JPH07270481A - Fault point locating method - Google Patents

Fault point locating method

Info

Publication number
JPH07270481A
JPH07270481A JP6061261A JP6126194A JPH07270481A JP H07270481 A JPH07270481 A JP H07270481A JP 6061261 A JP6061261 A JP 6061261A JP 6126194 A JP6126194 A JP 6126194A JP H07270481 A JPH07270481 A JP H07270481A
Authority
JP
Japan
Prior art keywords
fault
current
vector
terminal
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6061261A
Other languages
Japanese (ja)
Inventor
Tokuo Emura
徳男 江村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP6061261A priority Critical patent/JPH07270481A/en
Publication of JPH07270481A publication Critical patent/JPH07270481A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Abstract

PURPOSE:To locate all types of fault mode and perform arithmetic operation without any need of synchronization at both line ends by setting the route length of a double terminal single transmission line and the impedance matrix thereof per unit length, and then measuring each phase voltage and current at the start and final ends of the line. CONSTITUTION:Double terminal single transmission line route length and the impedance matrix thereof per unit length are set to measure each phase voltage and current at the start and final ends thereof. Then, a scalar volume Im<V1, I1> and Im<ZI1, I1> are calculated on the basis of a voltage vector V1=(V1a, V1b, V1c)' and a current vector I1=(I1a, I1b, I1c)' appearing at the start end upon occurrence of a fault, where Im stands for an imaginary number, <> for an scalar product and ()' for vector inversion. Furthermore, a scalar volume Im<V2, I2> and Im<ZI2, I2> is calculated on the basis of a voltage vector V2=(V2a, V2b, V2c)' and a current vector I2= (I2a, I2b, I2c)' appearing at the final end upon occurrence of a fault, thereby locating a fault point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、2端子単回線送電線に
おけるいかなる故障に対しても適用可能な故障点標定方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fault point locating method applicable to any fault in a two-terminal single-line power transmission line.

【0002】[0002]

【従来の技術】従来から2端子単回線送電線における短
絡故障点を標定する方式として、いわゆる44Sリレー
方式を利用していた。この方式は、送電端において、線
間電圧と線間電流とを測定しておき、故障時における線
間電圧を線間電流で除算することにより、送電端から故
障点までのインピーダンスを求め、単位長当たりのイン
ピーダンスで割って故障点までの距離を求める方式であ
り、例えば特開平4−36669号公報に「従来の技
術」として詳しく紹介されている。
2. Description of the Related Art Conventionally, a so-called 44S relay system has been used as a system for locating a short-circuit fault point in a two-terminal single-line power transmission line. In this method, the line voltage and line current are measured at the power transmission end, and the line voltage at the time of failure is divided by the line current to obtain the impedance from the power transmission end to the failure point. This is a method of obtaining the distance to the failure point by dividing by the impedance per length, which is described in detail in, for example, Japanese Patent Application Laid-Open No. 4-36669 as "prior art".

【0003】a相−b相間の短絡時の結果を述べると、
送電端でのa相電圧をVa ,b相電圧をVb 、a相電流
をIa ,b相電流をIb とすると、送電端から故障点ま
での距離xは、 Im〔(Va −Vb )/(Ia −Ib )〕=xIm〔Z1 〕 (1) により求められる。ここに、Imは虚数部分を表し、Z1
は単位長当たりの正相インピーダンスである。
The results of a short circuit between the a-phase and the b-phase are as follows:
If the a-phase voltage at the power transmission end is V a , the b-phase voltage is V b , the a-phase current is I a , and the b-phase current is I b , the distance x from the power transmission end to the failure point is Im [(V a -V b) obtained by / (I a -I b)] = XIM [Z 1] (1). Where Im represents the imaginary part and Z 1
Is the positive phase impedance per unit length.

【0004】また、2端子単回線送電線における地絡故
障点を標定する方式として、地絡距離リレー44G形の
故障点標定方式が利用されている。この方式は、送電端
において、相電圧と相電流とを測定し、地絡電流の位相
と送電端における零相電流I 0 の位相を等しいと仮定
し、故障点までの距離xを次の式 Im〔Va 0 * 〕=xIm〔{Z1 a +(Z0 −Z1 )I0 }I0 * 〕 (2) により求める方式であり、例えば特開平4−31967
4号公報に「従来の技術」として詳しく紹介されてい
る。なお、*は複素共役を表し、Z0 は単位長当たりの
零相インピーダンスである。
Also, due to a ground fault in a two-terminal single-line transmission line
The ground fault distance relay 44G
A fault location method is used. This method is
, The phase voltage and the phase current are measured, and the phase of the ground fault current is measured.
And zero-phase current I at the transmission end 0Assume the phases of are equal
Then, the distance x to the failure point is calculated by the following expression Im [VaI0 *] = XIm [{Z1Ia+ (Z0-Z1) I0} I0 *[2] is a method for obtaining it. For example, Japanese Patent Laid-Open No. 4-31967
It was introduced in detail in "No. 4" as "conventional technology".
It In addition, * represents a complex conjugate, and Z0Is per unit length
Zero-phase impedance.

【0005】[0005]

【発明が解決しようとする課題】前記のように、短絡故
障点の場合と地絡故障の場合とで適用する式が異なるた
め、故障点を計算するのに、まずその前提として故障様
相を識別する必要がある。そこで、本発明は、2端子単
回線送電線における故障点標定において、上述の技術的
課題を解決し、自端とともに他端の情報を利用するが、
すべての故障様相に対して標定可能で、かつ、両端の同
期をとることなく演算することができる故障点標定方法
を提供することである。
As described above, since the equations to be applied are different between the case of the short-circuit fault point and the case of the ground fault, the fault aspect is first identified as the premise for calculating the fault point. There is a need to. Therefore, the present invention solves the above-mentioned technical problem and utilizes the information of the other end together with the own end in the fault location in the two-terminal single-line power transmission line.
It is an object of the present invention to provide a fault point locating method capable of locating all failure patterns and capable of performing calculations without synchronizing both ends.

【0006】[0006]

【課題を解決するための手段】前記の目的を達成するた
めの請求項1記載の故障点標定方法は、2端子単回線送
電線の線路長d、単位長当たりのインピーダンス行列Z
を整定し、自端における各相電圧V1a,V1b,V1c、各
相電流I1a,I1b,I1c及び他端における各相電圧
2a,V2b,V2c、各相電流I2a,I2b,I2cを測定
し、故障時の自端における電圧ベクトルV1 =(V1a
1b,V1c)′及び電流ベクトルI1 =(I1a,I1b
1c)′に基づいて、スカラー量であるIm<V1 ,I1
>,Im<ZI1 ,I1 >(Imは虚数部分、<>は内積、
( )′はベクトルの転置を表わす。)を算出し、故障
時の他端における電圧ベクトルV2 =(V2a,V2b,V
2c)′及び電流ベクトルI2 =(I2a,I2b,I2c)′
に基づいて、スカラー量であるIm<V2 ,I2 >,Im<
ZI2 ,I2 >を算出し、前記の算出結果に基づいて、
故障の種類に関係なく2端子単回線送電線における故障
点を標定する方法である。
A fault location method according to claim 1 for achieving the above object is a line length d of a two-terminal single-line power transmission line, and an impedance matrix Z per unit length.
By setting each phase voltage V 1a , V 1b , V 1c at each end, each phase current I 1a , I 1b , I 1c and each phase voltage V 2a , V 2b , V 2c , each phase current I at the other end. 2a , I 2b , I 2c are measured, and a voltage vector V 1 = (V 1a ,
V 1b , V 1c ) ′ and current vector I 1 = (I 1a , I 1b ,
Based on I 1c ) ′, a scalar quantity Im <V 1 , I 1
>, Im <ZI 1 , I 1 > (Im is an imaginary part, <> is an inner product,
() 'Represents the transposition of the vector. ) Is calculated, and the voltage vector V 2 = (V 2a , V 2b , V at the other end at the time of failure)
2c ) ′ and current vector I 2 = (I 2a , I 2b , I 2c ) ′
Based on, the scalar quantities Im <V 2 , I 2 >, Im <
ZI 2 , I 2 > is calculated, and based on the above calculation result,
This is a method of locating a failure point in a two-terminal single-line power transmission line regardless of the type of failure.

【0007】[0007]

【作用】図1は本発明が適用される2端子単回線送電線
の回路図であり、各端をT1 ,T2 とし、端子T1 から
1 ,端子T2 からd2 (d1 +d2 =d)までの点を
任意の中間点bとし、この点から距離xの位置で故障が
生じているものとする。故障点の各相電圧ベクトル(以
下「ベクトル」という言葉は省略する。)を (Vfa,Vfb,Vfc)′=Vf と書き、故障点の各相電流を (Ifa,Ifb,Ifc)′=If と書く。
[Action] Figure 1 is a circuit diagram of a two-terminal, single line transmission line to which the present invention is applied, each end as T 1, T 2, d 1 from the terminal T 1, d 2 (d 1 from the terminal T 2 It is assumed that a point up to + d 2 = d) is an arbitrary intermediate point b, and a failure occurs at a position at a distance x from this point. Each phase voltage vector at the fault point (the term “vector” is omitted hereinafter) is written as (V fa , V fb , V fc ) ′ = V f, and each phase current at the fault point is (I fa , I fb). , I fc ) ′ = I f .

【0008】端子T1 での電圧を (V1a,V1b,V1c)′=V1 端子T2 での電圧を (V2a,V2b,V2c)′=V2 端子T1 での電流を (I1a,I1b,I1c)′=I1 端子T2 での電流を (I2a,I2b,I2c)′=I2 送電線の単位長当たりのインピーダンス行列をThe voltage at the terminal T 1 is (V 1a , V 1b , V 1c ) ′ = V 1 The voltage at the terminal T 2 is (V 2a , V 2b , V 2c ) ′ = V 2 At the terminal T 1 The current is (I 1a , I 1b , I 1c ) ′ = the current at the I 1 terminal T 2 is (I 2a , I 2b , I 2c ) ′ = The impedance matrix per unit length of the I 2 transmission line

【0009】[0009]

【数1】 [Equation 1]

【0010】と書く。以上より次の関係式が得られる。 Vf =V1 −(d1 +x)ZI1 (3) Vf =V2 −(d2 −x)ZI2 (4) I1 +I2 =If (5) ここで、2つのベクトルA=(A1 ,A2 ,A3 )′,
B=(B1 ,B2 ,B 3 )′の内積<A,B>を, <A,B>=B1 * 1 +B2 * 2 +B3 * 3
(*は複素共役) で定義する。この内積については、加法則 <A,(B+C)>=<A,B>+<A,C> が成り立つ。(3),(4) 式より、 <Vf ,I1 >=<V1 ,I1 >−(d1 +x)<ZI
1 ,I1 > <Vf ,I2 >=<V2 ,I2 >−(d2 −x)<ZI
2 ,I2 > が得られ、これら2つの式を足すと、 <Vf ,If >=<V1 ,I1 >+<V2 ,I2 > −〔d1 <ZI1 ,I1 >+d2 <ZI2 ,I2 >〕 −x〔<ZI1 ,I1 >−<ZI2 ,I2 >〕 (6) が得られる。
Write as From the above, the following relational expression is obtained. Vf= V1-(D1+ X) ZI1 (3) Vf= V2-(D2-X) ZI2 (4) I1+ I2= If (5) Here, two vectors A = (A1, A2, A3) ′,
B = (B1, B2, B 3) ′ Inner product <A, B>, <A, B> = B1 *A1+ B2 *A2+ B3 *A3 
(* Is a complex conjugate). For this inner product, the addition rule <A, (B + C)> = <A, B> + <A, C> holds. From equations (3) and (4), <Vf, I1> = <V1, I1>-(D1+ X) <ZI
1, I1> <Vf, I2> = <V2, I2>-(D2-X) <ZI
2, I2> Is obtained, and when these two expressions are added, <Vf, If> = <V1, I1> + <V2, I2>-[D1<ZI1, I1> + D2<ZI2, I2>]-X [<ZI1, I1>-<ZI2, I2>] (6) is obtained.

【0011】(6) 式の左辺は、内積の定義より、 <Vf ,If >=Ifa * fa+Ifb * fb+Ifc * fc (7) と書けるものである。故障点インピーダンスは抵抗分と
考えてよく、この場合は、<Vf ,If >はいかなる場
合でも実数となる。つまり、<Vf ,If >の虚数部は Im<Vf ,If >=0 (8) となる。この関係は、いかなる故障に対しても成立する
ことを、図2〜図6を用いて証明する。
The left side of the equation (6) can be written as <V f , I f > = I fa * V fa + I fb * V fb + I fc * V fc (7) from the definition of the inner product. The impedance at the fault point may be considered as a resistance component, and in this case, <V f , I f > is a real number in any case. In other words, the <V f, I f> the imaginary part of Im <V f, I f> = 0 (8). It will be proved by using FIGS. 2 to 6 that this relationship holds for any failure.

【0012】図2は、1線地絡の場合を示し、Vfa=I
fafa及びIfb=Ifc=0であるので、 <Vf ,If >=Ifa * fa+Ifb * fb+Ifc * fc =Ifa * fa=Ifa * fafa=Rfa|Ifa2 (実
数) となる。図3は、2線地絡の場合を示し、Vfa=Ifa
fa,Vfb=Ifbfb及びIfc=0であるので、 <Vf ,If >=Ifa * fa+Ifb * fb =Rfa|Ifa2 +Rfb|Ifb2 (実数) となる。図4は、3線地絡の場合を示し、Vfa=Ifa
fa,Vfb=Ifbfb,V fc=Ifcfcであるので、 <Vf ,If >=Ifa * fa+Ifb * fb+Ifc * fc =Rfa|Ifa2 +Rfb|Ifb2 +Rfc|Ifc
2 (実数) となる。図5は、2線短絡の場合を示し、Vfa=Vfn
fafa,Vfb=Vfn+Ifbfb,Ifa=−Ifb及びI
fc=0であるので、 <Vf ,If >=Ifa * fa+Ifb * fb =Rfa|Ifa2 +Rfb|Ifb2 +(Ifa *
fb * )Vfn =Rfa|Ifa2 +Rfb|Ifb2 (実数) となる。図6は、3線短絡の場合を示し、Vfa=Vfn
fafa,Vfb=Vfn+Ifbfb,Vfa=Vfn+Ifa
fa,Ifa+Ifb+Ifc=0であるので、 <Vf ,If >=Ifa * fa+Ifb * fb+Ifc * fc =Rfa|Ifa2 +Rfb|Ifb2 +Rfc|Ifc
2 (実数) となる。したがって、(8) 式が成立することが証明でき
た。
FIG. 2 shows the case of a one-line ground fault, and Vfa= I
faRfaAnd Ifb= Ifc= 0, so <Vf, If> = Ifa *Vfa+ Ifb *Vfb+ Ifc *Vfc = Ifa *Vfa= Ifa *IfaRfa= Rfa| Ifa2(Actually
Number). FIG. 3 shows a case of a two-wire ground fault, and Vfa= IfaR
fa, Vfb= IfbRfbAnd Ifc= 0, so <Vf, If> = Ifa *Vfa+ Ifb *Vfb = Rfa| Ifa2+ Rfb| Ifb2(Real number) FIG. 4 shows the case of a three-wire ground fault, Vfa= IfaR
fa, Vfb= IfbRfb, V fc= IfcRfcTherefore, <Vf, If> = Ifa *Vfa+ Ifb *Vfb+ Ifc *Vfc = Rfa| Ifa2+ Rfb| Ifb2+ Rfc| Ifc
2(Real number) FIG. 5 shows the case of 2-wire short circuit, Vfa= Vfn+
IfaRfa, Vfb= Vfn+ IfbRfb, Ifa= -IfbAnd I
fc= 0, so <Vf, If> = Ifa *Vfa+ Ifb *Vfb = Rfa| Ifa2+ Rfb| Ifb2+ (Ifa *+
Ifb *) Vfn = Rfa| Ifa2+ Rfb| Ifb2(Real number) FIG. 6 shows the case of 3-wire short circuit, Vfa= Vfn+
IfaRfa, Vfb= Vfn+ IfbRfb, Vfa= Vfn+ IfaR
fa, Ifa+ Ifb+ Ifc= 0, so <Vf, If> = Ifa *Vfa+ Ifb *Vfb+ Ifc *Vfc = Rfa| Ifa2+ Rfb| Ifb2+ Rfc| Ifc
2(Real number) Therefore, we can prove that Eq. (8) holds.
It was

【0013】(8) 式を考慮して、(6) 式の虚数部をとる
と、故障点までの距離xは、
Taking the imaginary part of Eq. (6) in consideration of Eq. (8), the distance x to the fault point is

【0014】[0014]

【数2】 [Equation 2]

【0015】で求められる。x≧0のときは、故障点は
b点より端子T2 側にあり、x≦0のときは、故障点は
b点より端子T1 側にある(図1参照)。(9) 式の Im<V1 ,I1 >=Im(I1a * 1a+I1b * 1b+I1c
* 1c) Im<V2 ,I2 >=Im(I2a * 2a+I2b * 2b+I2c
* 2c) はそれぞれ端子T1 ,T2 から流入する無効電力(実
数)を表わすものである。また、
Is calculated by When x ≧ 0, the failure point is on the terminal T 2 side from point b, and when x ≦ 0, the failure point is on the terminal T 1 side from point b (see FIG. 1). Im <V 1 , I 1 > = Im (I 1a * V 1a + I 1b * V 1b + I 1c in the equation (9).
* V 1c ) Im <V 2 , I 2 > = Im (I 2a * V 2a + I 2b * V 2b + I 2c
* V 2c ) represents the reactive power (real number) flowing from the terminals T 1 and T 2 , respectively. Also,

【0016】[0016]

【数3】 [Equation 3]

【0017】と変形でき、関係式 Z1 =Zs −Zm0 =Zs +2Zm を用いると、 Z0 −Z1 =3Zm となる。したがって、(10)式は、 Im<ZI1 ,I1 >=Im〔Z1 (|I1a2 +|I1b2 +|I1c2 )〕 +Im〔Z0 −Z1 〕3|I102 (11) となり、Im<ZI1 ,I1 >のすべての項はスカラー量
であることが分かる。同様に、 Im<ZI2 ,I2 >=Im〔Z1 (|I2a2 +|I2b2 +|I2c2 )〕 +Im〔Z0 −Z1 〕3|I202 (12) となり、Im<ZI2 ,I2 >のすべての項もスカラー量
で表される。したがって、各端子の測定量に基づくベク
トル計算の必要はなくなり、同期をとる必要はなくな
る。
When the relational expression Z 1 = Z s -Z m Z 0 = Z s + 2Z m is used, Z 0 -Z 1 = 3Z m . Therefore, the equation (10) is expressed by Im <ZI 1 , I 1 > = Im [Z 1 (| I 1a | 2 + | I 1b | 2 + | I 1c | 2 )] + Im [Z 0 −Z 1 ] 3 | I 10 | 2 (11), and it can be seen that all terms of Im <ZI 1 , I 1 > are scalar quantities. Similarly, Im <ZI 2, I 2 > = Im [Z 1 (| I 2a | 2 + | I 2b | 2 + | I 2c | 2) ] + Im [Z 0 -Z 1] 3 | I 20 | 2 (12), and all terms of Im <ZI 2 , I 2 > are also represented by scalar quantities. Therefore, it is not necessary to perform vector calculation based on the measured amount of each terminal, and synchronization is not necessary.

【0018】(9) 式で特にd1 =d2 =d/2とする
と、
If d 1 = d 2 = d / 2 in the equation (9),

【0019】[0019]

【数4】 [Equation 4]

【0020】となる。[0020]

【0021】[0021]

【実施例】以下、この発明の故障点標定方法を添付図面
に基いて詳細に説明する。なお、前述した図1と共通す
るものについて同じ符号を使用する。図7は2端子単回
線送電線、及びこの発明に係る故障点標定方法に適用さ
れる故障点算定装置を示す図であり、2端子単回線送電
線(以下2端子系と略称する)Lは、端子T1 、端子T
2 にそれぞれ抵抗により中性点接地された変圧器を有し
ている。故障点算定装置1は端子T1 側に配置されてい
るが、端子T2 側にも、電流、電圧を測定し、所定の演
算をする演算装置2が配置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The fault location method of the present invention will be described in detail below with reference to the accompanying drawings. Note that the same reference numerals are used for the same elements as those in FIG. 1 described above. FIG. 7 is a diagram showing a two-terminal single-line power transmission line and a failure point calculation device applied to the failure point locating method according to the present invention. A two-terminal single-line power transmission line (hereinafter abbreviated as a two-terminal system) L is , Terminal T 1 , terminal T
Each of 2 has a transformer that is grounded by a resistor. The failure point calculation device 1 is arranged on the terminal T 1 side, but the calculation device 2 for measuring a current and a voltage and performing a predetermined calculation is also arranged on the terminal T 2 side.

【0022】故障点算定装置1には、端子T1 側におけ
る回線Lのa相、b相及びc相に接続される変流器C
T、及び端子T1 側の母線に接続され、各相電圧を検出
する計器用変圧器PTが含まれている。故障点算定装置
1には、さらに、測定した各相電圧V1a,V1b,V1c
各相電流I1a,I1b,I1cをそれぞれ所定の比率で電圧
信号に変換する補助トランス11、補助トランス11で
変換された電圧信号を所定電気角(例えば30度)毎にサ
ンプリングするサンプルホールド回路12、A/D変換
器13、端子T2 における出力データを光、無線等を通
して受信する受信端末14、A/D変換器13により変
換されたディジタル値に基づいてスカラー量であるIm<
1 ,I1 >,Im<ZI1 ,I1 >を計算するCPU、
これらの量Im<V1 ,I1 >,Im<ZI1,I1 >及
び、受信端末14を通して読み取った端子T2 における
スカラー量であるIm<V2 ,I2 >,Im<ZI2 ,I2
>を格納するデータメモリ15、零相電圧・電流、正相
電圧・電流、逆相電圧・電流を監視して短絡故障や地絡
故障を検出する故障検出部16(例えば64リレーによ
り構成される)、並びに2端子系Lの単位長当たりのイ
ンピーダンス行列Zの値を整定値として格納している整
定値メモリ17が含まれている。
The fault point calculating device 1 includes a current transformer C connected to the a-phase, b-phase and c-phase of the line L on the terminal T 1 side.
It includes an instrument transformer PT which is connected to T and a bus on the terminal T 1 side and detects each phase voltage. The fault point calculating device 1 further includes measured phase voltages V 1a , V 1b , V 1c ,
Auxiliary transformer 11 for converting each phase current I 1a , I 1b , I 1c into a voltage signal at a predetermined ratio, and a sample hold for sampling the voltage signal converted by the auxiliary transformer 11 at every predetermined electrical angle (for example, 30 degrees) Implicit which is a scalar quantity based on the digital value converted by the circuit 12, the A / D converter 13, the receiving terminal 14 that receives the output data at the terminal T 2 through light, wireless, etc., and the A / D converter 13.
A CPU that calculates V 1 , I 1 >, Im <ZI 1 , I 1 >,
These quantities Im <V 1 , I 1 >, Im <ZI 1 , I 1 >, and Im <V 2 , I 2 >, Im <ZI 2 , which are scalar quantities at the terminal T 2 read through the receiving terminal 14. I 2
>, A data memory 15 for storing>, a zero-phase voltage / current, a positive-phase voltage / current, and a negative-phase voltage / current to detect a short-circuit fault or a ground fault. ), And a settling value memory 17 storing the values of the impedance matrix Z per unit length of the two-terminal system L as settling values.

【0023】表示部18は、CPUにより算出された故
障位置等の情報を表示するものである。また、端子T2
には、端子T2 における2端子系Lのa相、b相及びc
相に接続される変流器CT、及び端子T2 側の母線に接
続され各相電圧を検出する計器用変圧器PT、上記変流
器CT及び計器用変圧器PTにより測定された各相電圧
・電流に基づいてスカラー量であるIm<V2 ,I2 >,
Im<ZI2 ,I2 >を演算し、無線、光等を通して送信
する演算装置2が設けられている。
The display unit 18 displays information such as a failure position calculated by the CPU. Also, the terminal T 2
Are the phases a, b and c of the two-terminal system L at the terminal T 2 .
Current transformer CT connected to the phase, and transformer PT for measuring the voltage of each phase connected to the bus on the terminal T 2 side, voltage of each phase measured by the current transformer CT and the transformer PT for meter .Im <V 2 , I 2 >, which is a scalar quantity based on the current,
An arithmetic unit 2 for arithmetically operating Im <ZI 2 , I 2 > and transmitting it via radio, light, etc. is provided.

【0024】演算装置2には、故障点算定装置1と同様
各相電圧・電流のデータをサンプリングするサンプルホ
ールド回路とデータをディジタル変換するためのA/D
変換器とが内蔵されているが、このサンプルホールド回
路及び故障点算定装置1のサンプルホールド回路12の
間には、特にサンプリング同期は採られていないことが
特徴である。
The arithmetic unit 2 has a sample hold circuit for sampling the data of each phase voltage / current and an A / D for digitally converting the data, like the fault point calculating unit 1.
Although a converter is built in, the sampling hold circuit and the sample hold circuit 12 of the failure point calculation device 1 are not characterized in that sampling synchronization is provided.

【0025】このことを詳しく説明すると、従来では、
演算装置2と故障点算定装置1との間のデータ伝送にあ
たっては、例えば、データ伝送中に生じるサンプリング
時間差を正確に測定し補正するいわゆるSP同期制御技
術(両局間で信号を往復させ、その往復にかかった時間
を測定してサンプリング時間差を求める技術。三菱電機
技報Vol.63,No.8,1989,p.p.27-31 参照)を採用しなけ
れば、データのサンプリング同期を正確にとることがで
きなかった。ところが、本発明では、スカラー量である
Im<V1 ,I1 >,Im<ZI1 ,I1 >,Im<V2 ,I
2 >,Im<ZI 2 ,I2 >を要素とする演算を行えばよ
いので、データのサンプリング同期を正確にとる必要は
なく、データを単に送信すればよいという利点がある。
Explaining this in detail, in the conventional case,
For data transmission between the computing device 2 and the fault point calculation device 1.
For example, the sampling that occurs during data transmission.
A so-called SP synchronization control technique that accurately measures and corrects the time difference
Surgery (reciprocating the signal between both stations, the time it took to make the round trip)
A technique to measure the difference in sampling time and obtain the sampling time difference. Mitsubishi Electric
Technical report Vol.63, No.8, 1989, p.p.27-31)
If so, it is possible to accurately synchronize sampling of data.
Didn't come However, in the present invention, it is a scalar quantity.
Im <V1, I1>, Im <ZI1, I1>, Im <V2, I
2>, Im <ZI 2, I2Do an operation with> as an element
Therefore, it is not necessary to accurately synchronize the sampling of data.
Instead, it has the advantage of simply sending the data.

【0026】上記故障点算定装置1の動作は次のとおり
である。故障検出部16が地絡、短絡、断線のいずれか
の故障を検出すると、前記CPUは、故障検出部16か
らの故障点算出指令信号(故障の種類に関係ない)に応
じて、整定値メモリ17に格納しているインピーダンス
Zと、データメモリ15に格納されているIm<V1 ,I
1 >,Im<ZI1 ,I1 >,Im<V2 ,I2 >,Im<Z
2 ,I2 >を要素として前出(13)式の演算を行って中
間点bから故障点までの距離xを算出する。
The operation of the failure point calculation device 1 is as follows. When the failure detection unit 16 detects any one of a ground fault, a short circuit, and a disconnection, the CPU responds to a failure point calculation command signal (regardless of the type of failure) from the failure detection unit 16 and sets a set value memory. Impedance Z stored in 17 and Im <V 1 , I stored in the data memory 15
1 >, Im <ZI 1 , I 1 >, Im <V 2 , I 2 >, Im <Z
The calculation of the equation (13) is performed using I 2 and I 2 > as elements to calculate the distance x from the intermediate point b to the failure point.

【0027】なお、本発明は上記の実施例に限定される
ものではなく、例えば端子T1 、端子T2 にそれぞれ演
算装置を設置してデータの伝送をさせ、端子T1 からも
端子T2 からも離れた場所に故障点算定装置1を設置す
ることも可能である。その他本発明の要旨を変更しない
範囲内において、種々の変更を施すことが可能である。
The present invention is not limited to the above-described embodiment. For example, arithmetic devices are installed at the terminals T 1 and T 2 , respectively, to transmit data, and from the terminal T 1 to the terminal T 2. It is also possible to install the failure point calculation device 1 at a place far away from. Other various modifications can be made without departing from the scope of the present invention.

【0028】[0028]

【発明の効果】以上のように本発明の故障点標定方法に
よれば、自端及び他端での電圧、電流情報を必要とする
が、各端で同期をとる必要はなく、自端及び他端で測定
できるスカラー量のみを用いて、故障の種類に関係なく
故障点を標定することができる。したがって、故障点の
特定が可能になり、少ない労力で故障点の探索作業を行
うことができる。
As described above, according to the fault point locating method of the present invention, the voltage and current information at the self end and the other end is required, but it is not necessary to synchronize at each end, and the self end and Only the scalar quantity that can be measured at the other end can be used to locate the failure point regardless of the failure type. Therefore, the failure point can be specified, and the work of searching for the failure point can be performed with a small amount of labor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用を説明するための2端子単回線送
電線の回路図である。
FIG. 1 is a circuit diagram of a two-terminal single-line power transmission line for explaining the operation of the present invention.

【図2】1線地絡の場合に、Im<Vf ,If >=0とな
ることを証明するための図である。
FIG. 2 is a diagram for proving that Im <V f , I f > = 0 in the case of a one-line ground fault.

【図3】2線地絡の場合に、Im<Vf ,If >=0とな
ることを証明するための図である。
FIG. 3 is a diagram for proving that Im <V f , I f > = 0 in the case of a two-wire ground fault.

【図4】3線地絡の場合に、Im<Vf ,If >=0とな
ることを証明するための図である。
FIG. 4 is a diagram for proving that Im <V f , I f > = 0 in the case of a three-wire ground fault.

【図5】2線短絡の場合に、Im<Vf ,If >=0とな
ることを証明するための図である。
FIG. 5 is a diagram for proving that Im <V f , I f > = 0 in the case of a two-wire short circuit.

【図6】3線短絡の場合に、Im<Vf ,If >=0とな
ることを証明するための図である。
FIG. 6 is a diagram for proving that Im <V f , I f > = 0 in the case of a three-wire short circuit.

【図7】2端子単回線送電線、及びこの発明に係る故障
点標定方法に適用される故障点算定装置を示す図であ
る。
FIG. 7 is a diagram showing a two-terminal single-line power transmission line and a fault point calculating device applied to the fault point locating method according to the present invention.

【符号の説明】[Explanation of symbols]

1 故障点算定装置 2 演算装置 L 2端子単回線送電線 1 Failure point calculation device 2 Computing device L 2 terminal single line transmission line

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】2端子単回線送電線の線路長d、単位長当
たりのインピーダンス行列Zを整定し、 自端における各相電圧V1a,V1b,V1c、各相電流
1a,I1b,I1c及び他端における各相電圧V2a
2b,V2c、各相電流I2a,I2b,I2cを測定し、 故障時の自端における電圧ベクトルV1 =(V1a
1b,V1c)′及び電流ベクトルI1 =(I1a,I1b
1c)′に基づいて、スカラー量であるIm<V1 ,I1
>,Im<ZI1 ,I1 >(Imは虚数部分、<>は内積、
( )′はベクトルの転置を表わす。)を算出し、 故障時の他端における電圧ベクトルV2 =(V2a
2b,V2c)′及び電流ベクトルI2 =(I2a,I2b
2c)′に基づいて、スカラー量であるIm<V2 ,I2
>,Im<ZI2 ,I2 >を算出し、 前記の算出結果に基づいて、故障の種類に関係なく2端
子単回線送電線における故障点を標定することを特徴と
する故障点標定方法。
1. A line length d of a two-terminal single-line power transmission line and an impedance matrix Z per unit length are settled, and each phase voltage V 1a , V 1b , V 1c , and each phase current I 1a , I 1b at its own end. , I 1c and each phase voltage V 2a at the other end,
V 2b , V 2c , phase currents I 2a , I 2b , I 2c are measured, and a voltage vector V 1 = (V 1a ,
V 1b , V 1c ) ′ and current vector I 1 = (I 1a , I 1b ,
Based on I 1c ) ′, a scalar quantity Im <V 1 , I 1
>, Im <ZI 1 , I 1 > (Im is an imaginary part, <> is an inner product,
() 'Represents the transposition of the vector. ) Is calculated, and the voltage vector V 2 = (V 2a ,
V 2b , V 2c ) ′ and current vector I 2 = (I 2a , I 2b ,
Based on I 2c ) ′, a scalar quantity Im <V 2 , I 2
>, Im <ZI 2 , I 2 >, and locating the fault point in the two-terminal single-line power transmission line based on the calculation result regardless of the type of fault.
JP6061261A 1994-03-30 1994-03-30 Fault point locating method Pending JPH07270481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6061261A JPH07270481A (en) 1994-03-30 1994-03-30 Fault point locating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6061261A JPH07270481A (en) 1994-03-30 1994-03-30 Fault point locating method

Publications (1)

Publication Number Publication Date
JPH07270481A true JPH07270481A (en) 1995-10-20

Family

ID=13166121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6061261A Pending JPH07270481A (en) 1994-03-30 1994-03-30 Fault point locating method

Country Status (1)

Country Link
JP (1) JPH07270481A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288781A (en) * 2001-03-27 2002-10-04 Toshiba Corp Sensor abnormally detection method and sensor abnormally detector
CN101968525A (en) * 2010-10-09 2011-02-09 杭州市电力局 Fault positioning method for power distribution network by combining simulation calculation and real-time monitoring
CN103226175A (en) * 2013-03-21 2013-07-31 江苏省电力公司泰州供电公司 Method for achieving double-ended ranging by virtue of resistance characteristics of ground resistor
CN106443360A (en) * 2016-11-11 2017-02-22 国网新疆电力公司巴州供电公司 Incidence matrix-based distribution network traveling wave fault localization method
RU2640091C2 (en) * 2016-05-04 2017-12-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method of determining rupture place on overhead power transmission line by arrays of instantaneous currents and voltage values
CN110214278A (en) * 2016-11-23 2019-09-06 通用电器技术有限公司 The method of positioning failure in transmission tariff
CN110764019A (en) * 2019-10-30 2020-02-07 国网湖北省电力有限公司电力科学研究院 Line temporary grounding quantity judgment and high-precision positioning method based on double-end measurement
CN111157851A (en) * 2020-02-11 2020-05-15 广东工业大学 Power distribution network fault positioning method and system
CN113009276A (en) * 2021-03-04 2021-06-22 国网宁夏电力有限公司电力科学研究院 Intelligent power distribution network fault positioning method based on impedance matrix

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002288781A (en) * 2001-03-27 2002-10-04 Toshiba Corp Sensor abnormally detection method and sensor abnormally detector
CN101968525A (en) * 2010-10-09 2011-02-09 杭州市电力局 Fault positioning method for power distribution network by combining simulation calculation and real-time monitoring
CN101968525B (en) 2010-10-09 2013-05-08 杭州市电力局 Fault positioning method for power distribution network by combining simulation calculation and real-time monitoring
CN103226175A (en) * 2013-03-21 2013-07-31 江苏省电力公司泰州供电公司 Method for achieving double-ended ranging by virtue of resistance characteristics of ground resistor
RU2640091C2 (en) * 2016-05-04 2017-12-26 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method of determining rupture place on overhead power transmission line by arrays of instantaneous currents and voltage values
CN106443360A (en) * 2016-11-11 2017-02-22 国网新疆电力公司巴州供电公司 Incidence matrix-based distribution network traveling wave fault localization method
CN110214278A (en) * 2016-11-23 2019-09-06 通用电器技术有限公司 The method of positioning failure in transmission tariff
CN110214278B (en) * 2016-11-23 2023-01-24 通用电器技术有限公司 Method for locating faults in a power transmission scheme
CN110764019A (en) * 2019-10-30 2020-02-07 国网湖北省电力有限公司电力科学研究院 Line temporary grounding quantity judgment and high-precision positioning method based on double-end measurement
CN110764019B (en) * 2019-10-30 2021-07-30 国网湖北省电力有限公司电力科学研究院 Line temporary grounding quantity judging and positioning method based on double-end measurement
CN111157851A (en) * 2020-02-11 2020-05-15 广东工业大学 Power distribution network fault positioning method and system
CN113009276A (en) * 2021-03-04 2021-06-22 国网宁夏电力有限公司电力科学研究院 Intelligent power distribution network fault positioning method based on impedance matrix
CN113009276B (en) * 2021-03-04 2022-05-31 国网宁夏电力有限公司电力科学研究院 Intelligent power distribution network fault positioning method based on impedance matrix

Similar Documents

Publication Publication Date Title
EP3480605A1 (en) Current detection system, method and device
US7472026B2 (en) Multi-ended fault location system
JPH07270481A (en) Fault point locating method
JP6739384B2 (en) Failure point locator
JP2000074978A (en) Fault point locator at parallel two-line transmission line
JP3341485B2 (en) Transmission line fault location method
US11327105B2 (en) Fault location in multi-terminal tapped lines
JPH07122650B2 (en) Fault location method
JPH11344525A (en) Fault point plotting device
JP2560994B2 (en) Short-circuit fault location method
JPH10132890A (en) Method and device for locating failure point
JP2566348B2 (en) Positive line impedance measuring device for power lines
JP3503274B2 (en) Fault location method for two parallel transmission and distribution lines
RU2028634C1 (en) Method of and device for insulation resistance measurement in alternating-current lines incorporating static converters
JPH0798351A (en) Data synchronizing method and fault point locating device therewith
JP3277534B2 (en) Fault location method for 3-terminal parallel 2-circuit transmission line
JPH09304468A (en) Method for locating fault-point of parallel two line system
JPH05288783A (en) Impedance measuring method and device
JP3013491B2 (en) Short-circuit fault location method
JP2000088910A (en) Locating apparatus for failure point
JPH0798352A (en) Fault zone selecting method
JP2003270285A (en) Method for fault location
JPH063402A (en) Fault locator
CN116256597A (en) Time domain fault distance measurement method and system for high-voltage transmission line
JPH0718901B2 (en) Apparatus and method for determining values of circuit elements in three-terminal equivalent circuit