JP2010190739A - Method for measuring shape of object - Google Patents

Method for measuring shape of object Download PDF

Info

Publication number
JP2010190739A
JP2010190739A JP2009035610A JP2009035610A JP2010190739A JP 2010190739 A JP2010190739 A JP 2010190739A JP 2009035610 A JP2009035610 A JP 2009035610A JP 2009035610 A JP2009035610 A JP 2009035610A JP 2010190739 A JP2010190739 A JP 2010190739A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
shape
measuring
cross
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009035610A
Other languages
Japanese (ja)
Other versions
JP5205564B2 (en
Inventor
Yukihiro Ito
幸広 伊藤
Nobufumi Tsutsumi
信文 堤
Kenyu Inoue
賢優 井上
Masato Ose
真人 大瀬
Kazuhisa Takeda
一寿 武田
Shinichiro Motoyama
慎一郎 本山
Yasuhiro Takamoto
泰弘 高本
Takuji Okamoto
卓慈 岡本
Kenichi Hida
研一 肥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K & T Consultant kk
Saga University NUC
Keisoku Research Consultant Co Ltd
Original Assignee
K & T Consultant kk
Saga University NUC
Keisoku Research Consultant Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K & T Consultant kk, Saga University NUC, Keisoku Research Consultant Co Ltd filed Critical K & T Consultant kk
Priority to JP2009035610A priority Critical patent/JP5205564B2/en
Publication of JP2010190739A publication Critical patent/JP2010190739A/en
Application granted granted Critical
Publication of JP5205564B2 publication Critical patent/JP5205564B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for measuring degradation of an object capable of easily and inexpensively measuring degradation of the object. <P>SOLUTION: A measured object 5 to be measured is defined, the shape of the defined measured object is taken using a resin 15, then the resin 15 for taking the shape is cut at an optional site to be measured, the cross-sectional portion of the resin 15 is directly read by a two-dimensional scanner 25, and the shape of the cross-sectional portion by image analysis is measured. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、物体の形状計測方法に関し、例えば既設構造物の鉄筋の形状計測方法などに関する。   The present invention relates to a method for measuring the shape of an object, for example, a method for measuring the shape of a reinforcing bar of an existing structure.

例えば、鉄筋コンクリートと称される構造物は、経年劣化により、構造物自体、及び構造物に用いられている鋼材が腐食する。構造物の耐力診断を行う上で、当該構造物に用いられている鋼材(鉄筋)の腐食調査(形状計測調査)は不可欠である。   For example, a structure called reinforced concrete corrodes the structure itself and the steel used for the structure due to deterioration over time. In conducting a strength test of a structure, a corrosion investigation (shape measurement investigation) of steel (rebar) used in the structure is indispensable.

この種の腐食調査(評価)に関する技術として、(1)既設構造物のコンクリートをはつり、鉄筋を露出させて目視によって評価する方法(2)既設構造物のコンクリートをはつり、鉄筋を露出させて当該鉄筋の断面寸法をノギスを用いて測定して評価する方法、(3)既設構造物のコンクリートをはつり、検査対象とする鉄筋を採取して重量等を測定して評価する方法などが従来から知られている。しかしながら、(1)は耐力診断を行うための有意なデータとならない、(2)は精度が悪く、腐食した不定形状の鉄筋の断面積を求めるときには特に大きな誤差を生じ、有意なデータとならない、(3)作業が煩雑となり、しかも構造物に損傷を与えるという問題がある。   As a technology related to this kind of corrosion investigation (evaluation), (1) a method of suspending concrete in an existing structure and exposing the rebar and visually evaluating it (2) suspending a concrete in an existing structure and exposing the rebar Conventionally known are methods for measuring and evaluating the cross-sectional dimensions of reinforcing bars using calipers, and (3) methods for measuring and evaluating the weight of reinforcing bars that are to be inspected by collecting concrete from existing structures. It has been. However, (1) is not significant data for performing a proof stress diagnosis, (2) is inaccurate and causes a particularly large error when obtaining the cross-sectional area of a corroded irregular shaped reinforcing bar, and does not become significant data. (3) There is a problem that the work becomes complicated and the structure is damaged.

このような問題を解決すべく、最近では、例えば、レーザ形状計測器により鉄筋の形状を計測する手法が提案されている。この計測手法は、精度良く計測できるものの、装置が高価であるという問題に加えて、はつり個所のような狭隘な場所の計測が困難である。よって、計測対象とする鉄筋を採取しての計測となるため、上記(3)と同様な問題がある。   In order to solve such a problem, recently, for example, a method of measuring the shape of a reinforcing bar with a laser shape measuring instrument has been proposed. Although this measurement method can measure with high accuracy, in addition to the problem that the apparatus is expensive, it is difficult to measure a narrow place such as a hanging part. Therefore, since it becomes the measurement which extract | collects the reinforcing bar used as a measuring object, there exists a problem similar to said (3).

一方、鉄筋を採取せずに鉄筋の計測を行う手法が開示されている(特許文献1参照)。特許文献1の手法は、鉄筋を無収縮のエポキシ樹脂又は無発泡ウレタン樹脂により型どりし、その型どりした樹脂を型枠として他の樹脂を流し込み鉄筋のレプリカを作成した後、そのレプリカを3次元スキャナ(レーザ計測器)で計測するものである。   On the other hand, a technique for measuring a reinforcing bar without collecting the reinforcing bar is disclosed (see Patent Document 1). In the method of Patent Document 1, a reinforcing bar is molded with a non-shrinkable epoxy resin or a non-foamed urethane resin, and another resin is poured into the molded resin as a mold to create a replica of the reinforcing bar. It measures with (laser measuring device).

特開2007−263924号公報JP 2007-263924 A

特許文献1に記載の鉄筋の計測手法は、高精度に計測可能であるものの、3次元スキャナは高価であり、使用される樹脂は使い捨てのものであるためランニングコストが高価となる。   Although the reinforcing bar measuring method described in Patent Document 1 can be measured with high accuracy, the three-dimensional scanner is expensive, and the resin used is disposable, so the running cost is expensive.

また、型どりした樹脂からレプリカを作製するため、作業が煩雑となり、作業時間が長くなり作業者への負担も重いなどの問題がある。   In addition, since replicas are made from molded resin, there are problems such as complicated work, long working time, and heavy burden on the operator.

本発明は、以上の点等に鑑みてなされたものであり、容易、且つコストをかけずに物体の劣化計測を行うことが可能な物体の劣化計測方法などを提供することを目的とする。   The present invention has been made in view of the above points, and an object of the present invention is to provide an object deterioration measurement method and the like that can easily measure object deterioration without cost.

上記課題を解決するために、請求項1に記載の物体の形状計測方法は、既設構造物の計測対象とすべき領域を特定し、軟化させた熱可塑性樹脂を前記領域に押し付け、前記熱可塑性樹脂の硬化後、前記領域から当該熱可塑性樹脂を取り出し、任意の個所において、硬化した前記熱可塑性樹脂を切断し、前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする。   In order to solve the above-described problem, the object shape measuring method according to claim 1 specifies an area to be measured of an existing structure, presses a softened thermoplastic resin against the area, and After the resin is cured, the thermoplastic resin is taken out from the region, and the cured thermoplastic resin is cut at an arbitrary position, and the cut cross-sectional portion is read with a two-dimensional image acquisition device, and the shape of the cross-sectional portion is determined. It is characterized by measuring.

また、請求項2に記載の物体の形状計測方法は、既設構造物のコンクリートをはつり、計測対象とすべき鉄筋を特定し、前記鉄筋に付着したコンクリート片や錆を除去して前記鉄筋の全周を露出させ、半割り形状の2つのハウジング内にそれぞれ熱可塑性樹脂を詰め、前記鉄筋の外周に前記熱可塑性樹脂が詰められた2つのハウジングを組み付けて、前記熱可塑性樹脂の硬化後、前記両ハウジングの境界に沿って熱可塑性樹脂を切断して硬化した前記熱可塑性樹脂を取り出し、任意の個所において、硬化した前記熱可塑性樹脂を切断し、前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする。   Further, the object shape measuring method according to claim 2, the concrete of the existing structure is suspended, the reinforcing bar to be measured is specified, the concrete pieces and rust adhering to the reinforcing bar are removed, and the entire reinforcing bar is removed. The periphery is exposed, each of the two half-shaped housings is filled with a thermoplastic resin, the two housings filled with the thermoplastic resin are assembled on the outer periphery of the reinforcing bar, and after the thermoplastic resin is cured, The thermoplastic resin cured by cutting the thermoplastic resin along the boundary between the two housings is taken out, and the cured thermoplastic resin is cut at an arbitrary position, and the cut cross-sectional portion is obtained by a two-dimensional image acquisition device. The shape of the cross section is measured by reading.

また、請求項3に記載の物体の形状計測方法は、請求項2に記載の物体の形状計測方法において、型どりされた硬化後の前記熱可塑性樹脂の底面と切断面をシールし、当該型どりされた熱可塑性樹脂の内部に液体を注入し、前記液体の質量から体積を求めることを特徴とする。   The object shape measuring method according to claim 3 is the object shape measuring method according to claim 2, wherein the bottom surface and the cut surface of the cured thermoplastic resin that has been shaped are sealed, and the shape is shaped. A liquid is injected into the inside of the thermoplastic resin, and the volume is obtained from the mass of the liquid.

また、請求項4に記載の物体の形状計測方法は、既設構造物の計測対象とすべき金属部分を含む付帯設備を特定し、前記付帯設備に付着した錆を除去し、軟化させた熱可塑性樹脂を前記付帯設備に押し付け、前記熱可塑性樹脂の硬化後、前記付帯設備から当該熱可塑性樹脂を取り出し、前記金属部分を含む任意の個所において、硬化した前記熱可塑性樹脂を切断し、前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする。   In addition, the object shape measuring method according to claim 4 specifies an incidental facility including a metal portion to be measured for an existing structure, removes rust attached to the incidental facility, and softens the thermoplastic. Resin is pressed against the incidental equipment, and after the thermoplastic resin is cured, the thermoplastic resin is taken out from the incidental equipment, and the cured thermoplastic resin is cut at any location including the metal part, and the cut The cross-sectional portion is read by a two-dimensional image acquisition device, and the shape of the cross-sectional portion is measured.

また、請求項5に記載の物体の形状計測方法は、平面状の既設構造物の計測対象とすべき領域を特定し、転写可能な印を前記領域内の前記既設構造物に付け、軟化させた熱可塑性樹脂を前記領域に押し付け、前記熱可塑性樹脂の硬化後、前記領域から前記印が転写された当該熱可塑性樹脂を取り出し、前記印に基づいて硬化した前記熱可塑性樹脂を切断し、前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする。   Further, the object shape measuring method according to claim 5 specifies an area to be measured for a planar existing structure, and attaches a transferable mark to the existing structure in the area to soften it. Pressing the thermoplastic resin against the region, after curing the thermoplastic resin, take out the thermoplastic resin having the mark transferred from the region, cut the cured thermoplastic resin based on the mark, The cut cross-sectional part is read by a two-dimensional image acquisition device, and the shape of the cross-sectional part is measured.

本発明によれば、容易、且つ正確に計測すべき物体の形状(断面形状)を計測することが可能である。また、本発明によれば、鉄筋コンクリート構造物中の腐食鉄筋の断面計測の他、鋼構造物やプラントの鋼材表面の腐食、磨耗による表面凹凸の計測などに利用することができる。   According to the present invention, it is possible to easily and accurately measure the shape (cross-sectional shape) of an object to be measured. Moreover, according to this invention, it can utilize for the measurement of the surface unevenness | corrugation by corrosion of the steel material surface of a steel structure or a plant other than the measurement of the cross section of the corroded reinforcing bar in a reinforced concrete structure.

既設構造物の腐食鉄筋の形状を計測する工程図である。It is a process figure which measures the shape of the corrosion reinforcement of an existing structure. 既設構造物の表面の凹凸形状を計測する計測手法を説明するための図である。It is a figure for demonstrating the measuring method which measures the uneven | corrugated shape of the surface of the existing structure. 既設構造物の付帯設備の腐食形状を計測する工程図である。It is a process figure which measures the corrosion shape of the incidental equipment of an existing structure.

以下、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described.

1.実施形態の概要
本実施形態の物体の形状計測手法は、被計測物の断面を計測する手法である。当該物体の形状計測手法は、計測対象とすべき被測定物を特定し、その特定した被測定物を樹脂を用いて型どりした後、計測すべき任意の箇所において当該型どりした樹脂を切断し、当該樹脂の断面部分を、例えばフラットヘッドスキャナ(2次元スキャナ)などの2次元画像取得装置で直接読み取って、画像解析による断面部分の形状を計測するものである。
1. Outline of Embodiment The object shape measurement method of this embodiment is a method of measuring a cross section of an object to be measured. The shape measurement method of the object specifies a measurement object to be measured, molds the specified measurement object using a resin, and then cuts the molded resin at an arbitrary position to be measured, The cross section of the resin is directly read by a two-dimensional image acquisition device such as a flat head scanner (two-dimensional scanner), and the shape of the cross section is measured by image analysis.

本実施形態に用いられる樹脂は、熱可塑性樹脂である。本実施形態では、好適にポリエチレン樹脂を用いるが、その他、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂などを用いることができる。   The resin used in this embodiment is a thermoplastic resin. In the present embodiment, a polyethylene resin is preferably used, but a polypropylene resin, a polyvinyl chloride resin, a polystyrene resin, or the like can also be used.

このように本実施形態の断面計測手法は、熱可塑性樹脂を用いることで、物体の形状計測の際の作業性が良く、計測に係るコストの低減を図れる。熱可塑性樹脂は、常温の状態においてカッター等で容易に切断でき、且つ、加熱により何度でも再利用可能であるからである。   As described above, the cross-section measurement method of this embodiment uses a thermoplastic resin, so that the workability in measuring the shape of the object is good, and the cost for measurement can be reduced. This is because the thermoplastic resin can be easily cut with a cutter or the like at room temperature and can be reused any number of times by heating.

また、本実施形態の断面計測手法は、切断部分を2次元スキャナで読み取って、断面部分の形状を計測するため、精度良く計測できるとともに物体の形状計測の際の作業性が良く、計測に係るコストの低減を図れる。2次元スキャナは安価で精度の良い製品が多数出回っており、また、断面部分の形状を計測するための2次元画像解析においては、現在では非常に安い解析ソフトが多数出回っているからである。   In addition, since the cross-sectional measurement method of this embodiment reads a cut portion with a two-dimensional scanner and measures the shape of the cross-sectional portion, the cross-sectional measurement method can be measured with high accuracy and has good workability when measuring the shape of an object. Cost can be reduced. This is because there are many inexpensive and accurate products available for two-dimensional scanners, and many two-dimensional image analysis for measuring the shape of the cross-sectional portion is currently available for many very inexpensive analysis software.

次に、本実施形態の物体の形状計測手法のより具体的な実施例について、実施例1〜実施例3に分けて説明する。   Next, more specific examples of the object shape measurement method of the present embodiment will be described separately in Examples 1 to 3.

2.実施例1
本実施例は既設構造物の鉄筋を計測する手法である。以下に本実施例の物体の形状計測手法について図1を用いて説明する。図1は既設構造物の腐食鉄筋の形状を計測する工程図である。
2. Example 1
This embodiment is a method for measuring the reinforcing bars of an existing structure. The object shape measuring method of the present embodiment will be described below with reference to FIG. FIG. 1 is a process diagram for measuring the shape of a corroded reinforcing bar of an existing structure.

まず、図1(a)に示すように、既設構造物のコンクリート2をはつり、計測対象となる鉄筋5を露出させる。そして、鉄筋5に付着しているコンクリート片や錆をとるため、例えば充電式ハンドドリル等にワイヤカップブラシを取り付け、鉄筋5の表面に付着した錆やコンクリート片を除去する。この作業により鉄筋全周を露出させる。   First, as shown to Fig.1 (a), the concrete 2 of an existing structure is suspended, and the reinforcement 5 used as a measuring object is exposed. And in order to take the concrete piece and rust adhering to the reinforcing bar 5, a wire cup brush is attached to a rechargeable hand drill etc., for example, and the rust and concrete piece adhering to the surface of the reinforcing bar 5 are removed. This work exposes the entire circumference of the rebar.

次に、図1(b)に示すように、鉄筋5の型どり用に用いられる半割り形状のアルミ製の円筒ハウジング(以下、単に「ハウジング10」と称する。)内に熱可塑性樹脂15(以下、単に「樹脂」と称する)を詰め、加熱装置20にて加熱し、当該熱可塑性樹脂15を軟化させる。   Next, as shown in FIG. 1 (b), a thermoplastic resin 15 (hereinafter referred to as “housing 10”) in a half-divided aluminum cylindrical housing (hereinafter simply referred to as “housing 10”) used for shaping the reinforcing bars 5. , Simply referred to as “resin”) and heated by the heating device 20 to soften the thermoplastic resin 15.

次に、図1(c)に示すように、樹脂15が詰められたハウジング10を計測対象となる鉄筋5の左右(又は前後)から挟みこみ、当該樹脂15が硬化するまでその状態を保持する。なお、樹脂15は約40℃以下になるとゴム状に硬化することが確認できた。   Next, as shown in FIG. 1 (c), the housing 10 filled with the resin 15 is sandwiched from the left and right (or front and rear) of the reinforcing bar 5 to be measured, and the state is maintained until the resin 15 is cured. . It was confirmed that the resin 15 was cured in a rubber shape when the temperature was about 40 ° C. or lower.

本実施例では、ハウジング10から手を離しても当該ハウジング10は落下しないことを確認したが、念のため当該ハウジング10の外周に当該ハウジング10が移動しないように固定する固定装置を用いても構わない。なお、当該固定装置は、バンドなどであっても構わない。   In this embodiment, it has been confirmed that the housing 10 does not fall even if the hand is released from the housing 10. However, a fixing device that fixes the housing 10 to the outer periphery of the housing 10 so as not to move may be used as a precaution. I do not care. Note that the fixing device may be a band or the like.

このように本実施例では、樹脂15の型どりのために半割り形状のハウジング10を用いることで、はつり部分が狭い場所でも容易に作業ができるため、作業者の負担を軽減できる。なお、ハウジング10の形状は、図1に示すように半割り可能な円筒形状でなくとも縦方向に分割可能であれば良い。すなわち、ハウジング10の形状は、角筒形状であっても良く、縦方向に複数(例えば、3分割)されていてもよい。作業者が、鉄筋5を取り外すことなく熱可塑性樹脂15により当該鉄筋5の型どり作業を容易に行えれば良い。   As described above, in this embodiment, by using the half-shaped housing 10 for shaping the resin 15, the work can be easily performed even in a place where the suspended portion is narrow, so that the burden on the operator can be reduced. The shape of the housing 10 is not limited to a half-divided cylindrical shape as shown in FIG. That is, the shape of the housing 10 may be a rectangular tube shape, and may be divided into a plurality (for example, divided into three) in the vertical direction. It is only necessary that the worker can easily perform the remodeling work of the reinforcing bar 5 with the thermoplastic resin 15 without removing the reinforcing bar 5.

次に、図1(c)、(d)に示すように、前記樹脂15が硬化した後、前記両ハウジング10の境界10aに沿ってカッターを入れて硬化した樹脂15を切断し、当該鉄筋5から鉄筋5の形状が型どりされた樹脂15aを取り出す。   Next, as shown in FIGS. 1 (c) and 1 (d), after the resin 15 is cured, the cured resin 15 is cut by inserting a cutter along the boundary 10 a between the housings 10, and the reinforcing bar 5 is cut. The resin 15a in which the shape of the reinforcing bar 5 is shaped is taken out.

次に、図1(e)に示すように、型どりされた樹脂15aの底面とカット面をシールし、液体(例えば、水)を上面まで注入し、その注入した液体の質量から体積を求める。これにより、鉄筋5の腐食率などをコンピュータを用いて計測することができる。   Next, as shown in FIG. 1 (e), the bottom surface and cut surface of the molded resin 15a are sealed, a liquid (for example, water) is injected up to the top surface, and the volume is determined from the mass of the injected liquid. Thereby, the corrosion rate etc. of the reinforcing bar 5 can be measured using a computer.

さらに、図1(f)に示すように、任意の断面で樹脂15aを切断し、その切断した樹脂15bの画像(断面画像)を2次元スキャナ25によって読み取り、画像解析ソフトを備えたコンピュータを用いて鉄筋5の断面形状を計測する。   Further, as shown in FIG. 1 (f), the resin 15a is cut at an arbitrary cross section, and an image (cross section image) of the cut resin 15b is read by a two-dimensional scanner 25, and a computer equipped with image analysis software is used. Then, the cross-sectional shape of the reinforcing bar 5 is measured.

コンピュータは、例えば、演算機能を有するCPU(Central Processing Unit)、作業用RAM、不揮発性メモリ、及び各種処理プログラムやデータを記憶するROM等を備えて構成されている。そして、CPUが例えばROM等に記憶された画像解析処理プログラムを実行(画像解析処理アプリケーションを起動)することにより、鉄筋5等の被計測物の断面形状(実施例1)、粗さ分布及び磨耗度合い(後述する実施例2)を計測するようになっている。   The computer includes, for example, a CPU (Central Processing Unit) having an arithmetic function, a working RAM, a nonvolatile memory, and a ROM that stores various processing programs and data. Then, when the CPU executes an image analysis processing program stored in, for example, a ROM (starts an image analysis processing application), the cross-sectional shape (Example 1), roughness distribution, and wear of the object to be measured such as the reinforcing bar 5 The degree (Example 2 described later) is measured.

なお、本実施例では自然に樹脂15が硬化するのを待ったが、冷水や氷などでハウジング10ごと冷却することでその硬化時間は短縮可能である。   In this embodiment, the resin 15 is naturally allowed to harden. However, the hardening time can be shortened by cooling the entire housing 10 with cold water or ice.

このような計測手法によれば、既設構造物の鉄筋の正確な形状の計測が容易に可能であるとともに、腐食度合いを推定することが可能である。   According to such a measurement method, it is possible to easily measure the accurate shape of the reinforcing bar of the existing structure and estimate the degree of corrosion.

次に上記手法で用いた計測装置の一例について説明する。   Next, an example of the measuring apparatus used in the above method will be described.

まず、鉄筋5の型どり用に用いられるハウジング10は、円筒状のアルミを縦方向に二分割したものである。また、加熱装置20は、ヒータ21を備え、図1(b)に示すように、当該ヒータ21により半割り形状のハウジング10を加熱することが可能である。樹脂15を当該ハウジング10内に入れて加熱後、樹脂15が軟化したら、当該樹脂15の表面を平らな板などを用いて整形(表面が平らになるように整える)する。本実施例では、樹脂15は、加熱開始から15分で樹脂の表面温度が90℃となり軟化した。   First, the housing 10 used for shaping of the reinforcing bar 5 is obtained by dividing cylindrical aluminum into two in the vertical direction. In addition, the heating device 20 includes a heater 21 and can heat the halved housing 10 by the heater 21 as shown in FIG. After the resin 15 is placed in the housing 10 and heated and then the resin 15 is softened, the surface of the resin 15 is shaped (prepared so that the surface becomes flat) using a flat plate or the like. In this example, the resin 15 was softened with a resin surface temperature of 90 ° C. in 15 minutes from the start of heating.

ここで、本実施例で測定された結果の有意性を検証した。この検証は、本実施例により型どりされた樹脂を任意の部分で切断した時のスキャナ画像から画像解析ソフトを用いて計測した断面形状の計測値と、同一個所の鉄筋をノギスで測定した実測値と、を比較して行った。この検証は、鉄筋の複数箇所(節のある部分と節のない部分のそれぞれの任意の3ヶ所)において行った。その結果、面積の誤差は最大で2.3%、直径は最大で1.5%と本実施例における計測精度は高く、実用上十分な精度を得ることができることが確認できた。   Here, the significance of the results measured in this example was verified. This verification is based on the measured value of the cross-sectional shape measured by using image analysis software from the scanner image when the resin shaped by this example is cut at an arbitrary part, and the actual value measured with the caliper at the same location. And compared. This verification was performed at a plurality of locations of the reinforcing bars (arbitrary three portions each having a node and a portion having no node). As a result, the error of the area was 2.3% at the maximum and the diameter was 1.5% at the maximum, so that the measurement accuracy in this example was high, and it was confirmed that the practically sufficient accuracy could be obtained.

3.実施例2
本実施例は既設構造物の表面の凹凸形状を計測する手法である。以下に本実施例の物体の形状計測手法について図2を用いて説明する。図2は既設構造物の表面の凹凸形状を計測する計測手法を説明するための図である。
3. Example 2
This embodiment is a technique for measuring the uneven shape on the surface of an existing structure. The object shape measuring method of this embodiment will be described below with reference to FIG. FIG. 2 is a diagram for explaining a measurement method for measuring the uneven shape on the surface of an existing structure.

まず、図2(a)に示すように、既設構造物50の表面の測定すべき領域Rを特定する。   First, as shown in FIG. 2A, the region R to be measured on the surface of the existing structure 50 is specified.

次に、例えば充電式ハンドドリル等にワイヤカップブラシを取り付け、測定すべき領域Rに付着している塗装や錆を除去する。なお、測定すべき領域Rに錆(金属部分)や塗装を含まない場合などでは、この工程は必要ない。このような場合には、当該領域Rの埃などを除去するだけで良い。   Next, for example, a wire cup brush is attached to a rechargeable hand drill or the like, and paint or rust adhering to the region R to be measured is removed. Note that this step is not necessary when the region R to be measured does not include rust (metal part) or paint. In such a case, it is only necessary to remove dust and the like in the region R.

次に、熱可塑性樹脂15を加熱装置により加熱し、当該熱可塑性樹脂15を軟化させる。   Next, the thermoplastic resin 15 is heated by a heating device to soften the thermoplastic resin 15.

次に、図2(a)に示すように、当該熱可塑性樹脂15を型どり用として用いられる平板状のアルミ板55に広げて載せ、測定すべき領域Rに押し付け、当該熱可塑性樹脂15が硬化するまでその状態を保持する。なお、既設構造物の一部表面の凹凸形状を計測する場合には、特定した領域の位置や測定すべき断面の位置を後で特定することが困難となるため、測定すべき領域Rにおいて、熱可塑性樹脂15を押し付ける前に、特に測定が必要な個所(例えば、磨耗が激しい個所)に、鉛筆や色つきのペンなどで計測線57を引く(印をつける)ことが好ましい。このようにすれば、図2(b)に示すように、型どりされた熱可塑性樹脂15に、当該線(印)57が裏移りする(転写される)ため、広い範囲での測定において当該型どりした位置の特定が容易となる。また、当該計測線57によって切断すべき断面(計測したい断面)を容易に特定することができる。その結果、本実施例によれば、計測した領域Rを容易に特定でき、且つ計測したい表面の凹凸形状を精度良く計測できる。   Next, as shown in FIG. 2 (a), the thermoplastic resin 15 is spread and placed on a flat aluminum plate 55 used for shaping, pressed against the region R to be measured, and the thermoplastic resin 15 is cured. Hold that state until you do. In the case of measuring the uneven shape of a part of the surface of the existing structure, it is difficult to specify the position of the specified region or the position of the cross section to be measured later. Before pressing the thermoplastic resin 15, it is preferable to draw (mark) a measurement line 57 with a pencil or a colored pen at a place where measurement is particularly necessary (for example, a place where wear is severe). In this way, as shown in FIG. 2B, the line (mark) 57 is transferred (transferred) to the shaped thermoplastic resin 15, so that the mold is obtained in a wide range of measurement. It is easy to specify the position. In addition, a cross section to be cut (cross section to be measured) can be easily specified by the measurement line 57. As a result, according to the present embodiment, the measured region R can be easily specified, and the uneven shape of the surface to be measured can be accurately measured.

次に、前記熱可塑性樹脂が硬化した後、アルミ板から測定個所の形状が型どりされた熱可塑性樹脂を取り出す。   Next, after the thermoplastic resin is cured, the thermoplastic resin whose shape of the measurement location is shaped is taken out from the aluminum plate.

次に、任意の断面で樹脂を切断し、その切断した樹脂の画像(断面画像)を2次元スキャナによって読み取り、画像解析ソフトを用いて凹凸深さ等断面形状を計測する。   Next, the resin is cut at an arbitrary cross section, an image (cross-sectional image) of the cut resin is read by a two-dimensional scanner, and a cross-sectional shape such as an unevenness depth is measured using image analysis software.

なお、本実施例で用いた加熱装置としては、一般的に市販されているホットプレートを用いた。   Note that a commercially available hot plate was used as the heating apparatus used in this example.

このような計測手法によれば、計測対象となる領域Rの粗さ分布をコンピュータを用いて計測することができる。よって、本実施例により、当該粗さ分布から磨耗度合いをコンピュータを用いて推定することが可能である。   According to such a measuring method, the roughness distribution of the region R to be measured can be measured using a computer. Therefore, according to the present embodiment, the degree of wear can be estimated from the roughness distribution using a computer.

4.実施例3
本実施例は既設構造物の付帯設備を計測する手法である。以下に本実施例の物体の形状計測手法について図3を用いて説明する。図2は既設構造物の付帯設備の腐食形状を計測する工程図である。
4). Example 3
This embodiment is a technique for measuring incidental facilities of existing structures. The object shape measuring method of the present embodiment will be described below with reference to FIG. FIG. 2 is a process diagram for measuring the corrosion shape of an incidental facility of an existing structure.

まず、図3(a)に示すように、例えば充電式ハンドドリル等にワイヤカップブラシを取り付け、既設構造物に備え付けられている付帯設備30(金属部分であるボルト31、ナット32、パイプ33など)に付着している錆等を塗装を除去する。   First, as shown in FIG. 3 (a), for example, a wire cup brush is attached to a rechargeable hand drill or the like, and incidental equipment 30 (a metal part such as a bolt 31, a nut 32, a pipe 33, etc.) provided in an existing structure. ) Remove rust, etc. adhering to the paint.

次に、熱可塑性樹脂15を加熱装置により加熱し、当該熱可塑性樹脂15を軟化させる。   Next, the thermoplastic resin 15 is heated by a heating device to soften the thermoplastic resin 15.

次に、図3(a)、(b)に示すように、熱可塑性樹脂15を、例えばアルミホイルで作成された容器35内に収容し、当該熱可塑性樹脂15を測定すべき付帯設備30の計測すべき領域30aに押し付け、当該熱可塑性樹脂15が硬化するまでその状態を保持する。   Next, as shown in FIGS. 3A and 3B, the thermoplastic resin 15 is accommodated in a container 35 made of, for example, aluminum foil, and the incidental equipment 30 to which the thermoplastic resin 15 is to be measured is measured. The state is pressed against the region 30a to be measured, and the state is maintained until the thermoplastic resin 15 is cured.

次に、図3(b)に示すように、前記熱可塑性樹脂15が硬化した後、測定個所(計測すべき領域30a)の形状が型どりされた熱可塑性樹脂15を取り出す   Next, as shown in FIG. 3B, after the thermoplastic resin 15 is cured, the thermoplastic resin 15 in which the shape of the measurement location (the region 30a to be measured) is shaped is taken out.

次に、図3(c)に示すように、任意の断面で熱可塑性樹脂15を切断し、その切断した熱可塑性樹脂15cの画像(断面画像)を2次元スキャナによって読み取り、画像解析ソフトを備えたコンピュータを用いて凹凸深さ等断面形状を計測する。   Next, as shown in FIG. 3C, the thermoplastic resin 15 is cut at an arbitrary cross section, and an image (cross-sectional image) of the cut thermoplastic resin 15c is read by a two-dimensional scanner, and image analysis software is provided. Measure cross-sectional shape such as unevenness depth using a computer.

なお、本実施例では、アンカーボルトの直径を通るような断面でカットした。また、本実施例で用いた加熱装置としては、一般的に市販されているホットプレートを用いた。   In this example, the cross section was cut so as to pass through the diameter of the anchor bolt. Moreover, as a heating apparatus used in the present example, a commercially available hot plate was used.

このような計測手法によれば、既設構造物に備え付けられている付帯設備30等の複雑な形状の部材に対して当該部材の断面計測が容易に可能となる。また、計測結果により、各部材の腐食度合いを推定することが可能である。   According to such a measuring method, it is possible to easily measure a cross section of a member having a complicated shape such as the incidental equipment 30 provided in the existing structure. Further, the degree of corrosion of each member can be estimated from the measurement result.

なお、本願は本実施形態に限定されるものではなく、種々の形態にて実施することが可能である。例えば、本実施例にて用いた2次元スキャナ25の代わりとして、デジタルカメラなど2次元画像をデータとして取得可能な装置(2次元画像取得装置)を用いても構わない。   In addition, this application is not limited to this embodiment, It can implement in a various form. For example, instead of the two-dimensional scanner 25 used in the present embodiment, a device (two-dimensional image acquisition device) that can acquire a two-dimensional image as data, such as a digital camera, may be used.

5 鉄筋
10 ハウジング
15 熱可塑性樹脂
20 加熱装置
25 2次元スキャナ
30 付帯設備
5 Reinforcing Bar 10 Housing 15 Thermoplastic Resin 20 Heating Device 25 2D Scanner 30 Attached Equipment

Claims (5)

既設構造物の計測対象とすべき領域を特定し、
軟化させた熱可塑性樹脂を前記領域に押し付け、
前記熱可塑性樹脂の硬化後、前記領域から当該熱可塑性樹脂を取り出し、
任意の個所において、硬化した前記熱可塑性樹脂を切断し、
前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする物体の形状計測方法。
Identify the area to be measured for existing structures,
Press the softened thermoplastic resin against the area,
After curing of the thermoplastic resin, take out the thermoplastic resin from the region,
Cutting the cured thermoplastic resin at any point;
A method for measuring the shape of an object, comprising: reading the cut cross-sectional portion with a two-dimensional image acquisition device and measuring the shape of the cross-sectional portion.
既設構造物のコンクリートをはつり、計測対象とすべき鉄筋を特定し、
前記鉄筋に付着したコンクリート片や錆を除去して前記鉄筋の全周を露出させ、
分割されたの2つのハウジング内にそれぞれ熱可塑性樹脂を詰め、
前記鉄筋の外周に前記熱可塑性樹脂が詰められた2つのハウジングを組み付けて、
前記熱可塑性樹脂の硬化後、前記両ハウジングの境界に沿って熱可塑性樹脂を切断して硬化した前記熱可塑性樹脂を取り出し、
任意の個所において、硬化した前記熱可塑性樹脂を切断し、
前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする物体の形状計測方法。
Hang the concrete of the existing structure, identify the reinforcing bars to be measured,
Remove the concrete pieces and rust attached to the reinforcing bars to expose the entire circumference of the reinforcing bars,
Each of the divided two housings is filled with thermoplastic resin,
Assembling two housings filled with the thermoplastic resin on the outer periphery of the reinforcing bar,
After curing of the thermoplastic resin, cut the thermoplastic resin along the boundary between the two housings and take out the cured thermoplastic resin,
Cutting the cured thermoplastic resin at any point;
A method for measuring the shape of an object, comprising: reading the cut cross-sectional portion with a two-dimensional image acquisition device and measuring the shape of the cross-sectional portion.
型どりされた硬化後の前記熱可塑性樹脂の底面と切断面をシールし、
当該型どりされた熱可塑性樹脂の内部に液体を注入し、
前記液体の質量から体積を求めることを特徴とする請求項2に記載の物体の形状計測方法。
Sealing the bottom and cut surfaces of the thermoplastic resin after being cured
Injecting liquid into the shaped thermoplastic resin,
The object shape measuring method according to claim 2, wherein the volume is obtained from the mass of the liquid.
既設構造物の計測対象とすべき金属部分を含む付帯設備を特定し、
前記付帯設備に付着した錆を除去し、
軟化させた熱可塑性樹脂を前記付帯設備に押し付け、
前記熱可塑性樹脂の硬化後、前記付帯設備から当該熱可塑性樹脂を取り出し、
前記金属部分を含む任意の個所において、硬化した前記熱可塑性樹脂を切断し、
前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする物体の形状計測方法。
Identify ancillary equipment including metal parts that should be measured for existing structures,
Remove rust attached to the incidental equipment,
Press the softened thermoplastic resin against the incidental equipment,
After curing of the thermoplastic resin, take out the thermoplastic resin from the incidental equipment,
Cutting the cured thermoplastic resin at any location including the metal portion;
A method for measuring the shape of an object, comprising: reading the cut cross-sectional portion with a two-dimensional image acquisition device and measuring the shape of the cross-sectional portion.
平面状の既設構造物の計測対象とすべき領域を特定し、
転写可能な印を前記領域内の前記既設構造物に付け、
軟化させた熱可塑性樹脂を前記領域に押し付け、
前記熱可塑性樹脂の硬化後、前記領域から前記印が転写された当該熱可塑性樹脂を取り出し、
前記印に基づいて硬化した前記熱可塑性樹脂を切断し、
前記切断した断面部分を2次元画像取得装置で読み取って、当該断面部分の形状を計測することを特徴とする物体の形状計測方法。
Identify the area to be measured for planar existing structures,
A transferable mark is attached to the existing structure in the area,
Press the softened thermoplastic resin against the area,
After curing of the thermoplastic resin, take out the thermoplastic resin to which the mark has been transferred from the region,
Cutting the cured thermoplastic resin based on the mark,
A method for measuring the shape of an object, comprising: reading the cut cross-sectional portion with a two-dimensional image acquisition device and measuring the shape of the cross-sectional portion.
JP2009035610A 2009-02-18 2009-02-18 Object shape measurement method Active JP5205564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009035610A JP5205564B2 (en) 2009-02-18 2009-02-18 Object shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009035610A JP5205564B2 (en) 2009-02-18 2009-02-18 Object shape measurement method

Publications (2)

Publication Number Publication Date
JP2010190739A true JP2010190739A (en) 2010-09-02
JP5205564B2 JP5205564B2 (en) 2013-06-05

Family

ID=42816931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009035610A Active JP5205564B2 (en) 2009-02-18 2009-02-18 Object shape measurement method

Country Status (1)

Country Link
JP (1) JP5205564B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285466A (en) * 1987-05-18 1988-11-22 Nippon Kenchiku Sogo Shikenjo Sampling of corroded part for reinforcing steel
JPH01129102A (en) * 1987-11-14 1989-05-22 Nishikawa Rubber Kogyo Kk Fixing jig for three-dimensional measurement
JPH07270286A (en) * 1994-03-31 1995-10-20 Agency Of Ind Science & Technol Method for preparing organism sample for microscope for obtaining continuous sectional image
JP2005331457A (en) * 2004-05-21 2005-12-02 Chubu Electric Power Co Inc Molding method
JP2005351733A (en) * 2004-06-10 2005-12-22 Ebara Corp Inspection method
JP2006267039A (en) * 2005-03-25 2006-10-05 Univ Of Tokushima Adhesive film having guide, and retaining holder
JP2007163428A (en) * 2005-12-16 2007-06-28 Toshiba Corp Surface flaw detector
JP2007263924A (en) * 2006-03-30 2007-10-11 Railway Technical Res Inst Method for estimating strength characteristics of reinforcement of existing structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285466A (en) * 1987-05-18 1988-11-22 Nippon Kenchiku Sogo Shikenjo Sampling of corroded part for reinforcing steel
JPH01129102A (en) * 1987-11-14 1989-05-22 Nishikawa Rubber Kogyo Kk Fixing jig for three-dimensional measurement
JPH07270286A (en) * 1994-03-31 1995-10-20 Agency Of Ind Science & Technol Method for preparing organism sample for microscope for obtaining continuous sectional image
JP2005331457A (en) * 2004-05-21 2005-12-02 Chubu Electric Power Co Inc Molding method
JP2005351733A (en) * 2004-06-10 2005-12-22 Ebara Corp Inspection method
JP2006267039A (en) * 2005-03-25 2006-10-05 Univ Of Tokushima Adhesive film having guide, and retaining holder
JP2007163428A (en) * 2005-12-16 2007-06-28 Toshiba Corp Surface flaw detector
JP2007263924A (en) * 2006-03-30 2007-10-11 Railway Technical Res Inst Method for estimating strength characteristics of reinforcement of existing structure

Also Published As

Publication number Publication date
JP5205564B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
CN106501314B (en) Method for simply, conveniently and quickly detecting internal quality of concrete filled steel tube
CN107621250B (en) Roughness detection method for concrete prefabricated part joint surface
JP4754382B2 (en) Method for estimating strength characteristics of reinforcing bars in existing structures
JP2009002721A (en) Method for determining time of demolding concrete
JP6497707B2 (en) Strength estimation system for concrete demolding
JP2008145174A (en) Evaluation method for concrete cast, and spliced surface, evaluation device and computer program
CN111189698A (en) Device and method for testing internal and external deformation characteristics of anchoring rock body under corrosion creep condition
JP5205564B2 (en) Object shape measurement method
CN103604409A (en) Newly-poured concrete floor slab overall shrinkage constraint deformation measuring method
Bednarski et al. Supporting historical structures technical condition assessment by monitoring of selected physical quantities
CN110849527A (en) Real-time detection method for concrete supporting axial force
KR101097414B1 (en) Pipe vibration estimation method
CA3167286A1 (en) A system for monitoring at least one property of concrete in real time
JP4891858B2 (en) Surface property evaluation method and concrete surface diagnostic method
CN106918295B (en) A kind of fiber-optic grating sensor and its measurement method of the deformation of measurement arc component
JP2008216120A (en) Minute crack combining process observing method
JP2007024546A (en) Method for estimating state of reduction in wall thickness of pipe and its apparatus
JP2016205832A (en) Estimation method
JP5023807B2 (en) Method for estimating adiabatic temperature rise of concrete, estimation system for concrete adiabatic temperature rise, computer program, recording medium
Madureira Design and Construction Of A Structure With Monitoring Of Its Structural Integrity
CN213067502U (en) Relative slippage measuring device of steel-concrete composite structure
CN109342190B (en) Rock crack tip plastic zone metering method and system
JP2004053547A (en) Concrete specimen formwork
CN107356477B (en) Cement base mechanical properties of tubular goods test method
JPS63285466A (en) Sampling of corroded part for reinforcing steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205564

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250