JPH07238460A - Laminated elastic structure, its production and product using the same - Google Patents

Laminated elastic structure, its production and product using the same

Info

Publication number
JPH07238460A
JPH07238460A JP2977894A JP2977894A JPH07238460A JP H07238460 A JPH07238460 A JP H07238460A JP 2977894 A JP2977894 A JP 2977894A JP 2977894 A JP2977894 A JP 2977894A JP H07238460 A JPH07238460 A JP H07238460A
Authority
JP
Japan
Prior art keywords
laminated
elastic resin
thermoplastic elastic
elastic structure
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2977894A
Other languages
Japanese (ja)
Other versions
JP3430447B2 (en
Inventor
Hideo Isoda
英夫 磯田
Yasushi Yamada
靖司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP02977894A priority Critical patent/JP3430447B2/en
Publication of JPH07238460A publication Critical patent/JPH07238460A/en
Application granted granted Critical
Publication of JP3430447B2 publication Critical patent/JP3430447B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To obtain a laminated elastic structure capable of blocking vibration, excellent in heat durability, shape-retaining property and cushioning property, hardly causing stuffiness and constituted of a network material obtained by laminating and joining a short fiber hard stock consisting of a thermoplastic elastic resin and most suitable as a cushioning material and to provide a method for producing the laminated elastic structure and to obtain a product such as quilt or cushion for furniture, beds and vehicles using the laminated elastic structure. CONSTITUTION:In this laminated elastic structure, nonwoven fabric, obtained by opening a short fiber consisting of a thermoplastic elastic resin and having $20 denier fineness and forming the short fiber in three-dimensional structure, in which most of the contact part of the yarns is fused by heat bonding and the face is flatted is joined and integrated on one side of a network material obtained by meandering continuous yarn consisting of a thermoplastic elastic resin having 100-100000 denier fineness, mutually contacting the yarn to form a three-dimensional structure and substantially flatting both faces of the structure. The laminated elastic structure has 0.01-0.2g/cm<2> density. Furthermore, this method for producing the laminated elastic structure and this product using the laminated elastic structure are provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れたクッション性と
耐熱耐久性及び振動吸収性とを有し、リサイクルが可能
な短繊維硬綿層を積層接合した網状体が共に熱可塑性弾
性樹脂からなる積層網状体と製法および積層網状体を用
いた布団、家具、ベッド、車両用クッション材等の製品
に関する。
BACKGROUND OF THE INVENTION The present invention provides a net body having excellent cushioning properties, heat resistance durability, and vibration absorption properties, and a recyclable short fiber hard cotton layer laminated and joined together, which is made of a thermoplastic elastic resin. The present invention relates to a laminated net body, a manufacturing method thereof, and products such as a futon, furniture, a bed, and a cushioning material for vehicles using the laminated net body.

【0002】[0002]

【従来の技術】現在、家具、ベッド、電車、自動車等の
クッション材に、発泡ウレタン、非弾性捲縮繊維詰綿、
及び非弾性捲縮繊維を接着した樹脂綿や硬綿などが使用
されている。
2. Description of the Related Art At present, as a cushion material for furniture, beds, trains, automobiles, etc., urethane foam, non-elastic crimped fiber wadding,
In addition, resin cotton or hard cotton to which non-elastic crimped fibers are adhered is used.

【0003】しかしながら、発泡−架橋型ウレタンはワ
ディング層やクッション材としての耐久性は極めて良好
だが、透湿透水性に劣り蓄熱性があるため蒸れやすく、
かつ、熱可塑性では無いためリサイクルが困難となり焼
却される場合、焼却炉の損傷が大きく、かつ、有毒ガス
除去に経費が掛かる。このため埋め立てされることが多
くなったが、地盤の安定化が困難なため埋め立て場所が
限定され経費も高くなっていく問題がある。また、加工
性は優れるが製造中に使用される薬品の公害問題なども
ある。また、熱可塑性ポリエステル繊維詰綿では繊維間
が固定されていないため、使用時形態が崩れたり、繊維
が移動して、かつ、捲縮のへたりで嵩高性の低下や弾力
性の低下が問題になる。
However, although the foamed-crosslinked urethane has very good durability as a wadding layer or a cushioning material, it has poor moisture permeability and heat storage property and is apt to be stuffy.
Moreover, since it is not thermoplastic, it becomes difficult to recycle, and when it is incinerated, the damage to the incinerator is large and the cost for removing the toxic gas is high. For this reason, landfilling has become more frequent, but it is difficult to stabilize the ground, and there is a problem that landfilling sites are limited and costs increase. Further, although it has excellent processability, it also has a problem of pollution of chemicals used during manufacturing. In addition, since the fibers are not fixed in the thermoplastic polyester fiber wadding, the form may collapse during use, the fibers may move, and the crimp may cause a decrease in bulkiness and elasticity. become.

【0004】ポリエステル繊維を接着剤で接着した樹脂
綿、例えば接着剤にゴム系を用いたものとして特開昭6
0−11352号公報、特開昭61−141388号公
報、特開昭61−141391号公報等がある。又、架
橋性ウレタンを用いたものとして特開昭61−1377
32号公報等がある。これらのクッション材は耐久性に
劣り、且つ、熱可塑性でなく、単一組成でもないためリ
サイクルも出来ない等の問題、及び加工性の煩雑さや製
造中に使用される薬品の公害問題などもある。
As a resin cotton in which polyester fibers are adhered with an adhesive, for example, a rubber-based adhesive is used, Japanese Patent Application Laid-Open No.
0-11352, JP-A 61-141388, JP-A 61-141391 and the like. Further, as a method using a cross-linkable urethane, JP-A-61-1377
No. 32 publication and the like. These cushion materials have inferior durability, and also have problems such as not being recyclable because they are neither thermoplastic nor single composition, and there are problems such as complexity of processability and pollution of chemicals used during manufacturing. .

【0005】ポリエステル硬綿、例えば特開昭58−3
1150号公報、特開平2−154050号公報、特開
平3−220354号公報等があるが、用いている熱接
着繊維の接着成分が脆い非晶性のポリマ−を用いるため
(例えば特開昭58−136828号公報、特開平3−
249213号公報等)接着部分が脆く、使用中に接着
部分が簡単に破壊されて形態や弾力性が低下するなどの
耐久性に劣る問題がある。改良法として、交絡処理する
方法が特開平4−245965号公報等で提案されてい
るが、接着部分の脆さは解決されず弾力性の低下が大き
い問題がある。また、加工時の煩雑さもある。更には接
着部分が変形しにくくソフトなクッション性を付与しに
くい問題もある。このため、接着部分を柔らかい、且つ
ある程度変形しても回復するポリエステルエラストマ−
を用い、芯成分に非弾性ポリエステルを用いた熱接着繊
維が特開平4−240219号公報で、同繊維を用いた
クッション材がWO−91/19032号公報、特開平
5−156561号公報、特開平5−163654号公
報等で提案されている。この繊維構造物に使われる接着
成分がポリエステルエラストマ−のソフトセグメントと
してはポリアルキレングリコ−ルの含有量が30〜50
重量%、ハ−ドセグメントの酸成分にテレフタル酸を5
0〜80モル%含有し、他の酸成分組成として特公昭6
0−1404号公報に記載された繊維と同様にイソフタ
ル酸を含有して非晶性が増すことになり、融点も180
℃以下となり低溶融粘度として熱接着部分の形成を良く
してアメーバー状の接着部を形成しているが塑性変形し
やいため、及び芯成分が非弾性ポリエステルのため、特
に加熱下での塑性変形が著しくなり、耐熱抗圧縮性が低
下する問題点がある。これらの改良法として、特開平5
−163654号公報にシ−ス成分にイソフタル酸を含
有するポリエステルエラストマ−、コア成分に非弾性ポ
リエステルを用いた熱接着複合繊維のみからなる構造体
が提案されているが上述の理由で加熱下での塑性変形が
著しくなり、耐熱抗圧縮性が低下し、ワディング層やク
ッション材に使用するには問題がある。他方、硬綿の母
材にシリコ−ン油剤を付与して繊維の摩擦係数を下げて
耐久性を向上し、風合いを良くする方法が特開昭63−
158094号公報で提案されている。が、熱接着繊維
の接着性に問題があり、耐久性が劣るのでワディング層
やクッション材に使用するには好ましくない。
Polyester hard cotton, for example, JP-A-58-3
1150, JP-A-2-154050, JP-A-3-220354, etc., but since an amorphous polymer having a brittle adhesive component of the heat-bonding fiber used is used (for example, JP-A-58). -136828, Japanese Patent Application Laid-Open No. 3-
However, there is a problem in that durability is poor such that the bonded portion is brittle and the bonded portion is easily broken during use and the form and elasticity are reduced. As an improved method, a method of entanglement treatment has been proposed in Japanese Patent Laid-Open No. 4-245965, but there is a problem that the brittleness of the bonded portion is not solved and the elasticity is largely reduced. In addition, there is complexity during processing. Further, there is a problem that the bonded portion is hard to be deformed and soft cushioning is hard to be imparted. For this reason, the polyester elastomer that is soft even at the bonded portion and recovers even if it is deformed to some extent
A heat-bonding fiber using a non-elastic polyester as a core component is disclosed in JP-A-4-240219, and a cushion material using the fiber is disclosed in WO-91 / 19032, JP-A-5-155651. It is proposed in Japanese Patent Laid-Open No. 5-163654. The adhesive component used in this fiber structure has a polyalkylene glycol content of 30 to 50 as a soft segment of polyester elastomer.
Wt%, 5% terephthalic acid as the acid component of the hard segment
It contains 0 to 80 mol% and is used as another acid component composition
As in the fiber described in Japanese Patent Publication No. 0-1404, isophthalic acid is contained to increase the amorphous property, and the melting point is 180.
The temperature is below ℃, and the heat-bonded part is well formed with a low melt viscosity to form an ameber-shaped bonded part, but it is easy to plastically deform, and because the core component is an inelastic polyester, plastic deformation especially under heating Becomes remarkable, and there is a problem that the heat resistance and compression resistance are lowered. As an improved method for these, Japanese Patent Laid-Open No.
No. 163654 proposes a structure consisting only of a polyester elastomer containing isophthalic acid as a sheath component and a heat-bonding composite fiber using an inelastic polyester as a core component. Plastic deformation becomes significant, the heat resistance and compression resistance deteriorate, and there is a problem in using it for a wadding layer or a cushion material. On the other hand, there is a method in which a silicone oil is added to a base material of hard cotton to lower the friction coefficient of fibers to improve the durability and improve the texture.
It is proposed in Japanese Patent No. 158094. However, there is a problem with the adhesiveness of the heat-adhesive fiber and the durability is poor, so it is not preferable for use in a wadding layer or cushioning material.

【0006】土木工事用に使用する熱可塑性のオレフィ
ン網状体が特開昭47−44839号公報に開示されて
いる。が、細い繊維から構成したクッションとは異なり
表面が凸凹でタッチが悪く、素材がオレフィンのため耐
熱耐久性が著しく劣りワディング層やクッション材には
使用ができないものである。また、特公平3−1766
6号公報には繊度の異なる吐出線条を互いに融着してモ
−ル状物を作る方法があるがクッション材には適さない
網状構造体である。特公平3−55583号公報には、
ごく表面のみ冷却前に回転体等の細化装置で細くする方
法が記載されている。この方法では表面をフラット化で
きず、厚みのある細い線条層を作ることできない。した
がって座り心地の良好なクッション材にはならない。特
開平1−207462号公報では、塩化ビニ−ル製のフ
ロアマットの開示があるが、室温での圧縮回復性が悪
く、耐熱性は著しく悪いので、ワディング材やクッショ
ン材としては好ましくないものである。なお、上述構造
体は振動減衰に関する配慮が全くなされていない。
A thermoplastic olefin network used for civil engineering work is disclosed in JP-A-47-44839. However, unlike a cushion made of fine fibers, the surface is uneven and the touch is poor, and since the material is olefin, the heat resistance durability is extremely poor and it cannot be used as a wadding layer or cushion material. In addition, Japanese Patent Publication No. 3-1766
No. 6 discloses a method in which ejection filaments having different fineness are fused to each other to form a mold, but the mesh structure is not suitable as a cushion material. Japanese Examined Patent Publication No. 3-55583 discloses that
A method of thinning only a very surface with a thinning device such as a rotating body before cooling is described. With this method, the surface cannot be flattened and a thick thin linear layer cannot be formed. Therefore, it does not provide a comfortable cushioning material. Japanese Patent Application Laid-Open No. 1-207462 discloses a vinyl chloride floor mat, but it is not preferable as a wadding material or a cushioning material because it has poor compression recovery at room temperature and remarkably poor heat resistance. is there. Note that no consideration is given to vibration damping in the above-mentioned structure.

【0007】[0007]

【発明が解決しようとする課題】上記問題点を解決し、
振動を遮断し、耐熱耐久性、形態保持性、クッション性
の優れた蒸れ難い、熱可塑性弾性樹脂からなる短繊維硬
綿を積層接合した熱可塑性弾性樹脂からなる網状体で構
成したクッション材に最適な積層弾性構造体と製法及び
積層弾性構造体を用いた布団、家具、ベッド、車両用ク
ッション等の製品と製法を提供することを目的とする。
To solve the above problems,
Optimal for cushioning material composed of reticulated body made of thermoplastic elastic resin that is laminated and joined with short fiber hard cotton made of thermoplastic elastic resin that has excellent heat resistance and durability, shape retention and cushioning properties Another object of the present invention is to provide a laminated elastic structure and a manufacturing method, and a product and a manufacturing method using the laminated elastic structure, such as a futon, furniture, bed, and cushion for a vehicle.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
の手段、即ち本発明は、繊度が100〜100000デ
ニ−ルの熱可塑性弾性樹脂からなる連続した線条を曲が
りくねらせ互いに接触させて該接触部の大部分が融着し
た3次元立体構造体を形成し、両面が実質的にフラット
化された網状体の片面に熱可塑性弾性樹脂からなる繊度
が20デニ−ル以下の短繊維が開繊3次元構造化され、
接触部の大部分が熱接着により融着一体化した面が実質
的にフラット化された不織布が接合一体化された密度が
0.01g/cm3 から0.2g/cm3 の積層弾性構造
体、複数のオリフィスを持つ多列ノズルより熱可塑性弾
性樹脂をその融点より20〜80℃高い溶融温度で、該
ノズルより下方に向けて吐出させ、溶融状態で互いに接
触させて融着させ3次元構造を形成しつつ、引取り装置
で挟み込み冷却槽で冷却せしめた後、片面に熱可塑性弾
性樹脂からなる短繊維を開繊したウエッブを積層し、圧
縮しつつ熱成形する積層弾性構造体の製法および前記積
層弾性構造体を用いた製品である。
Means for Solving the Problems The means for solving the above problems, that is, the present invention, is to make continuous filaments made of a thermoplastic elastic resin having a fineness of 100 to 100,000 denier meander and contact each other. A short fiber having a fineness of 20 denier or less is formed of a thermoplastic elastic resin on one surface of a mesh body in which most of the contact portion is fused to form a three-dimensional structure, and both surfaces are substantially flattened. Opened three-dimensional structure,
Laminated elastic structure of 0.2 g / cm 3 surface where most of the contact portion are fused together by thermal bonding is substantially flat nonwovens are joined integrally density from 0.01 g / cm 3 A three-dimensional structure in which a thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature 20 to 80 ° C. higher than the melting point of the multi-row nozzle having a plurality of orifices, and they are brought into contact with each other in a molten state to be fused. While forming, after being sandwiched by a take-off device and cooled in a cooling tank, a web of opened short fibers made of a thermoplastic elastic resin is laminated on one side, and a method for producing a laminated elastic structure that is thermoformed while being compressed and It is a product using the laminated elastic structure.

【0009】本発明における熱可塑性弾性樹脂とは、ソ
フトセグメントとして分子量300〜5000のポリエ
−テル系グリコ−ル、ポリエステル系グリコ−ル、ポリ
カ−ボネ−ト系グリコ−ルまたは長鎖の炭化水素末端を
カルボン酸または水酸基にしたオレフィン系化合物等を
ブロック共重合したポリエステル系エラストマ−、ポリ
アミド系エラストマ−、ポリウレタン系エラストマ−、
ポリオレフィン系エラストマ−などが挙げられる。熱可
塑性弾性樹脂とすることで、再溶融により再生が可能と
なるため、リサイクルが容易となる。例えば、ポリエス
テル系エラストマ−としては、熱可塑性ポリエステルを
ハ−ドセグメントとし、ポリアルキレンジオ−ルをソフ
トセグメントとするポリエステルエ−テルブロック共重
合体、または、脂肪族ポリエステルをソフトセグメント
とするポリエステルエステルブロック共重合体が例示で
きる。ポリエステルエ−テルブロック共重合体のより具
体的な事例としては、テレフタル酸、イソフタル酸、ナ
フタレン2・6ジカルボン酸、ナフタレン2・7ジカル
ボン酸、ジフェニル4・4’ジカルボン酸等の芳香族ジ
カルボン酸、1・4シクロヘキサンジカルボン酸等の脂
環族ジカルボン酸、琥珀酸、アジピン酸、セバチン酸ダ
イマ−酸等の脂肪族ジカルボン酸または、これらのエス
テル形成性誘導体などから選ばれたジカルボン酸の少な
くとも1種と、1・4ブタンジオ−ル、エチレングリコ
−ル、トリメチレングリコ−ル、テトレメチレングリコ
−ル、ペンタメチレングリコ−ル、ヘキサメチレングリ
コ−ル等の脂肪族ジオ−ル、1・1シクロヘキサンジメ
タノ−ル、1・4シクロヘキサンジメタノ−ル等の脂環
族ジオ−ル、またはこれらのエステル形成性誘導体など
から選ばれたジオ−ル成分の少なくとも1種、および平
均分子量が約300〜5000のポリエチレングリコ−
ル、ポリプロピレングリコ−ル、ポリテトラメチレング
リコ−ル、エチレンオキシド−プロピレンオキシド共重
合体からなるグリコ−ル等のポリアルキレンジオ−ルの
うち少なくとも1種から構成される三元ブロック共重合
体である。ポリエステルエステルブロック共重合体とし
ては、上記ジカルボン酸とジオ−ル及び平均分子量が約
300〜5000のポリラクトン等のポリエステルジオ
−ルのうち少なくとも各1種から構成される三元ブロッ
ク共重合体である。熱接着性、耐加水分解性、伸縮性、
耐熱性等を考慮すると、ジカルボン酸としてはテレフタ
ル酸、または、及びナフタレン2・6ジカルボン酸、ジ
オ−ル成分としては1・4ブタンジオ−ル、ポリアルキ
レンジオ−ルとしてはポリテトラメチレングリコ−ルの
3元ブロック共重合体または、ポリエステルジオ−ルと
してポリラクトンの3元ブロック共重合体が特に好まし
い。特殊な例では、ポリシロキサン系のソフトセグメン
トを導入したものも使うこたができる。また、上記エラ
ストマ−に非エラストマ−成分をブレンドされたもの、
共重合したもの、ポリオレフィン系成分をソフトセグメ
ントにしたもの等も本発明の熱可塑性弾性樹脂に包含さ
れる。ポリアミド系エラストマ−としては、ハ−ドセグ
メントにナイロン6、ナイロン66、ナイロン610、
ナイロン612、ナイロン11、ナイロン12等及びそ
れらの共重合ナイロンを骨格とし、ソフトセグメントに
は、平均分子量が約300〜5000のポリエチレング
リコ−ル、ポリプロピレングリコ−ル、ポリテトラメチ
レングリコ−ル、エチレンオキシド−プロピレンオキシ
ド共重合体からなるグリコ−ル等のポリアルキレンジオ
−ルのうち少なくとも1種から構成されるブロック共重
合体を単独または2種類以上混合して用いてもよい。更
には、非エラストマ−成分をブレンドされたもの、共重
合したもの等も本発明に使用できる。ポリウレタン系エ
ラストマ−としては、通常の溶媒(ジメチルホルムアミ
ド、ジメチルアセトアミド等)の存在または不存在下
に、(A)数平均分子量1000〜6000の末端に水
酸基を有するポリエ−テル及び又はポリエステルと
(B)有機ジイソシアネ−トを主成分とするポリイソシ
アネ−トを反応させた両末端がイソシアネ−ト基である
プレポリマ−に、(C)ジアミンを主成分とするポリア
ミンにより鎖延長したポリウレタンエラストマ−を代表
例として例示できる。(A)のポリエステル、ポリエ−
テル類としては、平均分子量が約1000〜6000、
好ましくは1300〜5000のポリブチレンアジペ−
ト共重合ポリエステルやポリエチレングリコ−ル、ポリ
プロピレングリコ−ル、ポリテトラメチレングリコ−
ル、エチレンオキシド−プロピレンオキシド共重合体か
らなるグリコ−ル等のポリアルキレンジオ−ルが好まし
く、(B)のポリイソシアネ−トとしては、従来公知の
ポリイソシアネ−トを用いることができるが、ジフェニ
ルメタン4・4’ジイソシアネ−トを主体としたイソシ
アネ−トを用い、必要に応じ従来公知のトリイソシアネ
−ト等を微量添加使用してもよい。(C)のポリアミン
としては、エチレンジアミン、1・2プロピレンジアミ
ン等公知のジアミンを主体とし、必要に応じて微量のト
リアミン、テトラアミンを併用してもよい。これらのポ
リウレタン系エラストマ−は単独又は2種類以上混合し
て用いてもよい。なお、本発明の熱可塑性弾性樹脂の融
点は耐熱耐久性が保持できる140℃以上が好ましく、
160℃以上のものを用いると耐熱耐久性が向上するの
でより好ましい。なお、必要に応じ、抗酸化剤や耐光剤
等を添加して耐久性を向上させることができる。本発明
の目的である振動や応力の吸収機能をもたせる成分を構
成する熱可塑性弾性樹脂のソフトセグメント含有量は好
ましくは15重量%以上、より好ましくは30重量%以
上であり、耐熱耐へたり性からは80重量%以下が好ま
しく、より好ましくは70重量%以下である。即ち、本
発明の積層弾性網状体の振動や応力の吸収機能をもたせ
る成分のソフトセグメント含有量は好ましくは15重量
%以上80重量%以下であり、より好ましくは30重量
%以上70重量%以下である。
The thermoplastic elastic resin in the present invention means, as the soft segment, an ether type glycol, a polyester type glycol, a polycarbonate type glycol or a long chain hydrocarbon having a molecular weight of 300 to 5,000. Polyester elastomer obtained by block-copolymerizing an olefinic compound having a carboxylic acid or a hydroxyl group at the terminal, a polyamide elastomer, a polyurethane elastomer,
Examples include polyolefin elastomers. By using a thermoplastic elastic resin, it becomes possible to regenerate by remelting, and thus recycling becomes easy. For example, as the polyester elastomer, a polyester ether block copolymer having a thermoplastic polyester as a hard segment and a polyalkylenediol as a soft segment, or a polyester ester having an aliphatic polyester as a soft segment A block copolymer can be illustrated. More specific examples of the polyester ether block copolymer include aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, naphthalene 2.6 dicarboxylic acid, naphthalene 2.7 dicarboxylic acid, and diphenyl 4.4'dicarboxylic acid. At least one of alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid dimer acid, and dicarboxylic acids selected from ester-forming derivatives thereof Seeds and aliphatic diols such as 1.4 butanediol, ethylene glycol, trimethylene glycol, tetremethylene glycol, pentamethylene glycol and hexamethylene glycol, 1.1 cyclohexane Alicyclic diols such as dimethanol and 1,4-cyclohexane dimethanol, or these Of at least one diole component selected from the ester-forming derivatives thereof and polyethylene glycol having an average molecular weight of about 300 to 5,000.
Is a ternary block copolymer composed of at least one kind of polyalkylenediol such as glycol, polypropylene glycol, polytetramethylene glycol, and glycol made of ethylene oxide-propylene oxide copolymer. . The polyester ester block copolymer is a ternary block copolymer composed of at least one of the above dicarboxylic acids, diol, and polyester diol such as polylactone having an average molecular weight of about 300 to 5,000. . Thermal adhesion, hydrolysis resistance, stretchability,
Considering heat resistance and the like, terephthalic acid is used as the dicarboxylic acid, or naphthalene 2.6 dicarboxylic acid, 1.4 butanediol is used as the diole component, and polytetramethylene glycol is used as the polyalkylenediol. The terpolymer block copolymer or the terpolymer block copolymer of polylactone as the polyester diol is particularly preferable. In a special case, it is possible to use the one in which a polysiloxane-based soft segment is introduced. In addition, the above elastomer is blended with a non-elastomer component,
Those obtained by copolymerization and those obtained by softening the polyolefin component are also included in the thermoplastic elastic resin of the present invention. As a polyamide elastomer, the hard segment is nylon 6, nylon 66, nylon 610,
Polyethylene glycol, polypropylene glycol, polytetramethylene glycol, ethylene oxide having an average molecular weight of about 300 to 5000 is used as the soft segment in the skeleton of nylon 612, nylon 11, nylon 12, etc. and their copolymerized nylon. -A block copolymer composed of at least one kind of polyalkylenediol such as glycol composed of propylene oxide copolymer may be used alone or in combination of two or more kinds. Furthermore, blends of non-elastomer components and copolymers thereof can be used in the present invention. Examples of the polyurethane elastomer include (A) a polyester and / or a polyester having a hydroxyl group at the terminal and having a number average molecular weight of 1,000 to 6000 in the presence or absence of a usual solvent (dimethylformamide, dimethylacetamide, etc.). ) A typical example is a polyurethane elastomer obtained by reacting a polyisocyanate containing an organic diisocyanate as a main component with a prepolymer having isocyanate groups at both ends and (C) extending the chain with a polyamine containing a diamine as a main component. Can be illustrated as (A) Polyester, Polyester
The tellers have an average molecular weight of about 1000 to 6000,
Preferably from 1300 to 5000 polybutylene adipates
Copolyester, polyethylene glycol, polypropylene glycol, polytetramethylene glycol
Polyalkylenediol such as glycol and ethylene oxide-propylene oxide copolymer glycol is preferable, and as the polyisocyanate of (B), a conventionally known polyisocyanate can be used. An isocyanate mainly composed of 4'diisocyanate may be used, and if necessary, a trace amount of conventionally known triisocyanate may be added and used. As the polyamine (C), known diamines such as ethylenediamine and 1.2-propylenediamine are mainly used, and if necessary, trace amounts of triamine and tetraamine may be used in combination. These polyurethane elastomers may be used alone or in combination of two or more. The melting point of the thermoplastic elastic resin of the present invention is preferably 140 ° C. or higher at which heat resistance and durability can be maintained,
It is more preferable to use a material having a temperature of 160 ° C. or higher because the heat resistance and durability are improved. If necessary, an antioxidant, a light-proofing agent or the like may be added to improve durability. The soft segment content of the thermoplastic elastic resin constituting the component having the function of absorbing vibration and stress, which is the object of the present invention, is preferably 15% by weight or more, more preferably 30% by weight or more, and heat resistance and sag resistance Therefore, it is preferably 80% by weight or less, and more preferably 70% by weight or less. That is, the soft segment content of the component having the function of absorbing vibration and stress of the laminated elastic network of the present invention is preferably 15% by weight or more and 80% by weight or less, more preferably 30% by weight or more and 70% by weight or less. is there.

【0010】本発明の積層弾性構造体を構成する熱可塑
性弾性樹脂からなる成分は、示差走査型熱量計にて測定
した融解曲線において、融点以下に吸熱ピ−クを有する
のが好ましい。融点以下に吸熱ピ−クを有するものは、
耐熱耐へたり性が吸熱ピ−クを有しないものより著しく
向上する。例えば、本発明の好ましいポリエステル系熱
可塑性樹脂として、ハ−ドセグメントの酸成分に剛直性
のあるテレフタル酸やナフタレン2・6ジカルボン酸な
どを90モル%以上含有するもの、より好ましくはテレ
フタル酸やナフタレン2・6ジカルボン酸の含有量は9
5モル%以上、特に好ましくは100モル%とグリコ−
ル成分をエステル交換後、必要な重合度まで重合し、次
いで、ポリアルキレンジオ−ルとして、好ましくは平均
分子量が500以上5000以下、特に好ましくは10
00以上3000以下のポリテトラメチレングリコ−ル
を15重量%以上70重量%以下、より好ましくは30
重量%以上60重量%以下共重合量させた場合、ハ−ド
セグメントの酸成分に剛直性のあるテレフタル酸やナフ
タレン2・6ジカルボン酸の含有量が多いとハ−ドセグ
メントの結晶性が向上し、塑性変形しにくく、かつ、耐
熱抗へたり性が向上するが、溶融熱接着後更に融点より
少なくとも10℃以上低い温度でアニ−リング処理する
とより耐熱抗へたり性が向上する。圧縮歪みを付与して
からアニ−リングすると更に耐熱抗へたり性が向上す
る。このような処理をした積層弾性構造体を示差走査型
熱量計で測定した融解曲線に室温以上融点以下の温度で
吸熱ピークをより明確に発現する。なおアニ−リングし
ない場合は融解曲線に室温以上融点以下に吸熱ピ−クを
発現しない。このことから類推するに、アニ−リングに
より、ハ−ドセグメントが再配列され、疑似結晶化様の
架橋点が形成され、耐熱抗へたり性が向上しているので
はないかとも考えられる。(この処理を疑似結晶化処理
と定義する)この疑似結晶化処理効果は、ポリアミド系
弾性樹脂やポリウレタン系弾性樹脂にも有効である。
The component composed of the thermoplastic elastic resin constituting the laminated elastic structure of the present invention preferably has an endothermic peak below the melting point in the melting curve measured by a differential scanning calorimeter. Those having an endothermic peak below the melting point,
Heat resistance and sag resistance are remarkably improved as compared with those having no endothermic peak. For example, a preferable polyester-based thermoplastic resin of the present invention contains 90 mol% or more of terephthalic acid or naphthalene 2.6 dicarboxylic acid having rigidity in the acid component of the hard segment, more preferably terephthalic acid or The content of naphthalene 2.6 dicarboxylic acid is 9
5 mol% or more, particularly preferably 100 mol% and glyco-
After transesterification of the monomer component, polymerization is performed to a required degree of polymerization, and then, as the polyalkylene diol, the average molecular weight is preferably 500 or more and 5000 or less, particularly preferably 10
00 to 3000 polytetramethylene glycol in an amount of 15% to 70% by weight, more preferably 30% by weight.
When the amount of copolymerization is not less than 60% by weight and not more than 60% by weight, the crystallinity of the hard segment is improved when the content of terephthalic acid or naphthalene 2.6 dicarboxylic acid, which has rigidity in the acid component of the hard segment, is large. However, the plastic deformation is less likely to occur and the heat resistance and sag resistance is improved. However, if the annealing treatment is further performed at a temperature lower than the melting point by at least 10 [deg.] C. or more after the melt heat adhesion, the heat resistance and sag resistance is further improved. If annealing is performed after applying compressive strain, heat resistance and sag resistance are further improved. The endothermic peak is more clearly expressed in the melting curve measured by the differential scanning calorimeter of the laminated elastic structure thus treated at a temperature of room temperature or higher and melting point or lower. If annealing is not performed, no endothermic peak appears in the melting curve above room temperature and below the melting point. By analogy with this, it is considered that the annealing causes rearrangement of the hard segments and formation of pseudo-crystallization-like cross-linking points to improve the heat resistance and sag resistance. (This treatment is defined as pseudo crystallization treatment.) This pseudo crystallization treatment effect is also effective for polyamide elastic resin and polyurethane elastic resin.

【0011】本発明は、繊度が100〜100000デ
ニ−ルの熱可塑性弾性樹脂からなる連続した線条を曲が
りくねらせ互いに接触させて該接触部の大部分が融着し
た3次元立体構造体を形成し、両面が実質的にフラット
化された網状体の片面に熱可塑性弾性樹脂からなる繊度
が20デニ−ル以下の短繊維が開繊3次元構造化され、
接触部の大部分が熱接着により融着一体化した面が実質
的にフラット化された不織布(短繊維不織布)と接合一
体化された密度が0.01g/cm3 から0.2g/cm3
の積層弾性構造体である。クッション材の機能は、クッ
ション層は基本の繊度を太くして少し硬くして体型保持
を受け持つ層と振動減衰性の良い成分で密度を少し高く
し振動を吸収して振動を遮断する層で構成し、表面層は
繊度を細くし構成繊維本数を多くした柔らかな層として
適度の沈み込みにより快適な臀部のタッチを与えて臀部
の圧力分布を均一分散化させると共にクッション層で吸
収できなかった振動を吸収して人体の共振部分の振動を
遮断する層が一体化されることで、応力や振動を一体で
変形し吸収させ座り心地を向上させることができる。本
発明では、クッション層の機能を熱可塑性弾性樹脂から
なる融着した3次元立体構造体を形成した網状体に持た
せ、表面層の機能を熱可塑性弾性樹脂からなる短繊維不
織布に持たせ、接合一体化して好ましいクッション材の
機能を付与できる積層弾性構造体である。本発明の積層
弾性構造体を構成する表面層機能を持つ短繊維不織布は
柔らかな層として適度の沈み込みにより快適な臀部のタ
ッチを与えるため、熱可塑性弾性樹脂からなる繊度が2
0デニ−ル以下の短繊維で構成する。20デニ−ルを越
えると短繊維不織布の見掛け密度を好ましい表面層機能
を付与できる0.01g/cm3 以上0.05g/cm3
下にする場合、構成本数が少なくなり、緻密な構造体と
しての特徴が出ず快適なタッチを損なうので好ましくな
い。好ましい短繊維の繊度は2デニ−ル〜15デニ−
ル、より好ましくは3デニ−ル〜10デニ−ルである。
また、熱可塑性弾性樹脂からなる短繊維が3次元構造化
され、接触部の大部分が熱接着により融着一体化した
(好ましくは接触点の全てが融着一体化した)面が実質
的にフラット化された不織布とすることで臀部の局部的
な圧力を面で受け止め、圧力分布を均一分散化させると
共に、熱可塑性弾性樹脂からなる短繊維が3次元立体構
造体を形成し融着一体化されているので、構造体全体が
変形してエネルギ−変換により変形応力を吸収し、変形
応力が解除されると熱可塑性弾性樹脂のゴム弾性で容易
に元の形態に回復する機能があるので耐へたり性が良好
である。更には、クッション層へのダメ−ジを逓減で
き、構造体全体の耐へたり性も向上する。融着一体化さ
れていない場合は形態が保持できず、局部的な圧力を面
で受け止め、圧力分布を均一分散化できず、更に構造体
全体が変形してエネルギ−変換出来ないので耐久性が劣
り好ましくない。短繊維が振動吸収性の良い熱可塑性弾
性樹脂からなるのでクッション層で吸収できなかった振
動も吸収して人体の共振部分の振動を遮断する層として
の機能をはたす。短繊維が熱可塑性非弾性樹脂からなる
場合は、局部的な変形応力に追随出来ないため、応力集
中により構造が破壊されていき回復性が劣るので好まし
くない。また、熱可塑性非弾性樹脂は振動吸収性が悪い
ので振動を遮断する層としての機能が劣り好ましくな
い。短繊維不織布層の厚みは特には限定されないが、表
面層機能が発現できる3mm〜30mmが好ましく、5mm〜
20mmが特に好ましい。他方、クッション層機能を持つ
網状体は熱可塑性弾性樹脂からなる連続した線条が接触
部の大部分が融着した3次元立体構造体を形成し融着一
体化され、両面が実質的にフラット化されており、外部
から与えられた振動を熱可塑性弾性樹脂の振動吸収機能
で大部分の振動を吸収減衰し、局部的に大きい変形応力
を与えられた場合でも網状体の表面が実質的にフラット
化され接触部の大部分が融着しており、表面は短繊維不
織布と面で接合されているので、網状体の面で変形応力
を受け止め変形応力を分散させ体型保持機能を発現する
と共に、熱可塑性弾性樹脂からなる線条が3次元立体構
造体を形成し融着一体化されているので、構造体全体が
変形してエネルギ−変換により変形応力を吸収し、変形
応力が解除されると熱可塑性弾性樹脂のゴム弾性で容易
に元の形態に回復する機能があるので耐へたり性が良好
である。公知の非弾性樹脂のみからなる線条で構成した
網状体では、ゴム弾性を持たないので圧縮変形により塑
性変形を生じて回復しなくなり耐久性が劣る。網状体の
表面が実質的にフラット化されてない場合、短繊維不織
布から伝達される局部的な外力は、表面の線条及び接着
点部分までに選択的に伝達され、応力集中が発生する場
合があり、このような外力に対しては応力集中による疲
労が発生して耐へたり性が低下する場合がある。なお、
該線条が熱可塑性弾性樹脂からなる場合は3次元構造部
分で構造全体が変形するので応力集中は緩和されるが、
非弾性樹脂では、そのまま応力が接着点に集中して構造
破壊を生じ回復しなくなる。更には、表面が実質的にフ
ラット化されてなく凸凹があると座った時臀部に異物感
を与えるため座り心地が悪くなり好ましくない。なお、
線状が連続していない場合は、繊度が太い網状体では接
着点が応力の伝達点となるため接着点に著しい応力集中
が起こり構造破壊を生じ耐熱耐久性が劣り好ましくな
い。融着していない場合は、形態保持が出来ず、構造体
が一体で変形しないため、応力集中による疲労現象が起
こり耐久性が劣ると同時に、形態が変形して体型保持が
できなくなるので好ましくない。本発明のより好ましい
融着の程度は、線条が接触している部分の大半が融着し
た状態であり、もっとも好ましくは接触部分が全て融着
した状態である。かくして、振動吸収性と弾性回復性の
良い熱可塑性弾性樹脂からなる連続した線条が接触部の
大部分が融着した3次元立体構造体を形成し融着一体化
され表面が実質的にフラット化されたクッション層機能
を持つ網状体は、熱可塑性弾性樹脂からなる短繊維不織
布で構成する表面層から伝達される変形応力を面で受け
止め応力の分散を良くし、個々の線状に掛かる応力を少
なくして構造全体が変形して変形応力を吸収し、且つ臀
部を支えるクッション性も向上させ、応力が解除される
と回復し、フレ−ムから伝わる振動も振動吸収性と弾性
回復性の良い熱可塑性弾性樹脂からなるクッション層が
吸収して人体の共振部分の振動を遮断するため座り心地
と耐久性を向上させることができる。この目的から、本
発明の網状体を形成する振動吸収性と弾性回復性の良い
熱可塑性弾性樹脂からなる線条の繊度は100〜100
000デニ−ルである。見掛け密度を0.2g/cm3
下にした場合、100000デニ−ルを越えると構成本
数が少なくなり、密度斑を生じて部分的に耐久性の悪い
構造ができ、応力集中による疲労が大きくなり耐久性が
低下するので好ましくない。本発明の熱可塑性弾性樹脂
からなる線条の繊度は、繊度が細すぎると抗圧縮性が低
くなり過ぎて変形による応力吸収性が低下するので10
0デニ−ル以上であり、構成本数の低下による構造面の
緻密性を損なわない50000デニ−ル以下である。よ
り好ましくは500デニ−ル以上、10000デニ−ル
以下である。本発明の網状体の見掛け密度は、0.00
5g/cm3 では反発力が失われ、振動吸収能力や変形応
力吸収能力が不充分となりクッション機能を発現させに
くくなる場合があり、0.25g/cm 3 以上では反発力
が高すぎて座り心地が悪くなる場合があるので、振動吸
収能力や変形応力吸収機能が生かせてクッション体とし
ての機能が発現されやすい0.01g/cm3 以上0.2
0g/cm3 以下が好ましく、より好ましくは0.03g
/cm3 以上0.08g/cm3 以下である。本発明におけ
る網状体は繊度の異なる線状を見掛け密度との組合せで
最適な構成とする異繊度積層構造とする方法も好ましい
実施形態として選択できる。本発明の網状体の厚みは特
に限定されないが、厚みが5mm未満では応力吸収機能と
応力分散機能が低下するので、好ましい厚みは力の分散
をする面機能と振動や変形応力吸収機能が発現できる厚
みとして10mm以上であり、より好ましくは20mm以上
である。本発明の網状体と短繊維不織布が接合一体化さ
れた積層弾性構造体としての見掛け密度は0.01g/
cm3から0.2g/cm3 である。0.01g/cm3 未満
では体型保持や振動吸収などのクッション機能が低下す
るので好ましくない。0.2g/cm3 を越えると反発弾
性が大きくなり座り心地が悪くなるので好ましくない。
好ましい見掛け密度は0.02g/cm3 〜0.1g/cm
3 であり、より好ましくは0.03g/cm3 〜0.06
g/cm3 である。
The present invention has a fineness of 100 to 100,000 data.
Bend a continuous filament made of thermoplastic elastomer resin
Most of the contact parts are fused by twisting and contacting each other.
Form a three-dimensional three-dimensional structure that is substantially flat on both sides
Fineness of thermoplastic elastic resin on one surface of the reticulated material
Short fibers with a denier of 20 denier or less are opened and three-dimensionally structured,
The surface where most of the contact parts are fused and integrated by heat bonding is practical
Bonding with non-woven fabric (short-fiber non-woven fabric) that has been flattened
The solidified density is 0.01g / cm3To 0.2 g / cm3
Is a laminated elastic structure. The function of the cushioning material is
The foundation layer has a basic fineness that is thicker and a little harder to maintain body shape.
The density is a little higher due to the layer responsible for vibration and components with good vibration damping
It consists of a layer that absorbs vibrations and blocks vibrations, and the surface layer is
As a soft layer with a fineness and a large number of constituent fibers
Gives a comfortable buttocks touch with a moderate subsidence, buttocks
The pressure distribution of the
It absorbs the vibration that could not be absorbed and absorbs the vibration of the resonance part of the human body.
By integrating the layers that shut off, stress and vibration can be integrated.
It can be deformed and absorbed to improve the sitting comfort. Book
In the invention, the function of the cushion layer is changed from the thermoplastic elastic resin.
It has a fused three-dimensional three-dimensional structure
The surface layer functions as a short fiber made of thermoplastic elastic resin.
A preferred cushioning material by holding it on a woven fabric and joining and integrating it
It is a laminated elastic structure capable of imparting a function. Lamination of the invention
The short fiber non-woven fabric having the surface layer function that constitutes the elastic structure is
As a soft layer, it has a moderate subsidence for comfortable buttocks.
The fineness of the thermoplastic elastic resin is 2
It is composed of short fibers of 0 denier or less. Over 20 denier
The surface layer function that favors the apparent density of short fiber non-woven fabric
0.01g / cm that can give30.05g / cm or more3Since
When placed below, the number of components is reduced
It is not preferable because it does not show the characteristics of
Yes. The preferred fineness of the short fibers is 2 denier to 15 denier.
And more preferably 3 to 10 denier.
In addition, short fibers made of thermoplastic elastic resin have a three-dimensional structure.
And most of the contact parts were fused and integrated by thermal bonding.
Substantial surface (preferably all contact points are fused together)
The non-woven fabric is flattened locally to keep the buttocks locally
If you receive various pressures on the surface and evenly distribute the pressure distribution,
In both cases, short fibers made of thermoplastic elastic resin have a three-dimensional structure.
Since the structure is formed and integrated by fusion, the entire structure is
Deforms and absorbs the deformation stress by energy conversion and deforms
Easy to release due to rubber elasticity of thermoplastic elastic resin when stress is released
Has a function to restore the original form, so it has good sag resistance
Is. Furthermore, the damage to the cushion layer can be gradually reduced.
Therefore, the sag resistance of the entire structure is improved. Integrated fusion
If not, the shape cannot be maintained and the local pressure is not applied.
The pressure distribution cannot be uniformly distributed, and the structure
The whole is deformed and energy cannot be converted, so durability is poor.
Less preferred. Thermoplastic bullets with short fibers that have good vibration absorption
Since it is made of a resin that can not be absorbed by the cushion layer,
As a layer that absorbs movements and blocks vibrations in the resonant parts of the human body
The function of. Short fibers made of thermoplastic non-elastic resin
In this case, it is not possible to follow the local deformation stress.
It is preferable because the structure is destroyed due to the inside and the recoverability is poor.
No In addition, the thermoplastic non-elastic resin has poor vibration absorption.
Therefore, the function as a layer that blocks vibration is inferior
Yes. Although the thickness of the short fiber non-woven fabric layer is not particularly limited,
3 mm to 30 mm is preferable for exhibiting the surface layer function, and 5 mm to
20 mm is particularly preferred. On the other hand, it has a cushion layer function
A continuous filament made of thermoplastic elastic resin makes contact with the mesh.
Most of the parts are fused together to form a three-dimensional solid structure and fused together.
It is embodied and both sides are substantially flattened
Vibration absorption function of thermoplastic elastic resin
Absorbs and dampens most of the vibration, and locally large deformation stress
The surface of the mesh is substantially flat even when given
Most of the contact area has been fused and the surface has no short fibers.
Since it is bonded to the woven fabric at the surface, deformation stress is generated at the surface of the mesh body.
Receiving deformation to disperse deformation stress and exerting body shape retention function
At the same time, the filament made of thermoplastic elastic resin has a three-dimensional structure.
Since the structure is formed and integrated by fusion, the entire structure is
Deforms and absorbs the deformation stress by energy conversion and deforms
Easy to release due to rubber elasticity of thermoplastic elastic resin when stress is released
Has a function to restore the original form, so it has good sag resistance
Is. Consists of a wire made of known non-elastic resin only
Since the net-like body does not have rubber elasticity, it is plastic by compression deformation.
It deteriorates due to sexual deformation and is inferior in durability. Reticulated
Short fiber non-woven when the surface is not substantially flattened
The local external force transmitted from the cloth is due to the surface lines and adhesion.
When the stress is selectively transmitted up to the point and stress concentration occurs
There is a possibility that the external force will cause fatigue due to stress concentration.
There is a case where labor is generated and the sag resistance is deteriorated. In addition,
If the filament is made of thermoplastic elastic resin, it has a three-dimensional structure.
Since the entire structure is deformed in minutes, stress concentration is relieved,
With non-elastic resin, stress concentrates on the bonding points as it is
It will be destroyed and will not recover. Furthermore, the surface is substantially
Feeling of foreign matter in the buttocks when sitting without ratification and unevenness
It is not preferable because it gives a bad sitting comfort. In addition,
If the linear shape is not continuous, contact with a net with a large fineness.
Significant stress concentration at the bonding point because the contact point serves as a stress transfer point
Undesirably resulting in structural destruction and poor heat resistance and durability.
Yes. If not fused, the shape cannot be maintained and the structure
The fatigue phenomenon due to stress concentration occurs because the
Durability is poor, and at the same time, the shape is deformed and body retention is maintained.
It is not preferable because it cannot be done. More preferred of the present invention
The degree of fusion is such that most of the parts where the filaments are in contact
It is in the state of being welded, and most preferably all contact parts are fused
It is in the state of having done. Thus, vibration absorption and elastic recovery
A continuous filament made of good thermoplastic elastic resin
Mostly fused 3D solid structure is formed and fused together
Cushion layer function with substantially flat surface
Is a non-woven short fiber made of thermoplastic elastic resin.
The surface receives the deformation stress transmitted from the surface layer composed of cloth
Improves the distribution of the stopping stress and reduces the stress applied to each line.
Without it, the whole structure will deform and absorb the deformation stress, and
The cushioning that supports the parts is also improved, and the stress is released
And the vibration transmitted from the frame is also absorbed and elastic.
Cushion layer made of thermoplastic elastic resin with good recovery
Comfortable to sit because it absorbs and blocks the vibration of the resonance part of the human body
And the durability can be improved. From this purpose, the book
Good vibration absorption and elastic recovery forming the reticulated body of the invention
The fineness of the filament made of thermoplastic elastic resin is 100 to 100.
It is 000 denier. Apparent density 0.2g / cm3Since
If it is below 100,000 denier, it will be a constituent book
The number is small, and uneven density is caused, resulting in poor durability.
Structure is created, fatigue due to stress concentration increases and durability
It is not preferable because it decreases. Thermoplastic elastic resin of the present invention
The fineness of filaments consisting of
Since it becomes too much and the stress absorption due to deformation decreases, 10
0 denier or higher
It is 50,000 denier or less, which does not impair the compactness. Yo
More preferably 500 denier or more, 10,000 denier
It is the following. The apparent density of the reticulate body of the present invention is 0.00
5 g / cm3Then, the repulsive force is lost, and the vibration absorption ability and deformation response
Insufficient force absorption capacity to develop cushioning function
It may get worse, 0.25g / cm 3Repulsive force above
May be too high and make you feel uncomfortable to sit on.
As a cushion body, it can take advantage of its capacity to absorb and deformation stress absorption function.
0.01g / cm that all functions are easily expressed30.2 or more
0 g / cm3The following is preferable, and more preferably 0.03 g
/cm30.08 g / cm or more3It is the following. In the present invention
The reticulate body has different fineness in combination with apparent density
It is also preferable to use a method of forming a different-fineness laminated structure with an optimal configuration.
It can be selected as an embodiment. The thickness of the mesh body of the present invention is
However, if the thickness is less than 5 mm, it may have a stress absorbing function.
Since the stress distribution function is reduced, the preferred thickness is the distribution of force.
A thickness that can develop the surface function to perform vibration and the function to absorb vibration and deformation stress
Only 10 mm or more, more preferably 20 mm or more
Is. The net body of the present invention and the short fiber non-woven fabric are bonded and integrated.
The apparent density of the laminated elastic structure is 0.01 g /
cm3To 0.2 g / cm3Is. 0.01 g / cm3Less than
Will reduce the cushioning function such as body shape retention and vibration absorption.
It is not preferable because 0.2 g / cm3Repels when crossing
It is not preferable because it becomes more difficult to sit and sit comfortably.
Preferred apparent density is 0.02g / cm3~ 0.1g / cm
3And more preferably 0.03 g / cm3~ 0.06
g / cm3Is.

【0012】本発明の網状体の線条の断面形状は特には
限定されないが、中空断面や異形断面にすることで好ま
しい抗圧縮性(反発力)やタッチを付与することができ
るので特に好ましい。抗圧縮性は繊度や用いる素材のモ
ジュラスにより調整して、繊度を細くしたり、柔らかい
素材では中空率や異形度を高くし初期圧縮応力の勾配を
調整できるし、繊度をやや太くしたり、ややモジュラス
の高い素材では中空率や異形度を低くして座り心地が良
好な抗圧縮性を付与する。中空断面や異形断面の他の効
果として中空率や異形度を高くすることで、同一の抗圧
縮性を付与した場合、より軽量化が可能となり、自動車
等の座席に用いると省エネルギ−化ができ、布団などの
場合は、上げ下ろし時の取扱性が向上する。好ましい抗
圧縮性(反発力)やタッチを付与することができる他の
好ましい方法として、本発明の網状体の線条を複合構造
とする方法がある。複合構造としては、シ−スコア構造
またはサイドバイサイド構造及びそれらの組合せ構造な
どが挙げられる。が、特にはクッション層が大変形して
もエネルギ−変換できない振動や変形応力をエネルギ−
変換して回復できる立体3次元構造とするために線状の
表面の50%以上を柔らかい熱可塑性弾性樹脂が占める
シ−スコア構造またはサイドバイサイド構造及びそれら
の組合せ構造などが挙げられる。すなわち、シ−スコア
構造ではシ−ス成分は振動や変形応力をエネルギ−変換
が容易なソフトセグメント含有量が多い熱可塑性弾性樹
脂とし、コア成分は抗圧縮性を示すソフトセグメント含
有量が少ない熱可塑性弾性樹脂で構成し適度の沈み込み
による臀部への快適なタッチを与えることができる。サ
イドバイサイド構造では振動や変形応力をエネルギ−変
換が容易なソフトセグメント含有量が多い熱可塑性弾性
樹脂の溶融粘度をソフトセグメント含有量が少ない抗圧
縮性を示す熱可塑性弾性樹脂の溶融粘度より低くして線
状の表面を占めるソフトセグメント含有量が多い熱可塑
性弾性樹脂の割合を多くした構造(比喩的には偏芯シ−
ス・コア構造のシ−スに熱可塑性弾性樹脂を配した様な
構造)として線状の表面を占めるソフトセグメント含有
量が多い熱可塑性弾性樹脂の割合を80%以上としたも
のが特に好ましく、最も好ましくは線状の表面を占める
ソフトセグメント含有量が多い熱可塑性弾性樹脂の割合
を100%としたシ−スコアである。ソフトセグメント
含有量が多い熱可塑性弾性樹脂の線状の表面を占める割
合が多くなると、溶融して融着するときの流動性が高い
ので接着が強固になる効果があり、構造が一体で変形す
る場合、接着点の応力集中に対する耐疲労性が向上し、
耐熱性や耐久性がより向上する。
The cross-sectional shape of the filament of the reticulate body of the present invention is not particularly limited, but a hollow section or a modified cross section is particularly preferable because it can impart preferable anti-compression property (repulsive force) and touch. The anti-compression property can be adjusted by the fineness and the modulus of the material used to make the fineness fine, or in the soft material the hollowness and the irregularity can be increased to adjust the gradient of the initial compression stress, and the fineness can be made slightly thicker or slightly. A material with a high modulus lowers the hollow ratio and the degree of irregularity to provide anti-compression property with a comfortable sitting feeling. As another effect of the hollow cross section and the irregular cross section, by increasing the hollow ratio and the degree of irregularity, if the same anti-compression property is given, the weight can be further reduced, and the energy saving can be achieved when it is used for the seat of an automobile or the like. If it is a futon or the like, it will be easier to handle when raising and lowering. As another preferable method for imparting preferable anti-compression property (repulsive force) and touch, there is a method of forming the filament of the reticulated body of the present invention into a composite structure. Examples of the composite structure include a score core structure, a side-by-side structure, and a combination structure thereof. However, especially when the cushion layer is largely deformed, the energy and
In order to obtain a three-dimensional three-dimensional structure that can be converted and restored, a sheath-core structure or a side-by-side structure in which 50% or more of the linear surface is occupied by a soft thermoplastic elastic resin, and a combination thereof are mentioned. That is, in the sheath core structure, the sheath component is a thermoplastic elastic resin having a large content of soft segments that can easily convert energy into vibration and deformation stress, and the core component is a thermoelastic resin having a small content of soft segments exhibiting anti-compression properties. Composed of a plastic elastic resin, it can give a comfortable touch to the buttocks due to an appropriate depression. With the side-by-side structure, the melt viscosity of a thermoplastic elastic resin with a high soft segment content that facilitates energy conversion of vibration and deformation stress is lower than the melt viscosity of a thermoplastic elastic resin with a low soft segment content that exhibits anti-compression properties. A structure with a large proportion of thermoplastic elastic resin occupying a linear surface and having a high soft segment content (metamorphically, eccentric sheath
It is particularly preferable that the ratio of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 80% or more as a structure in which the thermoplastic elastic resin is arranged in the sheath / core structure). Most preferably, it is a sheath core in which the proportion of the thermoplastic elastic resin having a large soft segment content occupying the linear surface is 100%. When the proportion of the thermoplastic elastic resin with a large soft segment content that occupies the linear surface is large, the flowability when melting and fusing is high, so there is the effect of strengthening the adhesion, and the structure deforms as a unit. In this case, the fatigue resistance against stress concentration at the bonding point is improved,
Heat resistance and durability are further improved.

【0013】熱可塑性弾性樹脂からなる網状体と短繊維
不織布が接合一体化されて、実質的に両面がフラット化
された積層弾性構造体であるので、他の網状体、不織
布、編織物、硬綿、フイルム、発泡体、金属等の被熱接
着体とを接着するのに、他の熱接着成分(熱接着不織
布、熱接着繊維、熱接着フィルム、熱接着レジン等)や
接着剤等を用いて一体積層構造体化し、車両用座席、船
舶用座席、車両用、船舶用、病院用等の業務用及び家庭
用ベット、家具用椅子、事務用椅子、布団類等の製品を
得る場合、被接着体面との接触面積を広くできるので、
接着面積が広くなり強固に接着した接着耐久性も良好な
製品を得ることができる。なお、積層弾性構造体形成段
階から製品化される任意の段階で上述の疑似結晶化処理
を施すことにより、構造体中の熱可塑性弾性樹脂からな
る成分を示差走査型熱量計で測定した融解曲線に室温以
上融点以下の温度に吸熱ピークを持つようにすると製品
の耐熱耐久性が格段に向上するのでより好ましい。本発
明の積層弾性構造体を形成する網状体の線条を複合構造
とした場合、積層弾性構造体の裏面に熱接着機能も付与
でき、補強材等を熱接着一体構造化ができる。例えば、
シ−スコア構造ではシ−ス成分の振動や変形応力をエネ
ルギ−変換が容易なソフトセグメント含有量が多い熱可
塑性弾性樹脂を熱接着成分とし、コア成分の抗圧縮性を
示すソフトセグメント含有量が少ない熱可塑性弾性樹脂
を網状形態の保持機能をもたせるための高融点成分とす
る構成で、熱接着成分の融点を高融点樹脂の融点より1
0℃以上低くしたものを用いることにより熱接着層の機
能も付与できる。また、本発明の積層弾性構造体の表面
層の短繊維不織布を振動や変形応力をエネルギ−変換が
容易なソフトセグメント含有量が多い低融点の熱可塑性
弾性樹脂を熱接着成分とした熱接着繊維で構成すること
でも熱接着機能を付与できる。熱接着機能を発現させる
に好ましい積層弾性構造体中の線条または繊維を形成す
る熱接着成分の融点は高融点成分の融点より15℃から
50℃低い融点であり、より好ましくは20℃から40
℃低い融点である。熱接着機能を持つ本発明の積層弾性
構造体は実質的に表面がフラット化されて、接触部の大
部分が融着していることで、網状体、不織布、編織物、
硬綿、フイルム、発泡体、金属等の被熱接着体面との接
触面積を広くできるので、熱接着面積が広くなり、強固
に熱接着した新たな成形体及び車両用座席、船舶用座
席、車両用、船舶用、病院用等の業務用及び家庭用ベッ
ト、家具用椅子、事務用椅子、布団類になった製品を得
ることができる。なお、新たな成形体及び製品が製品化
されるまでの任意の段階で疑似結晶化処理を施すことに
より、構造体中の熱可塑性弾性樹脂からなる線条を示差
走査型熱量計で測定した融解曲線に室温以上融点以下の
温度に吸熱ピークを持つようにすると製品の耐熱耐久性
が格段に向上したものを提供できるのでより好ましい。
熱接着時に被接着体を伸張した状態で接着すると、被接
着体は接着層のゴム弾性で伸張された状態が緩和しない
ので張りのある、皺になりにくい成形体とすることもで
きる。
Since the reticulate body made of thermoplastic elastic resin and the short fiber non-woven fabric are joined and integrated to substantially flatten both sides, the reticulate body, non-woven fabric, knitted fabric, hard fabric Other heat-adhesive components (heat-bonded non-woven fabric, heat-bonded fiber, heat-bonded film, heat-bonded resin, etc.) and adhesives are used to bond cotton, film, foam, metal, etc. In order to obtain products such as vehicle seats, ship seats, vehicle seats, ship seats, hospital beds and other commercial and household beds, furniture chairs, office chairs, futons, etc. Since the contact area with the adhesive body surface can be widened,
It is possible to obtain a product having a wide adhesion area and strong adhesion and good adhesion durability. In addition, by performing the above-mentioned pseudo crystallization treatment at any stage of commercialization from the laminated elastic structure forming stage, the melting curve of the component composed of the thermoplastic elastic resin in the structure measured by a differential scanning calorimeter It is more preferable to have an endothermic peak at a temperature of room temperature or higher and melting point or lower, because the heat resistance and durability of the product is remarkably improved. When the filaments of the net-like body forming the laminated elastic structure of the present invention have a composite structure, the back surface of the laminated elastic structure can also be provided with a heat-adhesive function, and the reinforcing material and the like can be integrated into a heat-adhesive structure. For example,
In the sheath core structure, the soft segment content, which is easy to energy-convert the vibration and deformation stress of the sheath component, is used as the thermoplastic adhesive resin, and the soft segment content showing the anti-compressibility of the core component is The composition is such that a small amount of thermoplastic elastic resin is used as a high melting point component to have a function of holding a net-like shape, and the melting point of the heat bonding component is 1 or more than the melting point of the high melting point resin.
The function of the heat-bonding layer can be imparted by using the one whose temperature is lowered by 0 ° C. or more. Further, the short-fiber non-woven fabric of the surface layer of the laminated elastic structure of the present invention is a heat-bonded fiber containing a low-melting point thermoplastic elastic resin having a large content of soft segments that facilitates energy conversion of vibration and deformation stress as a heat-bonding component. The heat-bonding function can also be imparted by configuring The melting point of the heat-adhesive component forming the filaments or fibers in the laminated elastic structure that is preferable for exhibiting the heat-adhesion function is 15 ° C to 50 ° C lower than the melting point of the high-melting point component, and more preferably 20 ° C to 40 ° C.
℃ lower melting point. The laminated elastic structure of the present invention having a heat-bonding function has a substantially flat surface, and most of the contact portions are fused, thereby forming a mesh body, a non-woven fabric, a knitted fabric,
Since the contact area with the surface of the heat-bonded material such as hard cotton, film, foam, metal, etc. can be widened, the heat-bonded area is widened, and a new molded article and a vehicle seat, a ship seat, a vehicle that are strongly heat-bonded. It is possible to obtain products such as commercial, household and commercial beds for ships, ships, hospitals, chairs for furniture, office chairs, and futons. In addition, by performing pseudo crystallization at any stage until new molded products and products are commercialized, the filaments made of the thermoplastic elastic resin in the structure are melted by a differential scanning calorimeter. It is more preferable to make the curve have an endothermic peak at a temperature of room temperature or higher and melting point or lower because a product with significantly improved heat resistance and durability can be provided.
When the adherend is adhered in a stretched state at the time of heat-bonding, the adhered body does not relax the stretched state due to the rubber elasticity of the adhesive layer, so that the adherend can be a molded body having tension and less likely to wrinkle.

【0014】次に本発明の製法を述べる。本発明の製法
は複数のオリフィスを持つ多列ノズルより熱可塑性弾性
樹脂をその融点より20℃以上高く、80℃未満高い溶
融温度で、該ノズルより下方に向けて吐出させ、溶融状
態で互いに接触させて融着させ3次元構造を形成しつ
つ、引取り装置で挟み込み冷却槽で冷却せしめた後、片
面に熱可塑性弾性樹脂からなる短繊維を開繊したウエッ
ブを積層し、圧縮しつつ熱成形する積層弾性構造体の製
法である。熱可塑性弾性樹脂を一般的な溶融押出機を用
いて溶融し、複数のオリフィスを持つ多列ノズルに供給
し、オリフィスより下方へ吐出する。この時の溶融温度
は、熱可塑性弾性樹脂の融点より20℃〜80℃高い温
度である。熱可塑性弾性樹脂の融点より80℃を越える
高い溶融温度にすると熱分解が著しくなり熱可塑性弾性
樹脂のゴム弾性特性が低下するので好ましくない。他
方、熱可塑性弾性樹脂の融点より10℃以上高くしない
とメルトフラクチャ−を発生し正常な線条形成が出来な
くなり、また、吐出後ル−プ形成しつつ接触させ融着さ
せる際、線条の温度が低下して線条同士が融着しなくな
り接着が不充分な網状体となる場合があり好ましくな
い。好ましい溶融温度は融点より20℃から60℃高い
温度、より好ましくは融点より25℃から40℃高い温
度である。オリフィスの形状は特に限定されないが、中
空断面(例えば三角中空、丸型中空、突起つきの中空等
となるよう形状)及び、又は異形断面(例えば三角形、
Y型、星型等の断面二次モ−メントが高くなる形状)と
することで前記効果以外に溶融状態の吐出線条が形成す
る3次元構造が流動緩和し難くし、逆に接触点での流動
時間を長く保持して接着点を強固にできるので特に好ま
しい。特開平1−2075号公報に記載の接着のための
加熱をする場合、3次元構造が緩和し易くなり平面的構
造化し、3次元立体構造化が困難となるので好ましくな
い。網状体の特性向上効果としては、見掛けの嵩を高く
でき軽量化になり、また抗圧縮性が向上し、弾発性も改
良できへたり難くなる。中空断面では中空率が80%を
越えると断面が潰れ易くなるので、好ましくは軽量化の
効果が発現できる10%以上70%以下、より好ましく
は20%以上60%以下である。オリフィスの孔間ピッ
チは線状が形成するル−プが充分接触できるピッチとす
る必要がある。緻密な構造にするには孔間ピッチを短く
し、粗密な構造にするには孔間ピッチを長くする。本発
明の孔間ピッチは好ましくは3mm〜20mm、より好まし
くは5mm〜10mmである。本発明では所望に応じ異密度
化や異繊度化もできる。列間のピッチ又は孔間のピッチ
も変えた構成、及び列間と孔間の両方のピッチも変える
方法などで異密度層を形成できる。また、オリフィスの
断面積を変えて吐出時の圧力損失差を付与すると、溶融
した熱可塑性弾性樹脂を同一ノズルから一定の圧力で押
し出される吐出量が圧力損失の大きいオリフィスほど少
なくなる原理を使って長手方向の区間でオリフィスの断
面積が異なる列を少なくとも複数有するノズルを用い異
繊度線条からなる網状構造体を製造することができる。
次いで、該ノズルより下方に向けて吐出させ、ル−プを
形成させつつ溶融状態で互いに接触させて融着させ3次
元構造を形成しつつ、引取りネットで挟み込み、網状体
の表面の溶融状態の曲がりくねった吐出線条を45°以
上折り曲げて変形させて表面をフラット化すると同時に
曲げられていない吐出線条との接触点を接着して構造を
形成後、連続して冷却媒体(通常は室温の水を用いるの
が冷却速度を早くでき、コスト面でも安くなるので好ま
しい)で急冷して本発明の3次元立体網状構造体化した
積層網状体を得る。ノズル面と引取り点の距離は少なく
とも40cm以下にすることで吐出線条が冷却され接触部
が融着しなくなることを防ぐのが好ましい。吐出線条の
吐出量5g/分孔以上と多い場合は10cm〜40cmが好
ましく、吐出線条の吐出量5g/分孔未満と少ない場合
は5cm〜20cmが好ましい。積層網状体の厚みは溶融状
態の3次元立体構造体両面を挟み込む引取りネットの開
口幅(引取りネット間の間隔)で決まる。本発明では上
述の理由から引取りネットの開口幅は5mm以上とする。
次いで水切り乾燥するが冷却媒体中に界面活性剤等を添
加すると、水切りや乾燥がしにくくなったり、熱可塑性
弾性樹脂が膨潤することもあり好ましくない。尚、ノズ
ル面と樹脂を固化させる冷却媒体上に設置した引取りコ
ンベアとの距離、樹脂の溶融粘度、オリフィスの孔径と
吐出量などにより所望のループ径や線径をきめられる。
冷却媒体上に設置した間隔が調整可能な一対の引取りコ
ンベアで溶融状態の吐出線条を挟み込み停留させること
で互いに接触した部分を融着させつつ、連続して冷却媒
体中に引込み固化させ網状構造体を形成する時、上記コ
ンベアの間隔を調整することで、融着した網状体が溶融
状態でいる間で厚み調節が可能となり、所望の厚みのも
のが得られる。コンベア速度も速すぎると、接触点の形
成が不充分になったり、融着点が充分に形成されるまで
に冷却され、接触部の融着が不充分になる場合がある。
また、速度が遅過ぎると溶融物が滞留し過ぎ、密度が高
くなるので、所望の見掛け密度に適したコンベア速度を
設定する必要がある。次いで本発明の製法では、表面層
の機能を持たせる短繊維不織布と接合一体化する。熱可
塑性弾性樹脂からなる繊度が20デニ−ル以下の短繊維
は、融点の異なる熱可塑性弾性樹脂を個々に溶融し、公
知の複合紡糸により紡糸し、延伸して完成糸を得られ
る。が、この方法では、収縮率が20%から50%と高
いものしか得られないため、ウエッブを熱成形する際ウ
エッブ収縮による成形寸法不良を生じるので、3000
m/分以上の高速紡糸により収縮率を10%以下に低収
縮化して一気に完成糸にする方法で得るのが好ましい。
次いで、巻縮を付与し、所望のカット長に切断して短繊
維を得る。本発明に使用する短繊維の複合形態は特には
限定されないが、熱接着繊維としての機能が好ましいの
でサイドバイサイドまたはシ−スコアで、低融点成分が
繊維の表面の50%以上を占めるのが好ましく、低融点
成分が繊維の表面の100%以上を占めるのがより好ま
しい。かくして得られた短繊維はカ−ド等で開繊3次元
化構造とした開繊ウエッブを、該網状体の表面に積層圧
縮して熱成形により接合一体化するか、一旦単独で開繊
ウエッブのみを積層圧縮して熱成形により構造体化して
短繊維不織布を作成し、次いで該網状体と短繊維不織布
を接合一体化することもできる。この場合、熱接着層又
は接着剤を別途該網状体と短繊維不織布間に使用して接
合一体化してもよく、該網状体または該短繊維不織布の
熱接着機能を使って接合一体化してもよい。本発明の好
ましい方法としては、該網状体を一旦冷却後、又は一体
成形して得られた積層弾性構造体を製品化に至る任意の
工程で熱可塑性弾性樹脂の融点より少なくとも10℃以
下の温度でアニ−リングよる疑似結晶化処理を行い積層
網状体又は製品を得るのがより好ましい製法である。疑
似結晶化処理温度は、少なくとも融点(Tm)より10
℃以上低く、Tanδのα分散立ち上がり温度(Tαc
r)以上で行う。この処理で、融点以下に吸熱ピ−クを
持ち、疑似結晶化処理しないもの(吸熱ピ−クを有しな
いもの)より耐熱耐へたり性が著しく向上する。本発明
の好ましい疑似結晶化処理温度は(Tαcr+10℃)
から(Tm−20℃)である。単なる熱処理により疑似
結晶化させると耐熱耐へたり性が向上する。が更には、
10%以上の圧縮変形を付与してアニ−リングすること
で耐熱耐へたり性が著しく向上するのでより好ましい。
また、該網状体を一旦冷却後、乾燥工程を経する場
合、乾燥温度をアニ−リング温度とすることで同時に疑
似結晶化処理を行うができる。また、製品化する工程で
別途疑似結晶化処理を行うができる。次いで所望の長さ
または形状に切断してクッション材に用いる。
Next, the manufacturing method of the present invention will be described. According to the manufacturing method of the present invention, the thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature higher than the melting point thereof by 20 ° C. or higher and lower than 80 ° C. from a multi-row nozzle having a plurality of orifices, and the thermoplastic resin is brought into contact with each other in a molten state. While forming a three-dimensional structure by fusing, it is sandwiched by a take-up device and cooled in a cooling tank, and then a web formed by opening short fibers made of thermoplastic elastic resin is laminated on one side and thermoformed while being compressed. It is a method of manufacturing a laminated elastic structure. The thermoplastic elastic resin is melted using a general melt extruder, supplied to a multi-row nozzle having a plurality of orifices, and discharged below the orifices. The melting temperature at this time is 20 ° C. to 80 ° C. higher than the melting point of the thermoplastic elastic resin. If the melting temperature is higher than 80 ° C. higher than the melting point of the thermoplastic elastic resin, thermal decomposition becomes remarkable and the rubber elastic properties of the thermoplastic elastic resin deteriorate, which is not preferable. On the other hand, unless the temperature is higher than the melting point of the thermoplastic elastic resin by 10 ° C. or more, melt fracture occurs and normal filament formation cannot be performed. Further, when the filament is formed by looping after discharge and is brought into contact and fused. The temperature may be lowered and the filaments may not be fused to each other, resulting in a network having insufficient adhesion, which is not preferable. The preferred melting temperature is 20 ° C to 60 ° C above the melting point, more preferably 25 ° C to 40 ° C above the melting point. The shape of the orifice is not particularly limited, but a hollow cross section (for example, a hollow shape having a triangular shape, a round shape, a hollow shape with a protrusion, etc.) and / or an irregular cross section (for example, a triangular shape,
In addition to the above effects, the three-dimensional structure formed by the discharge filaments in the molten state is less likely to flow relaxation, and conversely at the contact point Is particularly preferable because the adhesion point can be strengthened by keeping the fluidizing time of (1) long. When heating for adhesion as described in Japanese Patent Application Laid-Open No. 1-2075, the three-dimensional structure is easily relaxed, a planar structure is formed, and a three-dimensional three-dimensional structure becomes difficult, which is not preferable. As an effect of improving the properties of the reticulate body, the apparent bulk can be increased, the weight can be reduced, the anti-compression property can be improved, and the elasticity can be improved, which is difficult to obtain. In the hollow cross section, if the hollow ratio exceeds 80%, the cross section tends to be crushed. Therefore, it is preferably 10% or more and 70% or less, more preferably 20% or more and 60% or less, which can exhibit the effect of weight reduction. The pitch between the holes of the orifice needs to be a pitch with which the loop formed by the line can sufficiently contact. The pitch between holes is shortened for a dense structure, and the pitch between holes is lengthened for a coarse structure. The pitch between the holes of the present invention is preferably 3 mm to 20 mm, more preferably 5 mm to 10 mm. In the present invention, different densities and different fineness can be obtained as desired. The different density layer can be formed by a configuration in which the pitch between rows or the pitch between holes is also changed, or a method in which the pitch between both rows and holes is also changed. Also, if the pressure loss difference at the time of discharge is given by changing the cross-sectional area of the orifice, the principle that the discharged amount of molten thermoplastic elastic resin extruded from the same nozzle at a constant pressure becomes smaller for the orifice with larger pressure loss, is used. It is possible to manufacture a reticulated structure composed of filaments of different fineness by using a nozzle having at least a plurality of rows having different cross-sectional areas of orifices in a section in the longitudinal direction.
Then, the liquid is discharged downward from the nozzle, and while forming a loop, they are brought into contact with each other in a molten state to be fused to form a three-dimensional structure, and are sandwiched by a take-up net to melt the surface of the net-like body. Bending the twisted discharge line of 45 degrees or more to deform it to flatten the surface and at the same time bond the contact points with the unbent discharge line to form a structure, and then continuously cool the medium (usually at room temperature). It is preferable to use the water described above because the cooling rate can be increased and the cost can be reduced). Thus, the three-dimensional three-dimensional network structure of the present invention is rapidly cooled to obtain the laminated network. The distance between the nozzle surface and the take-off point is preferably at least 40 cm or less to prevent the discharge filament from being cooled and the contact portion not being fused. When the discharge amount of the discharge line is as large as 5 g / min or more, 10 cm to 40 cm is preferable, and when the discharge amount of the discharge line is less than 5 g / min hole, 5 cm to 20 cm is preferable. The thickness of the laminated network is determined by the opening width of the take-up net (interval between the take-up nets) that sandwiches both surfaces of the three-dimensional structure in the molten state. In the present invention, the opening width of the take-up net is set to 5 mm or more for the above reason.
Next, it is drained and dried, but if a surfactant or the like is added to the cooling medium, draining and drying may be difficult, or the thermoplastic elastic resin may swell, which is not preferable. The desired loop diameter and wire diameter can be determined by the distance between the nozzle surface and the take-up conveyor installed on the cooling medium for solidifying the resin, the melt viscosity of the resin, the orifice hole diameter and the discharge amount, and the like.
A pair of take-up conveyors with adjustable spacing installed on the cooling medium sandwiches and holds the melted discharge filaments to fuse the portions that are in contact with each other and continuously draw in the cooling medium to solidify. By adjusting the distance between the conveyors when forming the structure, the thickness can be adjusted while the fused net-like body is in a molten state, and a desired thickness can be obtained. If the conveyor speed is too high, the formation of contact points may be insufficient, or the contact point may be cooled until the fusion point is sufficiently formed, resulting in insufficient fusion of the contact portion.
Further, if the speed is too slow, the melt will stay too much and the density will increase, so it is necessary to set the conveyor speed suitable for the desired apparent density. Next, in the production method of the present invention, it is joined and integrated with a short fiber non-woven fabric having a surface layer function. The short fibers composed of a thermoplastic elastic resin and having a fineness of 20 denier or less are obtained by individually melting thermoplastic elastic resins having different melting points, spinning them by a well-known composite spinning, and stretching. However, with this method, only a high shrinkage rate of 20% to 50% can be obtained, and therefore, when the web is thermoformed, a defective molding dimension occurs due to the shrinkage of the web.
It is preferably obtained by a method in which the shrinkage rate is reduced to 10% or less by high-speed spinning at a speed of m / min or more and the finished yarn is obtained at a stretch.
Next, crimping is applied and cut into a desired cut length to obtain short fibers. Although the composite form of the short fibers used in the present invention is not particularly limited, it is preferable that the low melting point component occupies 50% or more of the surface of the fiber in the side-by-side or sheath core because the function as the heat-bonding fiber is preferable. More preferably, the low melting point component occupies 100% or more of the surface of the fiber. The short fibers thus obtained are provided with an opening web having a three-dimensional opening structure with a card or the like, which is laminated and compressed on the surface of the reticulated body and bonded and integrated by thermoforming, or once opened. It is also possible to laminate and compress only the above to form a structure by thermoforming to form a short fiber non-woven fabric, and then join and integrate the net body and the short fiber non-woven fabric. In this case, a thermal adhesive layer or an adhesive may be separately used between the reticulate body and the short fiber non-woven fabric for bonding and integration, or the thermal rebonding function of the reticulate body or the short fiber non-woven fabric may be used for bonding and integration. Good. As a preferred method of the present invention, a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin is used in any step leading to commercialization of the laminated elastic structure obtained by once cooling the reticulated body or integrally molding it. It is a more preferable production method to obtain a laminated reticulate body or a product by carrying out a pseudo crystallization treatment by annealing. The pseudo-crystallization treatment temperature is at least 10 from the melting point (Tm).
℃ or lower, Tanδ α dispersion rising temperature (Tαc
r) Perform above. With this treatment, the heat resistance and sag resistance are remarkably improved as compared with those having a heat absorption peak below the melting point and having no pseudo-crystallization treatment (those having no heat absorption peak). The preferred pseudo-crystallization treatment temperature of the present invention is (Tαcr + 10 ° C.)
To (Tm-20 ° C). If it is pseudo-crystallized by simple heat treatment, heat resistance and sag resistance are improved. In addition,
It is more preferable to give compressive deformation of 10% or more and anneal so that the heat and sag resistance can be remarkably improved.
Further, when the reticulate body is once cooled and then subjected to a drying step, the pseudo crystallization treatment can be simultaneously performed by setting the drying temperature to the annealing temperature. Also, a pseudo crystallization treatment can be separately performed in the process of commercialization. Then, it is cut into a desired length or shape and used as a cushion material.

【0015】本発明の積層弾性構造体をクッション用い
る場合、その使用目的、使用部位により使用する樹脂、
繊度、ル−プ径、嵩密度を選択する必要がある。例え
ば、ソフトなタッチと適度の沈み込みと張りのある膨ら
みを付与するためには、やや高密度で細い繊度の緻密な
構造が好ましく、中層のクッション機能を発現させるに
は、共振振動数を低くし、適度の硬さと圧縮時のヒステ
リシスを直線的に変化させて体型保持性を良くし、耐久
性を保持させるために、中密度で太い繊度、やや大きい
ル−プ径の層と低密度で細い繊度、細かいル−プ径の層
を積層一体化した構造にするのが好ましい。本発明の積
層弾性構造体は表面層とクッション層の機能を同時に有
するので、3次元構造を損なわない程度に成形型等を用
いて使用目的にあった形状に成形して側地を被せるのみ
で車両用座席、船舶用座席、ベット、椅子、家具等に用
いることができる。勿論、用途との関係で要求性能に合
うべく他の素材、例えば、異なる網状体、短繊維集合体
からなる硬綿クッション材、不織布等と組合せて用いる
ことも可能である。また、樹脂製造過程以外でも性能を
低下させない範囲で製造過程から成形体に加工し、製品
化する任意の段階で難燃化、防虫抗菌化、耐熱化、撥水
撥油化、着色、芳香等の機能付与を薬剤添加等の処理加
工ができる。
When a cushion is used for the laminated elastic structure of the present invention, a resin used depending on the purpose and site of use,
It is necessary to select the fineness, the loop diameter, and the bulk density. For example, in order to give a soft touch, moderate depression and bulging with tension, a dense structure with a slightly high density and fine fineness is preferable, and in order to exert the cushion function of the middle layer, the resonance frequency is low. However, in order to improve the body shape retention by linearly changing the appropriate hardness and hysteresis at the time of compression, in order to maintain durability, medium density, thick fineness, a layer with a slightly larger loop diameter and low density It is preferable to have a structure in which layers having a fine fineness and a fine loop diameter are laminated and integrated. Since the laminated elastic structure of the present invention has the functions of the surface layer and the cushion layer at the same time, it can be formed into a shape suitable for the purpose of use by using a molding die or the like to the extent that the three-dimensional structure is not impaired, and the side cloth is covered. It can be used for vehicle seats, boat seats, beds, chairs, furniture and the like. Of course, it is also possible to use it in combination with other materials such as a different mesh body, a hard cotton cushion material composed of a short fiber aggregate, a non-woven fabric or the like so as to meet the required performance in relation to the application. In addition, other than the resin manufacturing process, the molded product is processed from the manufacturing process to the extent that performance is not deteriorated, and at any stage of commercialization, it becomes flame retardant, insecticidal, antibacterial, heat resistant, water / oil repellent, colored, aroma, etc. It is possible to perform the processing such as the addition of chemicals to add the function.

【0016】[0016]

【実施例】以下に実施例で本発明を詳述する。EXAMPLES The present invention will be described in detail below with reference to examples.

【0017】なお、実施例中の評価は以下の方法で行っ
た。 融点(Tm)および融点以下の吸熱ピ−ク 島津製作所製TA50,DSC50型示差熱分析計を使
用し、昇温速度20℃/分で測定した吸発熱曲線から吸
熱ピ−ク(融解ピ−ク)温度を求めた。 Tαcr ポリマ−を融点+10℃に加熱して、厚み約300μm
のフイルムを作成して、オリエンテック社製バイブロン
DDVII型を用い、110Hz、昇温速度1℃/分で測
定したTanδ(虚数弾性率M”と弾性率の実数部分
M’との比M”/M’)のゴム弾性領域から融解領域へ
の転移点温度に相当するα分散の立ち上がり温度。 見掛け密度 試料を15cm×15cmの大きさに切断し、4か所の高さ
を測定し、体積を求め試料の重さを体積で徐した値で示
す。(n=4の平均値) 線条の繊度 試料を10箇所から各線条部分を切り出し、アクリル樹
脂で包埋して断面を削り出し切片を作成して断面写真を
得る。各部分の断面写真より各部の断面積(Si)を求
める。また、同様にして得た切片をアセトンでアクリル
樹脂を溶解し、真空脱泡して密度勾配管を用いて40℃
にて測定した比重(SGi)を求める。ついで次式より
線状の9000mの重さを求める。(単位cgs) 繊度=〔(1/n)ΣSi×SGi〕×900000 融着 試料を目視判断で融着しているか否かを接着している繊
維同士を手で引っ張って外れないか否かで外れないもの
を融着していると判断する。 耐熱耐久性(70℃残留歪) 試料を15cm×15cmの大きさに切断し、50%圧縮し
て70℃乾熱中22時間放置後冷却して圧縮歪みを除き
1日放置後の厚み(b)を求め、処理前の厚み(a)か
ら次式、即ち(a−b)/a×100より算出する。単
位%(n=3の平均値) 繰返し圧縮歪 試料を15cm×15cmの大きさに切断し、島津製作所製
サ−ボパルサ−にて、25℃65%RH室内にて50%
の厚みまで1Hzのサイクルで圧縮回復を繰り返し2万
回後の試料を1日放置後の厚み(b)を求め、処理前の
厚み(a)から次式、即ち(a−b)/a×100より
算出する。単位%(n=3の平均値) 座り心地 バケットシ−トの形状に切断成形した積層弾性構造体の
表面層側に東洋紡績製ハイムからなるポリエステルモケ
ットの側地を被って、座席用フレ−ムにセットして座部
は4か所、背部は6か所の側地止めを入れた座席を作成
し、30℃RH75%室内で作成した座席にパネラ−を
座らせ以下の評価をおこなった。(n=5) (1) 床つき感:座ったときの「どすん」と床に当たった
感じの程度を感覚的に定性評価した。感じない;◎、殆
ど感じない;○、やや感じる;△、感じる;× (2) 蒸れ感:2時間座っていて、臀部やふと股の内側の
座席と接する部分が蒸れた感じを感覚的に定性評価し
た。殆ど感じない:◎、僅かに蒸れを感じる;○、やや
蒸れを感じる;△、蒸れを著しく感じる;× (3) 8時間以内でどの程度我慢して座席に座っていられ
るか:1時間以内;×、2時間以内;△、4時間以内;
○、4時間以上;◎ (4) 4時間座席に座らせたときの腰の疲れ程度を感覚的
に定性評価した。無し;◎、殆ど疲れない;○、やや疲
れる;△、非常に疲れる;× (5) 総合評価: (1)から(4) までの評価の◎を4点、○
を3点、△を2点、×を1点として12点以上で△を含
まないもの;非常に良い(◎)、12点以上で△を含む
もの;良い(○)、10点以上で×を含まないもの;や
や悪い(△)、×を含むもの;悪い(×)として評価し
た。
The evaluations in the examples were carried out by the following methods. Endothermic peak (melting peak) from melting point (Tm) and endothermic peak below melting point TA50, DSC50 type differential thermal analyzer manufactured by Shimadzu ) The temperature was determined. Tαcr polymer is heated to the melting point + 10 ° C and the thickness is about 300 μm.
Film was prepared and measured using a Vibron DDVII type manufactured by Orientec Co., Ltd. at a rate of 110 Hz and a temperature rising rate of 1 ° C./min. Tan δ (ratio M ″ / imaginary elastic modulus M ″ to real part M ′ of elastic modulus) The rising temperature of α dispersion corresponding to the transition temperature from the rubber elastic region to the melting region of M ′). Apparent Density The sample is cut into a size of 15 cm × 15 cm, the heights at four locations are measured, the volume is determined, and the weight of the sample is divided by the volume. (Average value of n = 4) Fineness of filaments Each filament portion is cut out from 10 points of the sample, embedded in acrylic resin, the cross section is cut out, and a section is prepared to obtain a cross section photograph. The cross-sectional area (Si) of each part is obtained from the cross-sectional photograph of each part. In addition, a piece obtained in the same manner was dissolved in acrylic resin with acetone, degassed in vacuum, and a density gradient tube was used to 40 ° C.
Determine the specific gravity (SGi) measured in. Then, a linear weight of 9000 m is obtained from the following equation. (Unit: cgs) Fineness = [(1 / n) ΣSi × SGi] × 900000 Fusing Whether or not the sample is fused by visual judgment depends on whether or not the fibers adhering to each other cannot be pulled apart by hand It is determined that something that does not come off is fused. Heat resistance and durability (residual strain at 70 ° C) Cut a sample into a size of 15 cm x 15 cm, compress it by 50%, leave it in dry heat at 70 ° C for 22 hours, then cool to remove compression strain and leave it for 1 day (b) Is calculated, and is calculated from the thickness (a) before processing by the following equation, that is, (ab) / a × 100. Unit% (average value of n = 3) Cyclic compressive strain A sample was cut into a size of 15 cm x 15 cm, and a Shimazu Seisakusho pulsarcer was used at 25 ° C and 65% in an RH room at 50%.
The thickness (b) after leaving the sample for 20,000 times after repeating compression recovery at a cycle of 1 Hz up to the thickness of 1 is calculated from the thickness (a) before the treatment, that is, (ab) / ax Calculated from 100. Unit% (average value of n = 3) Sit comfort Covering the side layer of a laminated elastic structure cut into the shape of a bucket sheet with a side of polyester moquette made of Toyobo Co., Ltd. Heim, seat frame The seats with four side seats and six back parts with side landscaps were prepared, and a paneler was seated on the seats prepared at 30 ° C RH75% room for the following evaluation. (N = 5) (1) Feeling on the floor: The degree of "dosun" when sitting and the feeling of hitting the floor were qualitatively and qualitatively evaluated. Not felt; ◎, hardly felt; ○, slightly felt; △, felt; × (2) Feeling of stuffiness: Feeling stuffy when sitting for 2 hours and the buttocks and the part of the crotch that contacts the seat inside the crotch Qualitatively evaluated. Almost no feeling: ◎, slightly stuffy; ○, slightly stuffy; △, significantly stuffy; × (3) How long you can sit in the seat within 8 hours: within 1 hour; × within 2 hours; △ within 4 hours;
○ 4 hours or more; ◎ (4) A qualitative qualitative evaluation was performed on the degree of waist fatigue when the user sat in the seat for 4 hours. None; ◎, hardly tired; ○, slightly tired; △, very tired; × (5) Overall evaluation: 4 points from ◎ of the evaluations from (1) to (4), ○
3 points, △ is 2 points, × is 1 point and does not include Δ with 12 points or more; very good (⊚), that with 12 points or more; Good (○), 10 points or more is x It was evaluated as those which did not contain; those which were somewhat bad (Δ) and those which contained x; bad (x).

【0018】実施例1 ポリエステル系エラストマ−として、ジメチルテレフタ
レ−ト(DMT)又は、ジメチルナフタレ−ト(DM
N)と1・4ブタンジオ−ル(1・4BD)を少量の触
媒と仕込み、常法によりエステル交換後、ポリテトラメ
チレングリコ−ル(PTMG)を添加して昇温減圧しつ
つ重縮合せしめポリエ−テルエステルブロック共重合エ
ラストマ−を生成させ、次いで抗酸化剤2%を添加混合
練込み後ペレット化し、50℃48時間真空乾燥して得
られた熱可塑性弾性樹脂原料の処方を表1に示す。
Example 1 As a polyester elastomer, dimethyl terephthalate (DMT) or dimethyl naphthalate (DM) was used.
N) and 1.4 butanediol (1.4 BD) were charged with a small amount of a catalyst, and after transesterification by a conventional method, polytetramethylene glycol (PTMG) was added and polycondensation was performed while heating and depressurizing. -Formation of terester block copolymer elastomer, then addition and mixing of 2% of antioxidant, kneading, pelletizing, and vacuum drying at 50 ° C for 48 hours are shown in Table 1. .

【0019】[0019]

【表1】 [Table 1]

【0020】幅50cm、長さ5cmのノズル有効面に幅方
向の孔間ピッチ5mm、長さ方向の孔間ピッチ10mmの千
鳥配列としたオリフィス形状は外径2mm、内径1.6mm
でトリプルブリッジの中空形成性断面としたノズルに、
得られた熱可塑性弾性樹脂原料A−2を溶融温度245
℃にて単孔当たりの吐出量2.0g/分にてノズル下方
に吐出させ、ノズル面12cm下に冷却水を配し、幅60
cmのステンレス製エンドレスネットを平行に5cm間隔で
一対の引取りコンベアを水面上に一部出るように配し
て、該溶融状態の吐出線状を曲がりくねらせル−プを形
成して接触部分を融着させつつ3次元網状構造を形成
し、該溶融状態の網状体の両面を引取りコンベア−で挟
み込みつつ毎分1mの速度で25℃の冷却水中へ引込み
固化させ両面をフラット化した後、所定の大きさに切断
して得た網状体は断面形状が三角おむすび型の中空断面
で中空率が40%、繊度が9000デニ−ルの線条で形
成しており、平均の見掛け密度が0.046g/cm3
あった。別途に、常法により公知の複合紡糸機にて、A
−1とA−2の熱可塑性弾性樹脂を個々に溶融しA−1
をシ−ス成分、A−2をコア成分となるように分配し、
各吐出量を50/50重量比で、単孔当たり1.6g/
分孔(0.8g/分:0.8g/分)として紡糸温度2
45℃にて、紡糸速度3500m/分にて得た繊度が
4.1デニ−ル、乾熱160℃での収縮率6%の糸を収
束してトウ状でクリンパ−にて機械巻縮を付与し、64
mmに切断してシ−スコア断面の熱可塑性弾性樹脂からな
る短繊維を得た。該短繊維をオ−プナ−にて予備開繊し
た後カ−ドで開繊して得たウエッブを目付け1000g
/m2 に積層し、該網状体に積層し、見掛け密度が0.
05g/cm3 となるように圧縮し、190℃の熱風にて
5分間熱処理後冷却して両面がフラットな積層弾性構造
体を得た。次いで厚みの10%圧縮して、100℃の熱
風にて20分疑似結晶化処理して得た本発明の積層弾性
構造体の特性を表2に示す。表2で明らかなごとく、実
施例1は柔らかい弾性樹脂の特性が生かせた積層弾性構
造体のため耐熱性、常温での耐久性に優れ、座り心地と
もに優れたクッション材であった。評価用に作成した座
席も性能が優れていることが判る。
Orifice shapes having a staggered arrangement with a hole pitch of 5 mm in the width direction and a hole pitch of 10 mm in the length direction on an effective surface of a nozzle of 50 cm in width and 5 cm in length are 2 mm in outer diameter and 1.6 mm in inner diameter.
With a nozzle with a triple bridge hollow forming cross section,
The obtained thermoplastic elastic resin raw material A-2 was melted at a temperature of 245
Discharge to the bottom of the nozzle at a discharge rate of 2.0 g / min per single hole at ℃, place cooling water 12 cm below the nozzle surface, and have a width of 60
cm stainless endless nets are arranged in parallel at intervals of 5 cm so that a part of a pair of take-up conveyors are projected on the water surface, and the melted discharge line is bent to form a loop to form a contact portion. After fusing, the three-dimensional network structure is formed, and both sides of the network state in the molten state are drawn into cooling water at 25 ° C. at a speed of 1 m per minute while sandwiching both sides with a take-up conveyor to flatten both sides. The reticulate body obtained by cutting into a predetermined size has a triangular cross-sectional hollow section, is formed by a filament having a hollow ratio of 40% and a fineness of 9000 denier, and has an average apparent density. It was 0.046 g / cm 3 . Separately, using a known composite spinning machine by a conventional method,
-1 and A-2 thermoplastic elastic resins are individually melted to form A-1.
To form the sheath component and A-2 to form the core component,
Each discharge rate is 50/50 weight ratio, 1.6g / per hole
Spinning temperature 2 as splitting holes (0.8 g / min: 0.8 g / min)
At 45 ° C., a yarn having a fineness of 4.1 denier at a spinning speed of 3500 m / min and a shrinkage ratio of 6% at a dry heat of 160 ° C. is converged into a tow-shaped crimp to be mechanically crimped. Grant, 64
It was cut into mm to obtain short fibers made of thermoplastic elastic resin having a cross-section. The short fiber was pre-opened with an opener and then opened with a card, and the web was weighed 1000 g.
/ M 2 and laminated on the net-like body, and the apparent density was 0.
It was compressed so as to have a weight of 05 g / cm 3 , heat treated with hot air at 190 ° C. for 5 minutes, and then cooled to obtain a laminated elastic structure having flat both sides. Next, Table 2 shows the characteristics of the laminated elastic structure of the present invention obtained by compressing 10% of the thickness and performing pseudo-crystallization treatment with hot air at 100 ° C. for 20 minutes. As is clear from Table 2, Example 1 was a cushioning material excellent in heat resistance, durability at room temperature, and sitting comfort because it was a laminated elastic structure in which the characteristics of the soft elastic resin were utilized. It can be seen that the seat created for evaluation also has excellent performance.

【0021】[0021]

【表2】 [Table 2]

【0022】実施例2 ジメチルイソフタレ−ト(DMI)20モル%とDMT
80モル%及び1・4ブタンジオ−ル(1・4BD)を
少量の触媒と仕込み、実施例1の方法と同様にして得た
ポリエステル系熱可塑性弾性樹脂の処方を表1に示す。
オリフィスの孔形状を孔径φ1mmの丸断面としたノズル
を用い以外実施例1と同様にして得た網状体は中実丸断
面の繊度が9000デニ−ルの線条から形成されてお
り、平均の見掛け密度が0.046g/cm3 であった。
次いで実施例1と同様にして得た積層弾性構造体の特性
を表2に示す。表2で明らかなごとく、実施例2は耐熱
性と常温での耐久性は実用上使用可能で、座り心地の優
れたクッション材であり、評価用に作成した座席も優れ
ていることが判る。
Example 2 20 mol% of dimethyl isophthalate (DMI) and DMT
Table 1 shows the formulation of the polyester-based thermoplastic elastic resin obtained in the same manner as in Example 1 by charging 80 mol% and 1.4-butanediol (1.4-BD) with a small amount of a catalyst.
The net-like body obtained in the same manner as in Example 1 except that the orifice had a circular cross section with a hole diameter of 1 mm was formed from filaments having a solid round cross section with a fineness of 9000 denier. The apparent density was 0.046 g / cm 3 .
Next, the properties of the laminated elastic structure obtained in the same manner as in Example 1 are shown in Table 2. As is clear from Table 2, it can be seen that Example 2 is a cushioning material which is practically usable in terms of heat resistance and durability at room temperature and has an excellent sitting comfort, and the seat prepared for evaluation is also excellent.

【0023】実施例3 ポリウレタン系エラストマ−として、4・4’ジフェニ
ルメタンジイソシアネ−ト(MDI)とPTMG及び鎖
延長剤として1・4BDを添加して重合し次いで抗酸化
剤2%を添加混合練込み後ペレット化し真空乾燥してポ
リエ−テル系ウレタンポリマ−の処方を表3に示す。
Example 3 As a polyurethane elastomer, 4,4'-diphenylmethane diisocyanate (MDI), PTMG and 1.4BD as a chain extender were added and polymerized, and then 2% of an antioxidant was added and mixed. Table 3 shows the formulation of the polyether urethane polymer after kneading, pelletizing and vacuum drying.

【0024】[0024]

【表3】 [Table 3]

【0025】得られた熱可塑性弾性樹脂(B−2)を溶
融温度220℃とした以外実施例1と同様にして得た網
状体の線条の断面形状が三角おむすび型の中空断面で中
空率は41%、繊度が9800デニ−ル、平均の見掛け
密度が0.047g/cm3 であった。他方、B−1をシ
−ス成分に、B−2をコア成分とし、紡糸温度を210
℃とした以外実施例1と同様にして得た複合繊維の特性
は、繊度が4.5デニ−ル、160℃での収縮率が12
%であった。この複合繊維を実施例1と同様にして10
00g/m2 の積層ウエッブにし、該網状体と積層し、
160℃の熱風にて5分間熱処理後冷却して両面がフラ
ットな積層弾性構造体を得た。次いで厚みの10%圧縮
して、100℃の熱風にて20分疑似結晶化処理して得
た本発明の積層弾性構造体の特性を表2に示す。実施例
3は柔らかいウレタンの特性を生かした積層網状体で耐
熱性、常温での耐久性、座り心地ともに優れたクッショ
ン材であった。評価用に作成した座席も優れていること
が判る。
The cross section of the filaments of the reticulate body obtained in the same manner as in Example 1 except that the obtained thermoplastic elastic resin (B-2) was melted at 220 ° C. had a triangular cross-section and was hollow. Was 41%, the fineness was 9800 denier, and the average apparent density was 0.047 g / cm 3 . On the other hand, B-1 was used as the sheath component and B-2 as the core component, and the spinning temperature was 210.
The composite fiber obtained in the same manner as in Example 1 except that the temperature was set to 0 ° C has a fineness of 4.5 denier and a shrinkage ratio at 160 ° C of 12
%Met. This composite fiber was processed in the same manner as in Example 1 to 10
To a laminated web of 00 g / m 2 and laminated with the mesh body,
After heat treatment for 5 minutes with hot air at 160 ° C., it was cooled to obtain a laminated elastic structure having flat both sides. Next, Table 2 shows the characteristics of the laminated elastic structure of the present invention obtained by compressing 10% of the thickness and performing pseudo-crystallization treatment with hot air at 100 ° C. for 20 minutes. Example 3 was a cushioning material that was a laminated reticulated body that took advantage of the characteristics of soft urethane and that was excellent in heat resistance, durability at room temperature, and sitting comfort. It can be seen that the seat created for evaluation is also excellent.

【0026】比較例1〜2 固有粘度0.63のポリエチレンテレフタレ−ト(PE
T)及びメルトインデックス12のポリプロピレン(P
P)を溶融温度を280℃及び250℃とした以外、実
施例2と同様にして得た比較例1に用いる網状体は、繊
度が8800デニ−ル、見掛け密度が0.047g/cm
3 、比較例2に用いる網状体の繊度は23000デニ−
ルで、見掛け密度が0.047g/cm3 であった。次い
で、疑似結晶化処理しなかった以外、実施例2と同様に
して得た積層弾性構造体の特性を表2に示す。比較例1
は非弾性ポリエステルからなる網状体のため耐熱耐久性
が悪く、熱可塑性弾性樹脂からなる短繊維不織布を表面
層に使用しているにも係わらず、硬くて座り心地も悪い
クッション材である。比較例2は繊度がやや太い非弾性
オレフィンからなる網状体のため、耐熱耐久性が悪く、
熱可塑性弾性樹脂からなる短繊維不織布を表面層に使用
しているにも係わらず、座り心地の悪いクッション材で
あった。
Comparative Examples 1-2 Polyethylene terephthalate (PE with an intrinsic viscosity of 0.63)
T) and polypropylene with a melt index of 12 (P
P) has a fineness of 8800 denier and an apparent density of 0.047 g / cm 3 in the reticulate body obtained in the same manner as in Example 2 except that the melting temperatures are 280 ° C. and 250 ° C.
3 , the fineness of the mesh used in Comparative Example 2 is 23,000 denier.
The apparent density was 0.047 g / cm 3 . Next, Table 2 shows the characteristics of the laminated elastic structure obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed. Comparative Example 1
Is a cushion material that is poor in heat resistance and durability because it is a net-like body made of non-elastic polyester, and is hard and uncomfortable to sit in, despite using a short fiber non-woven fabric made of thermoplastic elastic resin for the surface layer. Since Comparative Example 2 is a reticulate body made of a non-elastic olefin having a slightly finer fineness, it has poor heat resistance and durability.
It was a cushioning material which was uncomfortable to sit in, despite the fact that a short fiber non-woven fabric made of a thermoplastic elastic resin was used for the surface layer.

【0027】比較例3 ノズル面60cm下に引取りコンベアネットを配して引き
取ったあと疑似結晶化処理をしなかった以外、実施例2
と同様の方法で得た網状体の特性の一部を表2に示す。
なお、接着状態が不良で形態保持が悪いため、積層弾性
構造体にはできなかったので、50%圧縮時反発力、見
掛け密度、補強効果、70℃残留歪、繰返圧縮歪み、及
び座り心地の評価はしていない。比較例3は形態が固定
されていないのでクッション材に適さない例である。
Comparative Example 3 Example 2 was repeated except that a take-up conveyor net was placed 60 cm below the nozzle surface and no pseudo crystallization treatment was performed after the take-up conveyor net was taken out.
Table 2 shows a part of the properties of the reticulate body obtained by the same method as described above.
Since the laminated elastic structure could not be formed due to poor adhesion and poor shape retention, repulsive force at 50% compression, apparent density, reinforcing effect, 70 ° C residual strain, repeated compression strain, and sitting comfort. Is not evaluated. Comparative Example 3 is an example that is not suitable for a cushioning material because its shape is not fixed.

【0028】比較例4 疑似結晶化処理しない以外、実施例2と同様にして得た
繊度は9100デニ−ル、平均の見掛け密度は0.04
5g/cm3 の網状体と、東洋紡績社製4−44−EE7
を用いて疑似結晶化処理しない以外、実施例1と同様に
して作成した熱可塑性非弾性樹脂からなる短繊維不織布
を表面層に積層し、接合一体化した構造体の特性を表2
に示す。比較例4はクッション層が熱可塑性弾性樹脂で
構成されているので座り心地は良いが、耐熱性と耐久性
がやや不良なクッション材であった。
Comparative Example 4 The fineness obtained in the same manner as in Example 2 except that the pseudo crystallization treatment was not performed was 9100 denier, and the average apparent density was 0.04.
5 g / cm 3 mesh body and Toyobo Co., Ltd. 4-44-EE7
Table 2 shows the characteristics of a structure in which a short fiber non-woven fabric made of a thermoplastic non-elastic resin prepared in the same manner as in Example 1 was laminated on the surface layer and bonded and integrated, except that the pseudo crystallization treatment was not performed using Table 2.
Shown in. In Comparative Example 4, since the cushion layer was made of the thermoplastic elastic resin, the cushioning material was comfortable to sit on, but was slightly poor in heat resistance and durability.

【0029】比較例5 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ10mm、長さ方向の孔間ピッチ20mmの千鳥配列とし
たオリフィス径φ2mmとしたノズルを用いて単孔当たり
の吐出量25g/分にて吐出させて、ノズル面30cm下
に引取りコンベアネットを配して1m/分にて引き取っ
た以外、比較例4と同様にして得た線条の繊度は113
000デニ−ルで、平均の見掛け密度は0.154g/
cm3 の網状体を用い、疑似結晶化処理しない以外実施例
2と同様にして作成した積層弾性構造体の特性を表−2
に示す。比較例5は繊度が著しく太く密度斑のある積層
網状体のため、耐熱耐久性が悪くなり、座り心地もやや
悪くなるクッション材であった。
COMPARATIVE EXAMPLE 5 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of holes with a pitch of 10 mm in the width direction and a pitch of 20 mm between the holes in the length direction was used as a nozzle having a diameter of 2 mm. The fineness of the filament obtained in the same manner as in Comparative Example 4 was 113 except that the discharge rate was 25 g / min, the take-up conveyor net was placed 30 cm below the nozzle surface and the rate was 1 m / min.
000 denier, the average apparent density is 0.154 g /
Table 2 shows the characteristics of the laminated elastic structure produced in the same manner as in Example 2 except that the network of cm 3 was used and the pseudo crystallization treatment was not performed.
Shown in. Comparative Example 5 was a cushioning material having a remarkably fineness and a dense density unevenness, so that the heat resistance and durability were poor and the sitting comfort was a little poor.

【0030】比較例6 引取りコンベアネットの間隔(開口幅)を5cmとした以
外、比較例4と同様にして得た線条繊度が9000デニ
−ルで、弾性網状体の平均見掛け密度が0.043g/
cm3 の表面が実質的にフラット化されていない網状体を
用い、疑似結晶化処理しない以外実施例2と同様にして
作成した積層弾性構造体の特性を表2に示す。比較例6
は網状体の表面が凹凸になっているため、見掛け密度が
低いのに耐久性が劣り、熱接着が不充分になり、少し異
物感を感じる座り心地のやや劣るクッション材であっ
た。
Comparative Example 6 The linear fineness obtained in the same manner as in Comparative Example 4 was 9000 denier, and the average apparent density of the elastic mesh was 0, except that the spacing (opening width) of the take-up conveyor net was 5 cm. 0.043 g /
Table 2 shows the properties of the laminated elastic structure produced in the same manner as in Example 2 except that the net-like body whose surface of cm 3 was not substantially flattened was used and the pseudo-crystallization treatment was not performed. Comparative Example 6
Since the surface of the net-like body was uneven, the apparent density was low, but the durability was poor, the thermal adhesion was insufficient, and the cushioning material was a little inferior in sitting comfort with a feeling of foreign matter.

【0031】比較例7 単孔当たりの吐出量3g/分にて吐出させ、引取りコン
ベアネットの速度を0.3m/分とし、疑似結晶化処理
しなかった以外実施例2と同様して得た線条繊度が13
000デニ−ルで、弾性網状体の平均見掛け密度が0.
21g/cm3 の弾性網状体を用い、疑似結晶化処理しな
い以外実施例2と同様にして作成した積層弾性構造体の
特性を表2に示す。比較例7は見掛け密度が高いため、
タッチは良好だが座り心地がやや劣り、耐熱性、耐久性
が不充分なクッション材であった。
Comparative Example 7 Obtained in the same manner as in Example 2 except that the discharge amount per single hole was 3 g / min, the speed of the take-up conveyor net was 0.3 m / min, and the pseudo crystallization treatment was not performed. Streak fineness of 13
000 denier, the elastic mesh has an average apparent density of 0.
Table 2 shows the characteristics of the laminated elastic structure produced in the same manner as in Example 2 except that the elastic net body of 21 g / cm 3 was used and the pseudo crystallization treatment was not performed. Since the comparative example 7 has a high apparent density,
The cushioning material had a good touch but was slightly inferior in sitting comfort, and had insufficient heat resistance and durability.

【0032】比較例8 幅50cm、長さ5cmのノズル有効面に幅方向の孔間ピッ
チ4mm、長さ方向の孔間ピッチ3mmの千鳥配列としたオ
リフィス径φ1mmとしたノズルを用いて単孔当たりの吐
出量0.012g/分にて吐出させて、ノズル面5cm下
に引取りコンベアネットを配して1.5m/分にて引き
取った以外、比較例3と同様にして得た線条の繊度が4
0デニール、見掛け密度が0.008g/cm3 の網状体
を用いて、積層弾性構造体の見掛け密度を0.009g
/cm3 となるように圧縮した以外、比較例7と同様にし
て作成した積層弾性構造体の特性を表2に示す。比較例
8は線状の繊度が細い緻密な網状体をクッション層にし
た場合もで、見掛け密度が低すぎて沈み込みが大きくな
り床つき感が大きくなり座り心地のやや劣るクッション
材であった。
COMPARATIVE EXAMPLE 8 A nozzle having a width of 50 cm and a length of 5 cm and having a staggered arrangement of 4 mm in the width direction and 3 mm in the length direction and having a orifice diameter of 1 mm was used for each single hole. Of a filament obtained in the same manner as in Comparative Example 3 except that the discharge amount was 0.012 g / min, the take-up conveyor net was placed 5 cm below the nozzle surface, and the line was taken at 1.5 m / min. Fineness is 4
The net density of the laminated elastic structure is 0.009 g using a mesh body having 0 denier and an apparent density of 0.008 g / cm 3.
Table 2 shows the characteristics of the laminated elastic structure produced in the same manner as in Comparative Example 7 except that the laminated elastic structure was compressed to have a pressure of / cm 3 . Comparative Example 8 is a cushion material having a fine mesh with a fine linear fineness as a cushion layer, and the apparent density is too low to cause a large sinking, a large floor feeling, and a slightly inferior sitting comfort. .

【0033】比較例9 実施例1で作成した短繊維を開繊積層した状態で、実施
例2の網状体をバケットシト状に切断成形したものと積
層し側地を被せて座席にして座り心地を評価した結果、
短繊維を開繊積層したウエッブでは臀部のタッチが悪く
表面層の機能をを十分に果たさないことがわかった。
Comparative Example 9 In the state where the short fibers prepared in Example 1 were opened and laminated, the mesh of Example 2 was cut and formed into a bucket sheet shape and laminated to cover the side cloth to make a seat for comfortable sitting. Evaluation result,
It was found that the open-laminating web of short fibers had a poor buttock touch and did not fully function as a surface layer.

【0034】実施例5 実施例1で得た積層弾性構造体を長さ120cmに切断し
て、厚み5cm、幅120cm、長さ50cm毎にキルティン
グした幅120cm、長さ200cmの側地に入れマットレ
スを作成した。このマットレスをベッドに設置し、25
℃RH65%室内にてパネラ−4人に7時間使用させて
寝心地を官能評価した。なお、ベットにはシ−ツを掛
け、掛け布団は1.8kgのダウン/フェザ−:90/1
0を中綿にしたもの、枕はパネラ−が毎日使用している
ものを着用させた。評価結果は、床つき感がなく、沈み
込みが適度で、蒸れを感じない快適な寝心地のベットで
あった。比較のため、密度0.04g/cm3 で厚み10
cmの発泡ウレタン板状体で同様のマットレスを作成し、
ベットに設置して寝心地を評価した結果、床つき感は少
ないが沈み込みが大きくやや蒸れを感じる寝心地の悪い
ベットであった。
Example 5 The laminated elastic structure obtained in Example 1 was cut into a length of 120 cm and quilted into a width of 120 cm and a length of 200 cm, which was quilted every 5 cm in thickness, 120 cm in width and 50 cm in length. It was created. Put this mattress on the bed and
The panel comfort was sensory-evaluated by allowing 4 panelists to use it for 7 hours in a room with a RH of 65%. The bed is covered with sheets and the comforter is 1.8 kg down / feather: 90/1.
0 was used as batting, and the pillow was worn by the paneler every day. As a result of the evaluation, the bed was a bed which had no feeling of flooring, had a moderate depression, and did not feel stuffy and had a comfortable sleeping comfort. For comparison, a density of 0.04 g / cm 3 and a thickness of 10
Create a similar mattress with a cm urethane foam plate,
As a result of placing it on a bed and evaluating the comfort of the bed, it was a bed with a low feeling of flooring but a large degree of sinking and a slight stuffiness, which was uncomfortable to sleep.

【0035】[0035]

【発明の効果】振動や応力吸収性の良い熱可塑性弾性樹
脂から成る線条が3次元立体構造を形成し融着一体化し
た表面が実質的にフラット化された網状体をクッション
層とし、振動や応力吸収性の良い熱可塑性弾性樹脂から
成る短繊維不織布を表面層として接合一体化した本発明
の積層弾性構造体は、振動遮断性、耐熱耐久性、嵩高
性、座り心地のより改善された、蒸れにくいクッション
材であり、そのまま側地を被せて又は、他の素材との併
用して、上記の好ましい特性を付与した車両用座席、船
舶用座席、車両用、船舶用、病院やホテル等の業務用ベ
ット、家具用クッション、寝装用品等の製品を提供でき
る。更には、車両用や建築資材としての内装材や断熱材
等にも有用なものである。
EFFECTS OF THE INVENTION Striations made of thermoplastic elastic resin having good vibration and stress absorption form a three-dimensional structure and are fused and integrated to form a net-like body having a substantially flat surface as a cushion layer. The laminated elastic structure of the present invention in which a short fiber non-woven fabric composed of a thermoplastic elastic resin having good stress absorption and a surface layer is integrally bonded is improved in vibration isolation, heat resistance durability, bulkiness and sitting comfort. , A cushioning material that does not easily get damp, and is covered with a side material as it is or used in combination with other materials to provide the above-mentioned preferable characteristics to vehicle seats, ship seats, vehicle seats, ship seats, hospitals, hotels, etc. Can provide products such as business beds, furniture cushions, and bedding products. Furthermore, it is also useful as an interior material and a heat insulating material for vehicles and building materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D01F 6/86 301 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location D01F 6/86 301 B

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 繊度が100〜100000デニ−ルの
熱可塑性弾性樹脂からなる連続した線条を曲がりくねら
せ互いに接触させて該接触部の大部分が融着した3次元
立体構造体を形成し、両面が実質的にフラット化された
網状体の片面に熱可塑性弾性樹脂からなる繊度が20デ
ニ−ル以下の短繊維が開繊3次元構造化され、接触部の
大部分が熱接着により融着一体化した面が実質的にフラ
ット化された不織布が接合一体化された密度が0.01
g/cm3 から0.2g/cm3 の積層弾性構造体。
1. A three-dimensional three-dimensional structure in which continuous filaments made of a thermoplastic elastic resin having a fineness of 100 to 100,000 denier are bent and brought into contact with each other so that most of the contact portions are fused. , One side of a net-like body whose both sides are substantially flattened has a short fiber made of a thermoplastic elastic resin and having a fineness of 20 denier or less, which is three-dimensionally opened, and most of the contact portion is melted by heat bonding. The non-woven fabric whose bonded and integrated surface is substantially flat has a bonded and integrated density of 0.01.
Laminated elastic structure of g / cm 3 to 0.2 g / cm 3 .
【請求項2】 連続した線条の断面形状が中空断面又は
異形断面である請求項1記載の積層弾性構造体。
2. The laminated elastic structure according to claim 1, wherein the cross-sectional shape of the continuous filament is a hollow cross section or an irregular cross section.
【請求項3】 連続した線条を構成する熱可塑性弾性樹
脂が示差走査型熱量計で測定した融解曲線に室温以上融
点以下の温度に吸熱ピークを有する請求項1記載の積層
弾性構造体。
3. The laminated elastic structure according to claim 1, wherein the thermoplastic elastic resin forming the continuous filament has an endothermic peak at a temperature of room temperature or higher and melting point or lower in a melting curve measured by a differential scanning calorimeter.
【請求項4】 複数のオリフィスを持つ多列ノズルより
熱可塑性弾性樹脂をその融点より20〜80℃高い溶融
温度で、該ノズルより下方に向けて吐出させ、溶融状態
で互いに接触させて融着させ3次元構造を形成しつつ、
引取り装置で挟み込み冷却槽で冷却せしめた後、片面に
熱可塑性弾性樹脂からなる短繊維を開繊したウエッブを
積層し、圧縮しつつ熱成形する積層弾性構造体の製法。
4. A thermoplastic elastic resin is discharged downward from the nozzle at a melting temperature higher by 20 to 80 ° C. than the melting point of the multi-row nozzle having a plurality of orifices, and the thermoplastic elastic resin is brought into contact with each other in a molten state to be fused. While forming a three-dimensional structure,
A method for producing a laminated elastic structure, in which a web with opened short fibers made of a thermoplastic elastic resin is laminated on one side after being sandwiched by a take-up device and cooled in a cooling tank, and thermoformed while being compressed.
【請求項5】 一旦冷却後、熱可塑性弾性樹脂の融点よ
り少なくとも10℃以下の温度でアニ−リングを行なう
請求項4に記載の積層弾性構造体の製法。
5. The method for producing a laminated elastic structure according to claim 4, wherein after cooling once, annealing is performed at a temperature of at least 10 ° C. or lower than the melting point of the thermoplastic elastic resin.
【請求項6】 請求項1に記載の積層弾性構造体を用い
た車両用座席、船舶用座席、車両用、船舶用、病院用等
の業務用及び家庭用ベット、家具用椅子、事務用椅子お
よび布団のいずれかに記載の製品。
6. A vehicular seat, a vehicular seat, a vehicular, a marine, a hospital, etc. commercial and household bed, a furniture chair, and an office chair using the laminated elastic structure according to claim 1. And the product described in any of the futons.
JP02977894A 1994-02-28 1994-02-28 Laminated elastic structure, manufacturing method and product using the same Expired - Lifetime JP3430447B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02977894A JP3430447B2 (en) 1994-02-28 1994-02-28 Laminated elastic structure, manufacturing method and product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02977894A JP3430447B2 (en) 1994-02-28 1994-02-28 Laminated elastic structure, manufacturing method and product using the same

Publications (2)

Publication Number Publication Date
JPH07238460A true JPH07238460A (en) 1995-09-12
JP3430447B2 JP3430447B2 (en) 2003-07-28

Family

ID=12285483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02977894A Expired - Lifetime JP3430447B2 (en) 1994-02-28 1994-02-28 Laminated elastic structure, manufacturing method and product using the same

Country Status (1)

Country Link
JP (1) JP3430447B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008110A1 (en) * 2021-07-29 2023-02-02 株式会社エアウィーヴ Mattress, and method for taking order of mattress

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008110A1 (en) * 2021-07-29 2023-02-02 株式会社エアウィーヴ Mattress, and method for taking order of mattress

Also Published As

Publication number Publication date
JP3430447B2 (en) 2003-07-28

Similar Documents

Publication Publication Date Title
JP3454373B2 (en) Elastic network, manufacturing method and products using the same
JP3473710B2 (en) Mixed fineness reticulated body, manufacturing method and products using it
JP3430443B2 (en) Netting structure for cushion, method for producing the same, and cushion product
JP3430444B2 (en) Netting structure for cushion, manufacturing method thereof and cushion product
JP3444375B2 (en) Multilayer net, manufacturing method and products using the same
JP3454375B2 (en) Nonwoven laminated structure, manufacturing method and product using the same
JP3444368B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430447B2 (en) Laminated elastic structure, manufacturing method and product using the same
JP3430445B2 (en) Composite net, its manufacturing method and products using it
JP3444374B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3430446B2 (en) Composite elastic network, its production method and products using it
JP3430449B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH08851A (en) Fibrous wadding material and its production
JP3454374B2 (en) Laminated net, manufacturing method and product using the same
JP3431091B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3431092B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444369B2 (en) Laminated net, manufacturing method and product using the same
JP3431096B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3444372B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444370B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3444371B2 (en) Multilayer laminated net, manufacturing method and product using the same
JP3351488B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JPH07289756A (en) Nonwoven laminated net shaped body manufacturing method and products made therefrom

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090523

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100523

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20100523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20110523

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20130523

EXPY Cancellation because of completion of term