JPH05341341A - Optical waveguide type second higher harmonic generating element - Google Patents

Optical waveguide type second higher harmonic generating element

Info

Publication number
JPH05341341A
JPH05341341A JP4171948A JP17194892A JPH05341341A JP H05341341 A JPH05341341 A JP H05341341A JP 4171948 A JP4171948 A JP 4171948A JP 17194892 A JP17194892 A JP 17194892A JP H05341341 A JPH05341341 A JP H05341341A
Authority
JP
Japan
Prior art keywords
optical waveguide
region
waveguide
harmonic
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4171948A
Other languages
Japanese (ja)
Inventor
Yukihiro Yamamoto
幸弘 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4171948A priority Critical patent/JPH05341341A/en
Priority to US08/047,183 priority patent/US5339190A/en
Publication of JPH05341341A publication Critical patent/JPH05341341A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3558Poled materials, e.g. with periodic poling; Fabrication of domain inverted structures, e.g. for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • G02F1/3775Non-linear optics for second-harmonic generation in an optical waveguide structure with a periodic structure, e.g. domain inversion, for quasi-phase-matching [QPM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure

Abstract

PURPOSE:To form the structure of an element which more efficiently generates second higher harmonics by using titanate potassium phosphate. CONSTITUTION:A conversion efficiency is improved by providing a region 2 where the directions of spontaneous polarizations are periodically inverted and a ridge type optical waveguide 5 guiding the second higher harmonics perpendicular to the region 2 on the Z surface of a titanate potassium phosphate single crystal substrate 1. Otherwise the conversion efficiency is improved by forming a channel waveguide 4 formed in the direction of the period in the region 2 where the directions of spontaneous polarizations are periodically inversed on the Z surface of the single crystal substrate and the ridge type part 5 guiding the second higher harmonics thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光情報処理、光計測分
野、医療分野における短波長の小型レーザ光源を実現す
るための光導波路型第二高調波発生素子(SHG素子)
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical waveguide type second harmonic generation element (SHG element) for realizing a compact laser light source of short wavelength in the fields of optical information processing, optical measurement and medical field.
It is about.

【0002】[0002]

【従来の技術】現在のところ、実用レベルで発振できる
半導体レーザの波長は赤外−赤色の範囲であり、より短
波長の緑色、青色を高出力で発振できる半導体レーザの
実現は難しい。そのため、赤外光を発振する半導体レー
ザ等の光から第二高調波を発生させて、短波長レーザを
得る方法が提案されている。
At present, the wavelength of a semiconductor laser capable of oscillating at a practical level is in the infrared-red range, and it is difficult to realize a semiconductor laser capable of oscillating shorter wavelengths of green and blue with high output. Therefore, a method of obtaining a short wavelength laser by generating a second harmonic from light of a semiconductor laser or the like that oscillates infrared light has been proposed.

【0003】第二高調波の発生に際して、基本波(周波
数ω)のパワーと第二高調波(周波数2ω)のパワーの
間には次の式で表される関係がある。 P(2ω)∝{S(n,n,m)}2 ×{P(ω)}2 /w (1) ここで、P(ω)、P(2ω)はそれぞれ基本波と第二
高調波のパワー、wは光導波路の幅、S(n,n,m)
は基本波と第二高調波の電磁界分布の重なりを表す空間
結合係数である。 {S(n,n,m)}=∫S 2 (n,ω)・f(m,2ω)dS (2) ここで、f(n,ω)は基本波の、f(m,2ω)は第
二高調波の界分布を、Sは横断面を示す。
When the second harmonic wave is generated, the power of the fundamental wave (frequency ω) and the power of the second harmonic wave (frequency 2ω) have a relationship expressed by the following equation. P (2ω) ∝ {S (n, n, m)} 2 × {P (ω)} 2 / w (1) where P (ω) and P (2ω) are the fundamental wave and the second harmonic, respectively. Power, w is the width of the optical waveguide, S (n, n, m)
Is a spatial coupling coefficient that represents the overlap of the electromagnetic field distributions of the fundamental wave and the second harmonic. {S (n, n, m )} = ∫ S f 2 (n, ω) · f (m, 2ω) dS (2) where, f (n, ω) is the fundamental wave, f (m, 2ω ) Indicates the field distribution of the second harmonic, and S indicates the cross section.

【0004】これまでに提案されたSHG素子は、ニオ
ブ酸リチウム(LiNbO3 )の単結晶を用いて作製さ
れている。その例として、擬似位相整合を利用するSH
G素子(E.J.Lim,M.M.Fejer,R.
L.Byer:Electron.Lett.,25,
174(1990))がある。ニオブ酸リチウムで作製
した素子の場合、ニオブ酸リチウムが光損傷に弱いの
で、発生したP(2ω)によって光導波路の屈折率が変
化し、(1)式において{P(ω)}2 の項を大きくし
てもP(2ω)は比例して大きく成らず、飽和してしま
う傾向がある。また、光導波路の屈折率は時間とともに
変化するので、P(2ω)を長時間安定に得ることも困
難である。
The SHG elements proposed so far are manufactured by using a single crystal of lithium niobate (LiNbO 3 ). As an example, SH using quasi phase matching
G element (EJ Lim, MM Fejer, R.M.
L. Byer: Electron. Lett. , 25,
174 (1990)). In the case of a device made of lithium niobate, since lithium niobate is weak against optical damage, the refractive index of the optical waveguide changes due to the generated P (2ω), and the term of {P (ω)} 2 in the equation (1). If P is increased, P (2ω) does not increase proportionally and tends to be saturated. Further, since the refractive index of the optical waveguide changes with time, it is difficult to obtain P (2ω) stably for a long time.

【0005】ニオブ酸リチウムを用いたSHG素子の欠
点を改善するために、ニオブ酸リチウムより2桁以上光
損傷に強いとされているKTiOPO4 を用いたSHG
素子として図2に示す構造の物が提案されている(C.
J.van der Poel,J.D.Bierle
in and J.B.Brown,Appl.Phy
s.Lett.57,2074(1990))。図2の
51はKTiOPO4単結晶のZ板、52はRbイオン
交換導波路である。52のRbイオン交換導波路は、作
製する際、Baイオンを添加すると導波路部分の自発分
極の向きがバルクに対して反転し、擬似位相整合によっ
てSHGが得られる。しかしながら、この構造は、光導
波路が途切れた構造に成っているため、光が導波路の形
成されている部分から、次の導波路の形成されている部
分に伝搬する間に、導波路の形成されていない部分を通
ることとなる。バルク部分では、光の閉じこめ効果がな
くなるため、入射ビーム、発生した第二高調波ビームと
もに、広がってしまう。すなわち、(1)式のP(ω)
は光が進むにつれて減衰し、wは52で示される導波路
幅より実際には大きな値をとる。従って、P(2ω)と
して計算値から予想されるだけのパワーを得ることがで
きないという問題があった。
In order to improve the drawbacks of the SHG element using lithium niobate, SHG using KTiOPO 4 which is said to be more resistant to optical damage than lithium niobate by two digits or more.
An element having the structure shown in FIG. 2 has been proposed (C.
J. van der Poel, J.M. D. Bierle
in and J. B. Brown, Appl. Phy
s. Lett. 57, 2074 (1990)). In FIG. 2, 51 is a Z plate of KTiOPO 4 single crystal, and 52 is an Rb ion exchange waveguide. When the Ba ion is added to the Rb ion-exchanged waveguide of No. 52, the direction of spontaneous polarization of the waveguide portion is inverted with respect to the bulk when Ba ions are added, and SHG is obtained by quasi-phase matching. However, since this structure has a structure in which the optical waveguide is interrupted, while the light is propagated from the part where the waveguide is formed to the part where the next waveguide is formed, the formation of the waveguide is formed. It will pass through the part that is not done. In the bulk portion, the effect of confining light disappears, so that both the incident beam and the generated second harmonic beam spread. That is, P (ω) in the equation (1)
Is attenuated as the light travels, and w is actually larger than the waveguide width indicated by 52. Therefore, there is a problem that it is not possible to obtain the power expected from the calculated value as P (2ω).

【0006】そこで本発明者は、KTiOPO4 の単結
晶基板のZ面上に、周期的に自発分極の向きの反転した
領域と、その領域上にあって周期の方向に光が伝搬する
連続したのチャンネル導波路を有することを特徴とする
導波路型波長変換素子により光の閉じこめ効果を増大さ
せた(特願平4−34506号)。
Therefore, the present inventor has found that a region in which the direction of spontaneous polarization is periodically inverted on the Z plane of a single crystal substrate of KTiOPO 4 and a continuous region in which light propagates in the direction of the period. The optical confinement effect is increased by the waveguide type wavelength conversion element characterized by having the channel waveguide of (Japanese Patent Application No. 4-34506).

【0007】[0007]

【発明が解決しようとする課題】この発明は、より効率
よく第二高調波を発生させる素子の構造を作製すること
を目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to fabricate a structure of an element which produces a second harmonic more efficiently.

【0008】[0008]

【課題を解決するための手段】本発明は、光損傷に強い
KTiOPO4 単結晶基板のZ面上に、自発分極を反転
させた領域に直角に第二次高調波を導く光導波路部分よ
り屈折率が小さく基板より屈折率の大きいリッジ型光導
波路を有すること、あるいは、周期的に自分分極の向き
の反転した領域と、その領域上にあって周期の方向に光
が伝搬する連続した第一のチャンネル導波路を有し、そ
の領域に平行して第二次高調波を導く光導波路部分より
屈折率が小さく基板より屈折率の大きいリッジ型光導波
路を有することを特徴とするSHG素子である。
According to the present invention, an optical waveguide portion that guides a second harmonic wave at right angles to a region in which spontaneous polarization is inverted is formed on a Z plane of a KTiOPO 4 single crystal substrate which is resistant to optical damage. It has a ridge-type optical waveguide with a small refractive index and a larger refractive index than the substrate, or it has a region in which the direction of its own polarization is periodically inverted and a continuous first region on which the light propagates in the direction of the period. The SHG element is characterized by having a ridge-type optical waveguide having a channel waveguide of, and a refractive index smaller than that of the optical waveguide portion that guides the second harmonic in parallel to the region, and a refractive index larger than that of the substrate. ..

【0009】[0009]

【作用】本発明においては、リッジ型の部分を装荷する
ことにより、(2)式の積分値{S(n,n,m)}の
増大を図ることにより変換効率の向上を図ったものであ
る。図4に示すように屈折率変化をもたせることによっ
て、リッジ型の部分により、図3に示すように、基本波
fωの界分布は基板中にほぼ閉じこめられるが、光調波
f2ωは基板とリッジ層とにまたがって伝搬するため、
界の打ち消しが小さくなり、S(n,n,m)が大きく
なって、変換効率が増大する。
In the present invention, the conversion efficiency is improved by loading the ridge type portion to increase the integral value {S (n, n, m)} of the equation (2). is there. By making the refractive index change as shown in FIG. 4, the field distribution of the fundamental wave fω is almost confined in the substrate by the ridge type portion as shown in FIG. Because it propagates across layers,
The field cancellation becomes small, S (n, n, m) becomes large, and the conversion efficiency increases.

【0010】[0010]

【実施例】本発明による実施例を図1により説明する。
図1において、1はKTiOPO4 の単結晶のZ板であ
る。この単結晶のZ面に2に示す自発分極の反転した領
域が形成されている。KTiOPO4 単結晶には、半導
体レーザ3の出力光が光導波路に入るように接続されて
いる。半導体レーザからの出力光は、KTiOPO4
板上に形成された光導波路内で、Z方向に平行な電界成
分をもつように結合すると、KTiOPO4 の最大の非
線形光学定数r33=14×10-12 m/Vを利用するこ
とができる。今、半導体レーザから光導波路の中に、基
本波として850nmの波長の光を入れるとすると、反
転周期は一次の擬似位相接合の場合3−5μmである。
光導波路内で発生する第二高調波は、結晶の端面から放
射され、レンズ等で集光して利用する。
Embodiment An embodiment according to the present invention will be described with reference to FIG.
In FIG. 1, reference numeral 1 is a Z plate which is a single crystal of KTiOPO 4 . On the Z-plane of this single crystal, a region in which the spontaneous polarization shown in 2 is inverted is formed. The KTiOPO 4 single crystal is connected so that the output light of the semiconductor laser 3 enters the optical waveguide. When the output light from the semiconductor laser is coupled so as to have an electric field component parallel to the Z direction in the optical waveguide formed on the KTiOPO 4 substrate, the maximum nonlinear optical constant r 33 = 14 × 10 − of KTiOPO 4 is obtained. 12 m / V is available. Now, assuming that light having a wavelength of 850 nm is introduced as a fundamental wave from the semiconductor laser into the optical waveguide, the inversion period is 3-5 μm in the case of the first-order quasi-phase junction.
The second harmonic generated in the optical waveguide is radiated from the end face of the crystal and is condensed and used by a lens or the like.

【0011】自発分極の反転した領域2は次のようにし
て作製することができる。まず、自発分極の向きを反転
させたい以外の領域をフォトリソグラフィの技術を利用
してTi膜で覆う。その後、Ba(NO3 2 とRbN
3 の混合融液中でKTiOPO4 を熱処理するとTi
膜の付いていない部分についてK+ イオンとRb+ イオ
ンの交換が行われ、自発分極の反転した領域が形成され
る。イオン交換後、Ti膜をエッチングで取り除く。
The region 2 in which the spontaneous polarization is inverted can be manufactured as follows. First, a region other than the region in which the direction of spontaneous polarization is not desired to be reversed is covered with a Ti film by using a photolithography technique. After that, Ba (NO 3 ) 2 and RbN
When KTiOPO 4 is heat-treated in a mixed melt of O 3 , Ti
K + ions and Rb + ions are exchanged in the part without the film, and a region in which the spontaneous polarization is inverted is formed. After the ion exchange, the Ti film is removed by etching.

【0012】リッジ型光導波路を作る場合は、リッジ層
は、フォトリソにより自発分極したラインと直角にレジ
ストの穴空けを行い、そこへ、RFスパッタ等によりS
iO2 とTa2 5 の混合物等で屈折率を調節した薄膜
を付け、レジストを除去して作製し、図1(a)に示す
ような構造を作製する。
When forming a ridge type optical waveguide, the ridge layer is formed with a hole in the resist at a right angle to a line which is spontaneously polarized by photolithography, and then S is formed by RF sputtering or the like.
A thin film whose refractive index is adjusted with a mixture of iO 2 and Ta 2 O 5 or the like is attached, the resist is removed, and the structure is formed to form a structure as shown in FIG.

【0013】光導波路を基板内に作製するときは、自発
分極を上記のように反転させた後、次のように処理す
る。光導波路は、自発分極の向きの反転した領域と同
様、イオン交換により作製する。最初に光導波路を形成
する領域以外をTi膜で覆う。次に、RbNO3 とTl
NO3 の混合融液中で熱処理を行う。この熱処理により
チャンネル導波路ができる。そこへ、さらに、RFスパ
ッタ等によりSiO2 とTa2 5 の混合物等で屈折率
を調節した薄膜を付け、Ti膜をエッチングで取り除
く。これにより、図1(b)に示すような構造を作製す
る。
When the optical waveguide is formed in the substrate, the spontaneous polarization is inverted as described above, and then the following process is performed. The optical waveguide is produced by ion exchange, like the region in which the direction of spontaneous polarization is reversed. First, the Ti film is covered except for the region where the optical waveguide is formed. Next, RbNO 3 and Tl
Heat treatment is performed in a mixed melt of NO 3 . A channel waveguide is formed by this heat treatment. Further, a thin film having a refractive index adjusted with a mixture of SiO 2 and Ta 2 O 5 or the like is attached thereto by RF sputtering or the like, and the Ti film is removed by etching. As a result, a structure as shown in FIG. 1 (b) is manufactured.

【0014】[0014]

【発明の効果】上述したように、本発明の素子によれ
ば、赤外−赤色の波長の光を発振する半導体のレーザな
どの光源から第二高調波を発生させることによって、高
出力で安定した短波長のレーザ光を得ることができる。
As described above, according to the element of the present invention, a second harmonic wave is generated from a light source such as a semiconductor laser that oscillates light having an infrared-red wavelength, thereby stabilizing the output at a high output. It is possible to obtain a laser beam having a short wavelength.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は、本発明の実施例の光導波路幅にリッ
ジ層を装荷したSHG素子の概略図、(b)は、本発明
の実施例のチャンネル導波路上に、さらにリッジ層を装
荷したSHG素子の概略図である。
1A is a schematic view of an SHG element in which a ridge layer is loaded in an optical waveguide width according to an embodiment of the present invention, FIG. 1B is a channel waveguide according to an embodiment of the present invention, and a ridge layer is further provided. It is the schematic of the SHG element which loaded.

【図2】KTiOPO4 結晶を用いた従来のSHG素子
の概略図である。
FIG. 2 is a schematic view of a conventional SHG device using a KTiOPO 4 crystal.

【図3】本発明の素子における光界分布を示す図であ
る。
FIG. 3 is a diagram showing a light field distribution in the device of the present invention.

【図4】基板からリッジ層への屈折率変化を示す図であ
る。
FIG. 4 is a diagram showing a change in refractive index from a substrate to a ridge layer.

【符号の説明】[Explanation of symbols]

1 KTiOPO4 のZ板 2 自発分極の反転した領域 3 半導体レーザ 4 チャンネル導波路 5 リッジ層 81 リッジ層 82 光導波路1 Z-plate of KTiOPO 4 2 Region where spontaneous polarization is inverted 3 Semiconductor laser 4 Channel waveguide 5 Ridge layer 81 Ridge layer 82 Optical waveguide

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 KTiOPO4 の単結晶基板のZ面上
に、周期的に自発分極の向きの反転した領域と、その領
域に直角に第二次高調波を導くリッジ型の光導波路を有
することを特徴とする光導波路型第二高調波発生素子。
1. A region in which the direction of spontaneous polarization is periodically inverted and a ridge-type optical waveguide that guides a second harmonic to the region on the Z plane of a KTiOPO 4 single crystal substrate. An optical waveguide type second harmonic generation element characterized by:
【請求項2】 KTiOPO4 の単結晶基板のZ面上
に、周期的に自発分極の向きの反転した領域と、その領
域上にあって周期の方向に光が伝搬する連続した第一の
チャンネル導波路を有し、その領域に平行して第二次高
調波を導くリッジ型の光導波路を有することを特徴とす
る光導波路型第二高調波発生素子。
2. A region in which the direction of spontaneous polarization is periodically inverted on the Z plane of a KTiOPO 4 single crystal substrate, and a continuous first channel on that region in which light propagates in the direction of the period. An optical waveguide type second harmonic generation element having a waveguide and having a ridge type optical waveguide for guiding a second harmonic in parallel to the region.
JP4171948A 1992-04-16 1992-06-05 Optical waveguide type second higher harmonic generating element Withdrawn JPH05341341A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4171948A JPH05341341A (en) 1992-06-05 1992-06-05 Optical waveguide type second higher harmonic generating element
US08/047,183 US5339190A (en) 1992-04-16 1993-04-16 Optical waveguide second harmonic generating element and method of making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4171948A JPH05341341A (en) 1992-06-05 1992-06-05 Optical waveguide type second higher harmonic generating element

Publications (1)

Publication Number Publication Date
JPH05341341A true JPH05341341A (en) 1993-12-24

Family

ID=15932767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4171948A Withdrawn JPH05341341A (en) 1992-04-16 1992-06-05 Optical waveguide type second higher harmonic generating element

Country Status (1)

Country Link
JP (1) JPH05341341A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696770B1 (en) * 2001-06-30 2007-03-19 주식회사 하이닉스반도체 Prefetch device for high speed DRAM

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100696770B1 (en) * 2001-06-30 2007-03-19 주식회사 하이닉스반도체 Prefetch device for high speed DRAM

Similar Documents

Publication Publication Date Title
US5640405A (en) Multi quasi phase matched interactions in a non-linear crystal
US20100208757A1 (en) Method of ferroelectronic domain inversion and its applications
JPH05333395A (en) Optical wavelength conversion device
JP2685969B2 (en) Second harmonic generator
JP3059080B2 (en) Method for manufacturing domain-inverted region, optical wavelength conversion element and short wavelength light source using the same
JPH0792513A (en) Wavelength conversion element and its use method
JP4646333B2 (en) Harmonic generator
JP3332363B2 (en) Method of manufacturing domain-inverted region, optical wavelength conversion element using the same, and method of manufacturing the same
JP2822778B2 (en) Wavelength conversion element
JP3296500B2 (en) Wavelength conversion element and method of manufacturing the same
JPH05341341A (en) Optical waveguide type second higher harmonic generating element
US5339190A (en) Optical waveguide second harmonic generating element and method of making the same
JP2718259B2 (en) Short wavelength laser light source
JP2643735B2 (en) Wavelength conversion element
JPH0566440A (en) Laser light source
JP3049986B2 (en) Optical wavelength conversion element
WO2002103450A1 (en) Device for wavelength conversion and optical computing
JPH04254835A (en) Light wavelength conversion element and laser beam source utilizing the element
JP3052693B2 (en) Optical wavelength conversion element, method of manufacturing the same, short wavelength coherent light generator using optical wavelength conversion element, and method of manufacturing optical wavelength conversion element
JPH06273816A (en) Optical waveguide type second higher harmonic generating element
JPH05204009A (en) Optical waveguide type second higher harmonic generating element
JP2982366B2 (en) Waveguide type wavelength conversion element
JPH06265951A (en) Optical wavelength converter
JP3006217B2 (en) Optical wavelength conversion element and method of manufacturing the same
JPH08304862A (en) Optical device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831