JPH07258739A - Production of grain oriented magnetic steel sheet having low iron loss - Google Patents

Production of grain oriented magnetic steel sheet having low iron loss

Info

Publication number
JPH07258739A
JPH07258739A JP6051608A JP5160894A JPH07258739A JP H07258739 A JPH07258739 A JP H07258739A JP 6051608 A JP6051608 A JP 6051608A JP 5160894 A JP5160894 A JP 5160894A JP H07258739 A JPH07258739 A JP H07258739A
Authority
JP
Japan
Prior art keywords
steel sheet
linear
rolling
iron loss
roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6051608A
Other languages
Japanese (ja)
Other versions
JP3541419B2 (en
Inventor
Keiji Sato
圭司 佐藤
Masayoshi Ishida
昌義 石田
Kunihiro Senda
邦浩 千田
Michiro Komatsubara
道郎 小松原
Kazuhiro Suzuki
一弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP05160894A priority Critical patent/JP3541419B2/en
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to DE69424762T priority patent/DE69424762T2/en
Priority to KR1019940036470A priority patent/KR100259990B1/en
Priority to CA002139063A priority patent/CA2139063C/en
Priority to EP94309777A priority patent/EP0662520B1/en
Priority to CN94120796A priority patent/CN1048040C/en
Publication of JPH07258739A publication Critical patent/JPH07258739A/en
Priority to US08/638,314 priority patent/US5665455A/en
Application granted granted Critical
Publication of JP3541419B2 publication Critical patent/JP3541419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce the grain oriented magnetic steel sheet having low iron loss by forming linear groove in the direction intersecting to rolling direction on the surface of grain oriented magnetic steel sheet of finish annealed and introducing the prescribed linear infinitesimal rolling strain. CONSTITUTION:On the surface of cold rolled sheet of the grain oriented magnetic steel containing about 3.2% Si, a linear groove extending in the direction intersecting to rolling direction is formed, subjecting to decarburization annealing and finish annealing. In the steel sheet, an infinitesimal rolling strain of interval (11)mm is introduced as satisfying 5<=12.(11)<1/2=100. At this time, the linear groove is preferably of 30-300mum width, 10-70mum depth, 1-30mum interval, having the intersecting angle to the rolling direction of <=30 deg. to right angle direction. Also, the infinitesimal rolling strain is preferably imparted by pressing at a bearing of 10-70kg/mm<2> with the roll which has a linear protrusion of 50-500mum width, 10-70mum depth, 1-30mum interval, 30 deg. angle to the rolling direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、変圧器その他の電機
機器の鉄心に用いて好適な鉄損の低い一方向性電磁鋼板
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a grain-oriented electrical steel sheet having a low iron loss, which is suitable for use in an iron core of a transformer or other electrical equipment.

【0002】[0002]

【従来の技術】方向性電磁鋼板は、主として変圧器その
他の電機機器の鉄心材料として用いられ、特にエネルギ
ー損失すなわち鉄損が低いことが必要とされる。そこで
従来から、鉄損を低減させるために、結晶方位を(110)
(001)方位により高度に揃える、Si含有量を上げそれに
よって鋼板の電気抵抗を増加させる、不純物を低減させ
る、さらには板厚を薄くするなど、種々の対策が講じら
れてきた。その結果、板厚が0.23mm以下の鋼板では、鉄
損W17/50(磁束密度:1.7 T, 50Hz)が0.9 W/kg以下のも
のも得られるようになった。しかしながら、このような
冶金学的な手法では、これ以上の大幅な鉄損の改善は期
待できない状況に至った。
2. Description of the Related Art Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment and are required to have low energy loss, that is, iron loss. Therefore, conventionally, in order to reduce iron loss, the crystal orientation was set to (110)
Various measures have been taken, such as highly aligning with the (001) orientation, increasing the Si content to increase the electrical resistance of the steel sheet, reducing impurities, and further reducing the sheet thickness. As a result, for steel sheets with a thickness of 0.23 mm or less, iron loss W 17/50 (magnetic flux density: 1.7 T, 50 Hz) of 0.9 W / kg or less can be obtained. However, with such a metallurgical method, it has been impossible to expect further significant improvement in iron loss.

【0003】近年、上記の問題を克服し、さらに低鉄損
を達成し得る手段として、人為的に磁区を細分化する方
法が種々試みられるようになった。その中で、現在工業
化されている方法としては、特公昭57−2252号公報に開
示されているような仕上焼鈍済みの鋼板表面にレーザー
を照射する方法や、特開昭62-96617号公報に開示されて
いるようなプラズマ炎を放射する方法などがある。これ
らの方法はいずれも、レーザーやプラズマ炎により導入
された局所的な高転位密度領域によって 180°磁区の細
分化を図り、もって鉄損の低減を達成しようとするもの
である。しかしながら、このようにして得られた鋼板に
は、歪取り焼鈍のような高温での熱処理によって高転位
密度領域が消失し、鉄損の劣化を招くことから、歪取り
焼鈍を必須とする巻鉄心には用いられないという欠点が
あった。
In recent years, various methods for artificially subdividing magnetic domains have been tried as means for overcoming the above problems and achieving a low iron loss. Among them, as a method which is currently industrialized, a method of irradiating a laser on the steel sheet surface after finish annealing as disclosed in JP-B-57-2252, and JP-A-62-96617. There is a method of radiating a plasma flame as disclosed. All of these methods attempt to subdivide a 180 ° magnetic domain by a locally high dislocation density region introduced by a laser or a plasma flame, and thereby reduce iron loss. However, in the steel sheet thus obtained, the high dislocation density region disappears by heat treatment at a high temperature such as strain relief annealing, leading to deterioration of iron loss. It had the drawback that it could not be used for.

【0004】一方、歪取り焼鈍が可能な技術として、た
とえば特公昭62-54873号公報には、仕上焼鈍済みの鋼板
にレーザーや機械的手段によって絶縁被膜を局所的に除
去したのち、酸洗やナイフ等の機械的手段によって被膜
除去部に線状の溝を形成し、ついでこの溝を充填するよ
うにりん酸系の張力付与被膜を形成する方法が、また特
公昭62-53579号公報には、仕上焼鈍済みの鋼板に90〜22
0 kg/mm2程度の荷重で地鉄部分に深さ5μm 超の溝を形
成したのち、750 ℃以上の温度で加熱処理する方法が提
案されている。さらに、特公平3-69968号公報には、最
終冷間圧延後、鋼板の圧延方向とほぼ直角な方向に線状
の刻み目を導入する方法が提案されている。上記のよう
にして得られた鋼板はいずれも、表面に形成された線状
溝の近傍に生じる磁極によって磁区が細分化されること
が一つの要因となって、低鉄損が達成されるものと考え
られている。
On the other hand, as a technique capable of strain relief annealing, for example, Japanese Patent Publication No. Sho 62-54873 discloses a steel sheet that has been subjected to finish annealing after the insulating coating is locally removed by a laser or mechanical means, and then pickling or A method of forming a linear groove in the coating removal portion by a mechanical means such as a knife, and then forming a phosphoric acid-based tension-applying coating so as to fill the groove is also disclosed in JP-B-62-53579. , 90 to 22 on finish annealed steel plate
A method has been proposed in which a groove having a depth of more than 5 μm is formed in a base metal portion with a load of about 0 kg / mm 2 and then heat treatment is performed at a temperature of 750 ° C. or higher. Further, Japanese Patent Publication No. 3-69968 proposes a method of introducing linear notches after the final cold rolling in a direction substantially perpendicular to the rolling direction of the steel sheet. In each of the steel sheets obtained as described above, one of the factors is that the magnetic domain is subdivided by the magnetic poles generated in the vicinity of the linear groove formed on the surface, and the low iron loss is achieved. It is believed that.

【0005】[0005]

【発明が解決しようとする課題】上記の方法によって、
歪取り焼鈍が可能な低鉄損材料が得られるようになった
が、その後の綿密な調査によれば、このような鋼板の鉄
損は、特公昭57−2252号公報等に開示された線状の高転
位密度領域を有する鋼板に比べると、やや劣る場合があ
ることが判明した。そこで発明者らは、この点について
調査したところ、鉄損劣化の原因は、もたらされる磁極
量の違いによるものと推測した。そこでこの推測に基づ
き、鉄損特性の一層の改善について鋭意実験と検討を重
ねた結果、線状の溝を付与した鋼板に、さらに一定の条
件下で線状の微小圧延歪を導入することが、所期した目
的の達成に関し、極めて有効であることの知見を得た。
この発明は、上記の知見に立脚するものである。
According to the above method,
A low iron loss material capable of strain relief annealing has come to be obtained, but according to a close examination thereafter, the iron loss of such a steel sheet is found to be the wire disclosed in Japanese Examined Patent Publication No. 57-2252. It was found that it may be slightly inferior to a steel sheet having a high dislocation density region like a shape. Therefore, when the inventors investigated this point, they presumed that the cause of the iron loss deterioration was due to the difference in the amount of magnetic poles introduced. Therefore, based on this assumption, as a result of repeated experiments and studies on further improvement of the iron loss characteristics, it is possible to introduce a linear microrolling strain under a certain condition into the steel sheet with linear grooves. , We have found that it is extremely effective in achieving the intended purpose.
The present invention is based on the above findings.

【0006】[0006]

【課題を解決するための手段】すなわちこの発明は、表
面に、圧延方向と交差する向きに延びる線状の溝を有す
る仕上焼鈍済みの一方向性電磁鋼板に対し、該線状溝の
圧延方向における間隔をl1(mm)としたとき、下記式を
満足する間隔:l2(mm)の下に線状の微小圧延歪を、同
じく圧延方向と交差する向きに導入することを特徴とす
る鉄損の低い一方向性電磁鋼板の製造方法である。 記 5≦l2・(l1)1/2 ≦100
That is, the present invention provides a finish-annealed unidirectional electrical steel sheet having a linear groove extending in a direction intersecting the rolling direction on the surface thereof, in the rolling direction of the linear groove. Is defined as l 1 (mm), a linear micro-rolling strain is introduced below the interval satisfying the following formula: l 2 (mm), also in a direction intersecting the rolling direction. This is a method for producing a grain-oriented electrical steel sheet with low iron loss. Note 5 ≦ l 2 · (l 1 ) 1/2 ≦ 100

【0007】この発明において、仕上焼鈍済みの一方向
性電磁鋼板に形成する線状溝の形態は、幅:30〜300 μ
m 、深さ:10〜70μm 、間隔:1〜30mm、圧延方向との
交差角度:圧延方向と直角な方向に対し30°以内とする
ことが好ましい。
In the present invention, the shape of the linear groove formed in the finish-annealed grain-oriented electrical steel sheet has a width of 30 to 300 μm.
m 2, depth: 10 to 70 μm, interval: 1 to 30 mm, crossing angle with rolling direction: it is preferable to be within 30 ° with respect to the direction perpendicular to the rolling direction.

【0008】またこの発明において、微小圧延歪の導入
に際しては、線状突起幅:50〜500μm 、突起高さ:10
〜100 μm 、ロール軸となす角度:30°以内の線状突起
を有するロールを用い、この線状突起付きロールを鋼板
に対し、面圧:10〜70kg/mm2で押圧することが望まし
い。
In the present invention, when the micro rolling strain is introduced, the linear projection width: 50 to 500 μm, the projection height: 10
It is desirable to use a roll having linear projections of up to 100 μm and an angle of 30 ° with the roll axis, and press the roll with linear projections against a steel plate at a surface pressure of 10 to 70 kg / mm 2 .

【0009】以下、この発明を具体的に説明する。ま
ず、この発明の基礎となった実験結果について説明す
る。インヒビターとしてMnSe、AlNを含む 3.2%けい素
鋼の熱延板を、中間焼鈍を挟む2回の冷間圧延により0.
23mm厚まで圧延した後、グラビアオフセット印刷による
エッチングレジスト塗布後、電解エッチングを施すこと
により、圧延方向と直角な方向に、幅:180 μm 、深
さ:18μm の線状の溝を形成した。このとき、グラビア
ロールのパターンを変えることにより線状溝の間隔を
0.7mmから100mmまで種々に変化させた。なお電解エッチ
ングは、20%NaCl電解浴中にて20A/dm2の電流密度下で
行い、エッチング時間をコントロールすることにより溝
幅が多少変化しても溝深さは18μm 一定となるようにし
た。上記のような溝形成処理後、脱炭焼鈍ついで最終仕
上焼鈍を施し、さらに上塗りコーティング処理を施して
製品とした。
The present invention will be specifically described below. First, the experimental results that are the basis of the present invention will be described. Hot-rolled 3.2% silicon steel sheet containing MnSe and AlN as inhibitors was cold rolled twice with intermediate annealing.
After rolling to a thickness of 23 mm, after applying an etching resist by gravure offset printing, electrolytic etching was performed to form linear grooves having a width of 180 μm and a depth of 18 μm in a direction perpendicular to the rolling direction. At this time, by changing the pattern of the gravure roll, the spacing between the linear grooves can be reduced.
Variously changed from 0.7 mm to 100 mm. The electrolytic etching was carried out in a 20% NaCl electrolytic bath at a current density of 20 A / dm 2 , and the etching time was controlled so that the groove depth was kept constant at 18 μm even if the groove width was slightly changed. . After the groove forming treatment as described above, decarburization annealing and then final finishing annealing were performed, and further topcoat coating treatment was performed to obtain a product.

【0010】かくして得られた製品板からエプスタイン
試片を切り出し、歪取り焼鈍後の磁気特性について調査
した。得られた結果を、線状溝の間隔と鉄損W17/50との
関係で図1に示す。同図より明らかなように、溝形成処
理を施した鋼板は非処理のものに比べ鉄損が低減してい
る。
Epstein test pieces were cut out from the product plate thus obtained, and the magnetic properties after stress relief annealing were investigated. The obtained results are shown in FIG. 1 in relation to the interval between the linear grooves and the iron loss W 17/50 . As is clear from the figure, the iron loss of the steel sheet which has been subjected to the groove forming treatment is smaller than that of the untreated steel sheet.

【0011】図1の結果は、特公平3-69968号公報等に
おいて開示された従来の結果と、ほぼ同じである。次に
発明者らは、特に低い鉄損が得られた間隔:1〜30mmで
線状溝を形成した製品に対し、さらに突起付きロールに
よって鋼板に微小圧延歪を導入した場合の磁気特性の変
化について調査した。なお、微小圧延歪の導入には、図
2に示すようなロール軸方向に平行に線状突起を有する
ロールを用いた。突起高さは50μm、突起幅は 200μm
であり、20kg/mm2の荷重を加えた。この際、線状突起の
間隔を1mmから100mm まで変化させた。鋼板の線状突起
押圧部には幅:300 μm にわたって線状の高転位密度部
が観察された。このようにして得た製品から幅:150 m
m、長さ:280 mmの試料を採取し、単板磁気試験器(S
ST)によって磁気特性を測定したところ、突起付きロ
ール圧延によって、溝のみの場合に比べてより低鉄損と
なった製品と逆に鉄損が劣化した製品とが得られた。
The result shown in FIG. 1 is almost the same as the conventional result disclosed in Japanese Patent Publication No. 3-69968. Next, the inventors of the present invention changed the magnetic properties when a minute rolling strain was introduced into a steel sheet by a roll with protrusions for a product in which linear grooves were formed at an interval: 1 to 30 mm in which a particularly low iron loss was obtained. Was investigated. A roll having linear projections parallel to the roll axis direction as shown in FIG. 2 was used to introduce the micro rolling strain. Protrusion height is 50 μm, protrusion width is 200 μm
And a load of 20 kg / mm 2 was applied. At this time, the distance between the linear protrusions was changed from 1 mm to 100 mm. A linear high dislocation density part was observed over the width of 300 μm in the pressed part of the linear projection of the steel sheet. Width from product thus obtained: 150 m
m, length: 280 mm sample is taken, single plate magnetic tester (S
When the magnetic properties were measured by (ST), a product having a lower iron loss and a product having a lower iron loss were obtained by roll rolling with protrusions as compared with the case of only grooves.

【0012】そこで発明者らは、得られた測定結果を綿
密に解析した結果、線状溝の圧延方向における間隔をl1
(mm)、突起付きロールの線状突起間隔(微小圧延歪の間
隔)をl2(mm)としたとき、図3に示すように、l2・(l1)
1/2 が5以上、100 以下の場合において、従来に比べ格
段に鉄損が低減することを新規に見出した。ここに、l2
・(l1)1/2 が5より小さい場合には、鉄損は溝のみの場
合に比べてむしろ劣化するが、この理由は高転位密度部
形成により導入される磁極量が多くなりすぎ、かえって
履歴損の増大を招くためと考えられる。また、l2・(l1)
1/2 が 100より大きい場合には磁極の生成量が少ないの
で、目立つほどの鉄損の改善効果は得られない。以上、
述べたとおり、線状溝の圧延方向における間隔をl1(mm)
としたとき、5≦l2・(l1)1/2 ≦100 を満足する間隔:
l2(mm)で線状の微小圧延歪を鋼板に導入することによ
り、従来に比べ、より一層鉄損を低減し得ることが究明
されたのである。
Therefore, as a result of careful analysis of the obtained measurement results, the inventors have determined that the spacing between the linear grooves in the rolling direction is l 1
(mm), and the linear projection interval of the roll with protrusions (interval of minute rolling strain) is l 2 (mm), as shown in FIG. 3, l 2 · (l 1 )
It was newly found that when 1/2 is 5 or more and 100 or less, the iron loss is remarkably reduced as compared with the conventional one. Where l 2
When (l 1 ) 1/2 is smaller than 5, the iron loss is rather deteriorated as compared with the case where only the groove is formed. The reason is that the amount of magnetic poles introduced by the formation of the high dislocation density portion is too large, On the contrary, it is considered that the history loss is increased. Also, l 2 · (l 1 )
When 1/2 is larger than 100, the amount of magnetic poles generated is small, so that the effect of conspicuously improving iron loss cannot be obtained. that's all,
As mentioned above, the spacing between the linear grooves in the rolling direction is l 1 (mm)
And an interval satisfying 5 ≦ l 2 · (l 1 ) 1/2 ≦ 100:
It was clarified that by introducing a linear microrolling strain of l 2 (mm) into the steel sheet, the iron loss can be further reduced as compared with the conventional case.

【0013】[0013]

【作用】この発明において導入される線状の溝と微小圧
延歪の形態について述べる。まず、線状溝の幅は30〜30
0 μm 、深さは10〜70μm とするのが鉄損低減効果の上
で望ましい。というのは、溝幅および深さが小さすぎる
とで磁極の生成量が少なく十分な磁区細分化効果が得ら
れず、一方大きすぎると磁束密度の著しい低下を招くか
らである。また、溝の導入角度は圧延方向と直角な方向
に対し30°以内とするのが良い。というのは、30°を超
えると磁区細分化効果が急激に小さくなるからである。
さらに、溝の導入間隔は30mm以下で特に良好な結果が得
られる。しかしながら、導入間隔が1mmより小さくなる
と、磁極生成量が多くなりすぎて履歴損の増大を招くの
で、溝の導入間隔は1〜30mmの範囲とするのが好まし
い。。
The function of linear grooves and micro rolling strain introduced in the present invention will be described. First, the width of the linear groove is 30-30
It is desirable that the depth is 0 μm and the depth is 10 to 70 μm in order to reduce iron loss. This is because if the groove width and depth are too small, the amount of magnetic poles generated is small and a sufficient domain refinement effect cannot be obtained, while if too large, the magnetic flux density is significantly reduced. Further, it is preferable that the introduction angle of the groove is within 30 ° with respect to the direction perpendicular to the rolling direction. This is because the magnetic domain refining effect sharply diminishes above 30 °.
Further, particularly good results are obtained when the groove introduction interval is 30 mm or less. However, if the introduction interval is smaller than 1 mm, the magnetic pole generation amount becomes too large and the hysteresis loss increases. Therefore, it is preferable that the introduction interval of the groove be in the range of 1 to 30 mm. .

【0014】次に、微小圧延歪について述べると、歪の
付与手段としては線状突起付きロールがとりわけ有利に
適合する。突起形状については、先端部が尖っていて
も、丸くなっていても、また平坦であっても良いが、耐
久性および効果の点から先端部は丸い方が望ましい。線
状突起部の幅は50〜500 μm 程度が好適である。という
のは、50μm 以下では微小歪領域が狭いため効果が小さ
く、一方 500μm 以上では歪量が多過ぎて履歴損の劣化
を招くからである。また、突起高さは特に限定されるこ
とはないが10〜100 μm 程度が実用上好適である。さら
に、突起の間隔については前述したとおり、5≦l2・(l
1)1/2 ≦100 を満たす間隔:l2(mm)とすることが必須条
件である。さらに、線状突起の角度はロール軸方向に平
行な方向とするのが最も好ましいが、軸方向から30°以
内の角度であれば交差していても良い。また、圧延に際
して印加する面圧は10〜70kg/mm2程度とするのが好まし
い。というのは、面圧が10kg/mm2より小さい場合は微小
歪の導入効果に乏しく、一方70kg/mm2を超える場合は歪
量が大きすぎて履歴損の劣化を招くからである。なお、
線状溝と微小圧延歪導入部の位置関係については、特に
規制されることはない。すなわち、溝と歪導入部は同一
位置であっても、溝間に歪導入部があっても、また両者
が交差していても良く、さらに両者は同一面、両面のい
ずれに形成されていていもかまわないことが確認されて
いる。また、微小圧延歪導入手段としては、上述したよ
うな突起付きロールがとりわけ有利に適合するが、その
他、鋼板上に間隔をおいて配置したスチール製ワイヤの
上から圧下を加える方法なども使用できる。
Next, the microrolling strain will be described. A roll with linear projections is particularly advantageously suited as a strain imparting means. Regarding the shape of the protrusion, the tip may be sharp, rounded, or flat, but the tip is preferably round from the viewpoint of durability and effect. The width of the linear protrusions is preferably about 50 to 500 μm. The reason for this is that if the thickness is 50 μm or less, the effect is small because the microstrain region is narrow, while if it is 500 μm or more, the strain amount is too large and the hysteresis loss is deteriorated. Further, the height of the protrusion is not particularly limited, but about 10 to 100 μm is practically suitable. Furthermore, as described above, the spacing between the protrusions is 5 ≦ l 2 · (l
1 ) It is an essential condition that the interval satisfying 1/2 ≦ 100: l 2 (mm). Further, the angle of the linear protrusions is most preferably parallel to the roll axial direction, but may intersect with each other as long as the angle is within 30 ° from the axial direction. The surface pressure applied during rolling is preferably about 10 to 70 kg / mm 2 . This is because when the surface pressure is less than 10 kg / mm 2, the effect of introducing micro strain is poor, while when it exceeds 70 kg / mm 2 , the amount of strain is too large and the hysteresis loss is deteriorated. In addition,
The positional relationship between the linear groove and the micro rolling strain introduction portion is not particularly limited. That is, the groove and the strain introducing portion may be at the same position, there may be a strain introducing portion between the grooves, or both may intersect, and both are formed on the same surface or both surfaces. It has been confirmed that it does not matter. Further, as the micro-rolling strain introduction means, the above-mentioned roll with protrusions is particularly advantageous, but in addition, a method of applying a reduction from the steel wire arranged at intervals on the steel plate can also be used. .

【0015】次に、この発明に従う方向性電磁鋼板の製
造工程について説明する。まず、方向性電磁鋼板用スラ
ブを熱間圧延し、その後必要に応じて熱延板焼鈍を行っ
たのち、1回又は中間焼鈍を挟む2回以上の冷間圧延に
より最終製品板厚とし、その後脱炭焼鈍についで最終仕
上げ焼鈍を施したのち、通常上塗コーティングを施して
製品とする。線状溝の導入時期については、最終仕上焼
鈍の前後のいずれでも構わない。溝を形成する方法につ
いては局所的にエッチング処理する方法、刃物等でけが
く方法、突起付きロールで圧延する方法等が挙げられ
る。最も望ましい方法は、最終冷間圧延後、鋼板に印刷
等によりエッチングレジストを付着させたのち電解エッ
チング等の処理により溝を形成する方法である。その
後、前述したところに従って鋼板に微小圧延歪を導入す
る。なお、このようにして得られた鋼板は、特に歪取焼
鈍を要しない積鉄心用材料として優れた性能を呈する
が、歪取焼鈍を要する巻鉄心用材料として用いた場合で
あっても従来材と同等程度の性能を発揮する。
Next, the manufacturing process of the grain-oriented electrical steel sheet according to the present invention will be described. First, a slab for grain-oriented electrical steel sheets is hot-rolled, then hot-rolled sheet is annealed as necessary, and then cold rolled one or more times with intermediate annealing to obtain a final product sheet thickness, and then After decarburization annealing and then final finishing annealing, a topcoat is usually applied to obtain a product. The introduction time of the linear groove may be before or after the final finish annealing. Examples of the method of forming the groove include a method of locally etching, a method of scribing with a blade or the like, a method of rolling with a roll having protrusions, and the like. The most desirable method is a method in which after the final cold rolling, an etching resist is attached to the steel sheet by printing or the like, and then a groove is formed by a treatment such as electrolytic etching. After that, a micro rolling strain is introduced into the steel sheet according to the above-mentioned point. The steel sheet obtained in this manner exhibits excellent performance as a material for a laminated core that does not particularly require strain relief annealing, but even when used as a material for a wound core that requires strain relief annealing, it is a conventional material. Demonstrate performance equivalent to.

【0016】[0016]

【実施例】【Example】

実施例1 インヒビターとしてMnSe, Sb, AlNを含む 3.3%けい素
鋼の熱間圧延板を、中間焼鈍を挟む2回の冷間圧延によ
り0.23mm厚まで圧延したのち、グラビアオフセット印刷
によるエッチングレジスト塗布後、電解エッチング、ア
ルカリ液中でのレジスト剥離の各処理を施すことによ
り、幅:160 μm 、深さ:18μm の線状溝を圧延方向と
直角な方向から10°の角度をなすように3mmピッチ(l1
=3)で導入した。ついで、脱炭焼鈍、最終仕上焼鈍を
施したのち、上塗りコーティングを施した。その後、得
られた鋼板に対し、突起付きロール圧延を用いて局所的
に高転位密度部を形成した。突起付きロールとしては、
突起高さ:20μm のロール軸方向に平行な線条突起を有
するロールを用い、30kg/mm2の荷重を付加した。この
際、線状突起の間隔を1mmから100mm まで変化させた。
かくして得られた製品板から、幅:150 mm、長さ:280
mmの試片を採取し、単板磁気試験器(SST)によって
磁気特性を測定した結果を、表1に示す。なお表1に
は、比較として突起ロール圧延処理を施さない溝のみの
鋼板及び突起ロール圧延のみを行った鋼板についての調
査結果も併せて示す。
Example 1 A hot-rolled sheet of 3.3% silicon steel containing MnSe, Sb, and AlN as an inhibitor was cold-rolled twice with intermediate annealing to a thickness of 0.23 mm, and then an etching resist was applied by gravure offset printing. After that, by performing electrolytic etching and resist stripping in alkaline solution, a linear groove with a width of 160 μm and a depth of 18 μm is 3 mm so that it forms an angle of 10 ° from the direction perpendicular to the rolling direction. Pitch (l 1
= 3). Then, decarburization annealing and final finishing annealing were performed, and then a top coat was applied. After that, high dislocation density portions were locally formed on the obtained steel sheet by rolling with protrusions. As a roll with protrusions,
Projection height: A roll having a linear projection of 20 μm parallel to the roll axis direction was used, and a load of 30 kg / mm 2 was applied. At this time, the distance between the linear protrusions was changed from 1 mm to 100 mm.
From the product plate thus obtained, width: 150 mm, length: 280
Table 1 shows the results of magnetic properties measured by a single-plate magnetic tester (SST) by taking a specimen of mm. In addition, Table 1 also shows, as a comparison, the results of investigations on a steel sheet having only grooves not subjected to the projection roll rolling treatment and a steel sheet only subjected to the projection roll rolling.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示したとおり、溝の間隔がl1(mm)で
あるとき、5≦l2・(l1)1/2 ≦100を満たす間隔l2(mm)
の下で突起付きロールを用いて線状の微小圧延歪を導入
した鋼板は、溝のみの場合は勿論、突起付きロール圧延
のみを施した場合と比べても優れた鉄損値を示した。ま
たこれらの鋼板を、 N2 中で 800℃, 3hの歪取焼鈍を
施したところ、突起付きロール圧延のみの鋼板(No.8)
は0.87W/kgまで鉄損が劣化したが、溝形成した鋼板(N
o.2〜5)は高々0.72W/kgであった。
As shown in Table 1, when the groove spacing is l 1 (mm), the spacing l 2 (mm) which satisfies 5 ≦ l 2 · (l 1 ) 1/2 ≦ 100
The steel sheet to which a linear micro-rolling strain was introduced by using a roll with protrusions under the condition showed an excellent iron loss value not only in the case of only the groove but also in the case of performing only rolling with the protrusion. In addition, when these steel sheets were subjected to stress relief annealing in N 2 for 3 hours at 800 ° C, the steel sheet was only rolled with protrusions (No. 8).
Has deteriorated iron loss up to 0.87 W / kg, but grooved steel plate (N
o.2-5) was 0.72W / kg at most.

【0019】実施例2 インヒビターとしてMnSe, Sb, AlNを含む 3.2%けい素
鋼の熱延板を、常法に従って処理し、0.18mm厚の鋼板と
した。この仕上焼鈍済みの鋼板に対し、超音波振動子を
用いて線状に絶縁被膜を除去したのち、30%HNO3液中で
酸洗処理することにより、幅:180 μm 深さ:15μmの
溝を圧延方向と直角な方向に4mm間隔(l1=4)で形成
したのち、再度上塗りコーティングを施してから、 800
℃で3min 焼付けた。その後、突起付きロール圧延によ
り局所的に高転位密度部を形成した。突起付きロールと
しては、突起高さ:30μm のロール軸方向に平行な線状
突起を有するロールを用い、25kg/mm2の荷重を付加し
た。この際、線状突起の間隔を1mmから80mmまで変化さ
せた。かくして得られた製品板から、幅:150 mm、長
さ:280 mmの試片を採取し、SSTにより磁気特性を測
定した結果を、表2に示す。なお表2には、比較として
突起ロール圧延処理を施さない溝のみの鋼板及び突起ロ
ール圧延のみを行なった鋼板についての調査結果も併せ
て示す。
Example 2 A hot-rolled sheet of 3.2% silicon steel containing MnSe, Sb, and AlN as an inhibitor was processed according to a conventional method to give a steel sheet having a thickness of 0.18 mm. A groove with a width of 180 μm and a depth of 15 μm was obtained by linearly removing the insulating coating from the finished annealed steel plate using an ultrasonic vibrator and then pickling it in 30% HNO 3 solution. Are formed at 4 mm intervals (l 1 = 4) in the direction perpendicular to the rolling direction, and then the top coat is applied again.
Baking for 3 min at ℃ After that, a high dislocation density portion was locally formed by roll rolling with protrusions. As the roll with protrusions, a roll having linear protrusions having a protrusion height of 30 μm and parallel to the roll axis direction was used, and a load of 25 kg / mm 2 was applied. At this time, the distance between the linear protrusions was changed from 1 mm to 80 mm. Table 2 shows the results of magnetic properties measured by SST, in which sample pieces having a width of 150 mm and a length of 280 mm were sampled from the product plate thus obtained. In addition, Table 2 also shows, as a comparison, the results of investigations on a steel sheet having only grooves not subjected to the projection roll rolling treatment and a steel sheet only subjected to the projection roll rolling.

【0020】[0020]

【表2】 [Table 2]

【0021】表2に示したとおり、溝の間隔がl1(mm)で
あるとき、5≦l2・(l1)1/2 ≦100を満たす間隔l2(mm)
の下で突起付きロールを用いて線状の微小圧延歪を導入
した鋼板は、溝のみの鋼板は勿論のこと、突起付きロー
ル圧延のみを施した鋼板に比べても優れた鉄損値を示し
た。またこれらの鋼板を、 N2 中で 800℃, 3hの歪取
焼鈍を施したところ、突起付きロール圧延のみの鋼板(N
o.16) は0.82W/kgまで鉄損が劣化したが、溝形成した鋼
板(No.10〜13) は高々0.71W/kgであった。
As shown in Table 2, when the groove spacing is l 1 (mm), the spacing l 2 (mm) which satisfies 5 ≦ l 2 · (l 1 ) 1/2 ≦ 100
The steel sheet introduced with a linear micro-rolling strain using a roll with protrusions underneath shows a superior iron loss value not only to a steel plate with only grooves but also to a steel plate only subjected to roll rolling with protrusions. It was When these steel sheets were subjected to stress relief annealing in N 2 for 3 hours at 800 ° C, the steel sheets were only rolled with protrusions (N
The iron loss deteriorated to 0.82 W / kg in o.16), but was 0.71 W / kg at most in the grooved steel sheets (No. 10 to 13).

【0022】[0022]

【発明の効果】かくしてこの発明によれば、表面に圧延
方向とほぼ直角な方向に延びる線状の溝を有する仕上焼
鈍済みの一方向性電磁鋼板に、さらに所定の条件下で線
状の微小圧延歪を導入することにより、従来に比べ鉄損
特性を格段に向上させることができ、ひいては変圧器の
効率向上に大きく寄与する。
As described above, according to the present invention, a finish-annealed unidirectional electrical steel sheet having linear grooves extending on the surface in a direction substantially perpendicular to the rolling direction can be formed into a fine linear alloy under predetermined conditions. By introducing rolling strain, it is possible to significantly improve the iron loss characteristics as compared with the conventional one, which in turn greatly contributes to the efficiency improvement of the transformer.

【図面の簡単な説明】[Brief description of drawings]

【図1】線状溝の間隔と鉄損W17/50との関係を示すグラ
フである。
FIG. 1 is a graph showing the relationship between the distance between linear grooves and iron loss W 17/50 .

【図2】突起付きロールの外観を示す図である。FIG. 2 is a view showing the outer appearance of a roll with protrusions.

【図3】l2・(l1)1/2 と鉄損W17/50との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between l 2 · (l 1 ) 1/2 and iron loss W 17/50 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千田 邦浩 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 小松原 道郎 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 (72)発明者 鈴木 一弘 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Kunihiro Senda, 1st Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture, Technical Research Division, Kawasaki Steel Co., Ltd. (72) Michio Komatsubara 1st Kawasaki-cho, Chuo-ku, Chiba (72) Inventor Kazuhiro Suzuki, 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Iron & Steel Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面に、圧延方向と交差する向きに延び
る線状の溝を有する仕上焼鈍済みの一方向性電磁鋼板に
対し、該線状溝の圧延方向における間隔をl1(mm)とし
たとき、下記式を満足する間隔:l2(mm)の下に線状の
微小圧延歪を、同じく圧延方向と交差する向きに導入す
ることを特徴とする鉄損の低い一方向性電磁鋼板の製造
方法。 記 5≦l2・(l1)1/2 ≦100
1. A finish-annealed grain-oriented electrical steel sheet having linear grooves extending in a direction intersecting with the rolling direction on the surface thereof, and the spacing between the linear grooves in the rolling direction is l 1 (mm). In this case, a unidirectional electrical steel sheet with low iron loss, characterized in that a linear microrolling strain is introduced under an interval satisfying the following formula: l 2 (mm) in a direction that also intersects the rolling direction. Manufacturing method. Note 5 ≦ l 2 · (l 1 ) 1/2 ≦ 100
【請求項2】 請求項1において、線状溝が、幅:30〜
300 μm 、深さ:10〜70μm 、間隔:1〜30mm、圧延方
向との交差角度:圧延方向と直角な方向に対し30°以内
である鉄損の低い一方向性電磁鋼板の製造方法。
2. The linear groove according to claim 1, wherein the width is 30 to
300 μm, depth: 10 to 70 μm, interval: 1 to 30 mm, angle of intersection with rolling direction: a method for producing a unidirectional electrical steel sheet with low iron loss, which is within 30 ° with respect to the direction perpendicular to the rolling direction.
【請求項3】 請求項1または2において、微小圧延歪
の付与手段が、線状突起幅:50〜500 μm 、突起高さ:
10〜100 μm 、ロール軸となす角度:30°以内の線状突
起を有するロールであり、この線状突起付きロールを鋼
板に対し、面圧:10〜70 kg/mm2 で押圧することを特徴
とする鉄損の低い一方向性電磁鋼板の製造方法。
3. The microrolling strain applying means according to claim 1 or 2, wherein the linear projection width is 50 to 500 μm, and the projection height is:
It is a roll that has linear protrusions with an angle of 10 to 100 μm and the axis of the roll: within 30 ° .The roll with linear protrusions should be pressed against a steel plate at a surface pressure of 10 to 70 kg / mm 2. A method for producing a grain-oriented electrical steel sheet having low iron loss.
JP05160894A 1993-12-28 1994-03-23 Manufacturing method of grain-oriented electrical steel sheet with low iron loss Expired - Fee Related JP3541419B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP05160894A JP3541419B2 (en) 1994-03-23 1994-03-23 Manufacturing method of grain-oriented electrical steel sheet with low iron loss
KR1019940036470A KR100259990B1 (en) 1993-12-28 1994-12-23 Low-iron-loss grain oriented electromagnetic steel sheet and method of manufacturing the same
CA002139063A CA2139063C (en) 1993-12-28 1994-12-23 Low-iron-loss grain-oriented electromagnetic steel sheet and method of producing the same
EP94309777A EP0662520B1 (en) 1993-12-28 1994-12-23 Low-iron-loss grain-oriented electromagnetic steel sheet and method of producing the same
DE69424762T DE69424762T2 (en) 1993-12-28 1994-12-23 Grain-oriented electromagnetic steel sheet with low iron loss and process for its production
CN94120796A CN1048040C (en) 1993-12-28 1994-12-28 Mono-orientational electro-magnetic steel plate with low iron loss and manufacture of same
US08/638,314 US5665455A (en) 1993-12-28 1996-04-26 Low-iron-loss grain-oriented electromagnetic steel sheet and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05160894A JP3541419B2 (en) 1994-03-23 1994-03-23 Manufacturing method of grain-oriented electrical steel sheet with low iron loss

Publications (2)

Publication Number Publication Date
JPH07258739A true JPH07258739A (en) 1995-10-09
JP3541419B2 JP3541419B2 (en) 2004-07-14

Family

ID=12891623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05160894A Expired - Fee Related JP3541419B2 (en) 1993-12-28 1994-03-23 Manufacturing method of grain-oriented electrical steel sheet with low iron loss

Country Status (1)

Country Link
JP (1) JP3541419B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275007A (en) * 1996-04-02 1997-10-21 Nippon Steel Corp Low iron loss directional magnetic steel sheet
JP2021535955A (en) * 2018-08-28 2021-12-23 ポスコPosco Directional electrical steel sheet and its magnetic domain miniaturization method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275007A (en) * 1996-04-02 1997-10-21 Nippon Steel Corp Low iron loss directional magnetic steel sheet
JP2021535955A (en) * 2018-08-28 2021-12-23 ポスコPosco Directional electrical steel sheet and its magnetic domain miniaturization method

Also Published As

Publication number Publication date
JP3541419B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
EP0202339B1 (en) Method of manufacturing unidirectional electromagnetic steel plates of low iron loss
KR101959646B1 (en) Low iron loss grain oriented electrical steel sheet and method for manufacturing the same
KR101636191B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
JP2895670B2 (en) Grain-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JP4949539B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3726289B2 (en) Oriented electrical steel sheet with low iron loss
CN113631734B (en) Grain-oriented electromagnetic steel sheet and method for producing same
JPH07320922A (en) One directional electromagnetic steel sheet at low iron loss
JPH07258739A (en) Production of grain oriented magnetic steel sheet having low iron loss
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JP3369724B2 (en) Grain-oriented electrical steel sheet with low iron loss
JP2942074B2 (en) Manufacturing method of low iron loss grain-oriented electrical steel sheet
JP3364305B2 (en) Unidirectional electrical steel sheet with low iron loss
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
JPH06299244A (en) Manufacture of silicon steel sheet having excellent magnetic characteristic
JP2002115034A (en) Nonoriented silicon steel sheet, stock for cold rolling therefor and its production method
JPH05247538A (en) Manufacture of low iron loss grain-oriented electrical steel sheet
JPH07316655A (en) Production of low-iron loss grain oriented electrical steel sheet
JPH0641640A (en) Manufacture of grain-oriented silicon steel with low core loss
JPH0565543A (en) Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing
KR100515461B1 (en) Ultra-low iron loss unidirectional silicon steel sheet
JP3280898B2 (en) Ultra-low iron loss unidirectional silicon steel sheet
JPH04214819A (en) Manufacture of low core loss grain-oriented silicon steel sheet free from deterioration in magnetic property even if stress relieving annealing is executed and continuous manufacturing equipment train for low core loss grain-oriented silicon steel sheet
JPH06100939A (en) Production of low core loss grain-oriented silicon steel sheet

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040322

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees