JP2003270285A - Method for fault location - Google Patents

Method for fault location

Info

Publication number
JP2003270285A
JP2003270285A JP2002072455A JP2002072455A JP2003270285A JP 2003270285 A JP2003270285 A JP 2003270285A JP 2002072455 A JP2002072455 A JP 2002072455A JP 2002072455 A JP2002072455 A JP 2002072455A JP 2003270285 A JP2003270285 A JP 2003270285A
Authority
JP
Japan
Prior art keywords
line
fault
transmission line
phase
impedance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002072455A
Other languages
Japanese (ja)
Other versions
JP3873785B2 (en
Inventor
Isamu Nakazawa
勇 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2002072455A priority Critical patent/JP3873785B2/en
Publication of JP2003270285A publication Critical patent/JP2003270285A/en
Application granted granted Critical
Publication of JP3873785B2 publication Critical patent/JP3873785B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fault location method which can relatively simply calculate a fault point at multiple faults time including different spot multiple faults. <P>SOLUTION: The fault location method comprises the step of calculating the fault point by installing electric quantity collecting terminals at both ends of a transmission line and using both end electric quantities having simultaneous time properties and known transmission line impedance and line length. The method comprises the step of obtaining a distance from an end of the transmission line of each channel to each fault point by using the voltage, current having the simultaneous time properties, self-impedance, mutual impedance and length of the transmission line measured at both ends of the transmission line of the phase decided as a fault occurring phase of each channel under the condition that fault point potentials calculated at both ends as start points on the transmission line in which the fault occurs so as to specify the fault points occurring simultaneously at each channel on two-terminal parallel two-channel transmission line. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電力系統の2端子
平行2回線送電線上で発生した、回線間にまたがる異地
点多重故障の故障点を特定するための標定方法に関し、
特に、故障発生時における送電線の両端における電気量
(電圧、電流)を使用して故障点を標定する方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an orientation method for identifying a fault point of a multipoint fault of different points across lines, which occurs on a 2-terminal parallel 2-line transmission line of a power system.
In particular, the present invention relates to a method of locating a failure point by using the amount of electricity (voltage, current) at both ends of a transmission line when a failure occurs.

【0002】[0002]

【従来の技術】送電線の複数端子の電気量を用いて多重
故障標定を実施する標定方式は、例えば、谷沢,辻によ
る「異地点多重故障を考慮した送電線FLのアルゴリズ
ム(平成8年電気学会全国大会論文NO.1523 p416〜p41
7)」や、特公平7−58305号公報(特許第202
0780号)に示される故障点標定方式(以下、現行標
定方式という)等が知られている。前者の標定方式は、
送電線の各端から電圧・電流量、及び、既知の送電線イ
ンピーダンスを用いて収束演算法により故障点を検出す
る方式であり、後者の標定方式は、送電線の各端から電
圧・電流量、及び、既知の送電線インピーダンスを用い
て回線毎に故障発生時の故障点電位が等しくなる演算地
点を故障点とする方式である。
2. Description of the Related Art A method of locating multiple faults using the electric quantities of multiple terminals of a transmission line is, for example, Tanizawa and Tsuji's "Algorithm for transmission line FL considering multiple faults at different points" (1996 National Conference Papers No. 1523 p416 ~ p41
7) ”and Japanese Patent Publication No. 58305/1995 (Patent No. 202)
No. 0780), a fault point locating method (hereinafter referred to as a current locating method) and the like are known. The former orientation method is
This is a method to detect a fault point by the convergence calculation method using the voltage / current amount from each end of the transmission line and the known transmission line impedance.The latter orientation method is the voltage / current amount from each end of the transmission line. In addition, the known transmission line impedance is used to set the calculation point at which the potential of the failure point becomes equal when a failure occurs for each line as the failure point.

【0003】[0003]

【発明が解決しようとする課題】上述した従来技術にお
いて、前者は収束解が得られるまで繰り返し演算を行う
必要があり、また、解が発散する可能性もある。また、
後者は、1地点で発生した多重故障のみ検出可能な方式
である。そこで本発明は、異地点多重故障を含む多重故
障時の故障点を比較的簡易に算出可能とした故障点標定
方法を提供しようとするものである。
In the above-mentioned conventional technique, the former needs to repeatedly perform calculation until a convergent solution is obtained, and the solution may diverge. Also,
The latter is a method that can detect only multiple failures that occur at one point. Therefore, the present invention is intended to provide a fault point locating method capable of relatively easily calculating a fault point at the time of multiple faults including multiple faults at different points.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、本発明は、送電線の両端に電気量収集端末を設置
し、同時刻性のある両端電気量及び既知の送電線インピ
ーダンス、線路長を用いて故障点を算出する故障点標定
方法に関するものであり、請求項1記載の発明は、2端
子平行2回線送電線上の各回線に同時に発生した故障点
をそれぞれ特定するために、故障が発生した送電線上で
その両端をそれぞれ起点として算出した故障点電位が等
しいという条件の下で、各回線の故障発生相と判定され
たそれぞれの相に対して送電線の両端にて測定した同時
刻性のある電圧及び電流、送電線の自己インピーダン
ス、相互インピーダンス、線路長を用いて、各回線の送
電線の端から各故障点までの距離を求めるものである。
In order to solve the above-mentioned problems, the present invention is to install electricity quantity collecting terminals at both ends of a power transmission line, and to have electricity quantities at both ends having the same time and known transmission line impedance and line length. The present invention relates to a fault point locating method for calculating a fault point by using, and the invention according to claim 1 specifies a fault point that occurs simultaneously in each line on a two-terminal parallel two-line transmission line. The same time measured at both ends of the transmission line for each phase determined to be the fault occurrence phase of each line under the condition that the potentials at the fault points calculated from both ends of the generated transmission line are the same By using the effective voltage and current, the self-impedance of the transmission line, the mutual impedance, and the line length, the distance from the end of the transmission line of each line to each failure point is obtained.

【0005】より具体的には、請求項2に記載するよう
に、第1,第2の回線の一端から各故障点までの距離を
それぞれαL,βL(Lは送電線の全長、α,βは0〜
1の範囲の係数)としたときに、 αL=(C・E−B・F)/(A・E−B・D) βL=(C・D−A・F)/(B・D−A・E) によりαL,βLを求める。 なお、上記数式において、 A=Zs1(IA1+IB1), B=Zm1(IA2+IB2), C=Va1−Va1’+L(Zs1・IB1+Zm1
B2), D=Zm2(IA1+IB1), E=Zs2(IA2+IB2), F=Va2−Va2’+L(Zs2・IB2+Zm2
B1)であり、 Zs1:第1回線内の故障相の自己インピーダンス及び
第1回線内の故障相の他相に対する相互インピーダンス
からなる回線内線路定数、 Zm1:第1回線内の故障相の第2回線内の各相に対す
る相互インピーダンスからなる回線間線路定数、 Zs2:第2回線内の故障相の自己インピーダンス及び
第2回線内の故障相の他相に対する相互インピーダンス
からなる回線内線路定数、 Zm2:第2回線内の故障相の第1回線内の各相に対す
る相互インピーダンスからなる回線間線路定数、 IA1:第1回線の一端にて測定した電流、 IA2:第2回線の一端にて測定した電流、 IB1:第1回線の他端にて測定した電流、 IB2:第2回線の他端にて測定した電流、 Va1:第1回線の一端にて測定した故障相の電圧、 Va1’:第1回線の他端にて測定した故障相の電圧、 Va2:第2回線の一端にて測定した故障相の電圧、 Va2’:第2回線の他端にて測定した故障相の電圧 である。
More specifically, as described in claim 2, the distances from one end of the first and second lines to each fault point are αL and βL (L is the total length of the transmission line, α and β, respectively). Is 0
ΑL = (C · E−B · F) / (A · E−B · D) βL = (C · D−A · F) / (B · D−A)・ E) is used to find αL and βL. In the above formula, A = Z s1 (I A1 + I B1 ), B = Z m1 (I A2 + I B2 ), C = V a1 −V a1 ′ + L (Z s1 · I B1 + Z m1 ·
I B2 ), D = Z m2 (I A1 + I B1 ), E = Z s2 (I A2 + I B2 ), F = V a2 −V a2 ′ + L (Z s2 · I B2 + Z m2 ·
I B1 ), and Z s1 is an in-line line constant consisting of the self-impedance of the fault phase in the first line and the mutual impedance of the fault phase in the first line with respect to the other phase, and Z m1 is the fault phase in the first line. Inter-line line constant consisting of mutual impedance for each phase in the second line, Z s2 : In-line line consisting of self-impedance of the fault phase in the second line and mutual impedance to other phases in the second line Constant, Z m2 : inter-line line constant consisting of mutual impedance of each fault phase in the second line for each phase in the first line, I A1 : current measured at one end of the first line, I A2 : second line current measured at one end of, I B1: currents measured at the other end of the first line, I B2: currents measured at the other end of the second line, V a1: measured at one end of the first line Voltage Sawasho, V a1 ': first line voltage fault phase measured at the other end of the, V a2: second line voltage fault phase measured at one end of, V a2': the other second line It is the voltage of the faulty phase measured at the edge.

【0006】[0006]

【発明の実施の形態】以下、図に沿って本発明の形態を
説明する。図1は、本発明の実施形態が適用されるハー
ドウェアの構成例である。図において、11は2端子平
行2回線の三相送電線であり、その全長Lは既知である
とする。また、21,22は送電線11のA端、B端に
それぞれ設けられたCT(変流器)、PT(計器用変圧
器)等の電気量収集端末であり、これらの端末21,2
2には更にデータ変換端末31,32が接続されてい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an example of a hardware configuration to which an embodiment of the present invention is applied. In the figure, 11 is a two-terminal parallel two-line three-phase power transmission line, and its total length L is known. Reference numerals 21 and 22 are terminals for collecting electricity such as CT (current transformer) and PT (transformer for measuring instrument) provided at the A end and the B end of the power transmission line 11, respectively.
Data conversion terminals 31 and 32 are further connected to 2.

【0007】送電線11で故障が発生した場合の各端電
気量、すなわち各相電圧、各相電流は電気量収集端末2
1,22により収集され、更にデータ変換端末31,3
2がA/D変換等を行って数値に変換する。この時、例
えばGPS(グローバルポジショニングシステム)を利
用することで、両端電気量データの同時刻性が確保され
る。収集された送電線両端の各相電気量は、伝送路4
1,42を介して中央装置50に集められ、ここで故障
点の標定演算が実行される。
[0007] When a failure occurs in the power transmission line 11, each end electricity amount, that is, each phase voltage, each phase current is the electricity amount collecting terminal 2
Data conversion terminals 31, 3
2 performs A / D conversion etc. and converts into a numerical value. At this time, by using, for example, GPS (Global Positioning System), the same time property of both-ends electric quantity data is secured. The amount of electricity of each phase collected at both ends of the transmission line is
1, 42 are collected in the central unit 50, and the fault point locating operation is executed here.

【0008】さて、図2(a)または(b)に示す如
く、送電線1L,2Lからなる2端子平行2回線送電線
の各回線の離れた2地点F1,F2で同時に故障が発生
した異地点多重故障の場合、2つの故障点F1,F2に
挟まれた区間S1またはS2では、発生する電流分布が
故障点の位置によって異なり、正確に計測できないた
め、標定誤差となる。
Now, as shown in FIG. 2 (a) or 2 (b), a failure occurs at two points F1 and F2 apart from each other in each line of a two-terminal parallel two-line power transmission line consisting of the power transmission lines 1L and 2L. In the case of the point multiple failure, in the section S1 or S2 sandwiched between the two failure points F1 and F2, the generated current distribution differs depending on the position of the failure point and cannot be accurately measured, resulting in a localization error.

【0009】そこで、図3のように、各回線の送電線1
L,2Lの両端で収集された同時刻性のある電圧、電流
及び既知の送電線インピーダンス等の線路定数を使用し
て、故障点F1は故障点F2よりA端側に近いと仮定し
た場合の、送電線1L側、2L側それぞれについて送電
線両端を起点として故障点電位を算出する計算式を立て
ると、後述する数式11,数式13の通りとなる。この
時、A端から故障点F1までの距離をαL、故障点F2
までの距離をβLとする。なお、α,βは何れも0〜1
の範囲の係数である。
Therefore, as shown in FIG. 3, the transmission line 1 of each line
When the fault point F1 is assumed to be closer to the A end side than the fault point F2 by using line constants such as voltage, current and known transmission line impedance which are collected at both ends of L and 2L and have the same time. The formulas for calculating the fault point potentials from both ends of the power transmission line as starting points for the power transmission line 1L side and the 2L side are set forth as Formulas 11 and 13 described later. At this time, the distance from the end A to the failure point F1 is αL, and the failure point F2
Let βL be the distance to. Note that α and β are both 0 to 1
Is a coefficient in the range of.

【0010】なお、図3は2端子平行2回線の三相の送
電線であり、送電線の単位長(例えば1km)当たりの
インピーダンスZが数式1で表されるとすると、以降で
使用するZs1(送電線1L内の故障相a1に対する回
線内線路定数、一般的には、第1回線内の故障相の自己
インピーダンス及び第1回線内の故障相の他相に対する
相互インピーダンスからなる回線内線路定数),Zs2
(送電線2L内の故障相a2に対する回線内線路定数、
一般的には、第2回線内の故障相の自己インピーダンス
及び第2回線内の故障相の他相に対する相互インピーダ
ンスからなる回線内線路定数),Zm1(送電線1L内
の故障相a1に対する回線間線路定数、一般的には、第
1回線内の故障相の第2回線内の各相に対する相互イン
ピーダンスからなる回線間線路定数),Zm2(送電線
2L内の故障相a2に対する回線間線路定数、一般的に
は、第2回線内の故障相の第1回線内の各相に対する相
互インピーダンスからなる回線間線路定数),I
A1(送電線1LのA端における電流),IA2(送電
線2LのA端における電流),IB1(送電線1LのB
端における電流),IB2(送電線2LのB端における
電流)は、数式2〜数式9のように定義される。
FIG. 3 shows a three-phase power transmission line having two terminals and two parallel lines, and assuming that the impedance Z per unit length (for example, 1 km) of the power transmission line is represented by Formula 1, Z will be used hereafter. s1 (In-line line constant for the fault phase a1 in the transmission line 1L, generally, an in-line line consisting of the self-impedance of the fault phase in the first line and the mutual impedance of the fault phase in the first line with respect to other phases Constant), Z s2
(In-line line constant for the fault phase a2 in the power transmission line 2L,
Generally, a line constant in the line consisting of the self-impedance of the fault phase in the second line and the mutual impedance of the fault phase in the second line with respect to the other phase), Z m1 (line for the fault phase a1 in the transmission line 1L) Inter-line line constant, generally, an inter-line line constant consisting of a mutual impedance of the fault phase in the first line for each phase in the second line), Z m2 (inter-line line for the fault phase a2 in the transmission line 2L) Constant, generally an inter-line line constant consisting of the mutual impedance of the faulty phase in the second line for each phase in the first line), I
A1 (current at end A of power transmission line 1L), I A2 (current at end A of power transmission line 2L), I B1 (B at power transmission line 1L)
End current) and I B2 (current at the B end of the power transmission line 2L) are defined by Expressions 2 to 9.

【0011】[0011]

【数1】 [Equation 1]

【0012】なお、数式1におけるZa1a1は、送電
線1L内の故障相であるa1相の自己インピーダンス、
a1b1はa1相と送電線1L内のb1相との相互イ
ンピーダンス(以下の各相についても、添字の解釈は同
様)である。
Z a1a1 in the equation 1 is the self-impedance of the a1 phase which is the fault phase in the power transmission line 1L,
Z a1b1 is a mutual impedance between the a1 phase and the b1 phase in the transmission line 1L (the same applies to the following phases).

【0013】[数2] Zs1=[Za1a1a1b1a1c1] [数3] Zs2=[Za2a2a2b2a2c2] [数4] Zm1=[Za1a2a1b2a1c2] [数5] Zm2=[Za1a2b1a2c1a2[ Equation 2] Z s1 = [Z a1a1 Z a1b1 Z a1c1 ] [ Equation 3] Z s2 = [Z a2 a2 Z a2 b2 Z a2 c2 ] [ Equation 4] Z m1 = [Z a1 a2 Z a1 b2 5] Z m2 = [Z a1a2 Z b1a2 Z c1a2 ]

【0014】[0014]

【数6】 [Equation 6]

【0015】[0015]

【数7】 [Equation 7]

【0016】[0016]

【数8】 [Equation 8]

【0017】[0017]

【数9】 [Equation 9]

【0018】ここで、A端を起点として算出した送電線
1L内の故障点F1の故障点電位と、反対側のB端を起
点として算出した故障点F1の故障点電位とは等しいた
め、送電線1L側について、数式10が成り立つ。 [数10] Va1−αL(Zs1・IA1+Zm1・IA2)=V
a1’−{(1−α)LZs1・IB1+(1−β)L
m1・IB2−(β−α)LZm1・IA2
Here, since the failure point potential of the failure point F1 in the power transmission line 1L calculated from the A terminal is the same as the failure point potential of the failure point F1 calculated from the B terminal on the opposite side, Numerical formula 10 is materialized about the electric wire 1L side. [Equation 10] V a1 −αL (Z s1 · I A1 + Z m1 · I A2 ) = V
a1 '-{(1-α) LZ s1 · I B1 + (1-β) L
Z m1 · I B2 - (β -α) LZ m1 · I A2}

【0019】よって、数式11が得られる。 [数11] αLZs1(IA1+IB1)+βLZm1(IA2
B2)=Va1−Va1’+L(Zs1・IB1+Z
m1・IB2
Therefore, Equation 11 is obtained. [Equation 11] αLZ s1 (I A1 + I B1 ) + βLZ m1 (I A2 +
I B2 ) = V a1 −V a1 ′ + L (Z s1 · I B1 + Z
m1・ I B2 )

【0020】同様にして、A端を起点として算出した送
電線2L内の故障点F2の故障点電位と、反対側のB端
を起点として算出した故障点F2の故障点電位とは等し
いため、送電線2L側について、数式12が成り立つ。 [数12] Va2−{βLZs2・IA2+αLZm2・IA1
(β−α)LZm2・IB1}=Va2’−(1−β)
L(Zs2・IB2+Zm2・IB1
Similarly, the failure point potential of the failure point F2 in the transmission line 2L calculated from the A terminal is the same as the failure point potential of the failure point F2 calculated from the B terminal on the opposite side. Equation 12 holds for the transmission line 2L side. [Equation 12] V a2 − {βLZ s2 · IA 2 + αLZ m2 · IA 1
(Β-α) LZ m2 · I B1 } = V a2 ′-(1-β)
L (Z s2 · I B2 + Z m2 · I B1 )

【0021】よって、数式13が得られる。 [数13] αLZm2(IA1+IB1)+βLZs2(IA2
B2)=Va2−Va2’+L(Zs2・IB2+Z
m2・IB1
Therefore, Equation 13 is obtained. [Equation 13] αLZ m2 (I A1 + I B1 ) + βLZ s2 (I A2 +
I B2 ) = V a2 −V a2 ′ + L (Z s2 · I B2 + Z
m2・ I B1 )

【0022】ここで、数式14〜19のようにA〜Fを
おくことにより、数式20,21が得られ、A端から故
障点F1,F2までの距離αL,βLを求めることがで
きる。 [数14] A=Zs1(IA1+IB1) [数15] B=Zm1(IA2+IB2) [数16] C=Va1−Va1’+L(Zs1・IB1+Zm1
B2) [数17] D=Zm2(IA1+IB1) [数18] E=Zs2(IA2+IB2) [数19] F=Va2−Va2’+L(Zs2・IB2+Zm2
B1) [数20] αL=(C・E−B・F)/(A・E−B・D) [数21] βL=(C・D−A・F)/(B・D−A・E)
Here, by setting A to F as in Expressions 14 to 19, Expressions 20 and 21 are obtained, and the distances αL and βL from the end A to the failure points F1 and F2 can be obtained. [ Equation 14] A = Z s1 (I A1 + I B1 ) [ Equation 15] B = Z m1 (I A2 + I B2 ) [Equation 16] C = V a1 −V a1 ′ + L (Z s1 · I B1 + Z m1 ·
I B2 ) [Equation 17] D = Z m2 (I A1 + I B1 ) [ Equation 18] E = Z s2 (I A2 + I B2 ) [Equation 19] F = V a2 −V a2 ′ + L (Z s2 · I B2 + Z m2
I B1 ) [Equation 20] αL = (C · E−B · F) / (A · E−B · D) [Equation 21] βL = (C · D−A · F) / (B · D−A)・ E)

【0023】また、図4のように、送電線2L側の故障
点F2を送電線1L側の故障点F1よりA端に近いと仮
定した場合、前記同様にA端,B端を起点として算出し
た故障点F1,F2の故障点電位はそれぞれ等しいた
め、送電線1L側については数式22,23、送電線2
L側については数式24,25が成り立つ。 [数22] Va1−{αLZs1・IA1+βLZm1・IA2
(α−β)LZm1・IB2}=Va1’−(1−α)
L(Zs1・IB1+Zm1・IB2) [数23] αLZs1(IA1+IB1)+βLZm1(IA2
B2)=Va1−Va1’+L(Zs1・IB1+Z
m1・IB2) [数24] Va2−βL(Zs2・IA2+Zm2・IA1)=V
a2’−{(1−β)LZs2・IB2+(1−α)L
m2・IB1−(α−β)LZm2・IA1} [数25] αLZm2(IA1+IB1)+βLZs2(IA2
B2)=Va2−Va2’+L(Zs2・IB2+Z
m2・IB1
Further, as shown in FIG. 4, assuming that the fault point F2 on the side of the power transmission line 2L is closer to the A end than the fault point F1 on the side of the power transmission line 1L, it is calculated with the A and B ends as the starting points in the same manner as described above. Since the fault point potentials of the fault points F1 and F2 are equal, the equations 22 and 23 and the transmission line 2 are used for the transmission line 1L side.
Equations 24 and 25 are valid for the L side. [Equation 22] V a1 − {αLZ s1 · IA 1 + βLZ m1 · IA 2
(Α-β) LZ m1 · I B2 } = V a1 ′-(1-α)
L (Z s1 I B1 + Z m1 I B2 ) [Equation 23] αLZ s1 (I A1 + I B1 ) + βLZ m1 (I A2 +
I B2 ) = V a1 −V a1 ′ + L (Z s1 · I B1 + Z
m1 · I B2) [number 24] V a2 -βL (Z s2 · I A2 + Z m2 · I A1) = V
a2 '-{(1-β) LZ s2 · IB2 + (1-α) L
Z m2 · I B1 − (α−β) LZ m2 · I A1 } [Formula 25] αLZ m2 (I A1 + I B1 ) + βLZ s2 (I A2 +
I B2 ) = V a2 −V a2 ′ + L (Z s2 · I B2 + Z
m2・ I B1 )

【0024】上記の如く、数式11と数式23、数式1
3と数式25は共に同一になり、各回線の故障点の位置
が何れの場合においても、数式14〜数式21を用いれ
ば、各回線における故障点の特定が可能となる。
As described above, Equation 11, Equation 23, and Equation 1
3 and Formula 25 are the same, and regardless of the position of the fault point on each line, it is possible to specify the fault point on each line by using Formulas 14 to 21.

【0025】次に、本発明を適用して異地点多重故障発
生時の標定シミュレーションを実施した。シミュレーシ
ョン用の系統構成を図5、図6に示し、また、使用線路
定数を図7に示す。図5、図6において、送電線の全長
は20kmであり、この送電線の一端から5kmの地点
に故障点F1,F2を設定し、送電線の他端から5km
の地点に故障点F3,F4をそれぞれ設定した。ここ
で、図5,図6におけるインピーダンスj4.5Ωはバ
ックインピーダンス、、電流400Aは接地電流、抵抗
Rsは短絡抵抗、同Rgは地絡抵抗を示している。な
お、図7に示した線路定数は前述した数式1の行列要素
(Za1a1〜Z 2c2)にそれぞれ対応している。
Next, the present invention was applied to carry out an orientation simulation when multiple faults at different points occurred. The system configuration for simulation is shown in FIGS. 5 and 6, and the used line constant is shown in FIG. 5 and 6, the total length of the power transmission line is 20 km, failure points F1 and F2 are set at a point 5 km from one end of this power transmission line, and 5 km from the other end of the power transmission line.
Failure points F3 and F4 were set at the points. Here, the impedance j4.5Ω in FIGS. 5 and 6 is the back impedance, the current 400A is the ground current, the resistor Rs is the short-circuit resistor, and the resistor Rg is the ground fault resistor. Incidentally, line constants shown in FIG. 7 respectively correspond to the matrix element of the formula 1 described above (Z a1a1 ~Z c 2c2).

【0026】図8は、特公平7−58305号(特許第
2020780号)に示された現行標定方式と本発明の
標定方法による標定結果を対比して示したものである。
図8において、「両端電源、両端接地」とは図5の系統
構成を示し、「片端電源、片端接地」とは図6の系統構
成を示している。また、各ケース1〜5はそれぞれ異地
点多重故障として2地点(ケース1は故障点F1,F
2、ケース2,3は同F1,F4、ケース4,5は同F
3,F2)での地絡故障を模擬しており、例えばケース
1における「F1 1φG−A(5km)」は、故障点
F1における1線(A相)地絡故障を、ケース2におけ
る「F4 1φG−B(15km)」は、故障点F4に
おける1線(B相)地絡故障を、ケース3における「F
12φG−AB(5km)」は、故障点F1における2
線(A,B相)地絡故障をそれぞれ示している。その他
の略号も、同様に解釈する。
FIG. 8 shows a comparison of the orientation results obtained by the orientation method of the present invention and the existing orientation method disclosed in Japanese Examined Patent Publication No. 7-58305 (Japanese Patent No. 2020780).
In FIG. 8, “power supply on both ends, grounding on both ends” indicates the system configuration of FIG. 5, and “power supply on one end, grounding on one end” indicates the system configuration in FIG. 6. Further, each of cases 1 to 5 has two points as different point multiple failures (case 1 has failure points F1 and F).
2, Cases 2 and 3 are F1 and F4, Cases 4 and 5 are F
3, F2) is simulated, for example, “F1 1φG-A (5 km)” in Case 1 is the 1-line (A phase) ground fault at the failure point F1 and “F4 in Case 2”. 1φG-B (15 km) "is the 1-line (B-phase) ground fault at the fault point F4, and" F
12φG-AB (5 km) "is 2 at the failure point F1.
Line (A and B phases) ground faults are shown respectively. Other abbreviations are similarly interpreted.

【0027】図8によれば、本発明では現行標定方式よ
りも高精度に故障点を標定できることが明らかである。
According to FIG. 8, it is clear that the present invention can locate a failure point with higher accuracy than the current orientation method.

【0028】[0028]

【発明の効果】以上のように本発明によれば、2端子平
行2回線送電線における1地点多重故障のみならず異地
点多重故障の場合でも、送電線の両端の同時刻性のある
電気量データが収集されれば、電源配置や接地状態によ
らず、比較的簡単な演算によって簡易に故障点を特定す
ることができる。
As described above, according to the present invention, even in the case of not only a single point multiple fault in a two-terminal parallel two-line transmission line but also a different point multiple fault, there is a simultaneous electricity quantity at both ends of the transmission line. If the data is collected, the failure point can be easily specified by a relatively simple calculation regardless of the power supply arrangement and the grounding state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に用いるハードウェアの構成
図である。
FIG. 1 is a configuration diagram of hardware used in an embodiment of the present invention.

【図2】異地点多重故障の説明図である。FIG. 2 is an explanatory diagram of multiple faults at different points.

【図3】本発明の実施形態を説明するための異地点多重
故障の説明図である。
FIG. 3 is an explanatory diagram of out-of-point multiple failures for explaining the embodiment of the present invention.

【図4】本発明の実施形態を説明するための異地点多重
故障の説明図である。
FIG. 4 is an explanatory diagram of an outlying point multiple failure for explaining an embodiment of the present invention.

【図5】本発明のシミュレーションに用いた系統構成図
である。
FIG. 5 is a system configuration diagram used for the simulation of the present invention.

【図6】本発明のシミュレーションに用いた系統構成図
である。
FIG. 6 is a system configuration diagram used for the simulation of the present invention.

【図7】本発明のシミュレーションにおける使用線路定
数の説明図である。
FIG. 7 is an explanatory diagram of used line constants in the simulation of the present invention.

【図8】本発明のシミュレーション結果を現行標定方式
と対比して示す図である。
FIG. 8 is a diagram showing simulation results of the present invention in comparison with the current orientation method.

【符号の説明】[Explanation of symbols]

11,1L,2L 送電線 21,22 電気量収集端末 31,32 データ変換端末 41,42 伝送路 50 中央装置 F1〜F4 故障点 11, 1L, 2L transmission line 21,22 Electricity collection terminal 31, 32 data conversion terminal 41,42 Transmission line 50 Central device F1 to F4 failure points

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】2端子平行2回線送電線上の各回線に同時
に発生した故障点をそれぞれ特定するために、故障が発
生した送電線上でその両端をそれぞれ起点として算出し
た故障点電位が等しいという条件の下で、各回線の故障
発生相と判定されたそれぞれの相に対して送電線の両端
にて測定した同時刻性のある電圧及び電流、送電線の自
己インピーダンス、相互インピーダンス、線路長を用い
て、各回線の送電線の端から各故障点までの距離を求め
ることを特徴とする故障点標定方法。
1. A condition that the fault point potentials calculated from both ends of the faulty transmission line as starting points are equal in order to specify the fault points simultaneously occurring in the respective lines on the two-terminal parallel two-line transmission line. The voltage and current measured at both ends of the transmission line, the self-impedance of the transmission line, the mutual impedance, and the line length are used for each phase that is determined to be the failure phase of each line under Then, the distance from the end of the transmission line of each line to each fault point is obtained, and the fault point locating method is characterized.
【請求項2】請求項1記載の故障点標定方法において、 第1,第2の回線の一端から各故障点までの距離をそれ
ぞれαL,βL(Lは送電線の全長、α,βは0〜1の
範囲の係数)としたときに、 αL=(C・E−B・F)/(A・E−B・D) βL=(C・D−A・F)/(B・D−A・E) によりαL,βLを求めることを特徴とする故障点標定
方法。 (但し、A=Zs1(IA1+IB1), B=Zm1(IA2+IB2), C=Va1−Va1’+L(Zs1・IB1+Zm1
B2), D=Zm2(IA1+IB1), E=Zs2(IA2+IB2), F=Va2−Va2’+L(Zs2・IB2+Zm2
B1)であり、 Zs1:第1回線内の故障相の自己インピーダンス及び
第1回線内の故障相の他相に対する相互インピーダンス
からなる回線内線路定数、 Zm1:第1回線内の故障相の第2回線内の各相に対す
る相互インピーダンスからなる回線間線路定数、 Zs2:第2回線内の故障相の自己インピーダンス及び
第2回線内の故障相の他相に対する相互インピーダンス
からなる回線内線路定数、 Zm2:第2回線内の故障相の第1回線内の各相に対す
る相互インピーダンスからなる回線間線路定数、 IA1:第1回線の一端にて測定した電流、 IA2:第2回線の一端にて測定した電流、 IB1:第1回線の他端にて測定した電流、 IB2:第2回線の他端にて測定した電流、 Va1:第1回線の一端にて測定した故障相の電圧、 Va1’:第1回線の他端にて測定した故障相の電圧、 Va2:第2回線の一端にて測定した故障相の電圧、 Va2’:第2回線の他端にて測定した故障相の電圧)
2. The fault point locating method according to claim 1, wherein distances from one end of the first and second lines to each fault point are αL and βL (L is the total length of the transmission line, and α and β are 0, respectively). .Alpha.L = (C.E.B.F) / (A.E.B.D) .beta.L = (C.D.A.F) / (B.D-) A · E) A fault point locating method characterized by obtaining αL and βL. (However, A = Z s1 (I A1 + I B1 ), B = Z m1 (I A2 + I B2 ), C = V a1 −V a1 ′ + L (Z s1 · I B1 + Z m1 ·
I B2 ), D = Z m2 (I A1 + I B1 ), E = Z s2 (I A2 + I B2 ), F = V a2 −V a2 ′ + L (Z s2 · I B2 + Z m2 ·
I B1 ), and Z s1 is an in-line line constant consisting of the self-impedance of the fault phase in the first line and the mutual impedance of the fault phase in the first line with respect to the other phase, and Z m1 is the fault phase in the first line. Inter-line line constant consisting of mutual impedance for each phase in the second line, Z s2 : In-line line consisting of self-impedance of the fault phase in the second line and mutual impedance to other phases in the second line Constant, Z m2 : inter-line line constant consisting of mutual impedance of each fault phase in the second line for each phase in the first line, I A1 : current measured at one end of the first line, I A2 : second line current measured at one end of, I B1: currents measured at the other end of the first line, I B2: currents measured at the other end of the second line, V a1: measured at one end of the first line Voltage Sawasho, V a1 ': first line voltage fault phase measured at the other end of the, V a2: second line voltage fault phase measured at one end of, V a2': the other second line Voltage of the faulty phase measured at the end)
JP2002072455A 2002-03-15 2002-03-15 Fault location method Expired - Lifetime JP3873785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002072455A JP3873785B2 (en) 2002-03-15 2002-03-15 Fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002072455A JP3873785B2 (en) 2002-03-15 2002-03-15 Fault location method

Publications (2)

Publication Number Publication Date
JP2003270285A true JP2003270285A (en) 2003-09-25
JP3873785B2 JP3873785B2 (en) 2007-01-24

Family

ID=29202451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002072455A Expired - Lifetime JP3873785B2 (en) 2002-03-15 2002-03-15 Fault location method

Country Status (1)

Country Link
JP (1) JP3873785B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100957812B1 (en) 2009-10-06 2010-05-13 주식회사 호크마이엔지 Method for locatingfault distance of trolley line and system thereof
CN101907677A (en) * 2010-07-02 2010-12-08 华北电力大学 High voltage cable-overhead line hybrid line fault phase ranging method
KR101093770B1 (en) 2009-09-30 2011-12-19 한국철도기술연구원 Method for transmission line parameter measument of electric railway

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101093770B1 (en) 2009-09-30 2011-12-19 한국철도기술연구원 Method for transmission line parameter measument of electric railway
KR100957812B1 (en) 2009-10-06 2010-05-13 주식회사 호크마이엔지 Method for locatingfault distance of trolley line and system thereof
CN101907677A (en) * 2010-07-02 2010-12-08 华北电力大学 High voltage cable-overhead line hybrid line fault phase ranging method

Also Published As

Publication number Publication date
JP3873785B2 (en) 2007-01-24

Similar Documents

Publication Publication Date Title
US6483435B2 (en) Method and device of fault location for distribution networks
KR100473798B1 (en) Method for detecting line to ground fault location for power systems
US7286963B2 (en) Method and device for fault location on three terminal power line
US7999557B2 (en) Method for determining location of phase-to-earth fault
Girgis et al. Fault location techniques for radial and loop transmission systems using digital fault recorded data
EP2000811A9 (en) Method for determining location of phase-to-earth fault
JP2006505768A (en) Fault location using current and voltage measurements from one end of the track
WO2019229638A1 (en) Fault location for parallel transmission lines with zero sequence currents estimated from faulted line measurements
US11035897B2 (en) Method and device for fault section identification in multi-terminal mixed lines
CN110231540B (en) Be used for false bipolar direct current transmission and distribution lines unipolar earth fault positioning system
WO2019166903A1 (en) Method and device for fault location in a two-terminal transmission system
CN107710008A (en) The method and apparatus for debugging the voltage sensor and branch current sensor for branch road monitoring system
KR20020017390A (en) Apparatus and method for locating fault distance in a power double circuit transmision line
Xiu et al. Novel fault location methods for ungrounded radial distribution systems using measurements at substation
EP3869208B1 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
EP2083278B1 (en) Method and apparatus for determining location of phase-to-phase fault
JP2003270285A (en) Method for fault location
KR100425417B1 (en) Method for detecting line to line fault location for power systems
JPH06347503A (en) Ground fault position locating apparatus
Rahideh et al. A fault location technique for transmission lines using phasor measurements
US7068040B2 (en) Ground circuit impedance measurement apparatus and method
US11327105B2 (en) Fault location in multi-terminal tapped lines
CN108982947A (en) Electric wiring with subsidiary function and electric parameter measurement method
Eldin et al. An accurate fault location scheme for connected aged cable lines in double-fed systems
JP2004012292A (en) Method for locating fault point in transmission line, and system using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3873785

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term