a polarization inversion layer, a polarization inversion layer having a period of polarization inversion shorter than that of the polarization inversion layer is provided at the top, bottom or inside of the optical waveguide. The present invention provides a highly efficient optical wavelength conversion element that is easy to compensate for charges in a space charge electric field and has excellent light damage resistance. (3) In an element in which an optical waveguide is formed in a nonlinear optical crystal having a polarization inversion layer, the polarization inversion layer is asymmetrical with respect to the traveling direction of the optical waveguide, so that compensation of charges in a space charge electric field is likely to occur. The present invention provides a high-efficiency light wavelength conversion element having excellent light damage resistance. (4) In an element in which an optical waveguide is formed in a non-linear optical crystal having a polarization inversion layer, since the polarization inversion layer is parallel to the traveling direction of the optical waveguide inside the optical waveguide, compensation of charges in a space charge electric field is performed. The present invention provides a high-efficiency light wavelength conversion element that is easy to cause and has excellent light damage resistance. (5) In an element in which an optical waveguide is formed in a non-linear optical crystal having a polarization inversion layer, the polarization directions inside the polarization inversion layer are multi, so that compensation of charges in a space charge electric field is likely to occur, resulting in light damage resistance. Provided is a highly efficient light wavelength conversion element having excellent properties. (6) In the element in which the optical waveguide is formed in the nonlinear optical crystal having the polarization inversion layer, since the proton exchange layer is parallel to the traveling direction of the optical waveguide inside the optical waveguide,
It is intended to provide a high-efficiency optical wavelength conversion element which is easily compensated for charges of a space charge electric field and has excellent light damage resistance.

【0012】[0012]

【作用】本発明の光波長変換素子は、光照射によって発
生する電子の空間電荷分布を分極反転構造により補償(c
ompensation)しようとするもので、分極反転層中や光導
波路中に短周期の分極反転層を形成するこよにより、耐
光損傷性の優れ、高出力の高調波光を発生させるもので
ある。
The light wavelength conversion element of the present invention compensates the space charge distribution of electrons generated by light irradiation by the polarization inversion structure (c
By forming a domain-inverted layer having a short period in the domain-inverted layer or in the optical waveguide, it is possible to generate high-power harmonic light with excellent light damage resistance.

【0013】[0013]

【実施例】本発明の光波長変換素子の分極反転層中に短
い周期の分極反転層を有する光波長変換素子を図1に示
す。概略構成図1を用いて素子の形成方法について説明
する。
EXAMPLE FIG. 1 shows an optical wavelength conversion element having a polarization inversion layer of a short period in the polarization inversion layer of the optical wavelength conversion element of the present invention. Schematic Structure A method of forming an element will be described with reference to FIG.

【0014】102は分極反転層である。分極反転層の
形成はまずLiTaO3基板101に通常のフォトプロセスと
ドライエッチングを用いてTaを周期状にパターニング
する。波長870nmの基本波に対して1次の分極反転の周
期は4.0μmである。Taによるパターンが形成されたL
iTaO3基板101に260℃、20分間プロトン交換を
行いスリット直下に厚み0.8μmのプロトン交換層を
形成した後、540℃の温度で30秒間熱処理する。熱
処理の上昇レートは80℃/秒、冷却レートは50℃/
分である。これにより分極反転層102が形成される。
冷却レートが遅いと不均一反転が生じるので30℃/分
以上が望ましい。プロトン交換層はLiが減少しており
キュリー温度が低下するため部分的に分極反転ができ
る。TaはHF:HNF3の2:1混合液にて2分間エ
ッチングで除去される。
Reference numeral 102 is a polarization inversion layer. The domain inversion layer is first formed by periodically patterning Ta on the LiTaO 3 substrate 101 using a normal photo process and dry etching. The period of the first-order polarization inversion with respect to the fundamental wave having a wavelength of 870 nm is 4.0 μm. L with a Ta pattern
Proton exchange is performed on the iTaO 3 substrate 101 at 260 ° C. for 20 minutes to form a 0.8 μm-thick proton exchange layer immediately below the slit, and then heat treatment is performed at a temperature of 540 ° C. for 30 seconds. The heat treatment rate is 80 ℃ / sec, the cooling rate is 50 ℃ / sec.
Minutes. As a result, the domain inversion layer 102 is formed.
If the cooling rate is slow, nonuniform inversion occurs, so 30 ° C./min or more is desirable. Since the Li content of the proton exchange layer is reduced and the Curie temperature is lowered, polarization inversion can be partially performed. Ta is removed by etching with a 2: 1 mixture of HF: HNF 3 for 2 minutes.

【0015】103は分極反転層102上に形成された
光導波路を示している。光導波路103は分極反転層1
02に対してプロトン交換を用いて形成した。光導波路
用マスクとしてTaをストライプ状にパターニングを行
った後、Taマスクに幅4μm、長さ12mmのスリッ
トが形成されたものに260℃、16分間ピロ燐酸中で
プロトン交換を行った。これにより厚み0.45μmの
プロトン交換層が形成される。Taマスクを除去した
後、赤外線加熱装置を用いて420℃で1分間熱処理を
行った。熱処理により均一化されロスが減少し、深さ
1.9μmの導波路が形成される。
Reference numeral 103 denotes an optical waveguide formed on the domain inversion layer 102. The optical waveguide 103 is the polarization inversion layer 1
02 using proton exchange. After Ta was patterned into a stripe shape as an optical waveguide mask, a Ta mask having slits of 4 μm in width and 12 mm in length was subjected to proton exchange in pyrophosphoric acid at 260 ° C. for 16 minutes. As a result, a proton exchange layer having a thickness of 0.45 μm is formed. After removing the Ta mask, heat treatment was performed at 420 ° C. for 1 minute using an infrared heating device. The heat treatment uniformizes the loss and reduces the depth of the waveguide to 1.9 μm.

【0016】次に、得られた光波長変換素子の分極反転
層102中により短周期の分極反転層104を形成す
る。フォトプロセスのマスクに短周期のマスクを用いれ
ば分極反転層102を作製するプロセスと同じ過程で得
られる。しかし、ここではEB(electron beam scan
ing)を用いて作製した。得られた分極反転層104の
幅は0.5μmであった。
Next, a polarization inversion layer 104 having a shorter period is formed in the polarization inversion layer 102 of the obtained light wavelength conversion element. If a short-period mask is used as the mask for the photo process, it can be obtained in the same process as the process for producing the domain inversion layer 102. However, here, EB (electron beam scan)
ing) was used. The width of the obtained domain-inverted layer 104 was 0.5 μm.

【0017】入射及び出射端面を研磨し、波長0.87μm
に対し無反射コードを施し、長さ9mmの光波長変換素
子が得られる。基本波として半導体レーザ光(波長0.
87μm)を入射部より導波させたところシングルモー
ド伝搬し、波長0.435μmの高調波が1次モードで
出射部より基板外部に取り出された。基本波40mWの
入力で3mWの高調波(波長0.42μm)を得た。T
i:Sapphireレーザーを用いて、100mWの基本波に対
して25mWの高調波出力を得た。従来までのサンプル
では20mWの高調波が出射されると出力光のパワーが
光損傷により揺らいでいたが、本発明の波長変換素子で
は安定な高調波出力が得られた。
The incident and outgoing end faces are polished to give a wavelength of 0.87 μm.
A non-reflective code is applied to the optical wavelength conversion element having a length of 9 mm. Semiconductor laser light (wavelength 0.
(87 μm) was guided from the incident part to propagate in a single mode, and a harmonic wave having a wavelength of 0.435 μm was extracted from the emitting part to the outside of the substrate in the primary mode. A harmonic wave (wavelength 0.42 μm) of 3 mW was obtained by inputting a fundamental wave of 40 mW. T
An i: Sapphire laser was used to obtain a harmonic output of 25 mW for a fundamental wave of 100 mW. In the conventional sample, when the harmonic wave of 20 mW was emitted, the power of the output light fluctuated due to optical damage, but the wavelength conversion element of the present invention provided a stable harmonic wave output.

【0018】概略構成図1の光波長変換素子では分極反
転層102中に作製された分極反転層104の幅が0.
5μmであり深さも1.9μm程度であった。分極反転
層104の幅はできれば分極反転層102の周期の1/
10(0.4μm)以下が高出力安定化のためには望まし
い。
Schematic Structure In the light wavelength conversion device of FIG. 1, the width of the domain inversion layer 104 formed in the domain inversion layer 102 is 0.
It was 5 μm and the depth was about 1.9 μm. The width of the domain inversion layer 104 is preferably 1 / the period of the domain inversion layer 102.
10 (0.4 μm) or less is desirable for high output stabilization.

【0019】さらに概略構成図2(a)(b)のように光導波
路の上部、底部、内部に分極反転層204を作製しても
効果が得られた。上部に分極反転層204を形成する場
合、通常の分極反転層202の作製プロセスと同様の課
程を経る。フォトプロセスのマスクの周期を0.4μm
程度にすれば、深さが0.4μm程度の分極反転層20
4が光導波路上部に形成された。分極反転層を作らず、
プロトン交換のみを行っても耐光損傷の向上は見られ
た。プロトン交換層は電子の移動度が大きいため電荷の
補償に優れているからである。
Further, the effect can be obtained even if the domain inversion layer 204 is formed on the upper part, the bottom part and the inside of the optical waveguide as shown in FIG. 2 (a) (b). When the domain-inverted layer 204 is formed on the upper portion, the same process as that of the normal domain-inverted layer 202 is performed. Photo process mask cycle 0.4 μm
The polarization inversion layer 20 has a depth of about 0.4 μm.
4 was formed on the optical waveguide. Without creating a domain inversion layer,
Even if only the proton exchange was performed, the improvement of the light damage was observed. This is because the proton exchange layer has a high electron mobility and is excellent in charge compensation.

【0020】一方、光導波路の内部や底部に分極反転層
205を作製する場合、作製方法が少し異なる。通常の
分極反転層の形成は、まずLiTaO3基板に通常のフォトプ
ロセスとドライエッチングを用いてTaを周期状にパタ
ーニングし、Taによるパターンが形成されたLiTaO3
板1に260℃、20分間プロトン交換を行いスリット
直下に厚み0.8μmのプロトン交換層を形成した後、
540℃の温度で30秒間熱処理する。分極反転の形成
はプロトン交換された底部より始まるので、光導波路の
内部に分極反転層を形成する場合、熱処理を行う前にア
ニールを行い、プロトン交換層を内部までひろげてお
く。アニールは350℃で10分程度行い、その後57
0℃で30秒間熱処理し、分極反転205が形成され
る。内部に分極反転層を作製すると、電解分布の大きな
ところ、つまり電子の発生が多いところで電荷の補償が
行われるのでその効果は大きい。
On the other hand, when the polarization inversion layer 205 is formed inside or on the bottom of the optical waveguide, the manufacturing method is slightly different. Formation of a normal polarization inversion layer, first LiTaO 3 substrate using conventional photo process and dry etching to pattern the Ta to periodic, Ta LiTaO 3 substrate 1 to 260 ° C. which a pattern is formed by a proton 20 minutes After exchanging and forming a 0.8 μm thick proton exchange layer directly under the slit,
Heat treatment is performed at a temperature of 540 ° C. for 30 seconds. Since the formation of the polarization inversion starts from the bottom portion where the proton exchange is performed, when forming the polarization inversion layer inside the optical waveguide, annealing is performed before the heat treatment to expand the proton exchange layer to the inside. Annealing is performed at 350 ° C. for about 10 minutes, and then 57
The heat treatment is performed at 0 ° C. for 30 seconds, and the polarization inversion 205 is formed. When the domain-inverted layer is formed inside, the effect is large because the charge is compensated in a place where the electrolytic distribution is large, that is, in a place where a large number of electrons are generated.

【0021】概略構成図3のように、分極反転層302
が光導波路303の進行方向に対し左右が非対称である
様な光波長変換素子についても耐光損傷性の向上が見ら
れた。作製方法はLiTaO3基板301上にTaを作製する
際に用いられるフォトマスクの形状が違っているだけで
ある。概略構成図3のように各分極反転層が電荷を補償
しやすいように分極反転層302を形成することで耐光
損傷性の向上が見られる。
Schematic Structure As shown in FIG. 3, the polarization inversion layer 302
However, the optical damage resistance of the optical wavelength conversion element whose left and right sides are asymmetric with respect to the traveling direction of the optical waveguide 303 was also improved. The manufacturing method is different only in the shape of the photomask used for manufacturing Ta on the LiTaO3 substrate 301. Schematic Configuration As shown in FIG. 3, the polarization inversion layer 302 is formed so that each polarization inversion layer can easily compensate for the electric charge, so that the optical damage resistance can be improved.

【0022】概略構成図4のように、光導波路403の
内部に光導波路403の進行方向に対し平行に分極反転
層402を形成した光波長変換素子においても耐光損傷
性の向上が見られた。概略構成図1の素子と同様のプロ
セスにより得られる。分極反転層404の幅は0.5μ
mであり、EBを用いて分極反転が行われた。この場
合、概略構成図1から3に示される素子に比べて電荷の
補償が充分に行われるため耐光損傷性の向上は大きかっ
た。また、その効果は小さいが概略構成図5のようにプ
ロトン交換層を形成しても耐光損傷性の向上は見られ
た。プロトン交換層は電子の移動度が大きいため電荷の
補償に優れているからである。
Schematic Structure As shown in FIG. 4, an optical wavelength conversion element in which a polarization inversion layer 402 is formed inside the optical waveguide 403 in parallel with the traveling direction of the optical waveguide 403 is also improved in optical damage resistance. Schematic structure It is obtained by the same process as the device of FIG. The width of the domain inversion layer 404 is 0.5 μ.
m, and polarization reversal was performed using EB. In this case, the charge compensation was sufficiently performed as compared with the devices shown in FIGS. 1 to 3 of the schematic configuration, and thus the improvement of the light damage resistance was large. Further, although the effect is small, the light damage resistance was improved even when the proton exchange layer was formed as shown in FIG. This is because the proton exchange layer has a high electron mobility and is excellent in charge compensation.

【0023】概略構成図6のように、分極反転層602
がマルチドメインであってもその耐光損傷性は向上し
た。
Schematic Structure As shown in FIG. 6, a domain inversion layer 602 is provided.
The light damage resistance was improved even when the domain was multi-domain.

【0024】なお、本実施例ではLiTaO3基板を用いた波
長変換素子について説明したが、LiNbO3やKTP(KTiOPO4)
のような他の無機非線形光学結晶や有機非線形光学結晶
を用いた分極反転素子においても同様の効果が見られ
る。
Although the wavelength conversion element using the LiTaO3 substrate has been described in the present embodiment, LiNbO3 or KTP (KTiOPO4) is used.
Similar effects can be seen in the polarization inversion element using another inorganic nonlinear optical crystal or organic nonlinear optical crystal as described above.

【0025】[0025]

【発明の効果】分極反転構造をもつ光波長変換素子に電
荷の補償が行われ易くするためにさらに分極反転構造を
光導波路の上部、内部や分極反転層の内部に作製するこ
とで、光波長変換素子の耐光損傷性が向上し、光損傷に
強い高効率で安定な波長変換が実現される。
EFFECTS OF THE INVENTION In order to facilitate the compensation of charges in an optical wavelength conversion device having a polarization inversion structure, a polarization inversion structure is further formed in the upper part of the optical waveguide, inside the polarization inversion layer, and The light damage resistance of the conversion element is improved, and highly efficient and stable wavelength conversion resistant to light damage is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の光波長変換素子の概略構成図FIG. 1 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図2】本発明の光波長変換素子の概略構成図FIG. 2 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図3】本発明の光波長変換素子の概略構成図FIG. 3 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図4】本発明の光波長変換素子の概略構成図FIG. 4 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図5】本発明の光波長変換素子の概略構成図FIG. 5 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図6】本発明の光波長変換素子の概略構成図FIG. 6 is a schematic configuration diagram of an optical wavelength conversion element of the present invention.

【図7】従来の光波長変換素子の概略構成図FIG. 7 is a schematic configuration diagram of a conventional light wavelength conversion element.

【図8】分極反転構造をもつ光波長変換素子における電
荷補償メカニズムの説明図
FIG. 8 is an explanatory diagram of a charge compensation mechanism in an optical wavelength conversion device having a polarization inversion structure.

【符号の説明】[Explanation of symbols]

101 LiTaO3基板 102 分極反転層 103 光導波路 104 分極反転層 201 LiTaO3基板 202 分極反転層 203 光導波路 204 分極反転層 205 分極反転層 301 LiTaO3基板 302 分極反転層 303 光導波路 401 LiTaO3基板 402 分極反転層 403 光導波路 404 分極反転層 501 LiTaO3基板 502 分極反転層 503 光導波路 601 LiTaO3基板 602 分極反転層 603 光導波路 701 LITaO3基板 702 光導波路 703 分極反転層 704 非分極反転層 705 入射面 706 出射面 801 LITaO3基板 802 分極反転層 803 光導波路101 LiTaO 3 substrate 102 polarization inversion layer 103 optical waveguide 104 polarization inversion layer 201 LiTaO 3 substrate 202 polarization inversion layer 203 optical waveguide 204 polarization inversion layer 205 polarization inversion layer 301 LiTaO 3 substrate 302 polarization inversion layer 303 optical waveguide 401 LiTaO 3 substrate 402 Polarization inversion layer 403 Optical waveguide 404 Polarization inversion layer 501 LiTaO 3 substrate 502 Polarization inversion layer 503 Optical waveguide 601 LiTaO 3 substrate 602 Polarization inversion layer 603 Optical waveguide 701 LITAO 3 substrate 702 Optical waveguide 703 Polarization inversion layer 704 Non-polarization inversion layer 705 incidence Surface 706 Emitting surface 801 LITaO 3 substrate 802 Polarization inversion layer 803 Optical waveguide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 誠 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Kato 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】分極反転層を有する非線形光学結晶中に光
導波路を形成した素子において、前記分極反転層の各層
中に周期が前記分極反転層より短い分極反転層を有する
ことを特徴とする光波長変換素子。
1. A device in which an optical waveguide is formed in a nonlinear optical crystal having a polarization inversion layer, wherein each of the polarization inversion layers has a polarization inversion layer having a period shorter than that of the polarization inversion layer. Wavelength conversion element.
【請求項2】分極反転層を有する非線形光学結晶中に光
導波路を形成した素子において、前記光導波路の上部ま
たは底部または内部の一部分に分極反転の周期が前記分
極反転層の周期よりも短い分極反転層を有することを特
徴とする光波長変換素子。
2. A device having an optical waveguide formed in a non-linear optical crystal having a polarization inversion layer, wherein the polarization inversion period is shorter than the period of the polarization inversion layer at the top, bottom or part of the inside of the optical waveguide. An optical wavelength conversion device having an inversion layer.
【請求項3】分極反転層を有する非線形光学結晶中に光
導波路を形成した素子において、前記分極反転層が光導
波路の進行方向に対し左右が非対称であることを特徴と
する光波長変換素子。
3. An optical wavelength conversion element in which an optical waveguide is formed in a non-linear optical crystal having a polarization inversion layer, and the polarization inversion layer is asymmetric with respect to the traveling direction of the optical waveguide.
【請求項4】分極反転層を有する非線形光学結晶中に光
導波路を形成した素子において、前記光導波路の内部に
光導波路の進行方向に対し平行に分極反転層があること
を特徴とする光波長変換素子。
4. A device having an optical waveguide formed in a nonlinear optical crystal having a polarization inversion layer, wherein the polarization inversion layer is provided inside the optical waveguide in parallel to the traveling direction of the optical waveguide. Conversion element.
【請求項5】分極反転層を有する非線形光学結晶中に光
導波路を形成した素子において、前記分極反転層内部の
分極方向がマルチ化していることを特徴とする光波長変
換素子。
5. An optical wavelength conversion element in which an optical waveguide is formed in a non-linear optical crystal having a polarization inversion layer, wherein the polarization directions inside the polarization inversion layer are multiple.
【請求項6】分極反転層を有する非線形光学結晶中に光
導波路を形成した素子において、前記光導波路の内部に
光導波路の進行方向に対し平行にプロトン交換層がある
ことを特徴とする光波長変換素子。
6. A device having an optical waveguide formed in a non-linear optical crystal having a polarization inversion layer, wherein a proton exchange layer is provided inside the optical waveguide in parallel to a traveling direction of the optical waveguide. Conversion element.
【請求項7】非線形光学結晶がLiNbxTa1ーxO3(0
≦x≦1)基板であることを特徴とする請求項1〜6い
ずれか1項に記載の光波長変換素子。
7. A nonlinear optical crystal is LiNb x Ta 1-x O 3 (0
≦ x ≦ 1) Substrate, The light wavelength conversion element according to any one of claims 1 to 6.
JP5071441A 1993-03-30 1993-03-30 Optical wavelength conversion element Expired - Fee Related JP3052654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5071441A JP3052654B2 (en) 1993-03-30 1993-03-30 Optical wavelength conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5071441A JP3052654B2 (en) 1993-03-30 1993-03-30 Optical wavelength conversion element

Publications (2)

Publication Number Publication Date
JPH06281981A true JPH06281981A (en) 1994-10-07
JP3052654B2 JP3052654B2 (en) 2000-06-19

Family

ID=13460635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5071441A Expired - Fee Related JP3052654B2 (en) 1993-03-30 1993-03-30 Optical wavelength conversion element

Country Status (1)

Country Link
JP (1) JP3052654B2 (en)

Also Published As

Publication number Publication date
JP3052654B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
US5714198A (en) Method of controlling regions of ferroelectric polarization domains in solid state bodies
US5522973A (en) Fabrication of ferroelectric domain reversals
US7170671B2 (en) High efficiency wavelength converters
US6926770B2 (en) Method of fabricating two-dimensional ferroelectric nonlinear crystals with periodically inverted domains
US6952307B2 (en) Electric field poling of ferroelectric materials
JPH1172809A (en) Optical wavelength conversion element and its production, optical generator using this element and optical pickup, diffraction element as well as production of plural polarization inversion part
JP3052654B2 (en) Optical wavelength conversion element
JP2910370B2 (en) Optical wavelength conversion element and short wavelength laser light source using the same
JP2718259B2 (en) Short wavelength laser light source
JP4578710B2 (en) Method of creating domain-inverted structure by femtosecond laser irradiation
JP2502818B2 (en) Optical wavelength conversion element
JP3260457B2 (en) Method for forming domain inversion structure of ferroelectric
JPH0566440A (en) Laser light source
JP3049986B2 (en) Optical wavelength conversion element
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH03191332A (en) Production of optical waveguide and optical wavelength converting element
Chen et al. Ultra-efficient and highly tunable frequency conversion in Z-cut periodically poled lithium niobate nanowaveguides
JPH07244307A (en) Short-wavelength light generator
Cao et al. Simultaneous blue and green second harmonic generation in quasiphase matched LiNbO3 waveguide
JPH06230445A (en) Production of periodic polarization inversion structure and production of wavelength conversion element
JP3036243B2 (en) Optical wavelength conversion element
JP3683517B2 (en) Method for forming domain inversion structure of ferroelectric material
JPH04264534A (en) Production of wavelength converting element
Das et al. A high efficiency scheme for phase-matched second-harmonic generation in GaN-based Bragg reflection waveguide

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees