JPH07270286A - Method for preparing organism sample for microscope for obtaining continuous sectional image - Google Patents

Method for preparing organism sample for microscope for obtaining continuous sectional image

Info

Publication number
JPH07270286A
JPH07270286A JP6087986A JP8798694A JPH07270286A JP H07270286 A JPH07270286 A JP H07270286A JP 6087986 A JP6087986 A JP 6087986A JP 8798694 A JP8798694 A JP 8798694A JP H07270286 A JPH07270286 A JP H07270286A
Authority
JP
Japan
Prior art keywords
sample
microscope
section
cross
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6087986A
Other languages
Japanese (ja)
Other versions
JP2526412B2 (en
Inventor
Ikuo Fukui
郁生 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6087986A priority Critical patent/JP2526412B2/en
Publication of JPH07270286A publication Critical patent/JPH07270286A/en
Application granted granted Critical
Publication of JP2526412B2 publication Critical patent/JP2526412B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To provide a method for preparing an organism sample for microscope for obtaining continuous sectional images which can easily and properly form a number of observation sample sections for continuous sectional images and can indicate a fine and continuous structure of a large organism sample. CONSTITUTION:An organism sample or a sample extracted from an organism is embedded with resin, and a number of observation sample sections 7 being adjacent in the back and forth, up and down, and left and right directions are successively formed from an embedded body 6. The surface of a part where the observation sample sections are formed out of the embedded body 6 is mechanically polished into a mirror-surface every time one observation sample section 7 is formed and then the surface of the part where mirror-surface-shaped observation sample sections are formed is exposed to plasma beams for etching, thus forming the observation sample sections 7. Firstly, the resin-embedded organism samples are polished by a machine to prepare a mirror-shaped section. Then, the mirror-shaped section is etched by the plasma beam method for performing a relief of the section in the organism soft structure in the two-step system (polishing and etching).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、顕微鏡用生体試料の
作成方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for preparing a biological sample for a microscope.

【0002】[0002]

【従来の技術】生体試料の1〜3次元構造を知るための
一つの方法は顕微鏡用生体試料を特定の中心軸に直角な
仮想の断面で輪切りにした断面の顕微鏡像を得て、その
ような顕微鏡像を中心軸方向に順次多数作成し、これを
計算機等を利用して中心方向に並べ連続断面像を得て、
生体の1〜3次元構造の情報を得ることがある。
2. Description of the Related Art One method for knowing the one-dimensional structure of a biological sample is to obtain a microscope image of a cross section of a biological sample for a microscope cut in an imaginary section perpendicular to a specific central axis. A large number of microscopic images are sequentially created in the central axis direction, and these are arranged in the central direction using a computer or the like to obtain a continuous cross-sectional image,
Information on the 1- to 3-dimensional structure of the living body may be obtained.

【0003】生体試料の1〜3次元構造の情報を得るた
めの顕微鏡用生体試料の従来の作成方法としては、 1)生体組織をそのままの状態で、或いは、これに薬品
や(通常)プラズマ法やイオンビーム等によりエッチン
グして、光学顕微鏡や走査電子顕微鏡で表面観察する方
法。 2)生体組織を樹脂等に包埋し薄片を作成してから、薬
品やイオンビームや(通常)プラズマ法等によりエッチ
ングして、走査および透過電子顕微鏡や光学顕微鏡で表
面観察する方法(Thomas R.S., “Ultrastructural loc
alization of mineral matter in bacterial spores by
microincineration", J. Cell Biol. 23(1964) 113. )
(Erlandsen ., Thomas A. and Wendelshafer G., “A s
imple technique for correlating SEM with TEM on bi
ological tissue originally embedded in epoxy resin
for TEM", Scanning Electron Microscopy, III(1973)
349.)(佐々木宏、岸田晴雄、“イオンエッチングに
よる樹脂包埋厚切片のSEM 観察”、医生物走査 電顕、
18 (1989) 43. )。 3)樹脂等を包埋し機械研磨して(通常)プラズマ法に
よりエッチングしてからレプリカをとって、走査および
透過電子顕微鏡で観察する方法(Faberge A.C.,“III.
Development of a replica process for the electron
microscopy of biological material", Studies in Gen
etics, IV, Research Report, Univ. ofTexas (1968) 2
1. )。 4)生体組織をそのままの状態で、あるいは、凍結乾燥
させてレプリカをとってから、または、割断してからレ
プリカをとって光学顕微鏡や走査および透過電子顕微鏡
で表面観察する方法(Tanaka K. and Lino A., “Frose
n resin crackingmethod for scanning electron micro
scopy and its application to cytology", Proc 30th
Annual Meeting Electron Microscopy Society of Amer
ica, C.J.Arceneaux (ed.). Claitor´s Publishing Di
v., USA., (1972) 408. )。 5)生体組織を樹脂等に包埋してからミクロトーム(薄
片切削装置)などでブロック断面として鏡面にして、
(通常)プラズマ法あるいは薬品などによりエッチグし
てから、走査電子顕微鏡観察する方法(Kuzirian A.M.
and Leighton S.B.,“Oxygen plasma etching of entir
e block faces improves the resolution and usefulne
ss of serial scanning electron microscopic image
s", ScanningElectorn Microspocy,IV(1983) 1877. )
がある。
The conventional method for preparing a biological sample for a microscope to obtain information on the one-dimensional structure of a biological sample is as follows: 1) With the biological tissue as it is, or with a chemical or (usually) plasma method. Etching with an ion beam or the like, and observing the surface with an optical microscope or a scanning electron microscope. 2) Embedding biological tissue in resin etc. to make thin slices, then etching by chemicals, ion beam, (normal) plasma method, etc., and observing the surface by scanning and transmission electron microscope or optical microscope (Thomas RS , “Ultrastructural loc
alization of mineral matter in bacterial spores by
microincineration ", J. Cell Biol. 23 (1964) 113.).
(Erlandsen., Thomas A. and Wendelshafer G., “A s
imple technique for correlating SEM with TEM on bi
ological tissue originally embedded in epoxy resin
for TEM ", Scanning Electron Microscopy, III (1973)
349.) (Hiroshi Sasaki, Haruo Kishida, "SEM observation of resin-embedded thick sections by ion etching", Scanning electron microscopy,
18 (1989) 43.). 3) Method of embedding resin, etc., mechanically polishing, etching (usually) by the plasma method, and then taking a replica and observing with a scanning and transmission electron microscope (Faberge AC, “III.
Development of a replica process for the electron
microscopy of biological material ", Studies in Gen
etics, IV, Research Report, Univ. of Texas (1968) 2
1.). 4) A method of observing the surface of a living tissue as it is, or after freeze-drying to obtain a replica, or after cleaving a replica and observing the surface with an optical microscope or a scanning and transmission electron microscope (Tanaka K. and Lino A., “Frose
n resin cracking method for scanning electron micro
scopy and its application to cytology ", Proc 30th
Annual Meeting Electron Microscopy Society of Amer
ica, CJ Arceneaux (ed.). Claitor´s Publishing Di
v., USA., (1972) 408.). 5) After embedding the biological tissue in resin etc., make a block section mirror surface with a microtome (thin section cutting device),
(Normal) Etching by plasma method or chemicals, and then observing with scanning electron microscope (Kuzirian AM
and Leighton SB, “Oxygen plasma etching of entir
e block faces improves the resolution and usefulne
ss of serial scanning electron microscopic image
s ", ScanningElectorn Microspocy, IV (1983) 1877.)
There is.

【0004】[0004]

【発明が解決しようとする課題】しかし、1)の方法
は、内部構造がわからない、2)の方法は、薄片を作成
するために、大きな試料を対象とすることができない、
3)の方法は、標本の熱損傷がある、4)の方法は、内
部構造を調べることができない、5)の方法は、(通
常)プラズマ使用による熱損傷、薬品による損傷と変形
が大きい、等の問題がある。
However, in the method 1), the internal structure is unknown, and in the method 2), a large sample cannot be obtained because a thin piece is prepared.
The method of 3) has heat damage to the specimen, the method of 4) cannot examine the internal structure, and the method of 5) is (usually) heat damage due to plasma use, chemical damage and deformation are large, There is a problem such as.

【0005】以上の問題をまとめると、従来の方法は、
1)薄片から或いはレプリカをとってから透過電子顕微
鏡で観察する場合、像の連続性を保持するのに問題があ
って、大きな断面を観察することができない、2)生体
試料をそのまま、あるいは(凍結)割断等によって表面
を観察する場合、内部構造との関連で問題がある、ま
た、3)(通常)プラズマ法によるエッチングは、標本
の熱損傷が大きい。
To summarize the above problems, the conventional method is
1) When observing with a transmission electron microscope from a thin piece or after taking a replica, there is a problem in maintaining image continuity, and a large cross section cannot be observed. 2) A biological sample as it is, or ( When observing the surface by (frozen) fracturing or the like, there is a problem in relation to the internal structure, and 3) (normal) plasma etching causes large thermal damage to the sample.

【0006】この発明は上記の如き事情に鑑みてなされ
たものであって、連続断面像用の多数の観察試料断面を
容易にかつ良好に形成することができ、大きな生体試料
の微細な連続構造を示すことができる連続断面像を得る
ための顕微鏡用試料の作成方法を提供することを目的と
するものである。
The present invention has been made in view of the above circumstances, and it is possible to easily and satisfactorily form a large number of observation sample cross sections for a continuous cross-sectional image, and a fine continuous structure of a large biological sample. It is an object of the present invention to provide a method for producing a microscope sample for obtaining a continuous cross-sectional image capable of showing

【0007】[0007]

【課題を解決するための手段】この目的に対応して、こ
の発明の上下、左右または前後(深さ方向)の連続断面
像を得るための顕微鏡用生体試料の作成方法は、生体の
試料あるいは生体から摘出した試料を樹脂に包埋し、包
埋体から前後、上下または左右に隣合う多数の観察試料
断面を順次形成する顕微鏡用試料の作成方法であって、
一つの観察試料断面を形成する毎に包埋体の観察試料断
面形成部位の表面をまず機械研磨して鏡面状にし、次に
鏡面状の観察試料断面形成部位の表面をプラズマ・ビー
ムで照射してエッチングして観察試料断面を形成する二
段階方式(研磨及びエッチング)を特徴としている。
In order to achieve this object, a method of preparing a biological sample for a microscope for obtaining continuous cross-sectional images of the vertical, horizontal, or front-back (depth direction) of the present invention is a biological sample or A method for preparing a sample for a microscope, in which a sample extracted from a living body is embedded in a resin, and a plurality of observation sample cross sections that are adjacent to each other in the front-back, top-bottom, or left-right directions are sequentially formed from the embedded body,
Whenever one observation sample cross section is formed, the surface of the embedding body's observation sample cross section forming area is first mechanically polished to a mirror surface, and then the surface of the mirror-like observation sample cross section forming area is irradiated with a plasma beam. It is characterized by a two-step method (polishing and etching) in which a cross section of an observation sample is formed by etching.

【0008】[0008]

【作用】樹脂包埋された生体試料を機械により研磨を行
い鏡状断面を作成する。次に鏡状断面をプラズマ・ビー
ム法によりエッチングを行い生体軟構造の断面を浮き彫
りにする。
[Function] A resin-embedded biological sample is mechanically polished to form a mirror-shaped cross section. Next, the mirror-shaped cross section is etched by the plasma beam method to emboss the cross section of the biological soft structure.

【0009】[0009]

【実施例】以下、この発明の詳細を一実施例を示す図面
について説明する。図1に示すように、この発明の顕微
鏡用生体試料の作成方法は、樹脂包埋過程1と機械研磨
過程2とエッチング過程3とを含んでいる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings showing an embodiment. As shown in FIG. 1, the method for producing a biological sample for a microscope of the present invention includes a resin embedding step 1, a mechanical polishing step 2 and an etching step 3.

【0010】樹脂包埋過程は以下の被検体が包埋体6に
移る過程である。樹脂包埋過程1ではラット等の被検体
4の研究の対象部位5である視神経等をOs染色等を施
した後、エポキシ系,アクリル系、スチレン系またはポ
リエステル系樹脂等の樹脂に包埋して包埋体6を形成す
る。この樹脂包埋過程1自体は従来から行われていて公
知のものである。研究の対象部位5は生体あるいは生体
から摘出された試料である。
The resin embedding process is a process in which the following specimen moves to the embedding body 6. In the resin embedding step 1, the optic nerve, which is the target site 5 of the study of the subject 4 such as a rat, is subjected to Os staining, etc., and then embedded in a resin such as an epoxy-based, acrylic-based, styrene-based or polyester-based resin. To form the embedded body 6. This resin embedding step 1 itself has been conventionally performed and is well known. The part 5 to be studied is a living body or a sample removed from the living body.

【0011】次に機械研磨過程2において、包埋体6は
観察試料断面7を機械研磨を行って鏡面状にする。研磨
の深さは0.1μm〜10μmである。機械研磨は従来
から用いられている軟金属(銅、アルミ)用の研磨法等
を利用することができる。
Next, in the mechanical polishing step 2, the embedding body 6 mechanically polishes the cross section 7 of the observation sample into a mirror surface. The polishing depth is 0.1 μm to 10 μm. For mechanical polishing, a conventionally used polishing method for soft metals (copper, aluminum) or the like can be used.

【0012】次に包埋体6はエッチング工程3において
観察試料断面7をプラズマ・ビームで照射してエッチン
グして対象部位を露呈する。エッチングの深さは0.0
1μm〜1μmである。プラズマ・ビーム法はプラズマ
からイオンをビームとして取り出し、別のところに設置
してある包埋体の観察試料断面に照射するカウフマン型
方式で、このようなプラズマ・ビーム法を実施する装置
としては、イオンシャワー装置(商品名、エリオニクス
社製)を使用することができる。プラズマ・ビーム法で
はイオン粒子が標本に衝突したときの熱エネルギーのみ
が発生するから、熱の影響は最小限におさえることがで
きる。
Next, in the etching step 3, the embedding body 6 exposes the target site by irradiating the cross section 7 of the observation sample with a plasma beam and etching it. Etching depth is 0.0
It is 1 μm to 1 μm. The plasma beam method is a Kaufman type method of extracting ions from plasma as a beam and irradiating the observation sample cross section of the embedded body installed elsewhere, and as a device for performing such a plasma beam method, An ion shower device (trade name, manufactured by Elionix) can be used. In the plasma beam method, only thermal energy is generated when the ion particles collide with the sample, so that the influence of heat can be minimized.

【0013】こうして形成された観察試料断面7は走査
型電子顕微鏡で撮影され、画像は電子計算機8により画
像処理された後、蓄積される。
The observation sample cross section 7 thus formed is photographed by a scanning electron microscope, and the image is processed by an electronic computer 8 and then stored.

【0014】試料の連続断面像を得るためには、深さ方
向に連続する次の観察試料断面を形成する必要があるの
で、走査型電子顕微鏡で撮影した後の包埋体6を再び機
械研磨過程2に戻して自動研磨(0.1μm〜10μm
の深さ)をし、次の観察試料面を削り出し、さらに、そ
れをエッチング工程3でエッチングして次の観察試料断
面を形成する。この繰り返しを、連続断面像の必要枚数
が得られるまで行う。
In order to obtain a continuous cross-sectional image of the sample, it is necessary to form the next cross-section of the observed sample that is continuous in the depth direction. Therefore, the embedded body 6 after being photographed by a scanning electron microscope is mechanically polished again. Return to step 2 and perform automatic polishing (0.1 μm to 10 μm
Depth), the surface of the next sample to be observed is cut out, and it is further etched in etching step 3 to form a cross section of the next sample to be observed. This process is repeated until the required number of continuous sectional images is obtained.

【0015】機械研磨過程2は、1)面だし(grindin
g)、2)精密研磨(fine grinding)、3)琢磨(poli
shing)、4)仕上琢磨(final polishing )の順で行
う。それぞれの条件を表1に示す。
The mechanical polishing step 2 is 1) surface ditching (grindin
g), 2) fine grinding, 3) poli
shing), 4) Final polishing. Table 1 shows each condition.

【0016】[0016]

【表1】 [Table 1]

【0017】エッチング過程3は次の3つの過程を含ん
でいる。 Ar等のガスを、ECR法でプラズマ状態にする。 電圧(−250V圧)をかけてプラズマイオンを導出
して、カウフマン型プラズマビ―ムとする。 プラズマビ―ムを中性化して、試料のエッチングを行
う。
The etching process 3 includes the following three processes. A gas such as Ar is brought into a plasma state by the ECR method. A Kauffman-type plasma beam is produced by applying a voltage (-250 V pressure) to derive plasma ions. The sample is etched by neutralizing the plasma beam.

【0018】従来のプラズマ法は、プラズマが発生する
炉内に標本を設置するのでかなりの熱損傷をうけた。し
かし以上のこの発明の方法は、引き出されたプラズマイ
オンの熱衝撃ののみに依存するので、最小限に抑えるこ
とができる。
The conventional plasma method suffers considerable heat damage because the sample is placed in a furnace in which plasma is generated. However, the above method of the present invention can be minimized because it depends only on the thermal shock of the extracted plasma ions.

【0019】エッチング過程の条件を表2に示す。The conditions of the etching process are shown in Table 2.

【0020】[0020]

【表2】 [Table 2]

【0021】(実験例)以下の条件で、ラット視神経の
標本断面が得られている。 (1)樹脂包埋・熱硬化 透過電子顕微鏡の樹脂包埋作成と基本的には同じであ
る。 ・包埋用樹脂(表3の,,)をスターラー(撹拌
子)でよく混合して、さらに15分後にDMP30(表
3の)を滴下してよく混合する。 ・これを内径25mmφ、深さ20mmdのポリエチレ
ン製の容器に注入してから、X字形が上下(垂直)にな
るように視神経を細線等でささえ、底面に固定する。こ
れは樹脂標本を機械研磨するとき、神経束の断面の「面
だし」を行いやすくするためである。 ・エポン混合液(50%)+プロピレンオキサイド(5
0%)で振盪(しんとう)1晩。 ・熱硬化を恒温槽で45℃:12h→60℃:36hを
行い、容器からとりだす。
Experimental Example A sample cross section of a rat optic nerve was obtained under the following conditions. (1) Resin embedding / thermosetting This is basically the same as the resin embedding preparation for a transmission electron microscope. -Embedding resin (of Table 3, ...) is mixed well with a stirrer (stirring bar), and after 15 minutes, DMP30 (of Table 3) is dripped and mixed well. -After injecting this into a polyethylene container having an inner diameter of 25 mmφ and a depth of 20 mmd, support the optic nerve with a thin wire or the like so that the X shape is vertical (vertical), and fix it to the bottom surface. This is to facilitate the “leveling” of the cross section of the nerve bundle when mechanically polishing the resin sample. Epon mixture (50%) + propylene oxide (5
Shake at 0% overnight. -Heat cure at 45 ° C for 12 hours and 60 ° C for 36 hours in a constant temperature bath, and remove from the container.

【0022】[0022]

【表3】 [Table 3]

【0023】(2)研磨 軟金属の研磨法と基本的におなじである。研磨長は、試
料回転機に設置されている間は、0.1μm以下のコン
トロールが可能であるが、再研磨すなわち神経標本が再
設置されたときの誤差が不明で、1μm以下が望まし
い。 ・装置は(Struers 社,デンマーク),回転研磨台のう
えに、試料回転機(半自動)が取りつけられている。 ・回転研磨台の回転中心と試料回転機のそれとは45m
m離れており、おなじ方向におなじ回転速度150rp
mでまわる。したがって、試料回転機に取りつけられた
試料面と回転研磨台とのあいだの任意の位置で、直角の
方向でかつ同じ大きさの摩擦力が標本面にかかる。した
がって試料回転機が1回転するあいだにすべての方向の
力を一様に受けることになるので理想的な研磨となる。 ・以上の手順で作成された標本樹脂(1個)とバランス
用樹脂(2個、ダミー)を、試料埋込み板(試料回転機
の一部、160mmφ径、最大6孔)に差しこむ。圧力
100Nがこれらの3つの樹脂面にかかり、
(2) Polishing This is basically the same as the polishing method for soft metals. The polishing length can be controlled to be 0.1 μm or less while it is installed in the sample rotating machine, but an error when re-polishing, that is, when the nerve sample is re-installed is unknown, and is preferably 1 μm or less. -The device (Struers, Denmark) is equipped with a sample rotating machine (semi-automatic) on a rotary polishing table.・ 45m between the center of rotation of the rotary polishing table and that of the sample rotator
The same rotation speed of 150 rp in the same direction
Turn around m. Therefore, at an arbitrary position between the sample surface attached to the sample rotating machine and the rotary polishing table, a frictional force of the same magnitude in the direction perpendicular to the sample surface is applied to the sample surface. Therefore, the force in all directions is uniformly applied during one rotation of the sample rotating machine, which results in ideal polishing. Insert the sample resin (1 piece) and the balancing resin (2 pieces, dummy) created by the above procedure into the sample embedding plate (part of the sample rotating machine, 160 mmφ diameter, maximum 6 holes). A pressure of 100 N is applied to these three resin surfaces,

【数1】 とすると6.7g重/mm2 となる。 ・面出し(grinding):エポキシ樹脂は柔らかいので、
(冷却)水を加えながら1000(FEPA粒度)の研磨紙
(耐水、SiC)をもちいて研磨をはじめて、神経断面
を露呈させる(表4を参照)。 ・精密研磨(fine grinding ):2400(FEPA粒
度)→4000Gritへと水を加えながら1分間隔で研磨
紙をとりかえ研磨する。 ・琢磨(polishing ):研磨布(羊毛)にエタノール潤
滑・冷却剤(ルーブリカント青)を使い、ダイヤモンド
・スプレー(DP、粒径3μm)を噴霧して1分間琢磨
する。同様に、研磨布を取りかえて粒径1μmのDP噴
霧によりもう一度琢磨する。 ・仕上げ(final polishing ):研磨布(ベルベット)
にコロイド懸濁液(水+シリカ、粒径0.04μm)を
加え、神経標本を超音波で洗浄したあと1分間の仕上げ
琢磨を行う。
[Equation 1] Then, the weight becomes 6.7 g weight / mm 2 .・ Grinding: Because epoxy resin is soft,
While adding (cooling) water, polishing is started using 1000 (FEPA particle size) abrasive paper (water resistant, SiC) to expose the nerve cross section (see Table 4). -Fine grinding: 2400 (FEPA grain size) → 4000 Grit While adding water, the polishing paper is replaced and polished at 1 minute intervals. Polishing: Polishing cloth (wool) with ethanol lubrication / coolant (lubricant blue) is sprayed with diamond spray (DP, particle size 3 μm) for 1 minute. Similarly, the polishing cloth is replaced and polishing is performed again with DP spray having a particle size of 1 μm.・ Final polishing: Polishing cloth (velvet)
A colloidal suspension (water + silica, particle size 0.04 μm) is added to, and the nerve preparation is ultrasonically cleaned, and then subjected to finishing polishing for 1 minute.

【0024】[0024]

【表4】 [Table 4]

【0025】(3)カウフマン型プラズマビームエッチ
ング Ar流量:0.5sccm、 加速電圧:0.75k
V、 イオン流量:0.1mA、 照射時間:5分。そ
の結果を図2に示す。図2A:樹脂包埋され機械研磨さ
れた走査電子顕微鏡断面。信号的に凹凸が強調されてい
る。図2B:プラズマビーム法によりエッチングされた
走査電子顕微鏡断面。一つの輪状パターンは一本の神経
を取り巻いている髄鞘である。
(3) Kaufman type plasma beam etching Ar flow rate: 0.5 sccm, accelerating voltage: 0.75 k
V, ion flow rate: 0.1 mA, irradiation time: 5 minutes. The result is shown in FIG. FIG. 2A: Scanning electron microscope section embedded in resin and mechanically polished. The unevenness is emphasized in terms of signals. FIG. 2B: Scanning electron microscope cross section etched by the plasma beam method. One ring pattern is a myelin sheath surrounding a single nerve.

【0026】[0026]

【発明の効果】この発明の連続断面像を得るための顕微
鏡用生体試料の作成方法によれば、特にエッチング工程
において、プラズマが発生する炉内から引き出されたプ
ラズマイオンの衝撃のみに依存してエッチングが行われ
るので、幅広い鏡面状の良好な生体の断面構造を最小の
熱損傷で得ることができる。さらにこの発明の方式によ
る試料作成とこれによる走査電子顕微鏡連続断面像及び
計算機の三つの技術を組合せることにより、生体の微細
な三次元構造を映像として再構築することができる。
According to the method for producing a biological sample for a microscope for obtaining a continuous cross-sectional image of the present invention, particularly in the etching step, it depends only on the impact of plasma ions extracted from the inside of the furnace where plasma is generated. Since etching is performed, a wide mirror-like good living body cross-sectional structure can be obtained with minimum heat damage. Furthermore, by combining the three techniques of the sample preparation according to the method of the present invention, the scanning electron microscope continuous cross-sectional image and the computer, the fine three-dimensional structure of the living body can be reconstructed as an image.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の連続断面像を得るための顕微鏡用生
体試料の作成方法に含まれる過程を示す説明図。
FIG. 1 is an explanatory diagram showing steps included in a method for producing a biological sample for a microscope to obtain a continuous cross-sectional image of the present invention.

【図2】観察試料断面の顕微鏡写真。FIG. 2 is a micrograph of a cross section of an observed sample.

【符号の説明】[Explanation of symbols]

1 樹脂包埋過程 2 機械研磨過程 3 エッチング過程 4 被検体 5 研究の対象部位 6 包埋体 7 観察試料断面 8 電子計算機 1 Resin Embedding Process 2 Mechanical Polishing Process 3 Etching Process 4 Specimen 5 Target Area of Research 6 Embedded Body 7 Cross-section of Specimen 8 Electronic Computer

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 1/32 B G01N 1/28 R Continuation of front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location G01N 1/32 B G01N 1/28 R

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 生体の試料あるいは生体から摘出した試
料を樹脂に包埋し、前記包埋体から隣合う多数の観察試
料断面を順次形成する顕微鏡用試料の作成方法であっ
て、一つの観察試料断面を形成する毎に前記包埋体の観
察試料断面形成部位の表面を機械研磨して鏡面状にし、
次に前記鏡面状の前記観察試料断面形成部位の表面をプ
ラズマ・ビームで照射してエッチングして前記観察試料
断面を形成することを特徴とする連続断面像を得るため
の顕微鏡用生体試料の作成方法。
1. A method for preparing a microscope sample in which a biological sample or a sample excised from a biological body is embedded in a resin, and a plurality of adjacent observation sample cross sections are sequentially formed from the embedded body, which is one observation method. Each time a sample cross section is formed, the surface of the observation sample cross section forming portion of the embedded body is mechanically polished to a mirror surface,
Next, a biological sample for a microscope for obtaining a continuous cross-sectional image, characterized in that the surface of the mirror-shaped observation sample cross-section forming portion is irradiated with a plasma beam and etched to form the observation sample cross-section. Method.
【請求項2】 前記顕微鏡用試料は走査電子顕微鏡用試
料である請求項1記載の連続断面像を得るための顕微鏡
用生体試料の作成方法。
2. The method for producing a biological sample for a microscope according to claim 1, wherein the sample for a microscope is a sample for a scanning electron microscope.
JP6087986A 1994-03-31 1994-03-31 Method for preparing biological sample for microscope to obtain continuous cross-sectional images Expired - Lifetime JP2526412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6087986A JP2526412B2 (en) 1994-03-31 1994-03-31 Method for preparing biological sample for microscope to obtain continuous cross-sectional images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6087986A JP2526412B2 (en) 1994-03-31 1994-03-31 Method for preparing biological sample for microscope to obtain continuous cross-sectional images

Publications (2)

Publication Number Publication Date
JPH07270286A true JPH07270286A (en) 1995-10-20
JP2526412B2 JP2526412B2 (en) 1996-08-21

Family

ID=13930145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6087986A Expired - Lifetime JP2526412B2 (en) 1994-03-31 1994-03-31 Method for preparing biological sample for microscope to obtain continuous cross-sectional images

Country Status (1)

Country Link
JP (1) JP2526412B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322386A (en) * 2006-06-05 2007-12-13 Mayekawa Mfg Co Ltd Microslicer
JP2010002314A (en) * 2008-06-20 2010-01-07 Bridgestone Corp Deformation behavior predicting device of rubber material and deformation behavior predicting method of rubber material
JP2010190739A (en) * 2009-02-18 2010-09-02 Saga Univ Method for measuring shape of object
JP2014079865A (en) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd Polishing method
JP2021527828A (en) * 2018-06-18 2021-10-14 フリューダイム カナダ インコーポレイテッド High resolution imaging equipment and methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322386A (en) * 2006-06-05 2007-12-13 Mayekawa Mfg Co Ltd Microslicer
JP4668845B2 (en) * 2006-06-05 2011-04-13 株式会社前川製作所 Micro slicer
JP2010002314A (en) * 2008-06-20 2010-01-07 Bridgestone Corp Deformation behavior predicting device of rubber material and deformation behavior predicting method of rubber material
JP2010190739A (en) * 2009-02-18 2010-09-02 Saga Univ Method for measuring shape of object
JP2014079865A (en) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd Polishing method
JP2021527828A (en) * 2018-06-18 2021-10-14 フリューダイム カナダ インコーポレイテッド High resolution imaging equipment and methods
US11967496B2 (en) 2018-06-18 2024-04-23 Standard Biotools Canada Inc. High resolution imaging apparatus and method

Also Published As

Publication number Publication date
JP2526412B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
CN1092842C (en) Method for preparing integrated circuit plane figure sample for transmission electron microscopy, and observation method thereof
US6982429B2 (en) Transmission electron microscope sample preparation
JP3711018B2 (en) TEM sample thinning method
JP2007108105A (en) Method for preparing sample for electron microscope, converged ion beam device and a sample support stand
JP4570980B2 (en) Sample stage and sample processing method
JP2526412B2 (en) Method for preparing biological sample for microscope to obtain continuous cross-sectional images
JP2003194681A (en) Tem sample preparation method
Stevie et al. Plan view TEM sample preparation using the focused ion beam lift-out technique
JP2009216478A (en) Method of manufacturing thin-film sample for observing transmission electron microscope
US6140603A (en) Micro-cleavage method for specimen preparation
US5940678A (en) Method of forming precisely cross-sectioned electron-transparent samples
CN111834273B (en) Positioning method and positioning device for target position of semiconductor chip sample
US20060139049A1 (en) Planar view TEM sample preparation from circuit layer structures
JP2000230891A (en) Method for preparing sample for transmission type electron microscope
JPH07209155A (en) Sample preparing device and method
JP2003100245A (en) Sample holder for focused ion beam machining observation device
JPH1084020A (en) Processing method and inspection method for semiconductor
Volkov et al. Using a focused ion beam and transmission electron microscopy for local studies on pyrocarbon materials
JP2982721B2 (en) Thin film sample preparation method
Dawson-Elli et al. Mechanical Polishing to Submicron Thickness for Extensive Thin Area in Heterogeneous Samples
WO2019073687A1 (en) Semiconductor wafer evaluation method and semiconductor wafer production method
Tsujimoto et al. Cross-sectional TEM sample preparation method using FIB etching for thin-film transistor
CN116005239A (en) Electrolytic polishing solution for preparing PCB metallographic section for observing original appearance of copper plating layer and method for observing original appearance of copper plating layer
Goodhew Specimen preparation for transmission electron microscopy of metals
Prenitzer Investigation of variables affecting focused ion beam milling as applied to specimen preparation for electron microscopy: A correlation between Monte Carlo based simulation and empirical observation

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term