JPH07253603A - Second harmonic generating element - Google Patents

Second harmonic generating element

Info

Publication number
JPH07253603A
JPH07253603A JP6904194A JP6904194A JPH07253603A JP H07253603 A JPH07253603 A JP H07253603A JP 6904194 A JP6904194 A JP 6904194A JP 6904194 A JP6904194 A JP 6904194A JP H07253603 A JPH07253603 A JP H07253603A
Authority
JP
Japan
Prior art keywords
optical waveguide
refractive index
channel type
type optical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6904194A
Other languages
Japanese (ja)
Inventor
Noriko Yamada
紀子 山田
Yukihiro Yamamoto
幸弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6904194A priority Critical patent/JPH07253603A/en
Publication of JPH07253603A publication Critical patent/JPH07253603A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the incident efficiency at the time of admission of light from the end face of a second harmonic generating(SHG) element of a pseudo phase matching type discretely arrayed with regions of a round type which are inverted in polarization and have the refractive index higher than the refractive index of a substrate at a constant period. CONSTITUTION:A nonlinear optical crystal is internally provided discretely at specified periods with the round type regions 43 which are inverted in polarization and have the refractive index higher than the refractive index of the substrate. This regions function as discrete optical wave guides. The incident end side thereof is provided with a channel type optical waveguide 42. The front end of this channel type optical waveguide 42 is formed to a semicircular shape or the distance between the channel type optical waveguide 42 and the discrete waveguides is set at <=1.5micron, by which the light of the channel type optical waveguide 42 is admitted into the discrete optical waveguides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、光情報処理分野、光
計測分野、医療分野における短波長の小型レーザ光源を
実現するための第二高調波発生(SHG)素子に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a second harmonic generation (SHG) element for realizing a compact laser light source of short wavelength in the fields of optical information processing, optical measurement and medical field.

【0002】[0002]

【従来の技術】現在のところ、短波長の緑色、青色を高
出力で発振できる半導体レーザの実現は難しい。このた
め、非線形光学結晶中に赤外光を入射し、結晶中で入射
波の半分の波長の第二高調波を発生させるという方法が
提案されている。第二高調波を効率よく得るためには、
非線形光学結晶中の各点で発生する第二高調波の位相を
揃えることが必要である。位相整合を達成するための方
法の一つとして、非線形光学結晶の分極反転を利用した
擬似位相整合という方法がある。
2. Description of the Related Art At present, it is difficult to realize a semiconductor laser capable of oscillating short wavelength green and blue with high output. For this reason, a method has been proposed in which infrared light is made incident into a nonlinear optical crystal to generate a second harmonic having a wavelength half that of the incident wave in the crystal. To obtain the second harmonic efficiently,
It is necessary to align the phase of the second harmonic generated at each point in the nonlinear optical crystal. As one of the methods for achieving phase matching, there is a method called quasi phase matching using polarization inversion of a nonlinear optical crystal.

【0003】擬似位相整合を利用したSHG素子の構造
は、二つに大別できる。一つは周期的な分極反転構造と
それに直交するチャンネル導波路から構成されるもので
ある。一例として、ニオブ酸リチウム(LiNbO3)の単結
晶基板上へ作製したSHG素子( E.J.Lim, M.M.Fejer,
R.L.Byer : Electron.Lett., 25, 731 (1989))があ
る。このタイプの素子は、入射波、第二高調波ともに低
損失でチャンネル導波路を伝搬することができるが、分
極反転構造の作製とチャンネル導波路の作製という二段
階の製造プロセスが必要であるため、製造コストが高く
つく。
The structure of the SHG element utilizing quasi phase matching can be roughly classified into two types. One is composed of a periodically poled structure and a channel waveguide orthogonal to it. As an example, an SHG element (EJLim, MMFejer, manufactured on a single crystal substrate of lithium niobate (LiNbO 3 ))
RLByer: Electron. Lett., 25 , 731 (1989)). This type of device can propagate both incident waves and second harmonics through the channel waveguide with low loss, but it requires a two-step manufacturing process of manufacturing the polarization inversion structure and the channel waveguide. The manufacturing cost is high.

【0004】擬似位相整合型のSHG素子のもう一つの
構造は、分極反転と光導波路の機能を兼ねた領域を一定
周期で離散的に配置したものである。たとえば、Appl.
Phys. Lett 57, (1990) 2074ではKTP単結晶基板上
に、分極反転しており、かつ高屈折率領域から次の角型
の高屈折率領域へ進む間に光が広がるため、伝搬損失が
大きくなるという問題がある。SHG素子では分極反転
しており、かつ高屈折率である角型の領域を設けたSH
G素子を発表している。この構造の素子は、一回のプロ
セスで作製できるため製造が簡単であるという長所を有
するが、角型の高屈折率である(角型の)領域が離散的
に100個以上設けられるので、伝搬損失は累積して大
きな値となる。
Another structure of the quasi-phase matching SHG element is one in which regions having the functions of polarization inversion and optical waveguide are arranged discretely at a constant period. For example, Appl.
Phys. Lett 57, (1990) 2074 has polarization inversion on the KTP single crystal substrate, and light spreads from the high refractive index region to the next rectangular high refractive index region, resulting in propagation loss. There is a problem of getting bigger. In the SHG element, the SH in which the polarization is inverted and the prismatic region having a high refractive index is provided
G element is announced. The element having this structure has an advantage that it is easy to manufacture because it can be manufactured in a single process, but since 100 or more regions of the square type having a high refractive index (square type) are discretely provided, The propagation loss is cumulative and becomes a large value.

【0005】角型の高屈折率領域による伝搬損失を減少
させるためには、一つ一つの高屈折率領域の形状を丸く
すればよい(特願平5−164017)。このとき、光
は凸レンズの列を収束しながら伝搬することになるので
伝搬損失が低減する。しかしながら、離散的な高屈折率
領域が一定周期に並んでいる光導波路の構造では、光導
波路に端面から光を入れるときの結合効率が悪いという
問題があった。この理由は次のとおりである。
In order to reduce the propagation loss due to the rectangular high refractive index region, the shape of each high refractive index region may be rounded (Japanese Patent Application No. 5-164017). At this time, the light propagates while converging in the array of convex lenses, so the propagation loss is reduced. However, in the structure of the optical waveguide in which the discrete high refractive index regions are arranged in a constant cycle, there is a problem that the coupling efficiency is poor when the light enters the optical waveguide from the end face. The reason for this is as follows.

【0006】図5(a)のように丸型の高屈折率領域1
2の中央部で端面研磨が行われた場合は、入射光11が
光導波路に入りやすい。図5(b)のような基板の位置
で研磨が行われた場合は、入射光がきわめて入りにくく
なる。しかし、丸型の高屈折率領域の直径は数μmと小
さいため、目標どおりの位置で研磨を行うことは非常に
難しい。このため、結合効率のよい光導波路を再現性良
く作ることができなかった。
As shown in FIG. 5A, a circular high refractive index area 1
When the end surface is polished at the center of 2, the incident light 11 is likely to enter the optical waveguide. When polishing is performed at the position of the substrate as shown in FIG. 5B, it becomes very difficult for incident light to enter. However, since the diameter of the round high refractive index region is as small as several μm, it is very difficult to carry out polishing at the target position. Therefore, it was not possible to produce an optical waveguide with good coupling efficiency with good reproducibility.

【0007】[0007]

【発明が解決しようとする課題】この発明は、分極反転
しており、かつ、屈折率が基板より高い丸型の領域が周
期的に並んでいる光導波路へ、端面から光を入れるとき
の入射効率を高めようとするものである。
DISCLOSURE OF THE INVENTION The present invention is directed to incident light into an optical waveguide in which polarization-inverted and circular regions having a higher refractive index than the substrate are periodically arranged from the end face. It seeks to increase efficiency.

【0008】[0008]

【課題を解決するための手段および作用】上記課題を解
決するために、非線形光学結晶中に、分極反転してお
り、かつ、屈折率が基板より高い丸型の領域が、一定周
期で離散的に並んでいる光導波路と、その離散的な光導
波路に光を入れるためのチャンネル型光導波路とを設け
る。離散的光導波路に光を損失なく入れるために、チャ
ンネル型光導波路の端部は、半円の形状にするか、ある
いは、端部の形状は矩形で、最初の丸型の光導波路との
距離が1.5μm以下とする。
In order to solve the above-mentioned problems, in a nonlinear optical crystal, a circular region in which polarization is inverted and whose refractive index is higher than that of the substrate is discrete at a constant period. And a channel type optical waveguide for introducing light into the discrete optical waveguide. In order to put light into the discrete optical waveguide without loss, the end of the channel type optical waveguide should be a semi-circular shape, or the shape of the end should be rectangular and the distance from the first circular optical waveguide. Is 1.5 μm or less.

【0009】まず、チャンネル型光導波路の端部が半円
形状の場合について、図1を用いて説明する。入射光2
1は端面研磨されたチャンネル型光導波路22に入る。
チャンネル導波路と基板25の境界部23は、分極反転
しており、かつ高屈折率である丸型の領域24と同じ曲
率半径をもつ半円である。チャンネル型光導波路22は
基板25より屈折率が高いので、境界部23を基板に対
して凸型にすることで23はレンズとして働き、入射光
21を収束する効果を有する。
First, the case where the end of the channel type optical waveguide has a semicircular shape will be described with reference to FIG. Incident light 2
1 enters the channel type optical waveguide 22 whose end surface is polished.
The boundary 23 between the channel waveguide and the substrate 25 is a semicircle having the same radius of curvature as the circular region 24 having a polarization inversion and a high refractive index. Since the channel type optical waveguide 22 has a higher refractive index than the substrate 25, by making the boundary portion 23 convex with respect to the substrate, 23 acts as a lens and has an effect of converging the incident light 21.

【0010】周期Λは、擬似位相接合が成立するための
条件、 Λ=λ/2(nSH−nF ) で与えられる。ここでλは入射光の波長、nF は基本波
に対する非線形光学結晶の屈折率、nSHは第二高調波に
対する非線形光学結晶の屈折率である。通常Λは3μm
から10μmの間にある。分極反転しており、かつ高屈
折率である丸型領域の直径がΛの半分であるとき、最も
効率よく第二高調波が発生する。しかし、Λが小さい場
合には、直径が小さすぎて光が入らなくなってしまう。
このような場合には、直径をΛの半分より大きくする。
通常、丸型領域の直径は、2μmから5μmの間であ
る。
The period Λ is given by Λ = λ / 2 (n SH −n F ) which is a condition for establishing the quasi-phase junction. Here, λ is the wavelength of incident light, n F is the refractive index of the nonlinear optical crystal with respect to the fundamental wave, and n SH is the refractive index of the nonlinear optical crystal with respect to the second harmonic. Usually Λ is 3 μm
To 10 μm. The second harmonic is most efficiently generated when the diameter of the circular region having the polarization inversion and the high refractive index is half of Λ. However, when Λ is small, the diameter is too small to allow light to enter.
In such a case, the diameter is made larger than half Λ.
Usually, the diameter of the rounded region is between 2 μm and 5 μm.

【0011】チャンネル型光導波路の幅は、丸型領域の
直径と等しく、2μmから5μmである。
The width of the channel type optical waveguide is equal to the diameter of the circular region and is 2 μm to 5 μm.

【0012】チャンネル型光導波路22の長さlは、端
面研磨のときに確実にこの部分で研磨することができる
よう1mm以上あることが望ましい。また、SHG素子
が不必要に大きくなることを防ぐために、5mm以下で
あることが望ましい。
It is desirable that the length 1 of the channel type optical waveguide 22 be 1 mm or more so that the end surface can be surely polished at this portion. Further, in order to prevent the SHG element from becoming unnecessarily large, it is desirable that the thickness be 5 mm or less.

【0013】次に、チャンネル型光導波路と分極反転し
ており、かつ高屈折率である最初の丸型領域との間の距
離を1.5μm以下にした場合について、図2を用いて
説明する。
Next, a case where the distance between the channel type optical waveguide and the first circular region which is polarization-inverted and has a high refractive index is 1.5 μm or less will be described with reference to FIG. .

【0014】入射光31は、チャンネル型光導波路32
から34のように広がって基板中に出る。このときの広
がり角は小さいので、チャンネル型光導波路32と分極
反転しており、かつ高屈折率である丸型領域33との距
離Lを小さくすれば、入射光が基板中に広がったことに
よる損失をきわめて小さくすることができる。Lを1.
5μmより大きくした場合には、基板中への広がりが無
視できないほど大きくなるので望ましくない。
The incident light 31 is a channel type optical waveguide 32.
To 34 and spread out into the substrate. Since the divergence angle at this time is small, the incident light spreads in the substrate if the distance L between the channel type optical waveguide 32 and the circular region 33 which is polarization-inverted and has a high refractive index is reduced. The loss can be extremely small. L to 1.
If the thickness is larger than 5 μm, the spread into the substrate becomes too large to be ignored, which is not desirable.

【0015】図2において、チャンネル型光導波路の長
さと幅、および丸型領域間の周期Λについては、図1の
場合と同じである。
In FIG. 2, the length and width of the channel type optical waveguide and the period Λ between the circular regions are the same as those in FIG.

【0016】[0016]

【実施例】【Example】

(実施例1)本発明による実施例を図3を用いて説明す
る。41はKTP(KTiOPO4)のZ板である。42はチャ
ンネル型光導波路、43は分極反転しており、かつ高屈
折率である丸型領域である。42と43から成る光導波
路は、KTP基板を350℃の硝酸ルビジウムと硝酸バ
リウムの混合塩中に15分間浸漬して作製した。硝酸ル
ビジウムと硝酸バリウムの混合塩中で熱処理を行った場
合、処理された部分は高屈折率になると同時に、分極の
向きが反転する。
(Embodiment 1) An embodiment according to the present invention will be described with reference to FIG. 41 is a Z plate of KTP (KTiOPO 4 ). Reference numeral 42 is a channel type optical waveguide, and 43 is a circular region in which polarization is inverted and which has a high refractive index. An optical waveguide consisting of 42 and 43 was prepared by immersing a KTP substrate in a mixed salt of rubidium nitrate and barium nitrate at 350 ° C. for 15 minutes. When heat treatment is performed in a mixed salt of rubidium nitrate and barium nitrate, the treated portion has a high refractive index and the polarization direction is reversed at the same time.

【0017】44と45の面に端面研磨が施されてい
る。
The surfaces 44 and 45 are end-polished.

【0018】丸型領域は4μm周期で並んでいる。丸型
領域の直径は2.5μmである。チャンネル型光導波路
42の幅は2.5μmで、先端は直径は2.5μmの半
円状になっている。この素子に850nmの入射光10
0mWを入れたところ、850nmの光50mWと42
5nmの第二高調波1mWが素子から出射した。
The circular regions are lined up with a period of 4 μm. The diameter of the circular region is 2.5 μm. The width of the channel type optical waveguide 42 is 2.5 μm, and the tip end is a semicircular shape with a diameter of 2.5 μm. 850 nm incident light 10
When 0 mW was put in, 850 nm light was 50 mW and 42
A 5 nm second harmonic of 1 mW was emitted from the device.

【0019】(実施例2)本発明による実施例を図4に
より説明する。51はタンタル酸リチウムのZ板、52
はチャンネル型光導波路、53は分極反転しており、か
つ高屈折率である丸型領域である。52と53から成る
光導波路は、タンタル酸リチウムの基板をプロトン交換
することにより作製する。プロトン交換の条件を制御す
ることにより、プロトン交換した領域の屈折率を高くす
るのと同時に、その領域の分極の向きを反転することが
できる。
(Embodiment 2) An embodiment according to the present invention will be described with reference to FIG. 51 is a Z plate of lithium tantalate, 52
Is a channel-type optical waveguide, and 53 is a circular region in which polarization is inverted and which has a high refractive index. The optical waveguide consisting of 52 and 53 is produced by exchanging a lithium tantalate substrate with a proton. By controlling the conditions of the proton exchange, it is possible to increase the refractive index of the proton exchanged region and at the same time reverse the polarization direction of the region.

【0020】54と55の面に端面研磨が施されてい
る。丸型領域は7.4μm周期で並んでいる。丸型領域
の直径は4μmである。チャンネル型光導波路52の幅
は4μmである。チャンネル型光導波路と最初の丸型領
域との距離は1μmである。
The surfaces 54 and 55 are end-polished. The circular regions are arranged at a period of 7.4 μm. The diameter of the circular region is 4 μm. The width of the channel type optical waveguide 52 is 4 μm. The distance between the channel type optical waveguide and the first circular region is 1 μm.

【0021】この素子に1064nmの入射光を200
mW入れたとき、1064nmの光120mWと532
nmの第二高調波20mWが素子から出射した。
200 nm of incident light of 1064 nm is applied to this device.
When entering mW, 1064nm light 120mW and 532
The second harmonic of 20 mW of nm emitted from the device.

【0022】[0022]

【発明の効果】上述したように、本発明の素子によれ
ば、入射赤外光を高い効率で離散型の丸型光導波路に入
れることができ、第二高調波発生の効率を向上させるこ
とができる。
As described above, according to the device of the present invention, incident infrared light can be efficiently introduced into a discrete round optical waveguide, and the efficiency of second harmonic generation can be improved. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の素子の原理を簡単に示した図である。FIG. 1 is a diagram simply showing the principle of an element of the present invention.

【図2】本発明の素子の原理を簡単に示した図である。FIG. 2 is a diagram simply showing the principle of the device of the present invention.

【図3】本発明の実施例によるSHG素子の概略図であ
る。
FIG. 3 is a schematic diagram of an SHG device according to an embodiment of the present invention.

【図4】本発明の実施例によるSHG素子の概略図であ
る。
FIG. 4 is a schematic diagram of an SHG device according to an embodiment of the present invention.

【図5】従来の素子の端面研磨の状態を表した概略図で
ある。
FIG. 5 is a schematic view showing a state of polishing an end surface of a conventional element.

【符号の説明】[Explanation of symbols]

11 入射光 12 丸型の高屈折率領域 13 基板 21 入射光 22 チャンネル型光導波路 23 チャンネル型光導波路と基板の境界部 24 分極反転しており、かつ高屈折率である丸型の
領域 25 基板 26 入射光の伝搬の仕方を示すライン 31 入射光 32 チャンネル型光導波路 33 分極反転しており、かつ高屈折率である丸型の
領域 34 入射光の広がり方を示すライン 35 基板 41 KTPのZ板 42 チャンネル型光導波路 43 分極反転しており、かつ高屈折率である丸型の
領域 44,45 端面研磨を施した面 51 タンタル酸リチウム基板 52 チャンネル型光導波路 53 分極反転しており、かつ高屈折率である丸型の
領域 54,55 端面研磨を施した面
11 incident light 12 circular high refractive index region 13 substrate 21 incident light 22 channel type optical waveguide 23 boundary between channel type optical waveguide and substrate 24 circular region having polarization inversion and high refractive index 25 substrate 26 Line showing the way of propagation of incident light 31 Incident light 32 Channel type optical waveguide 33 Circular region with polarization inversion and high refractive index 34 Line showing how incident light spreads 35 Substrate 41 KTP Z Plate 42 Channel Type Optical Waveguide 43 Polarization Inverted and Highly Round Regions 44, 45 End Polished Surface 51 Lithium Tantalate Substrate 52 Channel Type Optical Waveguide 53 Polarization Inverted, and High refractive index circular area 54,55 End surface polished

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学結晶中に、分極反転してお
り、かつ、屈折率が基板より高い丸型の領域が一定周期
で離散的に並んでいる光導波路と、その離散型光導波路
の入射側にあり、離散型光導波側の端部がレンズとして
機能できる半円形状であるチャンネル型光導波路とを有
することを特徴とする第二高調波発生素子。
1. An optical waveguide in which circular regions having polarization inversion and a refractive index higher than that of a substrate are discretely arranged at a constant period in a nonlinear optical crystal, and the discrete optical waveguide is incident. And a channel type optical waveguide whose end on the side of the discrete type optical waveguide is a semicircular shape that can function as a lens.
【請求項2】 非線形光学結晶中に、分極反転してお
り、かつ、屈折率が基板より高い丸型の領域が一定周期
で離散的に並んでいる光導波路と、その離散型光導波路
の入射側にあって、分極反転しており、かつ高屈折率で
ある最初の丸型の領域との距離が1.5μm以下である
ように配置されたチャンネル型光導波路とを有すること
を特徴とする第二高調波発生素子。
2. An optical waveguide in which polarization-inverted circular regions having a higher refractive index than the substrate are discretely arranged at a constant period in a nonlinear optical crystal, and the discrete optical waveguide is incident. And a channel type optical waveguide arranged so that the distance to the first circular region which is on the side and has a high refractive index is 1.5 μm or less. Second harmonic generation element.
JP6904194A 1994-03-14 1994-03-14 Second harmonic generating element Withdrawn JPH07253603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6904194A JPH07253603A (en) 1994-03-14 1994-03-14 Second harmonic generating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6904194A JPH07253603A (en) 1994-03-14 1994-03-14 Second harmonic generating element

Publications (1)

Publication Number Publication Date
JPH07253603A true JPH07253603A (en) 1995-10-03

Family

ID=13391115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6904194A Withdrawn JPH07253603A (en) 1994-03-14 1994-03-14 Second harmonic generating element

Country Status (1)

Country Link
JP (1) JPH07253603A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908963A (en) * 2023-07-28 2023-10-20 合肥芯智华光子科技有限公司 Mode spot converter of gas phase proton exchange lithium niobate optical waveguide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116908963A (en) * 2023-07-28 2023-10-20 合肥芯智华光子科技有限公司 Mode spot converter of gas phase proton exchange lithium niobate optical waveguide

Similar Documents

Publication Publication Date Title
US5640405A (en) Multi quasi phase matched interactions in a non-linear crystal
JP2685969B2 (en) Second harmonic generator
JPH0452922B2 (en)
JPH10254001A (en) Light wavelength converting module
US7170671B2 (en) High efficiency wavelength converters
JPH0523413B2 (en)
JP2725302B2 (en) Waveguide type wavelength conversion element
JPH07253603A (en) Second harmonic generating element
JPH05232538A (en) Wavelength converting element and its production
JP2718259B2 (en) Short wavelength laser light source
JPH07261211A (en) Second harmonic generating element
JP2765112B2 (en) Optical waveguide device, optical wavelength conversion element, and short wavelength laser light source
JP2004020588A (en) Wavelength transformation device
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JP2012208393A (en) Wavelength conversion element and manufacturing method for the same
JP2002287191A (en) Method for generating polarization reversal structure by femtosecond laser irradiation
JP2658381B2 (en) Waveguide type wavelength conversion element
JP2921207B2 (en) Optical wavelength conversion element and method of manufacturing the same
JP2666540B2 (en) Waveguide type wavelength conversion element
JP3448350B2 (en) Harmonic generator
JP2982366B2 (en) Waveguide type wavelength conversion element
JP2004020571A (en) Wavelength transformation device
US20090080063A1 (en) Array waveguide and light source using the same
JPH0497232A (en) Production of wavelength conversion element and incidence tapered optical waveguide
JP2000267146A (en) Waveguide type optical modulation element and wavelength conversion device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010605