JPH0723787A - 魚由来トランスグルタミナーゼ遺伝子 - Google Patents
魚由来トランスグルタミナーゼ遺伝子Info
- Publication number
- JPH0723787A JPH0723787A JP5172998A JP17299893A JPH0723787A JP H0723787 A JPH0723787 A JP H0723787A JP 5172998 A JP5172998 A JP 5172998A JP 17299893 A JP17299893 A JP 17299893A JP H0723787 A JPH0723787 A JP H0723787A
- Authority
- JP
- Japan
- Prior art keywords
- val
- leu
- gly
- asp
- glu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
(57)【要約】
【構成】魚類由来のトランスグルタミナーゼをコードす
る遺伝子を有するDNA断片、該DNA断片を組み込ん
だ組換えDNA、該組換えDNAにより形質転換された
形質転換体、該形質転換体を培養することを特徴とする
当該ポリペプチドの製造法、及び該製造法により得られ
るポリペプチド。 【効果】本発明により、通常の水産加工品製造中に機能
する魚類由来のトランスグルタミナーゼを安価にかつ大
量に提供でき、加工品原料のすりみ濃度の低減化により
製造コストを下げることができる。また、食品素材の物
性改質、栄養価改善を行える。 【図18】魚TGおよびモルモット肝TG間のアミノ酸
配列相同性比較
る遺伝子を有するDNA断片、該DNA断片を組み込ん
だ組換えDNA、該組換えDNAにより形質転換された
形質転換体、該形質転換体を培養することを特徴とする
当該ポリペプチドの製造法、及び該製造法により得られ
るポリペプチド。 【効果】本発明により、通常の水産加工品製造中に機能
する魚類由来のトランスグルタミナーゼを安価にかつ大
量に提供でき、加工品原料のすりみ濃度の低減化により
製造コストを下げることができる。また、食品素材の物
性改質、栄養価改善を行える。 【図18】魚TGおよびモルモット肝TG間のアミノ酸
配列相同性比較
Description
【0001】
【産業上の利用分野】本発明は、魚由来のトランスグル
タミナーゼ活性を保持するポリペプチドをコードする遺
伝子を有するDNA断片、該DNAを組み込んだ組換え
プラスミド、該プラスミドが導入された形質転換体、及
び該形質転換体を培養することを特徴とする、魚由来の
トランスグルタミナーゼ活性を有するポリペプチドの製
造法に関する。
タミナーゼ活性を保持するポリペプチドをコードする遺
伝子を有するDNA断片、該DNAを組み込んだ組換え
プラスミド、該プラスミドが導入された形質転換体、及
び該形質転換体を培養することを特徴とする、魚由来の
トランスグルタミナーゼ活性を有するポリペプチドの製
造法に関する。
【0002】
【従来の技術】トランスグルタミナーゼは、ペプチド鎖
内にあるグルタミン残基のγ−カルボキシアミド基のア
シル転移反応を触媒する酵素である。このトランスグル
タミナーゼはアシル受容体としてタンパク質中リジン残
基のε−アミノ基が作用すると、分子内及び分子間にε
−(γ−Gln)−Lys架橋結合が形成され、また、アシル
受容体としてアミノ酸、アミノ酸誘導体などの一級アミ
ンが存在した時は、それがタンパク質に導入される。そ
して水がアシル受容体として機能するときは、グルタミ
ン残基が脱アミド化されグルタミン酸残基になる反応を
進行させる酵素である。
内にあるグルタミン残基のγ−カルボキシアミド基のア
シル転移反応を触媒する酵素である。このトランスグル
タミナーゼはアシル受容体としてタンパク質中リジン残
基のε−アミノ基が作用すると、分子内及び分子間にε
−(γ−Gln)−Lys架橋結合が形成され、また、アシル
受容体としてアミノ酸、アミノ酸誘導体などの一級アミ
ンが存在した時は、それがタンパク質に導入される。そ
して水がアシル受容体として機能するときは、グルタミ
ン残基が脱アミド化されグルタミン酸残基になる反応を
進行させる酵素である。
【0003】トランスグルタミナーゼはゲル状食品、ゲ
ル状化粧料をはじめとしてヨーグルト、ゼリー及びチー
ズ等を製造する際に用いられている(特公平1ー5038
2)。更に、熱に安定 なマイクロカプセルの素材、固定
化酵素等の担体等を製造する際にも利用されている。
ル状化粧料をはじめとしてヨーグルト、ゼリー及びチー
ズ等を製造する際に用いられている(特公平1ー5038
2)。更に、熱に安定 なマイクロカプセルの素材、固定
化酵素等の担体等を製造する際にも利用されている。
【0004】トランスグルタミナーゼは微生物由来のも
のとして、ストレプトベルチシリウム属の菌からカルシ
ウム(Ca2+)非依存性のトランスグルタミナーゼが発
見されている。同属菌の具体例としては、ストレプトベ
ルチシリウム・グリセオカルネウム(Streptoverti cill
ium griseo carneum)IFO 12776, ストレプトベルチシ
リウム・シナモネウム・ サブ・エスピー・シナモネウ
ム(Streptoverticil lium cinnamone um sub sp. cinnam
oneum)IFO 12852, ストレプトベルチシリウム・モバ
ラエンス(Streptoverticillium mobaraense) IFO1381
9 等があげられる(特開昭64ー27471号参照)。
のとして、ストレプトベルチシリウム属の菌からカルシ
ウム(Ca2+)非依存性のトランスグルタミナーゼが発
見されている。同属菌の具体例としては、ストレプトベ
ルチシリウム・グリセオカルネウム(Streptoverti cill
ium griseo carneum)IFO 12776, ストレプトベルチシ
リウム・シナモネウム・ サブ・エスピー・シナモネウ
ム(Streptoverticil lium cinnamone um sub sp. cinnam
oneum)IFO 12852, ストレプトベルチシリウム・モバ
ラエンス(Streptoverticillium mobaraense) IFO1381
9 等があげられる(特開昭64ー27471号参照)。
【0005】更にトランスグルタミナーゼは、ほ乳類動
物由来のものも知られている。例えば、モルモットの肝
臓由来のもの[Connellan, et al., Journal of Biolog
icalChemistry 246巻4号, 1093〜1098頁(1971)]、ヒ
ト及び牛の血管内皮細胞由来のもの[Gentile, et al.,
Journal of Biological Chemistry 266巻、478〜483頁
(1991)、及 び Nakanishi, et al., European Journal
of Biochemistry 202巻、15〜21頁(1991)]、ヒトの血液
凝固因子XIII[Takahashi, et al., Proc. Natl. A
cad. Sci. USA 83巻、8019〜8023頁(1986)]等である。
物由来のものも知られている。例えば、モルモットの肝
臓由来のもの[Connellan, et al., Journal of Biolog
icalChemistry 246巻4号, 1093〜1098頁(1971)]、ヒ
ト及び牛の血管内皮細胞由来のもの[Gentile, et al.,
Journal of Biological Chemistry 266巻、478〜483頁
(1991)、及 び Nakanishi, et al., European Journal
of Biochemistry 202巻、15〜21頁(1991)]、ヒトの血液
凝固因子XIII[Takahashi, et al., Proc. Natl. A
cad. Sci. USA 83巻、8019〜8023頁(1986)]等である。
【0006】
【発明が解決しようとする課題】従来のトランスグルタ
ミナーゼの工業的利用のための酵素供給源は、ほ乳類動
物や細菌類であった。しかしながら、日常、我々が馴れ
親しんでいるトランスグルタミナーゼの作用産物は、蒲
鉾を代表とする水産加工品であり[関ら、NipponSuisan
Gakkaishi 56巻、125〜132頁(1990)]、当然ながら、
そこに作用しているトランスグルタミナーゼは、魚由来
の酵素である。
ミナーゼの工業的利用のための酵素供給源は、ほ乳類動
物や細菌類であった。しかしながら、日常、我々が馴れ
親しんでいるトランスグルタミナーゼの作用産物は、蒲
鉾を代表とする水産加工品であり[関ら、NipponSuisan
Gakkaishi 56巻、125〜132頁(1990)]、当然ながら、
そこに作用しているトランスグルタミナーゼは、魚由来
の酵素である。
【0007】食品タンパク質の改質用の遺伝子組換え型
トランスグルタミナーゼとしてはモルモット由来のもの
があげられる。現在入手可能で比較検討できるものとし
て、これをとりあげ、魚由来のトランスグルタミナーゼ
がこれに対して、産業利用上優位である点として、以下
の項目が考えられる。
トランスグルタミナーゼとしてはモルモット由来のもの
があげられる。現在入手可能で比較検討できるものとし
て、これをとりあげ、魚由来のトランスグルタミナーゼ
がこれに対して、産業利用上優位である点として、以下
の項目が考えられる。
【0008】A)魚は、特に、生であっても人類が永年
食してきた生物であり、従って、本生物中に存在するト
ランスグルタミナーゼも永年食しているという事にな
り、他の生物起源のトランスグルタミナーゼに比べ、そ
の安全上の心配は、全くないといえよう。
食してきた生物であり、従って、本生物中に存在するト
ランスグルタミナーゼも永年食しているという事にな
り、他の生物起源のトランスグルタミナーゼに比べ、そ
の安全上の心配は、全くないといえよう。
【0009】B)魚と、他のほ乳類由来のトランスグル
タミナーゼにおける酵素特性の違いとして、特に水産練
り製品への応用を考えた場合、まず、酵素の反応性のよ
さ、作用させる酵素の失活条件の違いによる生産コスト
(これについては、以下の実施例に記す)への影響や、
反応産物の自然な食感、歯ごたえ(弾力性発現)等の質
的効果の違いがあることが充分に考えられる。実際に、
魚トランスグルタミナーゼは、魚のアクトミオシンへの
反応性が高いことが判明した(実施例参照)。
タミナーゼにおける酵素特性の違いとして、特に水産練
り製品への応用を考えた場合、まず、酵素の反応性のよ
さ、作用させる酵素の失活条件の違いによる生産コスト
(これについては、以下の実施例に記す)への影響や、
反応産物の自然な食感、歯ごたえ(弾力性発現)等の質
的効果の違いがあることが充分に考えられる。実際に、
魚トランスグルタミナーゼは、魚のアクトミオシンへの
反応性が高いことが判明した(実施例参照)。
【0010】C)遺伝子組換え型トランスグルタミナー
ゼの微生物を用いた時の生産性の違いも、トランスグル
タミナーゼの実用化を考えた場合、重要な問題となる。
モルモット由来トランスグルタミナーゼの大腸菌を用い
た生産について既にIkuraらは報告している(文献、Eu
r. J. Biochem., vol.187, 705-711, 1990 )が、その
生産量はきわめて低いものであり、つまりはトランスグ
ルタミナーゼの生産菌の抽出液中のトランスグルタミナ
ーゼは、それに対する抗体を用いて、検出できる程度で
あった(培地1リットルあたり約2.6mg相当のトラ
ンスグルタミナーゼ生産量)。これに対して、本魚由来
トランスグルタミナーゼは、例えば、大腸菌を宿主とし
て生産させた場合、本酵素は宿主大腸菌由来SDS可溶性
タンパク質の10%〜15%相当の生産性を示し、モル
モットトランスグルタミナーゼの約100倍以上の発現
量を達成するに至り、本魚由来トランスグルタミナーゼ
は遺伝子組換え型の生産に適した遺伝子構造を有してい
る可能性も高い。(以下の実施例にて説明)
ゼの微生物を用いた時の生産性の違いも、トランスグル
タミナーゼの実用化を考えた場合、重要な問題となる。
モルモット由来トランスグルタミナーゼの大腸菌を用い
た生産について既にIkuraらは報告している(文献、Eu
r. J. Biochem., vol.187, 705-711, 1990 )が、その
生産量はきわめて低いものであり、つまりはトランスグ
ルタミナーゼの生産菌の抽出液中のトランスグルタミナ
ーゼは、それに対する抗体を用いて、検出できる程度で
あった(培地1リットルあたり約2.6mg相当のトラ
ンスグルタミナーゼ生産量)。これに対して、本魚由来
トランスグルタミナーゼは、例えば、大腸菌を宿主とし
て生産させた場合、本酵素は宿主大腸菌由来SDS可溶性
タンパク質の10%〜15%相当の生産性を示し、モル
モットトランスグルタミナーゼの約100倍以上の発現
量を達成するに至り、本魚由来トランスグルタミナーゼ
は遺伝子組換え型の生産に適した遺伝子構造を有してい
る可能性も高い。(以下の実施例にて説明)
【0011】以上の魚由来トランスグルタミナーゼのも
つ諸特性は、トランスグルタミナーゼの産業への応用、
特に食品タンパク質の改質を考えた場合、大きなメリッ
トとなるであろう。また、近年の漁獲海域の200海里
規制や総漁獲高制限による、水産資源の品不足は水産加
工製品の原材料コスト高となり大きな問題となっている
が、例えば、本酵素の使用により、他の食品タンパク質
との併用により加工品中のすり身原材料の濃度を低減さ
せる事、および低利用魚資源の有効利用を増大させる事
なども可能となる。
つ諸特性は、トランスグルタミナーゼの産業への応用、
特に食品タンパク質の改質を考えた場合、大きなメリッ
トとなるであろう。また、近年の漁獲海域の200海里
規制や総漁獲高制限による、水産資源の品不足は水産加
工製品の原材料コスト高となり大きな問題となっている
が、例えば、本酵素の使用により、他の食品タンパク質
との併用により加工品中のすり身原材料の濃度を低減さ
せる事、および低利用魚資源の有効利用を増大させる事
なども可能となる。
【0012】一方、微生物由来のトランスグルタミナー
ゼ(以下、BTGと略す)との比較においては、全く構
造的にも、反応機構的にも魚由来トランスグルタミナー
ゼは異なったものである。例えば、その酵素機能発現に
対して、BTGがカルシウムイオンを必要としない事な
どは、本発明で得られた魚由来トランスグルタミナーゼ
とは、その利用したい目的タンパク質により、それらの
使い分けが必要となろう。
ゼ(以下、BTGと略す)との比較においては、全く構
造的にも、反応機構的にも魚由来トランスグルタミナー
ゼは異なったものである。例えば、その酵素機能発現に
対して、BTGがカルシウムイオンを必要としない事な
どは、本発明で得られた魚由来トランスグルタミナーゼ
とは、その利用したい目的タンパク質により、それらの
使い分けが必要となろう。
【0013】BTGとの差別化では次の事が言えよう。
魚由来トランスグルタミナーゼは、例えば、酵素を基質
に反応させたい時、反応停止させたい時の切り替え時
に、このカルシウムイオン依存性を利用することで、反
応時間や反応性を制御できる可能性がある。また、BT
Gに比べ、魚由来トランスグルタミナーゼは熱安定性が
低いので、比較的低温で、加熱失活させることができ、
このことは高温加熱を好まない食品加工に有利であると
いえる。
魚由来トランスグルタミナーゼは、例えば、酵素を基質
に反応させたい時、反応停止させたい時の切り替え時
に、このカルシウムイオン依存性を利用することで、反
応時間や反応性を制御できる可能性がある。また、BT
Gに比べ、魚由来トランスグルタミナーゼは熱安定性が
低いので、比較的低温で、加熱失活させることができ、
このことは高温加熱を好まない食品加工に有利であると
いえる。
【0014】魚類のトランスグルタミナーゼ遺伝子に関
しては、従来、全く知られていない。また、魚トランス
グルタミナーゼを安価に製造することが可能となれば、
トランスグルタミナーゼの工業的利用範囲が増すばかり
ではなく、より天然に近い酵素利用水産加工製品の提供
が可能となり、また、それら商品の製造コストを、使用
原材料すり身濃度の低減化などにより下げることができ
る。この様に、魚類由来トランスグルタミナーゼの安価
な供給体制の確立のためには、魚トランスグルタミナー
ゼの遺伝子取得、解析、発現等の課題があった。
しては、従来、全く知られていない。また、魚トランス
グルタミナーゼを安価に製造することが可能となれば、
トランスグルタミナーゼの工業的利用範囲が増すばかり
ではなく、より天然に近い酵素利用水産加工製品の提供
が可能となり、また、それら商品の製造コストを、使用
原材料すり身濃度の低減化などにより下げることができ
る。この様に、魚類由来トランスグルタミナーゼの安価
な供給体制の確立のためには、魚トランスグルタミナー
ゼの遺伝子取得、解析、発現等の課題があった。
【0015】
【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意研究した結果、魚類のトランスグルタ
ミナーゼをコードする遺伝子を有するDNA断片を取得
し、その塩基配列を決定することに成功した。この成果
に基づいて、遺伝子工学的手法により大腸菌、枯草菌、
酵母、カビ等の微生物を用いて該遺伝子を発現させるこ
とが可能となり、魚類由来トランスグルタミナーゼの効
率的大量生産への途を開くことができた。
を解決すべく鋭意研究した結果、魚類のトランスグルタ
ミナーゼをコードする遺伝子を有するDNA断片を取得
し、その塩基配列を決定することに成功した。この成果
に基づいて、遺伝子工学的手法により大腸菌、枯草菌、
酵母、カビ等の微生物を用いて該遺伝子を発現させるこ
とが可能となり、魚類由来トランスグルタミナーゼの効
率的大量生産への途を開くことができた。
【0016】すなわち本願発明は魚類由来のトランスグ
ルタミナーゼ活性を保持するポリペプチドをコードする
遺伝子を有するDNA断片、該DNAを組み込んだ組換
えプラスミド、該プラスミドが導入された形質転換体、
該形質転換体を培養することを特徴とする当該ポリペプ
チドの製造法、及び該製造法により得られる当該ポリペ
プチドである。
ルタミナーゼ活性を保持するポリペプチドをコードする
遺伝子を有するDNA断片、該DNAを組み込んだ組換
えプラスミド、該プラスミドが導入された形質転換体、
該形質転換体を培養することを特徴とする当該ポリペプ
チドの製造法、及び該製造法により得られる当該ポリペ
プチドである。
【0017】本願発明である魚由来のトランスグルタミ
ナーゼ活性を保持するポリペプチドをコードする遺伝子
を有するDNA断片の取得方法として、本願発明者らは
モルモットのトランスグルタミナーゼの活性中心付近の
合成DNA断片(配列表配列番号10)をプローブとし
てcDNAより目的DNA断片をハイブリダイゼーショ
ンにより単離する方法を採用した。これまでモルモット
のトランスグルタミナーゼ自身あるいはその遺伝子と、
魚のトランスグルタミナーゼ自身あるいはその遺伝子と
が高い相同性を有するとの知見は全くなく、この手法に
より目的DNA断片が取得できたことは意外である。
ナーゼ活性を保持するポリペプチドをコードする遺伝子
を有するDNA断片の取得方法として、本願発明者らは
モルモットのトランスグルタミナーゼの活性中心付近の
合成DNA断片(配列表配列番号10)をプローブとし
てcDNAより目的DNA断片をハイブリダイゼーショ
ンにより単離する方法を採用した。これまでモルモット
のトランスグルタミナーゼ自身あるいはその遺伝子と、
魚のトランスグルタミナーゼ自身あるいはその遺伝子と
が高い相同性を有するとの知見は全くなく、この手法に
より目的DNA断片が取得できたことは意外である。
【0018】上記の他に、本願発明である魚由来のトラ
ンスグルタミナーゼ活性を保持するポリペプチドをコー
ドする遺伝子を有するDNA断片の取得方法としては以
下のものが掲げられる。A)魚由来のトランスグルタミ
ナーゼ活性を保持するポリペプチドを単離精製し決定さ
れるアミノ酸配列を基に全塩基配列を化学合成する。
B)決定されたアミノ酸配列を基に塩基配列の一部を合
成してこれをプローブにしてcDNAバンクあるいはゲ
ノミックバンクよりクローニングを行う。クローニング
方法は、ハイブリダイゼーション法でも良いが、PCR
法を用いても良い。C)あるいはmRNAをホウィート
ジャームあるいはウサギ網状赤血球のイン・ビトロ翻訳
系に供し、トランスグルタミナーゼ活性を有するポリペ
プチドをコードするmRNAが存在する画分を決定し、
そこより目的のcDNA断片を作製、取得することもで
きる。
ンスグルタミナーゼ活性を保持するポリペプチドをコー
ドする遺伝子を有するDNA断片の取得方法としては以
下のものが掲げられる。A)魚由来のトランスグルタミ
ナーゼ活性を保持するポリペプチドを単離精製し決定さ
れるアミノ酸配列を基に全塩基配列を化学合成する。
B)決定されたアミノ酸配列を基に塩基配列の一部を合
成してこれをプローブにしてcDNAバンクあるいはゲ
ノミックバンクよりクローニングを行う。クローニング
方法は、ハイブリダイゼーション法でも良いが、PCR
法を用いても良い。C)あるいはmRNAをホウィート
ジャームあるいはウサギ網状赤血球のイン・ビトロ翻訳
系に供し、トランスグルタミナーゼ活性を有するポリペ
プチドをコードするmRNAが存在する画分を決定し、
そこより目的のcDNA断片を作製、取得することもで
きる。
【0019】本願発明である魚由来のトランスグルタミ
ナーゼ活性を保持するポリペプチドをコードする遺伝子
を有するDNA断片としては、配列表の配列番号2、
3、6、7、43、44、72、73、76、77記載
のポリペプチドをコードするものがあげられる。
ナーゼ活性を保持するポリペプチドをコードする遺伝子
を有するDNA断片としては、配列表の配列番号2、
3、6、7、43、44、72、73、76、77記載
のポリペプチドをコードするものがあげられる。
【0020】かかるDNA断片は、遺伝子コドンの縮重
を考慮すると、種々の塩基配列を包含し得るものであ
る。これらの塩基配列は、遺伝子発現系の諸要素、例え
ば宿主細胞の種類等に応じた優先コドンの使用、転写さ
れたRNAに形成される高次構造の回避等によって、当
業者が容易に選択し得るものである。具体例として、天
然塩基配列の一例を配列表中の配列番号4、8、45、
47、74、78に示し、また、天然塩基配列の一部を
人為的に変換した例を配列表中の配列番号12、13、
14、15、16、17、18、19に示す。さらに、
かかるDNA塩基配列は自然界からクローニングしたも
のであっても、人為的に化学合成したDNAであっても
よい。
を考慮すると、種々の塩基配列を包含し得るものであ
る。これらの塩基配列は、遺伝子発現系の諸要素、例え
ば宿主細胞の種類等に応じた優先コドンの使用、転写さ
れたRNAに形成される高次構造の回避等によって、当
業者が容易に選択し得るものである。具体例として、天
然塩基配列の一例を配列表中の配列番号4、8、45、
47、74、78に示し、また、天然塩基配列の一部を
人為的に変換した例を配列表中の配列番号12、13、
14、15、16、17、18、19に示す。さらに、
かかるDNA塩基配列は自然界からクローニングしたも
のであっても、人為的に化学合成したDNAであっても
よい。
【0021】更に、かかるDNA断片は、魚の個体差や
遺伝子の多コピー化に基づく変異や各器官、組織の違い
に基づく塩基配列の置換、欠失、挿入等に由来する変異
を有するが、しかしながら変異を有するものであっても
依然としてトランスグルタミナーゼ活性を発現しうる限
り、実質的に本願発明のDNA断片と同等である。本願
発明のDNA断片にはそのような変異体も含まれる。こ
れら変異体の存在は下記の実施例中に記載した。
遺伝子の多コピー化に基づく変異や各器官、組織の違い
に基づく塩基配列の置換、欠失、挿入等に由来する変異
を有するが、しかしながら変異を有するものであっても
依然としてトランスグルタミナーゼ活性を発現しうる限
り、実質的に本願発明のDNA断片と同等である。本願
発明のDNA断片にはそのような変異体も含まれる。こ
れら変異体の存在は下記の実施例中に記載した。
【0022】本発明はまた、魚由来のトランスグルタミ
ナーゼを遺伝子組換え技術で改変した微生物により発現
させ、本酵素の供給を可能にする。この時に用いる組換
えプラスミドは、所望の発現系に応じた公知の発現ベク
ターに、魚由来のトランスグルタミナーゼをコードする
遺伝子を有するDNA断片を従来公知の方法によって、
挿入することにより調製することが可能である。大腸菌
用の発現ベクターとしては、T7gene10とリンカーペプチ
ドとの融合タンパク質を高発現する発現ベクタープラス
ミド(インビトロジェン社製:商品名Xpress SystemT
M)や、グルタチオン−S−トランスフェラーゼとの融
合タンパク質を高発現する発現ベクタープラスミド(フ
ァルマシアLKB社製:商品名pGEK系プラスミド)など
がある。より好ましい発現ベクターはpBSF2−SD
7、pT13sNcoである。一方、パン酵母での発現
ベクターとしては、ガラクトカイネースをコードする遺
伝子であるGAL1のプロモーターを外来遺伝子の発現
に利用できるpYES2(INVITROGEN社)な
どがある。
ナーゼを遺伝子組換え技術で改変した微生物により発現
させ、本酵素の供給を可能にする。この時に用いる組換
えプラスミドは、所望の発現系に応じた公知の発現ベク
ターに、魚由来のトランスグルタミナーゼをコードする
遺伝子を有するDNA断片を従来公知の方法によって、
挿入することにより調製することが可能である。大腸菌
用の発現ベクターとしては、T7gene10とリンカーペプチ
ドとの融合タンパク質を高発現する発現ベクタープラス
ミド(インビトロジェン社製:商品名Xpress SystemT
M)や、グルタチオン−S−トランスフェラーゼとの融
合タンパク質を高発現する発現ベクタープラスミド(フ
ァルマシアLKB社製:商品名pGEK系プラスミド)など
がある。より好ましい発現ベクターはpBSF2−SD
7、pT13sNcoである。一方、パン酵母での発現
ベクターとしては、ガラクトカイネースをコードする遺
伝子であるGAL1のプロモーターを外来遺伝子の発現
に利用できるpYES2(INVITROGEN社)な
どがある。
【0023】また、本発明は、トランスグルタミナーゼ
遺伝子を搭載する発現ベクターを導入することにより得
られた形質転換された種々の形質転換体に関する。形質
転換体となりうる生物には、大腸菌、枯草菌等の原核細
胞並びに酵母、カビ等の真核細胞が考えられるが、より
好ましい生物は大腸菌および酵母であり、更に好ましく
はEscherichia coliHB101株およびSaccharomyces
cerevisiae INVSC2株であ る。これら形質転換体
は、導入されたトランスグルタミナーゼ遺伝子から該酵
素を細胞内または培地中へ産生、蓄積させることを可能
にする。
遺伝子を搭載する発現ベクターを導入することにより得
られた形質転換された種々の形質転換体に関する。形質
転換体となりうる生物には、大腸菌、枯草菌等の原核細
胞並びに酵母、カビ等の真核細胞が考えられるが、より
好ましい生物は大腸菌および酵母であり、更に好ましく
はEscherichia coliHB101株およびSaccharomyces
cerevisiae INVSC2株であ る。これら形質転換体
は、導入されたトランスグルタミナーゼ遺伝子から該酵
素を細胞内または培地中へ産生、蓄積させることを可能
にする。
【0024】最後に、本発明は、上記の形質転換体を培
養することにより、トランスグルタミナーゼ活性を有す
るポリペプチドを製造する方法に関する。培養条件は、
形質転換体の種類に応じて当業者が適宜決定し得るもの
である。また、発現され細胞内に蓄積または培地中へ分
泌された該酵素は、従来公知の種々の方法で単離、精製
することが可能であるが、天然型の魚由来トランスグル
タミナーゼの精製方法と同様の手法により、遺伝子組換
え型トランスグルタミナーゼの精製もできる。また、天
然型の魚由来トランスグルタミナーゼには糖鎖が付加さ
れているという報告はないが、大腸菌を宿主として製造
した遺伝子組換え型トランスグルタミナーゼには糖鎖は
付加されず、一方、酵母を宿主とした場合には、酵母細
胞内のグリコシレーション機能に応じて、糖鎖の付与も
考えられる。
養することにより、トランスグルタミナーゼ活性を有す
るポリペプチドを製造する方法に関する。培養条件は、
形質転換体の種類に応じて当業者が適宜決定し得るもの
である。また、発現され細胞内に蓄積または培地中へ分
泌された該酵素は、従来公知の種々の方法で単離、精製
することが可能であるが、天然型の魚由来トランスグル
タミナーゼの精製方法と同様の手法により、遺伝子組換
え型トランスグルタミナーゼの精製もできる。また、天
然型の魚由来トランスグルタミナーゼには糖鎖が付加さ
れているという報告はないが、大腸菌を宿主として製造
した遺伝子組換え型トランスグルタミナーゼには糖鎖は
付加されず、一方、酵母を宿主とした場合には、酵母細
胞内のグリコシレーション機能に応じて、糖鎖の付与も
考えられる。
【0025】以下、実施例を参照しつつ、本発明を更に
詳しく説明する。
詳しく説明する。
【0026】
〔1.マダイのトランスグルタミナーゼをコードする遺
伝子を有するDNA断片〕マダイ(学名、Pagrus majo
r)の肝臓1.3gを4Mグアニジンチオシアネート、
1%β−メルカプトエタノールの溶液(20ml)中
で、ポリトロン、そしてテフロンホモジナイザーを用い
て破砕した。この細胞懸濁液に0.5%ソディウムラウ
リルザルコシネートを加え溶解させた後、この溶液を2
3ゲージの注射針に10回通すことで、染色体DNAを
細断化した。次に、この溶液を4℃下、5000rp
m、20分間遠心処理し、上清を採取した。更に常法に
従い、上清よりCsClの密度勾配遠心操作を経て、全
RNAを精製した(Sambrook et al., Molecular Cloni
ng: a laboratory manual, Cold Spring Harbor Labora
tory, Cold Spring Harbor Press (1989) 参照)。得ら
れた全RNA量は3.8mgであった。この内の1.3
mgをオリゴ(dT)ーセルロースカラムを用いたmR
NA精製キット(Clontech)にかけ、mRNA分子を精
製し、約20μgを得た。
伝子を有するDNA断片〕マダイ(学名、Pagrus majo
r)の肝臓1.3gを4Mグアニジンチオシアネート、
1%β−メルカプトエタノールの溶液(20ml)中
で、ポリトロン、そしてテフロンホモジナイザーを用い
て破砕した。この細胞懸濁液に0.5%ソディウムラウ
リルザルコシネートを加え溶解させた後、この溶液を2
3ゲージの注射針に10回通すことで、染色体DNAを
細断化した。次に、この溶液を4℃下、5000rp
m、20分間遠心処理し、上清を採取した。更に常法に
従い、上清よりCsClの密度勾配遠心操作を経て、全
RNAを精製した(Sambrook et al., Molecular Cloni
ng: a laboratory manual, Cold Spring Harbor Labora
tory, Cold Spring Harbor Press (1989) 参照)。得ら
れた全RNA量は3.8mgであった。この内の1.3
mgをオリゴ(dT)ーセルロースカラムを用いたmR
NA精製キット(Clontech)にかけ、mRNA分子を精
製し、約20μgを得た。
【0027】得られたmRNAの内、8μgをcDNA
作製のための鋳型として用いた。cDNA合成には、ラ
ンダムプライマーを用い、2本鎖cDNAを合成するY
ou−prime cDNA合成キット(Pharma
cia)を用いた。得られたcDNAはλファージベク
ターλZapII(Stratagene)の制限酵素切
断部位EcoRIに組み込んだ後、GIGAPACKII
GOLD(Stratagene)のパッケージングキ
ットを用いて、ファージタンパク質中に取り込まれた形
で、マダイのcDNAライブラリーとして作製し、取得
した。なお、本ライブラリーのタイターは1.2X10
6pfu/μgベクターであった。
作製のための鋳型として用いた。cDNA合成には、ラ
ンダムプライマーを用い、2本鎖cDNAを合成するY
ou−prime cDNA合成キット(Pharma
cia)を用いた。得られたcDNAはλファージベク
ターλZapII(Stratagene)の制限酵素切
断部位EcoRIに組み込んだ後、GIGAPACKII
GOLD(Stratagene)のパッケージングキ
ットを用いて、ファージタンパク質中に取り込まれた形
で、マダイのcDNAライブラリーとして作製し、取得
した。なお、本ライブラリーのタイターは1.2X10
6pfu/μgベクターであった。
【0028】上記のマダイcDNAライブラリーから
6.0X104pfuに相当するファージを宿主細胞X
L1-Blueに感染させた後、直径150mmの寒天
プレート4枚に、プレート当り1.5X104pfuと
なるようにまいた。これを37℃で約9.5時間培養し
た後、プレート上に形成されたファージプラークをナイ
ロンメンブラン(Amersham製Hybond−
N)に転写した。次に、転写されたナイロンメンブラン
をアルカリで処理し、DNAを変性させ、中和、洗浄し
た。その後、メンブランを80℃で3時間処理すること
でDNAをメンブラン上に固定した。
6.0X104pfuに相当するファージを宿主細胞X
L1-Blueに感染させた後、直径150mmの寒天
プレート4枚に、プレート当り1.5X104pfuと
なるようにまいた。これを37℃で約9.5時間培養し
た後、プレート上に形成されたファージプラークをナイ
ロンメンブラン(Amersham製Hybond−
N)に転写した。次に、転写されたナイロンメンブラン
をアルカリで処理し、DNAを変性させ、中和、洗浄し
た。その後、メンブランを80℃で3時間処理すること
でDNAをメンブラン上に固定した。
【0029】得られたナイロンメンブランに対して42
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのニシン精巣DNA、0.1%SD
Sからなる。また、ハイブリダイゼーションの際、DN
Aプローブとして、モルモットのトランスグルタミナー
ゼの活性中心付近の合成DNA断片(5’−GTCAA
GTACGGCCAGTGCTGGGTCTTCGC−
3’;Ikura et al., Biochemistry 27, 2898-2905 (1
988):配列番号10)を[γ-32P] ATPで末端ラベ
ルしたものを用いた。このスクリーニングにより得られ
た陽性クローンの候補株に対して、更に二次、三次スク
リーニングを行うことにより、最終的に4個の陽性クロ
ーンを取得した。
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのニシン精巣DNA、0.1%SD
Sからなる。また、ハイブリダイゼーションの際、DN
Aプローブとして、モルモットのトランスグルタミナー
ゼの活性中心付近の合成DNA断片(5’−GTCAA
GTACGGCCAGTGCTGGGTCTTCGC−
3’;Ikura et al., Biochemistry 27, 2898-2905 (1
988):配列番号10)を[γ-32P] ATPで末端ラベ
ルしたものを用いた。このスクリーニングにより得られ
た陽性クローンの候補株に対して、更に二次、三次スク
リーニングを行うことにより、最終的に4個の陽性クロ
ーンを取得した。
【0030】上記の4個の陽性クローンを保持する感染
細胞に、ヘルパーファージ(R408)を感染させるこ
とで、各陽性クローンに由来するcDNAをファージミ
ドベクターpBluescriptSK−に組み込まれ
た形態へと変換した。各 4クローンの挿入cDNAの
長さは、約0.5kbp(キロ塩基対)、1.5kb
p、2.5kbp、1.0kbpであった。そして、そ
れぞれpSLTG2,pSLTG4,pSLTG5,及
びpSLTG6と命名した。
細胞に、ヘルパーファージ(R408)を感染させるこ
とで、各陽性クローンに由来するcDNAをファージミ
ドベクターpBluescriptSK−に組み込まれ
た形態へと変換した。各 4クローンの挿入cDNAの
長さは、約0.5kbp(キロ塩基対)、1.5kb
p、2.5kbp、1.0kbpであった。そして、そ
れぞれpSLTG2,pSLTG4,pSLTG5,及
びpSLTG6と命名した。
【0031】次に、各cDNAクローンの制限酵素地図
の作成及び、pSLTG5の挿入cDNAをプローブと
したサザンブロッティング解析を行った結果、pSLT
G5(挿入cDNA長2.5kbpのもの)が、他の3
個のcDNAクローンを含んでいることが明らかになっ
たので、pSLTG5の挿入cDNAについてそのDN
A塩基配列を決定した。塩基配列の解析には、シーケネ
ースバージョン2.0(U.S.B.社)キットを用い
る従来公知の方法で行った。
の作成及び、pSLTG5の挿入cDNAをプローブと
したサザンブロッティング解析を行った結果、pSLT
G5(挿入cDNA長2.5kbpのもの)が、他の3
個のcDNAクローンを含んでいることが明らかになっ
たので、pSLTG5の挿入cDNAについてそのDN
A塩基配列を決定した。塩基配列の解析には、シーケネ
ースバージョン2.0(U.S.B.社)キットを用い
る従来公知の方法で行った。
【0032】その結果、配列表中の配列番号5に示す2
520塩基対の配列を含むDNA配列が明らかになっ
た。また、pSLTG5の制限酵素地図は図1に示し
た。この配列中には、本発明者らが用いたDNAプロー
ブと極めて高い相同性を示す部分が存在した。また、こ
の塩基配列から翻訳されるアミノ酸配列を配列表中の配
列番号2に示す。このアミノ酸配列中には、モルモット
肝臓由来のトランスグルタミナーゼやヒトの血液凝固因
子XIII中に共通して存在する8アミノ酸残基の活性中心
配列、Tyr-Gly-Gln-CysーTrp-Val-Phe-Ala(配列番号1
1)[ Nakanishi etal., Eur. J. Biochem. 202, 15-21
(1991)] が存在した。なお、以上の様にして取得した
マダイのトランスグルタミナーゼcDNAを含むDNA
プラスミドpSLTG5を保持する大腸菌株(AJ1267
3)、Escherichia coli XL1-Blue / pSLTG5 は通産省工
業技術院生命工学工業技術研究所(以下、「生命研」と
略する)菌寄第4114号(FERM BP-4114) として寄託され
ている。
520塩基対の配列を含むDNA配列が明らかになっ
た。また、pSLTG5の制限酵素地図は図1に示し
た。この配列中には、本発明者らが用いたDNAプロー
ブと極めて高い相同性を示す部分が存在した。また、こ
の塩基配列から翻訳されるアミノ酸配列を配列表中の配
列番号2に示す。このアミノ酸配列中には、モルモット
肝臓由来のトランスグルタミナーゼやヒトの血液凝固因
子XIII中に共通して存在する8アミノ酸残基の活性中心
配列、Tyr-Gly-Gln-CysーTrp-Val-Phe-Ala(配列番号1
1)[ Nakanishi etal., Eur. J. Biochem. 202, 15-21
(1991)] が存在した。なお、以上の様にして取得した
マダイのトランスグルタミナーゼcDNAを含むDNA
プラスミドpSLTG5を保持する大腸菌株(AJ1267
3)、Escherichia coli XL1-Blue / pSLTG5 は通産省工
業技術院生命工学工業技術研究所(以下、「生命研」と
略する)菌寄第4114号(FERM BP-4114) として寄託され
ている。
【0033】〔2.スケソウダラのトランスグルタミナ
ーゼをコードする遺伝子を有するDNA断片〕スケソウ
ダラ(学名、Theragra chalcogramma)の肝臓2.3g
を4Mグアニジンチオシアネート、1%β−メルカプト
エタノールの溶液(20ml)中で、ポリトロン、そし
てテフロンホモジナイザーを用いて破砕した。この細胞
懸濁液に0.5%ソディウムラウリルザルコシネートを
加え溶解させた後、この溶液を23ゲージの注射針に1
0回通すことで、染色体DNAを細断化した。次に、こ
の溶液を4℃下、10000rpm、20分間遠心処理
し、上清を採取した。更に常法に従い、上清よりCsC
lの密度勾配遠心操作を経て、全RNAを精製した(Sa
mbrook et al., Molecular Cloning: a laboratory man
ual, Cold SpringHarbor Laboratory, Cold Spring Har
bor Press (1989) 参照)。得られた全RNA量は7.
2mgであった。この内の2.3mgをオリゴ(dT)
ーセルロースカラムを用いたmRNA精製キット(Clont
ech)にかけ、mRNA分子を精製し、約23μgを得
た。
ーゼをコードする遺伝子を有するDNA断片〕スケソウ
ダラ(学名、Theragra chalcogramma)の肝臓2.3g
を4Mグアニジンチオシアネート、1%β−メルカプト
エタノールの溶液(20ml)中で、ポリトロン、そし
てテフロンホモジナイザーを用いて破砕した。この細胞
懸濁液に0.5%ソディウムラウリルザルコシネートを
加え溶解させた後、この溶液を23ゲージの注射針に1
0回通すことで、染色体DNAを細断化した。次に、こ
の溶液を4℃下、10000rpm、20分間遠心処理
し、上清を採取した。更に常法に従い、上清よりCsC
lの密度勾配遠心操作を経て、全RNAを精製した(Sa
mbrook et al., Molecular Cloning: a laboratory man
ual, Cold SpringHarbor Laboratory, Cold Spring Har
bor Press (1989) 参照)。得られた全RNA量は7.
2mgであった。この内の2.3mgをオリゴ(dT)
ーセルロースカラムを用いたmRNA精製キット(Clont
ech)にかけ、mRNA分子を精製し、約23μgを得
た。
【0034】得られたmRNAの内、4μgをcDNA
作製のための鋳型として用いた。cDNA合成には、ラ
ンダムプライマーを用い、2本鎖cDNAを合成するY
ou−prime cDNA合成キット(Pharma
cia)を用いた。得られたcDNAはλファージベク
ターλZapII(Stratagene)の制限酵素切
断部位EcoRIに組み込んだ後、GIGAPACKII
GOLD(Stratagene)のパッケージングキ
ットを用いて、ファージタンパク質中に取り込まれた形
で、スケソウダラのcDNAライブラリーとして作製
し、取得した。なお、本ライブラリーのタイターは4.
1X105pfu/μgベクターであった。
作製のための鋳型として用いた。cDNA合成には、ラ
ンダムプライマーを用い、2本鎖cDNAを合成するY
ou−prime cDNA合成キット(Pharma
cia)を用いた。得られたcDNAはλファージベク
ターλZapII(Stratagene)の制限酵素切
断部位EcoRIに組み込んだ後、GIGAPACKII
GOLD(Stratagene)のパッケージングキ
ットを用いて、ファージタンパク質中に取り込まれた形
で、スケソウダラのcDNAライブラリーとして作製
し、取得した。なお、本ライブラリーのタイターは4.
1X105pfu/μgベクターであった。
【0035】上記のスケソウダラcDNAライブラリー
から5.8X104pfuに相当するファージを宿主細
胞XL1-Blueに感染させた後、直径150mmの
寒天プレート4枚に、プレート当り1.5X104pf
uとなるようにまいた。これを37℃で約9.5時間培
養した後、プレート上に形成されたファージプラークを
ナイロンメンブラン(Amersham製Hybond
−N)に転写した。次に、転写されたナイロンメンブラ
ンをアルカリで処理し、DNAを変性させ、中和、洗浄
した。その後、メンブランを80℃で3時間処理するこ
とでDNAをメンブラン上に固定した。
から5.8X104pfuに相当するファージを宿主細
胞XL1-Blueに感染させた後、直径150mmの
寒天プレート4枚に、プレート当り1.5X104pf
uとなるようにまいた。これを37℃で約9.5時間培
養した後、プレート上に形成されたファージプラークを
ナイロンメンブラン(Amersham製Hybond
−N)に転写した。次に、転写されたナイロンメンブラ
ンをアルカリで処理し、DNAを変性させ、中和、洗浄
した。その後、メンブランを80℃で3時間処理するこ
とでDNAをメンブラン上に固定した。
【0036】得られたナイロンメンブランに対して42
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのニシン精巣DNA、0.1%SD
Sからなる。また、ハイブリダイゼーションの際、DN
Aプローブとして、配列表配列番号4記載のマダイ肝臓
トランスグルタミナーゼのcDNAのうち、制限酵素C
laIとBamHIとで切り出せる約300塩基対のD
NA断片(活性中心付近のアミノ酸配列を含む領域をコ
ードしうるDNA)を[α-32P]dCTPでランダム
ラベルしたものを用いた。このスクリーニングにより得
られた陽性クローンの候補株に対して、更に二次、三次
スクリーニングを行うことにより、最終的に8個の陽性
クローンを取得した。
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのニシン精巣DNA、0.1%SD
Sからなる。また、ハイブリダイゼーションの際、DN
Aプローブとして、配列表配列番号4記載のマダイ肝臓
トランスグルタミナーゼのcDNAのうち、制限酵素C
laIとBamHIとで切り出せる約300塩基対のD
NA断片(活性中心付近のアミノ酸配列を含む領域をコ
ードしうるDNA)を[α-32P]dCTPでランダム
ラベルしたものを用いた。このスクリーニングにより得
られた陽性クローンの候補株に対して、更に二次、三次
スクリーニングを行うことにより、最終的に8個の陽性
クローンを取得した。
【0037】上記の8個の陽性クローンを保持する感染
細胞に、ヘルパーファージ(R408)を感染させるこ
とで、各陽性クローンに由来するcDNAをファージミ
ドベクターpBluescriptSK−に組み込まれ
た形態へと変換した。各8クローンの名称を、各々、p
ALTG1,pALTG2、pALTG3,pALTG
6、pALTG7,pALTG8、pALTG9,pA
LTG10とした。このうち、pALTG1、3、6、
8、について、挿入cDNAの長さを検定し、制限酵素
地図を作成、並びに5’端及び3’端のcDNA塩基配
列の解析をすることにより、図2に示した各クローンの
相関を得た。この際、塩基配列の解析には、蛍光プライ
マー・サイクル・シーケンシング・キット(A.B.
I.社製)を用いた。
細胞に、ヘルパーファージ(R408)を感染させるこ
とで、各陽性クローンに由来するcDNAをファージミ
ドベクターpBluescriptSK−に組み込まれ
た形態へと変換した。各8クローンの名称を、各々、p
ALTG1,pALTG2、pALTG3,pALTG
6、pALTG7,pALTG8、pALTG9,pA
LTG10とした。このうち、pALTG1、3、6、
8、について、挿入cDNAの長さを検定し、制限酵素
地図を作成、並びに5’端及び3’端のcDNA塩基配
列の解析をすることにより、図2に示した各クローンの
相関を得た。この際、塩基配列の解析には、蛍光プライ
マー・サイクル・シーケンシング・キット(A.B.
I.社製)を用いた。
【0038】次に得られたcDNAの一部塩基配列を基
に合成プライマー(20塩基)を作製し、pALTG8
の挿入cDNAの全塩基配列を決定した。塩基配列の解
析には、シーケネースバージョン2.0(U.S.B.
社)キットを用いる従来公知の方法で行った。その結
果、配列表中の配列番号9に示す2921塩基対のDN
A配列が明らかになった。また、このcDNA塩基配列
から翻訳されるアミノ酸配列を配列表中の配列番号6に
示す。このアミノ酸配列中にはモルモット肝臓由来のト
ランスグルタミナーゼやヒトの血液凝固第XIII因子
に共通して存在する8アミノ酸残基の活性中心配列、T
yr−Gly−Gln−Cys−Trp−Val−Ph
e−Ala(配列番号11)が存在した。なお、以上の
ようにして取得したスケソウダラのトランスグルタミナ
ーゼcDNAを含むプラスミドpALTG8を保持する
大腸菌株(AJ 12709)、Escherichia coli XLI-Blue/pA
LTG8は生命研菌寄第4115号(FERM BP-4115)として寄託
されている。
に合成プライマー(20塩基)を作製し、pALTG8
の挿入cDNAの全塩基配列を決定した。塩基配列の解
析には、シーケネースバージョン2.0(U.S.B.
社)キットを用いる従来公知の方法で行った。その結
果、配列表中の配列番号9に示す2921塩基対のDN
A配列が明らかになった。また、このcDNA塩基配列
から翻訳されるアミノ酸配列を配列表中の配列番号6に
示す。このアミノ酸配列中にはモルモット肝臓由来のト
ランスグルタミナーゼやヒトの血液凝固第XIII因子
に共通して存在する8アミノ酸残基の活性中心配列、T
yr−Gly−Gln−Cys−Trp−Val−Ph
e−Ala(配列番号11)が存在した。なお、以上の
ようにして取得したスケソウダラのトランスグルタミナ
ーゼcDNAを含むプラスミドpALTG8を保持する
大腸菌株(AJ 12709)、Escherichia coli XLI-Blue/pA
LTG8は生命研菌寄第4115号(FERM BP-4115)として寄託
されている。
【0039】一方、スケソウダラの肝臓以外の組織中で
発現しているトランスグルタミナーゼについても検討し
た。そこで、筋肉組織からのトランスグルタミナーゼc
DNAのクローニングを行うことを試みた。
発現しているトランスグルタミナーゼについても検討し
た。そこで、筋肉組織からのトランスグルタミナーゼc
DNAのクローニングを行うことを試みた。
【0040】スケソウダラの筋肉11.5gを4Mグア
ニジンチオシアネート、1%β−メルカプトエタノール
の溶液(80ml)中で、ポリトロン、そしてテフロン
ホモジナイザーを用いて破砕した。この細胞懸濁液に
0.5%ソディウムラウリルザルコシネートを加え溶解
させた後、この溶液を23ゲージの注射針に7回、続い
て25ゲージの注射針に7回通すことで、染色体DNA
を細断化した。次に、この溶液を4℃下、10000r
pm、20分間遠心処理し、上清を採取した。更に常法
に従い、上清よりCsClの密度勾配遠心操作を経て、
全RNAを精製した(Sambrook et al., Molecular Clo
ning: a laboratory manual, Cold SpringHarbor Labor
atory, Cold Spring Harbor Press (1989) 参照)。得
られた全RNA量は2.1mgであった。この内の1.
7mgをオリゴ(dT)ーセルロースカラムを用いたm
RNA精製キット(Clontech)にかけ、mRNA分子を
精製し、約21μgを得た。
ニジンチオシアネート、1%β−メルカプトエタノール
の溶液(80ml)中で、ポリトロン、そしてテフロン
ホモジナイザーを用いて破砕した。この細胞懸濁液に
0.5%ソディウムラウリルザルコシネートを加え溶解
させた後、この溶液を23ゲージの注射針に7回、続い
て25ゲージの注射針に7回通すことで、染色体DNA
を細断化した。次に、この溶液を4℃下、10000r
pm、20分間遠心処理し、上清を採取した。更に常法
に従い、上清よりCsClの密度勾配遠心操作を経て、
全RNAを精製した(Sambrook et al., Molecular Clo
ning: a laboratory manual, Cold SpringHarbor Labor
atory, Cold Spring Harbor Press (1989) 参照)。得
られた全RNA量は2.1mgであった。この内の1.
7mgをオリゴ(dT)ーセルロースカラムを用いたm
RNA精製キット(Clontech)にかけ、mRNA分子を
精製し、約21μgを得た。
【0041】得られたmRNAの内、3.2μgをcD
NA作製のための鋳型として用いた。cDNA合成に
は、ランダムプライマーを用い、2本鎖cDNAを合成
するTimeSaver cDNA合成キット(Pha
rmacia)を用いた。
NA作製のための鋳型として用いた。cDNA合成に
は、ランダムプライマーを用い、2本鎖cDNAを合成
するTimeSaver cDNA合成キット(Pha
rmacia)を用いた。
【0042】本cDNAライブラリーを用いて、上記の
実施例の様な実験手法で、プラークハイブリダイゼーシ
ョンを行ったが、陽性cDNAクローンを取得出来なか
った。そこで、以下に記述する手法により、cDNA断
片の取得を行った。
実施例の様な実験手法で、プラークハイブリダイゼーシ
ョンを行ったが、陽性cDNAクローンを取得出来なか
った。そこで、以下に記述する手法により、cDNA断
片の取得を行った。
【0043】作製したスケソウダラ筋肉cDNA群を鋳
型に、スケソウダラ肝臓由来トランスグルタミナーゼの
遺伝子塩基配列を基に合成したオリゴヌクレオチドをプ
ライマーとして、Amplitaq DNA Poly
merase(宝酒造)を用いたPCR法(ポリメラー
ゼチェインリアクション法)にて、スケソウダラ筋肉ト
ランスグルタミナーゼのcDNA断片を特異的に遺伝子
増幅させた。
型に、スケソウダラ肝臓由来トランスグルタミナーゼの
遺伝子塩基配列を基に合成したオリゴヌクレオチドをプ
ライマーとして、Amplitaq DNA Poly
merase(宝酒造)を用いたPCR法(ポリメラー
ゼチェインリアクション法)にて、スケソウダラ筋肉ト
ランスグルタミナーゼのcDNA断片を特異的に遺伝子
増幅させた。
【0044】図10に示したが、予想されるスケソウダ
ラの筋肉由来トランスグルタミナーゼcDNA構造の
内、5’端領域(N末側コード領域)は、cDNA断片
の合成用プライマーとして、Pr.10 (配列番号65 5'-TT
GGAAGCTTGTAAGAGCAACTCTTGGAAA-3')及び Pr.970 (配
列番号66 5'-TTGTACACTCGATCGATGGAGAGGT-3')を使用し
た。PCRの後、約980bpのDNA断片が増幅できた。
次に、この断片の末端をDNA Blunting K
it(宝酒造)にて平滑化した後、pUC18ベクター
の制限酵素HincII切断部位に組み込んだ。
ラの筋肉由来トランスグルタミナーゼcDNA構造の
内、5’端領域(N末側コード領域)は、cDNA断片
の合成用プライマーとして、Pr.10 (配列番号65 5'-TT
GGAAGCTTGTAAGAGCAACTCTTGGAAA-3')及び Pr.970 (配
列番号66 5'-TTGTACACTCGATCGATGGAGAGGT-3')を使用し
た。PCRの後、約980bpのDNA断片が増幅できた。
次に、この断片の末端をDNA Blunting K
it(宝酒造)にて平滑化した後、pUC18ベクター
の制限酵素HincII切断部位に組み込んだ。
【0045】中央領域の遺伝子増幅には、合成オリゴヌ
クレオチドプライマーとして、Pr.620 (配列番号67 5'
-TCTGCTTTGGGATCCTTGACCGCT-3')及び Pr.2000 (配列
番号68 5'-TGAAGGAGAGCTCCACAGACACA-3')を用いた。こ
れらのプライマー中には制限酵素BamHI、そしてS
acIの切断認識部位を人為的に組み入れた。そこで、
PCRの後、増幅された約1.4KbpのDNA断片を調製
し、これを上記制限酵素にて切断したDNA断片をpB
luescriptIISK−の同制限酵素部位へ組み
込み、cDNAクローンを得た。
クレオチドプライマーとして、Pr.620 (配列番号67 5'
-TCTGCTTTGGGATCCTTGACCGCT-3')及び Pr.2000 (配列
番号68 5'-TGAAGGAGAGCTCCACAGACACA-3')を用いた。こ
れらのプライマー中には制限酵素BamHI、そしてS
acIの切断認識部位を人為的に組み入れた。そこで、
PCRの後、増幅された約1.4KbpのDNA断片を調製
し、これを上記制限酵素にて切断したDNA断片をpB
luescriptIISK−の同制限酵素部位へ組み
込み、cDNAクローンを得た。
【0046】更に、3’端領域(C末側コード領域)の
cDNA断片増幅には、まずPCR用プライマー Pr.10
-1F (配列番号69 5'-ATGATGTCAAAGGCTGTCAC-3')並び
に Pr.8-1R (配列番号70 5'-TCTTACCATATAAGTTGTAA-
3')で目的領域を増幅させた。しかし、これらのプライ
マーでは、目的DNA断片以外の小断片の増幅もみられ
たため、この増幅したDNA群を鋳型として同プライマ
ー Pr.10-1F と新たなプライマーである Pr.3-2F2R
(配列番号71 5'-ATTGATTAACAACAAAATGG-3')を用いて
再度遺伝子増幅を行った。その結果、約800bpのDNA
断片が増幅できた。本cDNA断片も上記のごとく両末
端を平滑化した後、pBluescriptIISK−
の制限酵素EcoRV部位に組み込んだ。
cDNA断片増幅には、まずPCR用プライマー Pr.10
-1F (配列番号69 5'-ATGATGTCAAAGGCTGTCAC-3')並び
に Pr.8-1R (配列番号70 5'-TCTTACCATATAAGTTGTAA-
3')で目的領域を増幅させた。しかし、これらのプライ
マーでは、目的DNA断片以外の小断片の増幅もみられ
たため、この増幅したDNA群を鋳型として同プライマ
ー Pr.10-1F と新たなプライマーである Pr.3-2F2R
(配列番号71 5'-ATTGATTAACAACAAAATGG-3')を用いて
再度遺伝子増幅を行った。その結果、約800bpのDNA
断片が増幅できた。本cDNA断片も上記のごとく両末
端を平滑化した後、pBluescriptIISK−
の制限酵素EcoRV部位に組み込んだ。
【0047】上記の3種類の領域を有するcDNA断片
を保持するプラスミドを大腸菌XL1−Blueにそれ
ぞれ形質転換することにより、N末端側クローンとし
て、No.N−3、N−4、N−5を、中央領域を含む
ものとして、クローンNo.SB−4、SB−5、SB
−21、SB−22、SB−30を、また、C末端側を
もつクローンとして、クローンNo.C−6、C−9、
C−13を得た。次に以上11個のDNAクローンの塩
基配列を、アプライドバイオシステムス社のTaq D
yeDeoxy Terminator Cycle
Sequencing Kitを用いた公知の方法にて
解析を行い、その結果、配列表中の配列番号51に示す
DNA配列と、配列番号8に示されているスケソウダラ
肝臓に由来するトランスグルタミナーゼcDNAと同一
の構造をもつDNA配列との2種類が明らかになった。
を保持するプラスミドを大腸菌XL1−Blueにそれ
ぞれ形質転換することにより、N末端側クローンとし
て、No.N−3、N−4、N−5を、中央領域を含む
ものとして、クローンNo.SB−4、SB−5、SB
−21、SB−22、SB−30を、また、C末端側を
もつクローンとして、クローンNo.C−6、C−9、
C−13を得た。次に以上11個のDNAクローンの塩
基配列を、アプライドバイオシステムス社のTaq D
yeDeoxy Terminator Cycle
Sequencing Kitを用いた公知の方法にて
解析を行い、その結果、配列表中の配列番号51に示す
DNA配列と、配列番号8に示されているスケソウダラ
肝臓に由来するトランスグルタミナーゼcDNAと同一
の構造をもつDNA配列との2種類が明らかになった。
【0048】以上のことから、配列番号8に示すトラン
スグルタミナーゼは、臓器の種類を越えて発現している
スケソウダラのトランスグルタミナーゼであり、また、
配列番号51に示すトランスグルタミナーゼについて
は、完全長のcDNAということでは取得できなかった
が、肝臓由来トランスグルタミナーゼと比べて、その構
造遺伝子内にわずかな塩基置換と12bpの塩基欠失、
および3bpの塩基挿入がみられるのみであり、両遺伝
子および両遺伝子産物(配列番号49、50で示される
アミノ酸配列)は極めて相同性の高いものであることが
判明した。
スグルタミナーゼは、臓器の種類を越えて発現している
スケソウダラのトランスグルタミナーゼであり、また、
配列番号51に示すトランスグルタミナーゼについて
は、完全長のcDNAということでは取得できなかった
が、肝臓由来トランスグルタミナーゼと比べて、その構
造遺伝子内にわずかな塩基置換と12bpの塩基欠失、
および3bpの塩基挿入がみられるのみであり、両遺伝
子および両遺伝子産物(配列番号49、50で示される
アミノ酸配列)は極めて相同性の高いものであることが
判明した。
【0049】なお、以上のようにして取得したスケソウ
ダラの筋肉由来トランスグルタミナーゼcDNA断片
(配列番号51)の一部を含むプラスミドN3 を保持す
る大腸菌株(AJ12790)、Escherich ia coli XLI
-Blue/N3 は生命研菌寄第4147号(FERM BP
−4147)、そしてプラスミドN5 を保持する大腸菌
株(AJ12791)、Escherich ia coli XLI-Blue/N5
は生命研菌寄第4148号(FERM BP−414
8)、プラスミドSB4 を保持する大腸菌株(AJ127
92)、Escherichia coli XLI-Blue/SB4 は生命研菌寄
第4149号(FERM BP−4149)、プラスミ
ドSB5 を保持する大腸菌株(AJ12793)、Escher
ichi a coli XLI-Blue/SB5 は生命研菌寄第4150号
(FERMBP−4150)、プラスミドSB21 を保持
する大腸菌株(AJ12794)、Escherichia coli X
LI-Blue/SB21 は生命研菌寄第4151号(FERM
BP−4151)、プラスミドSB22 を保持する大腸菌
株(AJ12795)、Escherichi a coli XLI-Blue/SB
22 は生命研菌寄第4152号(FERM BP−41
52)として寄託されている。
ダラの筋肉由来トランスグルタミナーゼcDNA断片
(配列番号51)の一部を含むプラスミドN3 を保持す
る大腸菌株(AJ12790)、Escherich ia coli XLI
-Blue/N3 は生命研菌寄第4147号(FERM BP
−4147)、そしてプラスミドN5 を保持する大腸菌
株(AJ12791)、Escherich ia coli XLI-Blue/N5
は生命研菌寄第4148号(FERM BP−414
8)、プラスミドSB4 を保持する大腸菌株(AJ127
92)、Escherichia coli XLI-Blue/SB4 は生命研菌寄
第4149号(FERM BP−4149)、プラスミ
ドSB5 を保持する大腸菌株(AJ12793)、Escher
ichi a coli XLI-Blue/SB5 は生命研菌寄第4150号
(FERMBP−4150)、プラスミドSB21 を保持
する大腸菌株(AJ12794)、Escherichia coli X
LI-Blue/SB21 は生命研菌寄第4151号(FERM
BP−4151)、プラスミドSB22 を保持する大腸菌
株(AJ12795)、Escherichi a coli XLI-Blue/SB
22 は生命研菌寄第4152号(FERM BP−41
52)として寄託されている。
【0050】〔3.マダイのトランスグルタミナーゼ遺
伝子を発現するプラスミドpIL6TG1の構築、大腸
菌への導入と生理活性発現の検定〕上記の実施例により
作製したマダイトランスグルタミナーゼ遺伝子(cDN
A)を含むプラスミドpSLTG5を、図3に示すよう
に、制限酵素XbaIとEcoRVで消化し、トランス
グルタミナーゼcDNAを含むDNA断片を得た。一
方、トリプトファンプロモーター及びtrpAターミネ
ーターを有する発現ベクターpBSF2−SD7はBa
mHIで消化し、次にクレノウ酵素でDNA切断端を平
滑化した後に、XbaIで処理を行い、トリプトファン
プロモーターを有する大きいDNA断片を得た。なお、
発現プラスミドpBSF2−SD7はBio/Technology 8
p1036-p1040 (1990) に記載のプラスミドである。
伝子を発現するプラスミドpIL6TG1の構築、大腸
菌への導入と生理活性発現の検定〕上記の実施例により
作製したマダイトランスグルタミナーゼ遺伝子(cDN
A)を含むプラスミドpSLTG5を、図3に示すよう
に、制限酵素XbaIとEcoRVで消化し、トランス
グルタミナーゼcDNAを含むDNA断片を得た。一
方、トリプトファンプロモーター及びtrpAターミネ
ーターを有する発現ベクターpBSF2−SD7はBa
mHIで消化し、次にクレノウ酵素でDNA切断端を平
滑化した後に、XbaIで処理を行い、トリプトファン
プロモーターを有する大きいDNA断片を得た。なお、
発現プラスミドpBSF2−SD7はBio/Technology 8
p1036-p1040 (1990) に記載のプラスミドである。
【0051】上記のごとく処理し、得られた2つのDN
A断片をT4DNAリガーゼにより連結し、マダイトラ
ンスグルタミナーゼcDNA発現プラスミドpIL6T
G1を得た。本pIL6TG1のDNA塩基配列を検定
したところ、BamHI切断部位の一塩基Gが欠失して
おり、従って本プラスミド中のtrpAターミネーター
上流にはEcoRV部位が存在することがわかった。p
IL6TG1は公知の方法により大腸菌HB101に導
入し、形質転換体、Escherichia coli HB101 /pIL6TG1,
(AJ12730) を作製した。なお、AJ12730は生命研菌寄第
4116号(FERMBP-4116)として寄託されている。
A断片をT4DNAリガーゼにより連結し、マダイトラ
ンスグルタミナーゼcDNA発現プラスミドpIL6T
G1を得た。本pIL6TG1のDNA塩基配列を検定
したところ、BamHI切断部位の一塩基Gが欠失して
おり、従って本プラスミド中のtrpAターミネーター
上流にはEcoRV部位が存在することがわかった。p
IL6TG1は公知の方法により大腸菌HB101に導
入し、形質転換体、Escherichia coli HB101 /pIL6TG1,
(AJ12730) を作製した。なお、AJ12730は生命研菌寄第
4116号(FERMBP-4116)として寄託されている。
【0052】取得した形質転換体のコロニーを、アンピ
シリン200μg/mlを含む寒天プレート上に塗布し、
30℃で一晩培養した後、このプレート上の菌体約2c
m2をアンピシリン200μg/mlを含むM9カザミ
ノ酸培地(Na2HPO4・12H2O 6g/l,KH2PO4 3g/l, NaCl 0.
5g/l, NH4Cl 1g/l, カサ゛ミノ酸 2g/l, L-Leu 0.2g/l, L-Pr
o 0.2g/l, Thiamin・HCl 2mg/l, MgSO4・7H2O 0.5g/l,
CaCl2・2H2O 0.015g/l,Glucose 2g/l)100mlを含
む坂口フラスコへ接種した。これを、30℃で約16時
間培養、菌体を集菌した。
シリン200μg/mlを含む寒天プレート上に塗布し、
30℃で一晩培養した後、このプレート上の菌体約2c
m2をアンピシリン200μg/mlを含むM9カザミ
ノ酸培地(Na2HPO4・12H2O 6g/l,KH2PO4 3g/l, NaCl 0.
5g/l, NH4Cl 1g/l, カサ゛ミノ酸 2g/l, L-Leu 0.2g/l, L-Pr
o 0.2g/l, Thiamin・HCl 2mg/l, MgSO4・7H2O 0.5g/l,
CaCl2・2H2O 0.015g/l,Glucose 2g/l)100mlを含
む坂口フラスコへ接種した。これを、30℃で約16時
間培養、菌体を集菌した。
【0053】集菌した菌体に、0.5M EDTA 溶液を0.3m
l、20mM Tris-HCl,30mM NaCl 混液を 30ml 添加し、
懸濁した。さらに、4mg/ml リゾチーム溶液を1ml添
加し、撹拌後、0℃にて1時間放置した。その後、菌体
懸濁液を超音波破砕し、これを遠心(8000rpmで10分
間)し、菌体破砕上清を調製した。また、同様に、トラ
ンスグルタミナーゼcDNAを有しないプラスミドを保
持する大腸菌(菌株名 E scherichia col i HB101/pBSF2-S
D7)からも、菌体破砕物の遠心上清液を調製した。
l、20mM Tris-HCl,30mM NaCl 混液を 30ml 添加し、
懸濁した。さらに、4mg/ml リゾチーム溶液を1ml添
加し、撹拌後、0℃にて1時間放置した。その後、菌体
懸濁液を超音波破砕し、これを遠心(8000rpmで10分
間)し、菌体破砕上清を調製した。また、同様に、トラ
ンスグルタミナーゼcDNAを有しないプラスミドを保
持する大腸菌(菌株名 E scherichia col i HB101/pBSF2-S
D7)からも、菌体破砕物の遠心上清液を調製した。
【0054】各々の上清液のトランスグルタミナーゼ活
性を、モノダンシルカダベリンのメチル化カゼインへの
結合による蛍光強度(350nmの励起波長光による4
80nmの蛍光強度)の変化を指標とした活性検出法に
て検定した。本活性検出法はNippon Suisan Gakkaishi
(1991年)の第57巻、ページ1203から1210に記載されてい
る方法を基に、若干の修正を加えたものである。即ち、
メチル化カゼイン1mg/ml、モノダンシルカダベリン15
μM、CaCl2 5mM, Tris-HCl(pH7.5) 50mM, DTT 3mM の組
成よりなる溶液(サンプル添加後、2.5mlになるよう
調製)に各検定サンプルを150μl添加し、撹拌後、37
℃で30分間保温した。反応後、EDTA溶液を終濃度10mM
となるように添加し、各反応溶液の蛍光強度を蛍光強度
計(島津RF−520)により測定した。
性を、モノダンシルカダベリンのメチル化カゼインへの
結合による蛍光強度(350nmの励起波長光による4
80nmの蛍光強度)の変化を指標とした活性検出法に
て検定した。本活性検出法はNippon Suisan Gakkaishi
(1991年)の第57巻、ページ1203から1210に記載されてい
る方法を基に、若干の修正を加えたものである。即ち、
メチル化カゼイン1mg/ml、モノダンシルカダベリン15
μM、CaCl2 5mM, Tris-HCl(pH7.5) 50mM, DTT 3mM の組
成よりなる溶液(サンプル添加後、2.5mlになるよう
調製)に各検定サンプルを150μl添加し、撹拌後、37
℃で30分間保温した。反応後、EDTA溶液を終濃度10mM
となるように添加し、各反応溶液の蛍光強度を蛍光強度
計(島津RF−520)により測定した。
【0055】
【表1】
【0056】その結果、表1に見られるように上記実施
例で得られたトランスグルタミナーゼcDNAを含む発
現プラスミドを保持する大腸菌の菌体抽出液には、明ら
かにトランスグルタミナーゼ活性が存在することが判明
した。このことより、我々の取得したcDNAがトラン
スグルタミナーゼをコードしうるものであることが明ら
かになった。
例で得られたトランスグルタミナーゼcDNAを含む発
現プラスミドを保持する大腸菌の菌体抽出液には、明ら
かにトランスグルタミナーゼ活性が存在することが判明
した。このことより、我々の取得したcDNAがトラン
スグルタミナーゼをコードしうるものであることが明ら
かになった。
【0057】〔4.マダイのトランスグルタミナーゼ遺
伝子を発現するプラスミドpTTG2−22の構築、大
腸菌への導入と生理活性発現の検定〕次に、更に多くの
トランスグルタミナーゼを得るために、トランスグルタ
ミナーゼ発現プラスミドの改良を行うことにした。それ
について、以下説明する。
伝子を発現するプラスミドpTTG2−22の構築、大
腸菌への導入と生理活性発現の検定〕次に、更に多くの
トランスグルタミナーゼを得るために、トランスグルタ
ミナーゼ発現プラスミドの改良を行うことにした。それ
について、以下説明する。
【0058】実施例3で得られたトランスグルタミナー
ゼ発現プラスミドpIL6TG1によるトランスグルタ
ミナーゼの発現量は少なかったため、更にpIL6TG
1よりも多くのトランスグルタミナーゼを発現しうるプ
ラスミドを構築するために、鋭意研究を行い、本トラン
スグルタミナーゼ遺伝子の翻訳効率を上げるための工夫
を施すこととした。
ゼ発現プラスミドpIL6TG1によるトランスグルタ
ミナーゼの発現量は少なかったため、更にpIL6TG
1よりも多くのトランスグルタミナーゼを発現しうるプ
ラスミドを構築するために、鋭意研究を行い、本トラン
スグルタミナーゼ遺伝子の翻訳効率を上げるための工夫
を施すこととした。
【0059】その工夫は、天然のトランスグルタミナー
ゼ遺伝子の一部のDNA塩基配列を化学合成DNAによ
り置換し、コードするアミノ酸配列は変えずに、塩基配
列を改変し、大腸菌で本トランスグルタミナーゼ遺伝子
が効率よく発現できるようデザインすることであった。
つまり、図4に示したように、本トランスグルタミナー
ゼのアミノ末端メチオニンから32番目のロイシンまで
をコードする領域(大腸菌で好まれるコドンを選択して
いる)およびその上流にコンセンサスSD(シャイン-
ダルガルノ)配列(5’−TAAGGAGGT−3’)
が存在するようにデザインした化学合成DNA断片を作
製し(配列表配列番号12〜19)、これを、天然のト
ランスグルタミナーゼ遺伝子へ組み込むことを計画し
て、以下の手順でこれを行った。
ゼ遺伝子の一部のDNA塩基配列を化学合成DNAによ
り置換し、コードするアミノ酸配列は変えずに、塩基配
列を改変し、大腸菌で本トランスグルタミナーゼ遺伝子
が効率よく発現できるようデザインすることであった。
つまり、図4に示したように、本トランスグルタミナー
ゼのアミノ末端メチオニンから32番目のロイシンまで
をコードする領域(大腸菌で好まれるコドンを選択して
いる)およびその上流にコンセンサスSD(シャイン-
ダルガルノ)配列(5’−TAAGGAGGT−3’)
が存在するようにデザインした化学合成DNA断片を作
製し(配列表配列番号12〜19)、これを、天然のト
ランスグルタミナーゼ遺伝子へ組み込むことを計画し
て、以下の手順でこれを行った。
【0060】図4に示した化学合成DNA−1を構成す
るDNAオリゴマー8本(配列表配列番号12〜19)
を、合成DNA装置(A.B.I.社製)で作製した。
これらのオリゴマーは通常の公知の方法、つまり、アニ
ーリング及びT4DNAリガーゼにより合体、連結し、
化学合成DNA−1を作製した。次に、制限酵素Eco
RI、HindIIIで消化したpUC19へ、本DN
A断片をクローニングし、pFTGN6を構築した(図
5)。また、本プラスミドを用い、DNA塩基配列検定
を行い、作製したDNAが意図した配列であることを確
認した。
るDNAオリゴマー8本(配列表配列番号12〜19)
を、合成DNA装置(A.B.I.社製)で作製した。
これらのオリゴマーは通常の公知の方法、つまり、アニ
ーリング及びT4DNAリガーゼにより合体、連結し、
化学合成DNA−1を作製した。次に、制限酵素Eco
RI、HindIIIで消化したpUC19へ、本DN
A断片をクローニングし、pFTGN6を構築した(図
5)。また、本プラスミドを用い、DNA塩基配列検定
を行い、作製したDNAが意図した配列であることを確
認した。
【0061】プラスミドpFTGN6を制限酵素Cla
I、HindIIIで消化し、更に、これを制限酵素H
aeIIで処理し、ClaI切断端とHaeII切断端
を有するDNA断片C(約110塩基対)を得た(図
6)。
I、HindIIIで消化し、更に、これを制限酵素H
aeIIで処理し、ClaI切断端とHaeII切断端
を有するDNA断片C(約110塩基対)を得た(図
6)。
【0062】一方、マダイトランスグルタミナーゼをコ
ードするcDNAを含むプラスミドpSLTG5をEc
oRI、HaeII及びNcoIで処理し、トランスグ
ルタミナーゼのcDNAの一部を有する約1.44kb
p(キロ塩基対)のDNA断片(DNA断片B)を得た
(図6)。
ードするcDNAを含むプラスミドpSLTG5をEc
oRI、HaeII及びNcoIで処理し、トランスグ
ルタミナーゼのcDNAの一部を有する約1.44kb
p(キロ塩基対)のDNA断片(DNA断片B)を得た
(図6)。
【0063】トリプトファンプロモーター及びtrpA
ターミネーターを有する発現ベクターpT13sNco
(本プラスミドは, J. Biochem. 104, 30-34 に記載さ
れている)を、NcoI、及びBamHIで消化し、ク
レノウ酵素により各々の切断端を平滑化した後、大きい
DNA断片取得した。これを更に、T4DNAリガーゼ
により自己連結することによりpTTNcoを得た。次
に、本pTTNcoをClaI,NcoIで消化後、切
断端をアルカリ性フォスファターゼにより脱燐酸化処理
し、トリプトファンプロモーター及びターミネーターを
有する大きいDNA断片(DNA断片A)を調製した
(図6)。
ターミネーターを有する発現ベクターpT13sNco
(本プラスミドは, J. Biochem. 104, 30-34 に記載さ
れている)を、NcoI、及びBamHIで消化し、ク
レノウ酵素により各々の切断端を平滑化した後、大きい
DNA断片取得した。これを更に、T4DNAリガーゼ
により自己連結することによりpTTNcoを得た。次
に、本pTTNcoをClaI,NcoIで消化後、切
断端をアルカリ性フォスファターゼにより脱燐酸化処理
し、トリプトファンプロモーター及びターミネーターを
有する大きいDNA断片(DNA断片A)を調製した
(図6)。
【0064】各々のDNA断片A,B,CをT4DNA
リガーゼにより連結することで、プラスミドpTTG1
を構築した(図7)。図7、8では以降の理解を容易に
するため、図6で「白ぬきバー」で表示されていたDN
A断片Bを「黒ぬきバー」で表示している。
リガーゼにより連結することで、プラスミドpTTG1
を構築した(図7)。図7、8では以降の理解を容易に
するため、図6で「白ぬきバー」で表示されていたDN
A断片Bを「黒ぬきバー」で表示している。
【0065】次に、構築したプラスミドpTTG1をB
amHIで処理し、クレノウ酵素により切断端を平滑化
した後、SacIで消化し、図8に示す大きいDNA断
片を得た。また、pSLTG5を制限酵素SacI及び
EcoRVで処理し、小さいDNA断片を調製した。こ
れらのDNA断片をT4DNAリガーゼにより連結する
ことで、発現プラスミドpTTG2−22を構築した
(図8)。pTTG2−22は公知の方法により大腸菌
HB101に導入し、形質転換体、Escherichiac oli HB
101 / pTTG2-22, (AJ12742) を作製した。なお、AJ1274
2は生命研菌寄第4117号(FERM BP-4117)として寄託さ
れている。
amHIで処理し、クレノウ酵素により切断端を平滑化
した後、SacIで消化し、図8に示す大きいDNA断
片を得た。また、pSLTG5を制限酵素SacI及び
EcoRVで処理し、小さいDNA断片を調製した。こ
れらのDNA断片をT4DNAリガーゼにより連結する
ことで、発現プラスミドpTTG2−22を構築した
(図8)。pTTG2−22は公知の方法により大腸菌
HB101に導入し、形質転換体、Escherichiac oli HB
101 / pTTG2-22, (AJ12742) を作製した。なお、AJ1274
2は生命研菌寄第4117号(FERM BP-4117)として寄託さ
れている。
【0066】取得した形質転換体のコロニーを、アンピ
シリン200μg/mlを含む寒天プレート上に塗布し、
30℃で一晩培養した後、このプレート上の菌体約2cm
2を上記3のM 9カザミノ酸培地(アンピシリン200
μg/mlを含む)100mlを含む坂口フラスコへ接種
した。これを、30℃で約16時間培養、菌体を集菌し
た。
シリン200μg/mlを含む寒天プレート上に塗布し、
30℃で一晩培養した後、このプレート上の菌体約2cm
2を上記3のM 9カザミノ酸培地(アンピシリン200
μg/mlを含む)100mlを含む坂口フラスコへ接種
した。これを、30℃で約16時間培養、菌体を集菌し
た。
【0067】集菌した菌体から、上記3と同様にして菌
体破砕上清を調製した。また、同様に、トランスグルタ
ミナーゼcDNAを有しないプラスミドを保持する大腸
菌(Escherichia co li HB101/pTTNco)からも、菌体破砕
物の遠心上清液を調製した。
体破砕上清を調製した。また、同様に、トランスグルタ
ミナーゼcDNAを有しないプラスミドを保持する大腸
菌(Escherichia co li HB101/pTTNco)からも、菌体破砕
物の遠心上清液を調製した。
【0068】各々の上清液(50μl)のトランスグルタミ
ナーゼ活性を上記3と同様にして、モノダンシルカダベ
リンのメチル化カゼインへの結合による蛍光強度(35
0nmの励起波長光による480nmの蛍光強度)の変
化を指標とした活性検出法にて検定した(表2)。その
結果、上記実施例で得られたトランスグルタミナーゼc
DNAを含む発現プラスミド(pTTG2-22)を保持する大腸
菌の菌体抽出液には、明らかにトランスグルタミナーゼ
活性が存在することが判明した。このことより更に、我
々の取得したcDNAがトランスグルタミナーゼをコー
ドしうるものであることが明らかになった。
ナーゼ活性を上記3と同様にして、モノダンシルカダベ
リンのメチル化カゼインへの結合による蛍光強度(35
0nmの励起波長光による480nmの蛍光強度)の変
化を指標とした活性検出法にて検定した(表2)。その
結果、上記実施例で得られたトランスグルタミナーゼc
DNAを含む発現プラスミド(pTTG2-22)を保持する大腸
菌の菌体抽出液には、明らかにトランスグルタミナーゼ
活性が存在することが判明した。このことより更に、我
々の取得したcDNAがトランスグルタミナーゼをコー
ドしうるものであることが明らかになった。
【0069】
【表2】
【0070】次に、上記菌体抽出液がスケソウダラ由来
ミオシンB溶液をゲル化しえるかどうかを検定した。基
質としてのスケソウダラ由来ミオシンB(約6mg/ml)
溶液1.0mlに対して、50mM CaCl2 を471μl添加、ある
いは無添加条件で、上記のトランスグルタミナーゼ活性
を検出した大腸菌粗抽出液を100μl添加したもの、ある
いは無添加の標品を作製し、撹拌後、室温にて約16時
間放置した。
ミオシンB溶液をゲル化しえるかどうかを検定した。基
質としてのスケソウダラ由来ミオシンB(約6mg/ml)
溶液1.0mlに対して、50mM CaCl2 を471μl添加、ある
いは無添加条件で、上記のトランスグルタミナーゼ活性
を検出した大腸菌粗抽出液を100μl添加したもの、ある
いは無添加の標品を作製し、撹拌後、室温にて約16時
間放置した。
【0071】ミオシンBのゲル化は、反応させた容器で
ある試験管を倒置し、反応内容物が落下するか、あるい
は、固まっているかで判定した。その結果、表3に示し
たように、塩化カルシウム存在下で、トランスグルタミ
ナーゼ活性を示した大腸菌抽出液を加えた標品のみゲル
化が認められ、本発明により取得したcDNAはまさ
に、トランスグルタミナーゼをコードする遺伝子である
ことが判明した。
ある試験管を倒置し、反応内容物が落下するか、あるい
は、固まっているかで判定した。その結果、表3に示し
たように、塩化カルシウム存在下で、トランスグルタミ
ナーゼ活性を示した大腸菌抽出液を加えた標品のみゲル
化が認められ、本発明により取得したcDNAはまさ
に、トランスグルタミナーゼをコードする遺伝子である
ことが判明した。
【0072】
【表3】
【0073】〔5.マダイのトランスグルタミナーゼ遺
伝子を発現するプラスミドpYSTG 1の構築、パン
酵母 Saccharomyces cerevisiae への導入と生理活性発
現の検定〕マダイトランスグルタミナーゼをコードする
cDNAを含むプラスミドpSLTG5を制限酵素Ec
oRI、XbaIで処理し、トランスグルタミナーゼの
cDNAを有する約2.5kbp(キロ塩基対)のDN
A断片を得た。
伝子を発現するプラスミドpYSTG 1の構築、パン
酵母 Saccharomyces cerevisiae への導入と生理活性発
現の検定〕マダイトランスグルタミナーゼをコードする
cDNAを含むプラスミドpSLTG5を制限酵素Ec
oRI、XbaIで処理し、トランスグルタミナーゼの
cDNAを有する約2.5kbp(キロ塩基対)のDN
A断片を得た。
【0074】一方、パン酵母での発現ベクターとして
は、ガラクトカイネースをコードする遺伝子であるGA
L1のプロモーターを外来遺伝子の発現に利用できるp
YES2(INVITROGEN社)を用いた。これを
同制限酵素EcoRI、XbaIで処理し、約5.8k
bpのDNA断片を調製した。
は、ガラクトカイネースをコードする遺伝子であるGA
L1のプロモーターを外来遺伝子の発現に利用できるp
YES2(INVITROGEN社)を用いた。これを
同制限酵素EcoRI、XbaIで処理し、約5.8k
bpのDNA断片を調製した。
【0075】上記の2つのDNA断片を常法に従い、T
4DNAリガーゼにて連結反応を行い、これを大腸菌H
B101のコンピテントセル(宝酒造製)へ常法に従い
導入した。形質転換体の選別には、抗生物質アンピシリ
ンを100μg/m lの濃度で含むL−寒天プレートを
用いた。続いて、そこに生育してきた大腸菌のコロニー
の内から6株を滅菌したつまようじにて拾い、アンピシ
リン100μg/mlを含む3mlのL−培地へそれぞ
れ植菌し、30℃にて16時間振盪培 養した。
4DNAリガーゼにて連結反応を行い、これを大腸菌H
B101のコンピテントセル(宝酒造製)へ常法に従い
導入した。形質転換体の選別には、抗生物質アンピシリ
ンを100μg/m lの濃度で含むL−寒天プレートを
用いた。続いて、そこに生育してきた大腸菌のコロニー
の内から6株を滅菌したつまようじにて拾い、アンピシ
リン100μg/mlを含む3mlのL−培地へそれぞ
れ植菌し、30℃にて16時間振盪培 養した。
【0076】各培養菌体2mlから、アルカリSDS法
に従いプラスミドDNAを調製し、制限酵素による切断
パターンをアガロースゲル電気泳動により解析したとこ
ろ、4株より得られたプラスミドが目的どおりのプラス
ミドであることが判明し、これをpYSTG1と名付け
た。さらに、本プラスミド構築の際の連結部分につい
て、DNA塩基配列の解析を行い、それらの塩基配列が
正しいことを確認した。
に従いプラスミドDNAを調製し、制限酵素による切断
パターンをアガロースゲル電気泳動により解析したとこ
ろ、4株より得られたプラスミドが目的どおりのプラス
ミドであることが判明し、これをpYSTG1と名付け
た。さらに、本プラスミド構築の際の連結部分につい
て、DNA塩基配列の解析を行い、それらの塩基配列が
正しいことを確認した。
【0077】上記のごとく構築したpYSTG1を、ア
ルカリカチオン法(Bio101社製フナコシ(株)より購入)
による酵母形質転換方法に従って、酵母Saccharomyces
cerevisiae INVSC2 株(MATα, his3-Δ200, ura3-16
7) に導入した。なお、選択プレートにはヒスチジン20
mg/lを含むYNB培地(組成は 0.67%Yeast Nitrogen
Base w/o Amino acids (Difco製), 2% ク゛ルコース, 2% 寒
天)を用いた。こうして形質転換体、Sac charomyces ce
r evisiae INVSC2 / pYSTG1, (AJ14679) を取得した。な
お、AJ14679は生命研菌寄第 BP-4085 号(FERM BP-408
5)として寄託されている。
ルカリカチオン法(Bio101社製フナコシ(株)より購入)
による酵母形質転換方法に従って、酵母Saccharomyces
cerevisiae INVSC2 株(MATα, his3-Δ200, ura3-16
7) に導入した。なお、選択プレートにはヒスチジン20
mg/lを含むYNB培地(組成は 0.67%Yeast Nitrogen
Base w/o Amino acids (Difco製), 2% ク゛ルコース, 2% 寒
天)を用いた。こうして形質転換体、Sac charomyces ce
r evisiae INVSC2 / pYSTG1, (AJ14679) を取得した。な
お、AJ14679は生命研菌寄第 BP-4085 号(FERM BP-408
5)として寄託されている。
【0078】上記のヒスチジン20mg/lを含むYNB培地
プレート上に生育させた形質転換体酵母をYPD培地
(組成は1%酵母エキス、2%バクトペプトン、2%グ
ルコース)100mlに接種し、30℃にて一昼夜振盪
培養した。その後、これを遠心集菌し、菌体を1%酵母
エキスで洗浄した後、同溶液10mlに懸濁した。続い
て、本懸濁液の半分である5mlを1%酵母エキス、2
%バクトペプトン、2%ガラクトースの組成からなる培
地95mlへ添加し、30℃にて18時間振盪培養し
た。ガラクトース含有培地で組換え体酵母を培養するこ
とで、GAL1プロモーターからの転写を誘導した。そ
して、残りの懸濁液5mlは、液体YPD培地95ml
へ同様に接種し、G AL1プロモーターからの転写を誘
導しない条件にて培養した。
プレート上に生育させた形質転換体酵母をYPD培地
(組成は1%酵母エキス、2%バクトペプトン、2%グ
ルコース)100mlに接種し、30℃にて一昼夜振盪
培養した。その後、これを遠心集菌し、菌体を1%酵母
エキスで洗浄した後、同溶液10mlに懸濁した。続い
て、本懸濁液の半分である5mlを1%酵母エキス、2
%バクトペプトン、2%ガラクトースの組成からなる培
地95mlへ添加し、30℃にて18時間振盪培養し
た。ガラクトース含有培地で組換え体酵母を培養するこ
とで、GAL1プロモーターからの転写を誘導した。そ
して、残りの懸濁液5mlは、液体YPD培地95ml
へ同様に接種し、G AL1プロモーターからの転写を誘
導しない条件にて培養した。
【0079】一方、プラスミドを有しない宿主酵母INVS
C2株も、YPD培地プレート上に生育させ、同様に液体
YPD培地100mlに接種し、30℃にて培養した。
続いて上記のごとく操作し、得られた懸濁液5ml分を
液体YPD培地95mlへ接種し、培養した。
C2株も、YPD培地プレート上に生育させ、同様に液体
YPD培地100mlに接種し、30℃にて培養した。
続いて上記のごとく操作し、得られた懸濁液5ml分を
液体YPD培地95mlへ接種し、培養した。
【0080】トランスグルタミナーゼ活性測定に供した
サンプル調製は次のように行った。培地100mlで培
養してきた酵母を遠心集菌した後、そこへ30mM塩化
ナトリウムを含む20mMトリス塩酸緩衝液(pH7.
5)を15ml加え、菌体を懸濁した。ここに、0.5
MのEDTAを0.25ml添加し撹拌後、本懸濁液に
ほぼ等容量のガラスビーズ(直径0.75mm)を加
え、4分間強く撹拌処理をした。その後、6000rp
mで10分間遠心し、不溶物を除去し、その上清をトラ
ンスグルタミナーゼ活性測定用サンプルとした。
サンプル調製は次のように行った。培地100mlで培
養してきた酵母を遠心集菌した後、そこへ30mM塩化
ナトリウムを含む20mMトリス塩酸緩衝液(pH7.
5)を15ml加え、菌体を懸濁した。ここに、0.5
MのEDTAを0.25ml添加し撹拌後、本懸濁液に
ほぼ等容量のガラスビーズ(直径0.75mm)を加
え、4分間強く撹拌処理をした。その後、6000rp
mで10分間遠心し、不溶物を除去し、その上清をトラ
ンスグルタミナーゼ活性測定用サンプルとした。
【0081】各々の菌体破砕の上清液(50μlあるい
は150μl)のトランスグルタミナーゼ活性を上記実
施例3と同様にして、モノダンシルカダベリンのジメチ
ル化カゼインへの結合による蛍光強度(350nmの励
起波長光による480nm波長光の蛍光強度)の変化を
指標とした活性検定法にて検定した(表4)。なお、プ
ラスミドを保持しない酵母INVSC2株の菌体破砕液を本活
性測定溶液に添加した時の蛍光強度値を0とした。その
結果、本発明により得られたトランスグルタミナーゼc
DNAを含む発現プラスミド(pYSTG1)を保持
し、GAL1プロモーターの転写誘導を行った酵母の菌
体破砕抽出液には、明らかにトランスグルタミナーゼ活
性が存在することが判明した。また、予め酵素反応液へ
EDTAの添加を行い、カルシウムイオンを除去した場
合には、当然ながらトランスグルタミナーゼ活性を検出
しなかった。このことより、更に我々の取得したcDN
Aがトランスグルタミナーゼをコードするものであるこ
とが明かとなった。
は150μl)のトランスグルタミナーゼ活性を上記実
施例3と同様にして、モノダンシルカダベリンのジメチ
ル化カゼインへの結合による蛍光強度(350nmの励
起波長光による480nm波長光の蛍光強度)の変化を
指標とした活性検定法にて検定した(表4)。なお、プ
ラスミドを保持しない酵母INVSC2株の菌体破砕液を本活
性測定溶液に添加した時の蛍光強度値を0とした。その
結果、本発明により得られたトランスグルタミナーゼc
DNAを含む発現プラスミド(pYSTG1)を保持
し、GAL1プロモーターの転写誘導を行った酵母の菌
体破砕抽出液には、明らかにトランスグルタミナーゼ活
性が存在することが判明した。また、予め酵素反応液へ
EDTAの添加を行い、カルシウムイオンを除去した場
合には、当然ながらトランスグルタミナーゼ活性を検出
しなかった。このことより、更に我々の取得したcDN
Aがトランスグルタミナーゼをコードするものであるこ
とが明かとなった。
【0082】
【表4】
【0083】〔6.スケソウダラのトランスグルタミナ
ーゼ遺伝子の生理活性発現検定〕スケソウダラトランス
グルタミナーゼcDNAの開始コドンと、ベクター上に
既にコードされているβーガラクトシダーゼ遺伝子の開
始コドンのフレームを一致させるために、以下の操作を
行った。上記2の実施例により作製したスケソウダラト
ランスグルタミナーゼ遺伝子(cDNA)を含むプラス
ミドpALTG8を、ベクター(pBluescrip
t(SK−))上の制限酵素XbaI及びBamHI切
断部位で切断した。次にクレノウ酵素でDNA切断端を
平滑化した後に、T4DNAリガーゼで連結することに
より、スケソウダラトランスグルタミナーゼcDNA発
現プラスミドpALTG8Eを得た。更にpALTG8
Eを公知の方法により大腸菌JM109に導入し、形質
転換体Escherichi a coli JM109 / pALTG8Eを作製した。
ーゼ遺伝子の生理活性発現検定〕スケソウダラトランス
グルタミナーゼcDNAの開始コドンと、ベクター上に
既にコードされているβーガラクトシダーゼ遺伝子の開
始コドンのフレームを一致させるために、以下の操作を
行った。上記2の実施例により作製したスケソウダラト
ランスグルタミナーゼ遺伝子(cDNA)を含むプラス
ミドpALTG8を、ベクター(pBluescrip
t(SK−))上の制限酵素XbaI及びBamHI切
断部位で切断した。次にクレノウ酵素でDNA切断端を
平滑化した後に、T4DNAリガーゼで連結することに
より、スケソウダラトランスグルタミナーゼcDNA発
現プラスミドpALTG8Eを得た。更にpALTG8
Eを公知の方法により大腸菌JM109に導入し、形質
転換体Escherichi a coli JM109 / pALTG8Eを作製した。
【0084】取得した形質転換体コロニーを、L培地
(アンピシリン50μg/mlを含む)100mlを含む坂
口フラスコに接種した。これを37℃で約5時間培養
し、OD660=0.2となったところでIPTG(イソ
プロピルチオーβーD−ガラクトシド)を終濃度10m
Mとなるように添加し、更にOD660=1.0となるま
で約2時間培養し、集菌した。
(アンピシリン50μg/mlを含む)100mlを含む坂
口フラスコに接種した。これを37℃で約5時間培養
し、OD660=0.2となったところでIPTG(イソ
プロピルチオーβーD−ガラクトシド)を終濃度10m
Mとなるように添加し、更にOD660=1.0となるま
で約2時間培養し、集菌した。
【0085】集菌した菌体から、上記3と同様にして菌
体破砕上清を調製した。また、同様に、pALTG8
(タンパク質へ翻訳する際、フレームがずれているため
トランスグルタミナーゼを発現し得ない)を保持する大
腸菌JM109を作製し(Es cherichia coli JM109 / p
ALTG8)、これからも菌体破砕物の遠心上清液を調製し
た。
体破砕上清を調製した。また、同様に、pALTG8
(タンパク質へ翻訳する際、フレームがずれているため
トランスグルタミナーゼを発現し得ない)を保持する大
腸菌JM109を作製し(Es cherichia coli JM109 / p
ALTG8)、これからも菌体破砕物の遠心上清液を調製し
た。
【0086】各々の上清液(200μl)のトランスグルタミ
ナーゼ活性を、モノダンシルカダベリンのメチル化カゼ
インへの結合による蛍光強度(350nmの励起波長光
による480nmの蛍光強度)の変化を指標とした活性
検出法にて検定した。本活性検出法は Nippon Suisan G
akkaishi (1991年)の第57巻、ページ1203から1210に記
載され ている方法を基に、若干の修正を加えたもので
ある。即ち、メチル化カゼイン1mg/ml、モノダンシル
カダベリン15μM、CaCl2 5mM, Tris-HCl(pH8.5) 50mM,
DTT 3mM の組成よりなる溶液(サンプル添加後、2.5m
lになるよう調製)に各検定サンプルを200μl添加し、
撹拌後、37℃で30分間保温した。反応後、EDTA溶液
を終濃度10mMとなるように添加し、各反応溶液の蛍光強
度を蛍光強度計(島津RF−1500)により測定し
た。(表5)。その結果、上記実施例で得られたスケソ
ウダラトランスグルタミナーゼ発現プラスミド(pALTG8
E)を保持する大腸菌の菌体抽出液には、明らかにトラン
スグルタミナーゼ活性が存在することが判明した。ま
た、予め酵素反応液にEDTAを添加し、カルシウムイ
オンを除去した場合には、当然ながらトランスグルタミ
ナーゼ活性は検出されなかった。このことより、我々の
取得したcDNAがトランスグルタミナーゼをコードし
うるものであることが明らかになった。
ナーゼ活性を、モノダンシルカダベリンのメチル化カゼ
インへの結合による蛍光強度(350nmの励起波長光
による480nmの蛍光強度)の変化を指標とした活性
検出法にて検定した。本活性検出法は Nippon Suisan G
akkaishi (1991年)の第57巻、ページ1203から1210に記
載され ている方法を基に、若干の修正を加えたもので
ある。即ち、メチル化カゼイン1mg/ml、モノダンシル
カダベリン15μM、CaCl2 5mM, Tris-HCl(pH8.5) 50mM,
DTT 3mM の組成よりなる溶液(サンプル添加後、2.5m
lになるよう調製)に各検定サンプルを200μl添加し、
撹拌後、37℃で30分間保温した。反応後、EDTA溶液
を終濃度10mMとなるように添加し、各反応溶液の蛍光強
度を蛍光強度計(島津RF−1500)により測定し
た。(表5)。その結果、上記実施例で得られたスケソ
ウダラトランスグルタミナーゼ発現プラスミド(pALTG8
E)を保持する大腸菌の菌体抽出液には、明らかにトラン
スグルタミナーゼ活性が存在することが判明した。ま
た、予め酵素反応液にEDTAを添加し、カルシウムイ
オンを除去した場合には、当然ながらトランスグルタミ
ナーゼ活性は検出されなかった。このことより、我々の
取得したcDNAがトランスグルタミナーゼをコードし
うるものであることが明らかになった。
【0087】
【表5】
【0088】〔7.ヒラメのトランスグルタミナーゼを
コードする遺伝子を有するDNA断片〕ヒラメ(学名、
Paralichthys olivaceus)の肝臓1.5gを4Mグアニ
ジンチオシアネート、1%β−メルカプトエタノールの
溶液(20ml)中で、ポリトロン、そしてテフロンホ
モジナイザーを用いて破砕した。この細胞懸濁液に0.
5%ソディウムラウリルザルコシネートを加え溶解させ
た後、この溶液を25ゲージの注射針に8回通すこと
で、染色体DNAを細断化した。次に、この溶液を4℃
下、10000rpm、20分間遠心処理し、上清を採
取した。更に常法に従い、上清よりCsClの密度勾配
遠心操作を経て、全RNAを精製した(Sambrook et a
l., Molecular Cloning: a laboratory manual, Cold S
pring HarborLaboratory, Cold Spring Harbor Press
(1989) 参照)。得られた全RNA量は4.7mgであ
った。この内の1.6mgをオリゴ(dT)ーセルロー
スカラムを用いたmRNA精製キット(Clontech)にか
け、mRNA分子を精製し、約23μgを得た。
コードする遺伝子を有するDNA断片〕ヒラメ(学名、
Paralichthys olivaceus)の肝臓1.5gを4Mグアニ
ジンチオシアネート、1%β−メルカプトエタノールの
溶液(20ml)中で、ポリトロン、そしてテフロンホ
モジナイザーを用いて破砕した。この細胞懸濁液に0.
5%ソディウムラウリルザルコシネートを加え溶解させ
た後、この溶液を25ゲージの注射針に8回通すこと
で、染色体DNAを細断化した。次に、この溶液を4℃
下、10000rpm、20分間遠心処理し、上清を採
取した。更に常法に従い、上清よりCsClの密度勾配
遠心操作を経て、全RNAを精製した(Sambrook et a
l., Molecular Cloning: a laboratory manual, Cold S
pring HarborLaboratory, Cold Spring Harbor Press
(1989) 参照)。得られた全RNA量は4.7mgであ
った。この内の1.6mgをオリゴ(dT)ーセルロー
スカラムを用いたmRNA精製キット(Clontech)にか
け、mRNA分子を精製し、約23μgを得た。
【0089】得られたmRNAの内、4.4μgをcD
NA作製のための鋳型として用いた。cDNA合成に
は、ランダムプライマーを用い、2本鎖cDNAを合成
するTimeSaver cDNA合成キット(Pha
rmacia)を用いた。得られたcDNAはλファー
ジベクターλZapII(Stratagene)の制限
酵素切断部位EcoRIに組み込んだ後、GIGAPA
CKIIGOLD(Stratagene)のパッケージ
ングキットを用いて、ファージタンパク質中に取り込ま
れた形で、ヒラメのcDNAライブラリーとして作製
し、取得した。なお、本ライブラリーのタイターは2.
0X105pfu/μgベクターであった。
NA作製のための鋳型として用いた。cDNA合成に
は、ランダムプライマーを用い、2本鎖cDNAを合成
するTimeSaver cDNA合成キット(Pha
rmacia)を用いた。得られたcDNAはλファー
ジベクターλZapII(Stratagene)の制限
酵素切断部位EcoRIに組み込んだ後、GIGAPA
CKIIGOLD(Stratagene)のパッケージ
ングキットを用いて、ファージタンパク質中に取り込ま
れた形で、ヒラメのcDNAライブラリーとして作製
し、取得した。なお、本ライブラリーのタイターは2.
0X105pfu/μgベクターであった。
【0090】上記のヒラメcDNAライブラリーから
2.2X105pfuに相当す るファージを宿主細胞X
L1-Blueに感染させた後、直径150mmの寒天
プレート11枚に、プレート当り2X104pfuとな
るようにまいた。これ を37℃で約6時間培養した
後、プレート上に形成されたファージプラークをナイロ
ンメンブラン(Amersham製Hybond−N)
に転写した。次に、転写されたナイロンメンブランをア
ルカリで処理し、DNAを変性させ、中和、洗浄した。
その後、メンブランを80℃で2.5時間処理すること
でDNAをメンブラン上に固定した。
2.2X105pfuに相当す るファージを宿主細胞X
L1-Blueに感染させた後、直径150mmの寒天
プレート11枚に、プレート当り2X104pfuとな
るようにまいた。これ を37℃で約6時間培養した
後、プレート上に形成されたファージプラークをナイロ
ンメンブラン(Amersham製Hybond−N)
に転写した。次に、転写されたナイロンメンブランをア
ルカリで処理し、DNAを変性させ、中和、洗浄した。
その後、メンブランを80℃で2.5時間処理すること
でDNAをメンブラン上に固定した。
【0091】得られたナイロンメンブランに対して42
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのニシン精巣DNA、0.1%SD
Sからなる。また、ハイブリダイゼーションの際、DN
Aプローブとして、配列表配列番号4記載のマダイ肝臓
トランスグルタミナーゼのcDNAのうち、制限酵素C
laIとBamHIとで切り出せる約300塩基対のD
NA断片(活性中心付近のアミノ酸配列を含む領域をコ
ードしうるDNA)を[α-32P]dCTPでランダム
ラベルしたものを用いた。このスクリーニングにより得
られた陽性クローンの候補株に対して、更に二次、三次
スクリーニングを行うことにより、最終的に10個の陽
性クローンを取得した。
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのニシン精巣DNA、0.1%SD
Sからなる。また、ハイブリダイゼーションの際、DN
Aプローブとして、配列表配列番号4記載のマダイ肝臓
トランスグルタミナーゼのcDNAのうち、制限酵素C
laIとBamHIとで切り出せる約300塩基対のD
NA断片(活性中心付近のアミノ酸配列を含む領域をコ
ードしうるDNA)を[α-32P]dCTPでランダム
ラベルしたものを用いた。このスクリーニングにより得
られた陽性クローンの候補株に対して、更に二次、三次
スクリーニングを行うことにより、最終的に10個の陽
性クローンを取得した。
【0092】上記の10個の陽性クローンを保持する感
染細胞に、ヘルパーファージ(R408)を感染させる
ことで、各陽性クローンに由来するcDNAをファージ
ミドベクターpBluescriptSK−に組み込ま
れた形態へと変換した。次に、これらのクローンの内、
5クローン(pFLTG10、12、16、17、21
とそれぞれ命名)について、挿入cDNAの長さを検定
し、制限酵素地図を作成、並びに5’端及び3’端のc
DNA塩基配列の解析をした。この際、塩基配列の解析
には、蛍光プライマー・サイクル・シーケンシング・キ
ット(A.B.I.社製)を用いた。その結果、上記の
各クローンは、トランスグルタミナーゼ遺伝子の中央部
をコードしているcDNA断片であることが判明した。
染細胞に、ヘルパーファージ(R408)を感染させる
ことで、各陽性クローンに由来するcDNAをファージ
ミドベクターpBluescriptSK−に組み込ま
れた形態へと変換した。次に、これらのクローンの内、
5クローン(pFLTG10、12、16、17、21
とそれぞれ命名)について、挿入cDNAの長さを検定
し、制限酵素地図を作成、並びに5’端及び3’端のc
DNA塩基配列の解析をした。この際、塩基配列の解析
には、蛍光プライマー・サイクル・シーケンシング・キ
ット(A.B.I.社製)を用いた。その結果、上記の
各クローンは、トランスグルタミナーゼ遺伝子の中央部
をコードしているcDNA断片であることが判明した。
【0093】そこで、上記5クローンによっては得られ
なかったトランスグルタミナーゼのC末端側をコードし
うるクローンを得るために、上記のヒラメcDNAライ
ブラリーをもう一度、下記の様にスクリーニングした。
なかったトランスグルタミナーゼのC末端側をコードし
うるクローンを得るために、上記のヒラメcDNAライ
ブラリーをもう一度、下記の様にスクリーニングした。
【0094】スクリーニングのDNAプローブとして、
今回はクローンpFLTG21より制限酵素EcoRI
で切り出せる約300塩基対のDNA断片、及びpFL
TG17より制限酵素SalI、PstIで処理して切
り出せる約500塩基対のDNA断片を[α-32P]d
CTPでランダムラベルしたものを用いた。その他の条
件は上記に記載の方法で行った。その結果、本スクリー
ニングにより陽性クローンが得られ、最終的に、2次、
3次スクリーニングにより10個の陽性クローンを得
た。
今回はクローンpFLTG21より制限酵素EcoRI
で切り出せる約300塩基対のDNA断片、及びpFL
TG17より制限酵素SalI、PstIで処理して切
り出せる約500塩基対のDNA断片を[α-32P]d
CTPでランダムラベルしたものを用いた。その他の条
件は上記に記載の方法で行った。その結果、本スクリー
ニングにより陽性クローンが得られ、最終的に、2次、
3次スクリーニングにより10個の陽性クローンを得
た。
【0095】上記の10個の陽性クローンの内、4個の
cDNAクローンについて、それらのベクターをpBl
uescriptSK−に変換し、挿入cDNAの各相
関を解析した。なお、本4クローンは、pFLTG4
4、51、55、63とした。
cDNAクローンについて、それらのベクターをpBl
uescriptSK−に変換し、挿入cDNAの各相
関を解析した。なお、本4クローンは、pFLTG4
4、51、55、63とした。
【0096】更に、トランスグルタミナーゼのN末端側
をコードしうるクローンを得るため、pFLTG12の
挿入cDNA5’端の塩基配列を基に作製した合成DN
Aプライマー(19塩基より構成され、配列は配列表配
列番号64:5’−ACACTGCCGGTCCATC
GAA−3’)を用いて、新たにヒラメのcDNAライ
ブラリーを作製した。cDNA合成の鋳型には上記記載
のmRNAサンプルを2μg使用した。なお、ここで得
られたライブラリーのタイターは1.5X104pfu
/μgベクターであった。
をコードしうるクローンを得るため、pFLTG12の
挿入cDNA5’端の塩基配列を基に作製した合成DN
Aプライマー(19塩基より構成され、配列は配列表配
列番号64:5’−ACACTGCCGGTCCATC
GAA−3’)を用いて、新たにヒラメのcDNAライ
ブラリーを作製した。cDNA合成の鋳型には上記記載
のmRNAサンプルを2μg使用した。なお、ここで得
られたライブラリーのタイターは1.5X104pfu
/μgベクターであった。
【0097】次に、上記cDNAライブラリーから6X
103pfuに相当するファージを宿主大腸菌XL1−
Blueに感染させ、上記に記載した方法で、スクリー
ニングを行った。但し、ハイブリダイゼーションの際の
プローブとしては上記のクローンpFLTG21より制
限酵素EcoRIで切り出せる約300塩基対のDNA
断片、及びpFLTG17より制限酵素SalI、Ps
tIで処理して切り出せる約500塩基対のDNA断片
を[α-32P]dCTPでランダムラベルしたものを用
いた。このスクリーニングにより得られた陽性クローン
の候補株に対して、更に2次、3次スクリーニングを行
うことにより、最終的に1個の陽性cDNAクローンを
得た。
103pfuに相当するファージを宿主大腸菌XL1−
Blueに感染させ、上記に記載した方法で、スクリー
ニングを行った。但し、ハイブリダイゼーションの際の
プローブとしては上記のクローンpFLTG21より制
限酵素EcoRIで切り出せる約300塩基対のDNA
断片、及びpFLTG17より制限酵素SalI、Ps
tIで処理して切り出せる約500塩基対のDNA断片
を[α-32P]dCTPでランダムラベルしたものを用
いた。このスクリーニングにより得られた陽性クローン
の候補株に対して、更に2次、3次スクリーニングを行
うことにより、最終的に1個の陽性cDNAクローンを
得た。
【0098】本クローンのベクターを上記の記載した方
法により、pBluescriptSK−に変換し、本
クローンをpFLTG60と命名した。次に、本クロー
ンの挿入cDNAの長さを検定し、制限酵素地図を作
成、並びに5’端及び3’端のcDNA塩基配列の解析
を行った。
法により、pBluescriptSK−に変換し、本
クローンをpFLTG60と命名した。次に、本クロー
ンの挿入cDNAの長さを検定し、制限酵素地図を作
成、並びに5’端及び3’端のcDNA塩基配列の解析
を行った。
【0099】上記のごとく取得し、解析した10個のc
DNAクローンの内、pFLTG21、55、60及び
63の挿入cDNAの全塩基配列、並びにpFLTG1
7の挿入cDNAの内制限酵素SalI切断部位から
3’端までの塩基配列解析を行った。その結果、配列表
中の配列番号45、および47に示したDNA配列が明
らかになった。この両塩基配列の違いは、1854番目
の塩基の違いである。但し、この変異により、コードさ
れるアミノ酸の変化はない。これらの塩基配列から翻訳
されるアミノ酸配列を配列表中の配列番号43、44に
示す。更にそれらの各クローン間の相互関係は図11に
示した。
DNAクローンの内、pFLTG21、55、60及び
63の挿入cDNAの全塩基配列、並びにpFLTG1
7の挿入cDNAの内制限酵素SalI切断部位から
3’端までの塩基配列解析を行った。その結果、配列表
中の配列番号45、および47に示したDNA配列が明
らかになった。この両塩基配列の違いは、1854番目
の塩基の違いである。但し、この変異により、コードさ
れるアミノ酸の変化はない。これらの塩基配列から翻訳
されるアミノ酸配列を配列表中の配列番号43、44に
示す。更にそれらの各クローン間の相互関係は図11に
示した。
【0100】なお、以上のようにして取得したヒラメ由
来トランスグルタミナーゼcDNA断片(配列番号4
5)の一部を含むプラスミドpFLTG21 を保持する大腸菌
株(AJ12798)、Escherichia coli XLI-Blue/pF
LTG21 は生命研菌寄第4154号(FERM BP−4
154)、そしてプラスミドpFLTG55 を保持する大腸菌
株(AJ12799)、Escher ichia coli XLI-Blue/pF
LTG55 は生命研菌寄第4155号(FERM BP−4
155)、プラスミドpFLTG60 を保持する大腸菌株(A
J12800)、Escherichia coli XLI-Blue/pFLTG60
は生命研菌寄第4156号(FERM BP−415
6)、プラスミドpFLTG63 を保持する大腸菌株(AJ1
2801)、Escherichia coli XLI-Blue/pFLTG63 は生
命研菌寄第4157号(FERM BP−4157)、
プラスミドpFLTG17 中cDNA断片の制限酵素SalIから
下流域のcDNAクローン断片を有するプラスミド pFL
TG17Sを保持する大腸菌株(AJ12797)、Escheri
chia coli XLI-Blue/pFLTG17SalI は生命研菌寄第41
53号(FERM BP−4153)として寄託されて
いる。また、各ヒラメ由来トランスグルタミナーゼcD
NA断片を有するプラスミドは図12に示した。
来トランスグルタミナーゼcDNA断片(配列番号4
5)の一部を含むプラスミドpFLTG21 を保持する大腸菌
株(AJ12798)、Escherichia coli XLI-Blue/pF
LTG21 は生命研菌寄第4154号(FERM BP−4
154)、そしてプラスミドpFLTG55 を保持する大腸菌
株(AJ12799)、Escher ichia coli XLI-Blue/pF
LTG55 は生命研菌寄第4155号(FERM BP−4
155)、プラスミドpFLTG60 を保持する大腸菌株(A
J12800)、Escherichia coli XLI-Blue/pFLTG60
は生命研菌寄第4156号(FERM BP−415
6)、プラスミドpFLTG63 を保持する大腸菌株(AJ1
2801)、Escherichia coli XLI-Blue/pFLTG63 は生
命研菌寄第4157号(FERM BP−4157)、
プラスミドpFLTG17 中cDNA断片の制限酵素SalIから
下流域のcDNAクローン断片を有するプラスミド pFL
TG17Sを保持する大腸菌株(AJ12797)、Escheri
chia coli XLI-Blue/pFLTG17SalI は生命研菌寄第41
53号(FERM BP−4153)として寄託されて
いる。また、各ヒラメ由来トランスグルタミナーゼcD
NA断片を有するプラスミドは図12に示した。
【0101】〔8.ヒラメのトランスグルタミナーゼ遺
伝子の生理活性発現検定〕また、上記のcDNAの内、
pFLTG17S、21、60、及びpFLTG63の
挿入cDNAを制限酵素処理、並びにT4DNAリガー
ゼ処理することにより、配列表配列番号45に示す塩基
配列を含むヒラメトランスグルタミナーゼ発現プラスミ
ドpFLTGNC13を構築した(図15)。pFLT
GNC13は公知の方法により大腸菌JM109に導入
し、形質転換体、Escherichia coliJM109 /pFLTGNC13(A
J12879)を作製した。なお、AJ12879は生命研菌寄第13
723号(FERM P−13723)として寄託され
ている。
伝子の生理活性発現検定〕また、上記のcDNAの内、
pFLTG17S、21、60、及びpFLTG63の
挿入cDNAを制限酵素処理、並びにT4DNAリガー
ゼ処理することにより、配列表配列番号45に示す塩基
配列を含むヒラメトランスグルタミナーゼ発現プラスミ
ドpFLTGNC13を構築した(図15)。pFLT
GNC13は公知の方法により大腸菌JM109に導入
し、形質転換体、Escherichia coliJM109 /pFLTGNC13(A
J12879)を作製した。なお、AJ12879は生命研菌寄第13
723号(FERM P−13723)として寄託され
ている。
【0102】取得した形質転換体コロニーを、L培地
(アンピシリン50μg/mlを含む)100mlを含む坂
口フラスコに接種した。これを37℃で約5時間培養
し、OD 660=0.2となったところでIPTG(イソ
プロピルチオーβーD−ガラクトシド)を終濃度10m
Mとなるように添加し、更にOD660=1.0となるま
で約2時間培養し、集菌した。
(アンピシリン50μg/mlを含む)100mlを含む坂
口フラスコに接種した。これを37℃で約5時間培養
し、OD 660=0.2となったところでIPTG(イソ
プロピルチオーβーD−ガラクトシド)を終濃度10m
Mとなるように添加し、更にOD660=1.0となるま
で約2時間培養し、集菌した。
【0103】集菌した菌体から、上記3と同様にして菌
体破砕上清を調製した。また、同様に、pFLTG63
(ヒラメトランスグルタミナーゼの活性中心付近をコー
ドする配列を保持していないと考えられるクローン)を
保持する大腸菌JM109を作製し(Escherichia co li
JM109 / pFLTG63)、これからも菌体破砕物の遠心上清
液を調製した。
体破砕上清を調製した。また、同様に、pFLTG63
(ヒラメトランスグルタミナーゼの活性中心付近をコー
ドする配列を保持していないと考えられるクローン)を
保持する大腸菌JM109を作製し(Escherichia co li
JM109 / pFLTG63)、これからも菌体破砕物の遠心上清
液を調製した。
【0104】各々の上清液(50μl)のトランスグルタミ
ナーゼ活性を上記6と同様にして、モノダンシルカダベ
リンのメチル化カゼインへの結合による蛍光強度(35
0nmの励起波長光による480nmの蛍光強度)の変
化を指標とした活性検出法にて検定した(表6)。その
結果、上記実施例で得られたヒラメトランスグルタミナ
ーゼ発現プラスミド(pFLTGNC13)を保持する大腸菌の菌
体抽出液には、明らかにトランスグルタミナーゼ活性が
存在することが判明した。また、予め酵素反応液にED
TAを添加し、カルシウムイオンを除去した場合には、
当然ながらトランスグルタミナーゼ活性は検出されなか
った。このことより、我々の取得したcDNAがトラン
スグルタミナーゼをコードしうるものであることが明ら
かになった。
ナーゼ活性を上記6と同様にして、モノダンシルカダベ
リンのメチル化カゼインへの結合による蛍光強度(35
0nmの励起波長光による480nmの蛍光強度)の変
化を指標とした活性検出法にて検定した(表6)。その
結果、上記実施例で得られたヒラメトランスグルタミナ
ーゼ発現プラスミド(pFLTGNC13)を保持する大腸菌の菌
体抽出液には、明らかにトランスグルタミナーゼ活性が
存在することが判明した。また、予め酵素反応液にED
TAを添加し、カルシウムイオンを除去した場合には、
当然ながらトランスグルタミナーゼ活性は検出されなか
った。このことより、我々の取得したcDNAがトラン
スグルタミナーゼをコードしうるものであることが明ら
かになった。
【0105】
【表6】
【0106】〔9.サケのトランスグルタミナーゼをコ
ードする遺伝子を有するDNA断片〕サケ(学名、Onco
rhynchus keta)の肝臓1.1gを5Mグアニジンチオ
シアネート、1%β−メルカプトエタノールの溶液(2
0ml)中で、ポリトロン、そしてテフロンホモジナイ
ザーを用いて破砕した。この細胞懸濁液に0.5%ソデ
ィウムラウリルザルコシネートを加え溶解させた後、こ
の溶液を25ゲージの注射針に8回通すことで、染色体
DNAを細断化した。次に、この溶液を4℃下、100
00rpm、20分間遠心処理し、上清を採取した。更
に常法に従い、上清よりCsClの密度勾配遠心操作を
経て、全RNAを精製した(Sambrook et al., Molecul
ar Cloning: a laboratory manual, Cold Spring Harbo
r Laboratory, Cold Spring Harbor Press (1989) 参
照)。得られた全RNA量は4.7mgであった。この
内の2.1mgをオリゴ(dT)ーセルロースカラムを
用いたmRNA精製キット(Clontech)にかけ、mRN
A分子を精製し、約35μgを得た。
ードする遺伝子を有するDNA断片〕サケ(学名、Onco
rhynchus keta)の肝臓1.1gを5Mグアニジンチオ
シアネート、1%β−メルカプトエタノールの溶液(2
0ml)中で、ポリトロン、そしてテフロンホモジナイ
ザーを用いて破砕した。この細胞懸濁液に0.5%ソデ
ィウムラウリルザルコシネートを加え溶解させた後、こ
の溶液を25ゲージの注射針に8回通すことで、染色体
DNAを細断化した。次に、この溶液を4℃下、100
00rpm、20分間遠心処理し、上清を採取した。更
に常法に従い、上清よりCsClの密度勾配遠心操作を
経て、全RNAを精製した(Sambrook et al., Molecul
ar Cloning: a laboratory manual, Cold Spring Harbo
r Laboratory, Cold Spring Harbor Press (1989) 参
照)。得られた全RNA量は4.7mgであった。この
内の2.1mgをオリゴ(dT)ーセルロースカラムを
用いたmRNA精製キット(Clontech)にかけ、mRN
A分子を精製し、約35μgを得た。
【0107】得られたmRNAの内、7.2μgをcD
NA作製のための鋳型として用いた。cDNA合成に
は、ランダムプライマーを用い、2本鎖cDNAを合成
するTimeSaver cDNA合成キット(Pha
rmacia)を用いた。得られたcDNAはλファー
ジベクターλZapII(Stratagene)の制限
酵素切断部位EcoRIに組み込んだ後、GIGAPA
CKIIGOLD(Stratagene)のパッケージ
ングキットを用いて、ファージタンパク質中に取り込ま
れた形で、サケのcDNAライブラリーとして作製し、
取得した。なお、本ライブラリーのタイターは7.3X
105pfu/μgベクターであった。
NA作製のための鋳型として用いた。cDNA合成に
は、ランダムプライマーを用い、2本鎖cDNAを合成
するTimeSaver cDNA合成キット(Pha
rmacia)を用いた。得られたcDNAはλファー
ジベクターλZapII(Stratagene)の制限
酵素切断部位EcoRIに組み込んだ後、GIGAPA
CKIIGOLD(Stratagene)のパッケージ
ングキットを用いて、ファージタンパク質中に取り込ま
れた形で、サケのcDNAライブラリーとして作製し、
取得した。なお、本ライブラリーのタイターは7.3X
105pfu/μgベクターであった。
【0108】上記のサケcDNAライブラリーから1.
8X105pfuに相当す るファージを宿主細胞XL1
-Blueに感染させた後、直径150mmの寒天 プレ
ート8枚に、プレート当り約2X104pfuとなるよ
うにまいた。これ を37℃で約6時間培養した後、プ
レート上に形成されたファージプラークをナイロンメン
ブラン(Amersham製Hybond−N)に転写
した。次に、転写されたナイロンメンブランをアルカリ
で処理し、DNAを変性させ、中和、洗浄した。その
後、メンブランを80℃で2.5時間処理することでD
NAをメンブラン上に固定した。
8X105pfuに相当す るファージを宿主細胞XL1
-Blueに感染させた後、直径150mmの寒天 プレ
ート8枚に、プレート当り約2X104pfuとなるよ
うにまいた。これ を37℃で約6時間培養した後、プ
レート上に形成されたファージプラークをナイロンメン
ブラン(Amersham製Hybond−N)に転写
した。次に、転写されたナイロンメンブランをアルカリ
で処理し、DNAを変性させ、中和、洗浄した。その
後、メンブランを80℃で2.5時間処理することでD
NAをメンブラン上に固定した。
【0109】得られたナイロンメンブランに対して42
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのEsc herichia coli染色体DNA、
0.1%SDSからなる。また、ハイブリダイゼーショ
ンの際、DNAプローブとして、配列表配列番号4記載
のマダイ肝臓トランスグルタミナーゼのcDNAのう
ち、制限酵素ClaIとBamHIとで切り出せる約3
00塩基対のDNA断片(活性中心付近のアミノ酸配列
を含む領域をコードしうるDNA)を[α-32P]dC
TPでランダムラベルしたものを用いた。このスクリー
ニングにより得られた陽性クローンの候補株に対して、
更に二次、三次スクリーニングを行うことにより、最終
的に1個の陽性クローンを取得した。
℃で2時間、プレハイブリダイゼーションを行い、つい
で、42℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、6XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、5XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、20%フォルムアミ
ド、100μg/mlのEsc herichia coli染色体DNA、
0.1%SDSからなる。また、ハイブリダイゼーショ
ンの際、DNAプローブとして、配列表配列番号4記載
のマダイ肝臓トランスグルタミナーゼのcDNAのう
ち、制限酵素ClaIとBamHIとで切り出せる約3
00塩基対のDNA断片(活性中心付近のアミノ酸配列
を含む領域をコードしうるDNA)を[α-32P]dC
TPでランダムラベルしたものを用いた。このスクリー
ニングにより得られた陽性クローンの候補株に対して、
更に二次、三次スクリーニングを行うことにより、最終
的に1個の陽性クローンを取得した。
【0110】上記の1個の陽性クローンを保持する感染
細胞に、ヘルパーファージ(R408)を感染させるこ
とで、各陽性クローンに由来するcDNAをファージミ
ドベクターpBluescriptSK−に組み込まれ
た形態へと変換した。次に、このクローン(pCLTG
4と命名)について、挿入cDNA塩基配列の解析をし
た。この際、塩基配列の解析には、Taq DyeDe
oxy Terminator Cycle Sequ
encing Kit(A.B.I.社製)を用いた。
その結果、上記クローンは、トランスグルタミナーゼ遺
伝子の中央部をコードしているcDNA断片であること
が判明した。
細胞に、ヘルパーファージ(R408)を感染させるこ
とで、各陽性クローンに由来するcDNAをファージミ
ドベクターpBluescriptSK−に組み込まれ
た形態へと変換した。次に、このクローン(pCLTG
4と命名)について、挿入cDNA塩基配列の解析をし
た。この際、塩基配列の解析には、Taq DyeDe
oxy Terminator Cycle Sequ
encing Kit(A.B.I.社製)を用いた。
その結果、上記クローンは、トランスグルタミナーゼ遺
伝子の中央部をコードしているcDNA断片であること
が判明した。
【0111】そこで、上記クローンによっては得られな
かったトランスグルタミナーゼのN末端側をコードしう
るクローンを得るために、上記のサケcDNAライブラ
リーをもう一度、下記の様にスクリーニングした。
かったトランスグルタミナーゼのN末端側をコードしう
るクローンを得るために、上記のサケcDNAライブラ
リーをもう一度、下記の様にスクリーニングした。
【0112】新たにスクリーニングのプローブを得るた
めに、クローンpCLTG4の挿入cDNA配列を基に
作成した合成DNAプライマー Pr.4-1F (配列表配列番
号805'-CATGGTGAACGCTAA-3')及び、Pr.4-1R (配列表配
列番号81 5'-GAGATACAACTGCAT-3')を用いて、pCLT
G4を鋳型としてPCRを行った。得られた約1.1Kbpの
DNA断片を[αー32P]dCTPでランダムラベルし
たものをプローブとして用いた。スクリーニングの方法
は上記の方法に従ったが、プレハイブリダイゼーション
溶液の組成のうち、フォルムアミド含量を20%から10%
へと変更した。本スクリーニングの結果、最終的に1個
の陽性クローンを得た。
めに、クローンpCLTG4の挿入cDNA配列を基に
作成した合成DNAプライマー Pr.4-1F (配列表配列番
号805'-CATGGTGAACGCTAA-3')及び、Pr.4-1R (配列表配
列番号81 5'-GAGATACAACTGCAT-3')を用いて、pCLT
G4を鋳型としてPCRを行った。得られた約1.1Kbpの
DNA断片を[αー32P]dCTPでランダムラベルし
たものをプローブとして用いた。スクリーニングの方法
は上記の方法に従ったが、プレハイブリダイゼーション
溶液の組成のうち、フォルムアミド含量を20%から10%
へと変更した。本スクリーニングの結果、最終的に1個
の陽性クローンを得た。
【0113】得られた陽性クローンのベクターをヘルパ
ーファージ(ExAssist helper pha
ge)を用いてpBluescriptSK−に変換し
たものをpCLTG47と命名し、その挿入cDNAの
配列を解析したところ、pCLTG4の挿入cDNA配
列の更に5’端側約450bpが明かとなった。
ーファージ(ExAssist helper pha
ge)を用いてpBluescriptSK−に変換し
たものをpCLTG47と命名し、その挿入cDNAの
配列を解析したところ、pCLTG4の挿入cDNA配
列の更に5’端側約450bpが明かとなった。
【0114】上記クローンによっては得られなかったト
ランスグルタミナーゼの更にN末端側をコードしうるク
ローンを得るために、上記のサケcDNAライブラリー
をもう一度、下記の様にスクリーニングした。
ランスグルタミナーゼの更にN末端側をコードしうるク
ローンを得るために、上記のサケcDNAライブラリー
をもう一度、下記の様にスクリーニングした。
【0115】新たにスクリーニングのプローブを得るた
めに、クローンpCLTG47の挿入cDNA配列を基
に作成した合成DNAプライマー Pr.47-1F (配列表配
列番号82 5'-CGAGACACATCCTGGAGAGA-3')及び、Pr.47-1R
(配列表配列番号83 5'-CTGCAGGTGAATTGTCCAG-3')を用
いて、pCLTG47を鋳型としてPCRを行った。得
られた約200bpのDNA断片を[αー32P]dCTPで
ランダムラベルしたものをプローブとして用いた。スク
リーニングの方法は上記の方法に従った。プレハイブリ
ダイゼーション溶液の組成のフォルムアミド含量も20%
で行った。本スクリーニングの結果、最終的に1個の陽
性クローンを得た。
めに、クローンpCLTG47の挿入cDNA配列を基
に作成した合成DNAプライマー Pr.47-1F (配列表配
列番号82 5'-CGAGACACATCCTGGAGAGA-3')及び、Pr.47-1R
(配列表配列番号83 5'-CTGCAGGTGAATTGTCCAG-3')を用
いて、pCLTG47を鋳型としてPCRを行った。得
られた約200bpのDNA断片を[αー32P]dCTPで
ランダムラベルしたものをプローブとして用いた。スク
リーニングの方法は上記の方法に従った。プレハイブリ
ダイゼーション溶液の組成のフォルムアミド含量も20%
で行った。本スクリーニングの結果、最終的に1個の陽
性クローンを得た。
【0116】得られた陽性クローンのベクターをヘルパ
ーファージ(ExAssist helper pha
ge)を用いてpBluescriptSK−に変換し
たものをpCLTG67と命名し、その挿入cDNAの
配列を解析したところ、pCLTG47の挿入cDNA
配列の更に5’端側約300bpが明かとなった。
ーファージ(ExAssist helper pha
ge)を用いてpBluescriptSK−に変換し
たものをpCLTG67と命名し、その挿入cDNAの
配列を解析したところ、pCLTG47の挿入cDNA
配列の更に5’端側約300bpが明かとなった。
【0117】更にトランスグルタミナーゼのC末側をコ
ードしうるクローンを得るため、下記の方法によりcD
NA断片の取得を行った。
ードしうるクローンを得るため、下記の方法によりcD
NA断片の取得を行った。
【0118】上記mRNAの内、3μgを鋳型として合
成DNAプライマー Pr.2(配列表配列番号84 5'-AAGC
TCGAGTCGACATCGATTTTTTTTTTTTTTTTT-3')を用いて一本
鎖DNAを合成した。この際キットとしてTimeSa
ver cDNA合成キット(Pharmacia)を
用いた。次に合成した一本鎖DNAを鋳型として、Pr.
2及びpCLTG4の挿入cDNAの配列を基に作製し
た合成プライマー Pr.5(配列表配列番号62 5'-GGATCG
ATGCCACTGCCTATTACCCTC-3')を用いてPCRを行った。
更にこの操作で得られたDNAを鋳型として、Pr.2及
びpCLTG4の挿入配列を基に作製した合成プライマ
ー Pr.4-7F(配列表配列番号63 5'-GGCGTGTTTACTGTGG-
3')を用いて再びPCRを行った。
成DNAプライマー Pr.2(配列表配列番号84 5'-AAGC
TCGAGTCGACATCGATTTTTTTTTTTTTTTTT-3')を用いて一本
鎖DNAを合成した。この際キットとしてTimeSa
ver cDNA合成キット(Pharmacia)を
用いた。次に合成した一本鎖DNAを鋳型として、Pr.
2及びpCLTG4の挿入cDNAの配列を基に作製し
た合成プライマー Pr.5(配列表配列番号62 5'-GGATCG
ATGCCACTGCCTATTACCCTC-3')を用いてPCRを行った。
更にこの操作で得られたDNAを鋳型として、Pr.2及
びpCLTG4の挿入配列を基に作製した合成プライマ
ー Pr.4-7F(配列表配列番号63 5'-GGCGTGTTTACTGTGG-
3')を用いて再びPCRを行った。
【0119】以上の操作により得られた約300bpのcD
NA断片のDNA末端を、DNABlunting K
it(宝酒造)にて平滑化した後、pBluescri
ptIISK−のEcoRV切断部位に組み込んだ。次
にこれを大腸菌XLI−Blueに導入することによ
り、C末側クローンとして、pCLTGA3、pCLT
GA4、pCLTGC5、及びpCLTGD1を得た。
NA断片のDNA末端を、DNABlunting K
it(宝酒造)にて平滑化した後、pBluescri
ptIISK−のEcoRV切断部位に組み込んだ。次
にこれを大腸菌XLI−Blueに導入することによ
り、C末側クローンとして、pCLTGA3、pCLT
GA4、pCLTGC5、及びpCLTGD1を得た。
【0120】上記のごとく取得したクローンpCLTG
4、pCLTG47、pCLTG67、pCLTGA
3、pCLTGA4、pCLTGC5、及びpCLTG
D1の挿入cDNAの塩基配列を、Taq DyeDe
oxy TerminatorCycle Seque
ncing Kit(A.B.I.社製)を用いて解析
した結果、配列表配列番号74及び78に示した塩基配
列が明かになった。この両塩基配列の違いは、1964
番目の塩基の違いである。この塩基配列の違いは、pC
LTGA3、pCLTGA4、pCLTGC5、及びp
CLTGD1の挿入cDNAの塩基配列の違いによるも
のであり、pCLTGA4、pCLTGC5、及びpC
LTGD1から得られた配列を配列表配列番号74に、
pCLTGA3から得られた配列を配列表配列番号78
に示した。また、これらの塩基配列から翻訳されるアミ
ノ酸配列を配列表配列番号72及び76に示す。上記塩
基配列の相違によるアミノ酸配列の違いは、655番目
のアミノ酸の違いである。なお、各クローン間の相関関
係は図16に示した。
4、pCLTG47、pCLTG67、pCLTGA
3、pCLTGA4、pCLTGC5、及びpCLTG
D1の挿入cDNAの塩基配列を、Taq DyeDe
oxy TerminatorCycle Seque
ncing Kit(A.B.I.社製)を用いて解析
した結果、配列表配列番号74及び78に示した塩基配
列が明かになった。この両塩基配列の違いは、1964
番目の塩基の違いである。この塩基配列の違いは、pC
LTGA3、pCLTGA4、pCLTGC5、及びp
CLTGD1の挿入cDNAの塩基配列の違いによるも
のであり、pCLTGA4、pCLTGC5、及びpC
LTGD1から得られた配列を配列表配列番号74に、
pCLTGA3から得られた配列を配列表配列番号78
に示した。また、これらの塩基配列から翻訳されるアミ
ノ酸配列を配列表配列番号72及び76に示す。上記塩
基配列の相違によるアミノ酸配列の違いは、655番目
のアミノ酸の違いである。なお、各クローン間の相関関
係は図16に示した。
【0121】以上のようにして取得したサケ由来トラン
スグルタミナーゼcDNA断片(配列番号74、78)
の一部を含むプラスミドpCLTG4 を保持する大腸菌株
(AJ12880)、Escherichi a coli XLI-Blue/pCLT
G4 は生命研菌寄第13724号(FERM P−13
724)、そしてプラスミドpCLTG47 を保持する大腸菌
株(AJ12881)、Escherichia coli XLI-Blue/pC
LTG47 は生命研菌寄第13725号(FERM P−1
3725)、プラスミドpCLTGA3 を保持する大腸菌株
(AJ12886)、Esch erichia coli XLI-Blue/pCLT
GA3 は生命研菌寄第13726号(FERM P−13
726)、プラスミドpCLTGA4 を保持する大腸菌株(A
J12887)、Escherichia coli XLI-Blue/pCLTGA4
は生命研菌寄第13727号(FERM P−1372
7)、プラスミドpCLTG67 を保持する大腸菌株(AJ1
2890)、Escherichia coli XLI-Blue/pCLTG67 は生
命研菌寄第13728号(FERM P−13728)
として寄託されている。
スグルタミナーゼcDNA断片(配列番号74、78)
の一部を含むプラスミドpCLTG4 を保持する大腸菌株
(AJ12880)、Escherichi a coli XLI-Blue/pCLT
G4 は生命研菌寄第13724号(FERM P−13
724)、そしてプラスミドpCLTG47 を保持する大腸菌
株(AJ12881)、Escherichia coli XLI-Blue/pC
LTG47 は生命研菌寄第13725号(FERM P−1
3725)、プラスミドpCLTGA3 を保持する大腸菌株
(AJ12886)、Esch erichia coli XLI-Blue/pCLT
GA3 は生命研菌寄第13726号(FERM P−13
726)、プラスミドpCLTGA4 を保持する大腸菌株(A
J12887)、Escherichia coli XLI-Blue/pCLTGA4
は生命研菌寄第13727号(FERM P−1372
7)、プラスミドpCLTG67 を保持する大腸菌株(AJ1
2890)、Escherichia coli XLI-Blue/pCLTG67 は生
命研菌寄第13728号(FERM P−13728)
として寄託されている。
【0122】〔10.サケのトランスグルタミナーゼ遺
伝子の生理活性発現検定〕また、上記のcDNAの内、
pCLTG4、47、67、及びpCLTGA4(また
はpCLTGA3)の挿入cDNAを以下の操作により
連結し、配列表配列番号74(または78)に示す塩基
配列を含むサケトランスグルタミナーゼ発現プラスミド
pCLTGF4(またはpCLTGF3)を構築した
(図17)。
伝子の生理活性発現検定〕また、上記のcDNAの内、
pCLTG4、47、67、及びpCLTGA4(また
はpCLTGA3)の挿入cDNAを以下の操作により
連結し、配列表配列番号74(または78)に示す塩基
配列を含むサケトランスグルタミナーゼ発現プラスミド
pCLTGF4(またはpCLTGF3)を構築した
(図17)。
【0123】まず、pCLTG47の挿入配列の一部をPCR
法にて増幅した。プライマーとしてpCLTG47の挿入配列
末端付近の配列を基にして作成した合成DNA断片
(5’−AAGGTGTTGGATGCCCGTGC−
3’:配列番号89と5’−CGTCATCGTACT
TCCCGTCC−3’:配列番号90)を用いた。増
幅したDNA断片の末端をT4DNA polymerase で平
滑化し、NcoIで分解した。この結果得られる約45
0bpのDNA断片を、NcoI、EcoRVで切断し
たpCLTG4にT4 DNA Ligaseにて連結し、pCLTG47 と pCLT
G4に分かれていたトランスグルタミナーゼのコード領域
の一部つながったプラスミドpCLTG47+4aを構築した。
法にて増幅した。プライマーとしてpCLTG47の挿入配列
末端付近の配列を基にして作成した合成DNA断片
(5’−AAGGTGTTGGATGCCCGTGC−
3’:配列番号89と5’−CGTCATCGTACT
TCCCGTCC−3’:配列番号90)を用いた。増
幅したDNA断片の末端をT4DNA polymerase で平
滑化し、NcoIで分解した。この結果得られる約45
0bpのDNA断片を、NcoI、EcoRVで切断し
たpCLTG4にT4 DNA Ligaseにて連結し、pCLTG47 と pCLT
G4に分かれていたトランスグルタミナーゼのコード領域
の一部つながったプラスミドpCLTG47+4aを構築した。
【0124】次に、pCLTG47+4aをBanII,BamHIにて切断
し、切り出された約800bpのDNA断片を、同様にBanI
I,BamHIにて切断したpCLTG67にT4 DNA Ligaseで連結
し、プラスミドpCLTG-Nを構築した。
し、切り出された約800bpのDNA断片を、同様にBanI
I,BamHIにて切断したpCLTG67にT4 DNA Ligaseで連結
し、プラスミドpCLTG-Nを構築した。
【0125】続いて、pCLTGA3またはpCLTGA4の挿入配列
をPCR法にて増幅した。プライマーとしてpCLTGA3とpCLT
GA4の挿入配列の末端と、pBluescriptSK
−のマルチクローニング部位のKpnI認識配列付近の配列
を基に作製した合成DNA断片(配列表配列番号85
5’−TTACTGCAGAGGGGGCAGGTCT
GACAGC−3’と配列表配列番号86 5’−GC
GAATTGGGTACCGGGCC−3’)を用い
た。増幅したDNA断片を、プライマーに組み込んだPstI
およびKpnI認識部位にて切断した。次にこのDNA断片
を、PstI,KpnIにて切断したpBluescriptI
ISK−に連結し、プラスミドpCLTGA3'またはpCLTGA4'
を構築した。
をPCR法にて増幅した。プライマーとしてpCLTGA3とpCLT
GA4の挿入配列の末端と、pBluescriptSK
−のマルチクローニング部位のKpnI認識配列付近の配列
を基に作製した合成DNA断片(配列表配列番号85
5’−TTACTGCAGAGGGGGCAGGTCT
GACAGC−3’と配列表配列番号86 5’−GC
GAATTGGGTACCGGGCC−3’)を用い
た。増幅したDNA断片を、プライマーに組み込んだPstI
およびKpnI認識部位にて切断した。次にこのDNA断片
を、PstI,KpnIにて切断したpBluescriptI
ISK−に連結し、プラスミドpCLTGA3'またはpCLTGA4'
を構築した。
【0126】次に、pCLTG4の挿入配列をPCR法にて増幅
した。プライマーとしてpCLTG4の挿入配列末端の配列を
基に作製した合成DNA断片(配列表配列番号87 5’
−TGGGACGGGAAGTACGATGA−3’と
配列表配列番号88 5’−CACAGTAAACAC
GCCCCCTC−3’)を用いた。増幅したDNA断片
をT4 DNA polymeraseにて平滑化した後、BamHIにて切断
し、約790bpのDNA断片を得た。一方pCLTGA3’またはpCL
TGA4’をPstIにて切断し、T4 DNA polymeraseにて切断
部位を平滑化し、更にBamHIで切断した。これに上記D
NA断片をT4 DNA ligaseを用いて連結し、プラスミドp
CLTG-C3及びpCLTG-C4を構築した。
した。プライマーとしてpCLTG4の挿入配列末端の配列を
基に作製した合成DNA断片(配列表配列番号87 5’
−TGGGACGGGAAGTACGATGA−3’と
配列表配列番号88 5’−CACAGTAAACAC
GCCCCCTC−3’)を用いた。増幅したDNA断片
をT4 DNA polymeraseにて平滑化した後、BamHIにて切断
し、約790bpのDNA断片を得た。一方pCLTGA3’またはpCL
TGA4’をPstIにて切断し、T4 DNA polymeraseにて切断
部位を平滑化し、更にBamHIで切断した。これに上記D
NA断片をT4 DNA ligaseを用いて連結し、プラスミドp
CLTG-C3及びpCLTG-C4を構築した。
【0127】次に、pCLTG-C3またはpCLTG-C4をKp nIで切
断した後T4 DNA polymeraseにて切断部位を平滑化し、
更にBamHIで切断することにより約1200bpのDNA断片
を得た。一方pCLTG-NをSacIで切断し、T4 DNA polymera
seで切断部位を平滑化した後BamHIにて切断した。これ
と上記DNA断片をT4DNA Ligaseにて連結することによ
り、配列表配列番号78(pCLTG-C3由来)または配列表
配列番号74(pCLTG-C4由来)に示す塩基配列を保持す
るpCLTGF3'またはpCLTGF4'を構築した。
断した後T4 DNA polymeraseにて切断部位を平滑化し、
更にBamHIで切断することにより約1200bpのDNA断片
を得た。一方pCLTG-NをSacIで切断し、T4 DNA polymera
seで切断部位を平滑化した後BamHIにて切断した。これ
と上記DNA断片をT4DNA Ligaseにて連結することによ
り、配列表配列番号78(pCLTG-C3由来)または配列表
配列番号74(pCLTG-C4由来)に示す塩基配列を保持す
るpCLTGF3'またはpCLTGF4'を構築した。
【0128】さらに、pCLTGF3'またはpCLTGF4'をCla
I、Hinc IIにて切断し、切り出される約2300bpのDNA断
片、ベクター共にクレノウ酵素で切断部位を平滑化し
た。次に両者をT4DNA Ligaseで連結し、pCLTGF3'また
はpCLTGF4'とは逆向きに挿入配列を組み込んだプラスミ
ドpCLTGF3またはpCLTGF4を作製した(図17)。pCLTGF
3、pCLTGF4は公知の方法により大腸菌JM109に導入
し、形質転換体、Escherichia coli JM109 / pCLTGF3
(またはpCLTGF4)を得た。
I、Hinc IIにて切断し、切り出される約2300bpのDNA断
片、ベクター共にクレノウ酵素で切断部位を平滑化し
た。次に両者をT4DNA Ligaseで連結し、pCLTGF3'また
はpCLTGF4'とは逆向きに挿入配列を組み込んだプラスミ
ドpCLTGF3またはpCLTGF4を作製した(図17)。pCLTGF
3、pCLTGF4は公知の方法により大腸菌JM109に導入
し、形質転換体、Escherichia coli JM109 / pCLTGF3
(またはpCLTGF4)を得た。
【0129】取得した形質転換体コロニーを、L培地
(アンピシリン50μg/mlを含む)100mlを含む坂
口フラスコに接種した。これを37℃で約5時間培養
し、OD660=0.2となったところでIPTG(イソ
プロピルチオーβーD−ガラクトシド)を終濃度10m
Mとなるように添加し、更にOD660=1.0となるま
で約2時間培養し、集菌した。
(アンピシリン50μg/mlを含む)100mlを含む坂
口フラスコに接種した。これを37℃で約5時間培養
し、OD660=0.2となったところでIPTG(イソ
プロピルチオーβーD−ガラクトシド)を終濃度10m
Mとなるように添加し、更にOD660=1.0となるま
で約2時間培養し、集菌した。
【0130】集菌した菌体から、上記3と同様にして菌
体破砕上清を調製した。また、同様に、pCLTG67
(サケトランスグルタミナーゼの活性中心付近をコード
する配列を保持していないと考えられるクローン)を保
持する大腸菌JM109を作製し(Escherichia coli J
M109 / pCLTG67)、これからも菌体破砕物の遠心上清液
を調製した。
体破砕上清を調製した。また、同様に、pCLTG67
(サケトランスグルタミナーゼの活性中心付近をコード
する配列を保持していないと考えられるクローン)を保
持する大腸菌JM109を作製し(Escherichia coli J
M109 / pCLTG67)、これからも菌体破砕物の遠心上清液
を調製した。
【0131】各々の上清液(50μl)のトランスグルタミ
ナーゼ活性を上記6と同様にして、モノダンシルカダベ
リンのメチル化カゼインへの結合による蛍光強度(35
0nmの励起波長光による480nmの蛍光強度)の変
化を指標とした活性検出法にて検定した(表7)。その
結果、上記実施例で得られたサケトランスグルタミナー
ゼ発現プラスミド(pCLTGF1またはpCLTGF2)を保持する大
腸菌の菌体抽出液には、明らかにトランスグルタミナー
ゼ活性が存在することが判明した。また、予め酵素反応
液にEDTAを添加し、カルシウムイオンを除去した場
合には、当然ながらトランスグルタミナーゼ活性は検出
されなかった。このことより、我々の取得したcDNA
がトランスグルタミナーゼをコードしうるものであるこ
とが明らかになった。
ナーゼ活性を上記6と同様にして、モノダンシルカダベ
リンのメチル化カゼインへの結合による蛍光強度(35
0nmの励起波長光による480nmの蛍光強度)の変
化を指標とした活性検出法にて検定した(表7)。その
結果、上記実施例で得られたサケトランスグルタミナー
ゼ発現プラスミド(pCLTGF1またはpCLTGF2)を保持する大
腸菌の菌体抽出液には、明らかにトランスグルタミナー
ゼ活性が存在することが判明した。また、予め酵素反応
液にEDTAを添加し、カルシウムイオンを除去した場
合には、当然ながらトランスグルタミナーゼ活性は検出
されなかった。このことより、我々の取得したcDNA
がトランスグルタミナーゼをコードしうるものであるこ
とが明らかになった。
【0132】
【表7】
【0133】また、本発明者らは上記のマダイ、スケソ
ウダラ、ヒラメに由来するトランスグルタミナーゼcD
NAを取得し、翻訳されるアミノ酸配列を解析したとこ
ろ、魚類のトランスグルタミナーゼを構成するアミノ酸
配列間に共通したアミノ酸配列の存在を見いだした。比
較の様子を図18に示す。魚由来のトランスグルタミナ
ーゼの間でのみ保存されているアミノ酸配列が明かとな
った。これらを配列番号53、54、55、56、5
7、58、59、60、61とし、図18と配列表中に
表示した。但し、特定なアミノ酸残基でないアミノ酸は
Xaaで示した。これらの配列を有するポリペプチドは魚
由来のトランスグルタミナーゼ活性を有するものと本願
発明者らは考えている。
ウダラ、ヒラメに由来するトランスグルタミナーゼcD
NAを取得し、翻訳されるアミノ酸配列を解析したとこ
ろ、魚類のトランスグルタミナーゼを構成するアミノ酸
配列間に共通したアミノ酸配列の存在を見いだした。比
較の様子を図18に示す。魚由来のトランスグルタミナ
ーゼの間でのみ保存されているアミノ酸配列が明かとな
った。これらを配列番号53、54、55、56、5
7、58、59、60、61とし、図18と配列表中に
表示した。但し、特定なアミノ酸残基でないアミノ酸は
Xaaで示した。これらの配列を有するポリペプチドは魚
由来のトランスグルタミナーゼ活性を有するものと本願
発明者らは考えている。
【0134】〔11.取得したマダイトランスグルタミ
ナーゼcDNAと相同な遺伝子が多くの他の魚種に存在
しているかどうかの検討〕本発明者らが、上記の実施例
の如く取得したマダイに由来するトランスグルタミナー
ゼ遺伝子と非常に相同性の高い遺伝子が、他の魚種にも
存在するのかどうかについて、検討した。
ナーゼcDNAと相同な遺伝子が多くの他の魚種に存在
しているかどうかの検討〕本発明者らが、上記の実施例
の如く取得したマダイに由来するトランスグルタミナー
ゼ遺伝子と非常に相同性の高い遺伝子が、他の魚種にも
存在するのかどうかについて、検討した。
【0135】検討対象のサンプルには、アジ、ハマチ、
イワシ、カツオ、サンマ、サバ、サケの肝臓、フグの卵
巣を、また、対照サンプルとして、枯草菌の染色体を使
用した。各魚の組織約3gを細かく切断した後、氷冷し
たTN緩衝液(組成は0.1M塩化ナトリウムを含む20mMト
リス塩酸緩衝液(pH7.5))を30ml加え、テフロンホモ
ジナイザーにてすりつぶした。
イワシ、カツオ、サンマ、サバ、サケの肝臓、フグの卵
巣を、また、対照サンプルとして、枯草菌の染色体を使
用した。各魚の組織約3gを細かく切断した後、氷冷し
たTN緩衝液(組成は0.1M塩化ナトリウムを含む20mMト
リス塩酸緩衝液(pH7.5))を30ml加え、テフロンホモ
ジナイザーにてすりつぶした。
【0136】懸濁した試料を遠心チューブにいれ、冷却
遠心機にて5℃、1500rpmで5分間遠心し、沈澱画分を
得た。ここに、氷冷TNE緩衝液(組成は1mM EDTA を
含むTN緩衝液)を5ml添加し、よく懸濁した後、更
に氷冷TNE緩衝液を15ml加え、混和した。その後、
10% SDS を1ml加え室温にて30分間振とうし、次に
20mg/mlのプロテアーゼK溶液を100μl添加し、50
℃にて一晩反応させた。
遠心機にて5℃、1500rpmで5分間遠心し、沈澱画分を
得た。ここに、氷冷TNE緩衝液(組成は1mM EDTA を
含むTN緩衝液)を5ml添加し、よく懸濁した後、更
に氷冷TNE緩衝液を15ml加え、混和した。その後、
10% SDS を1ml加え室温にて30分間振とうし、次に
20mg/mlのプロテアーゼK溶液を100μl添加し、50
℃にて一晩反応させた。
【0137】反応後、各サンプルの水溶液に対して、フ
ェノール処理、フェノールクロロフォルム処理、そして
クロロフォルム処理を行い、除タンパク質操作をした。
その後、各サンプルにその1/50容量の5M塩化ナトリウム
と2.5倍容量のエタノールを加え、核酸を析出させ、回
収し、最終的に1mlのTE緩衝液(組成は1mM EDTAを
含む10mMトリス塩酸緩衝液(pH7.6))に溶解させた。
ェノール処理、フェノールクロロフォルム処理、そして
クロロフォルム処理を行い、除タンパク質操作をした。
その後、各サンプルにその1/50容量の5M塩化ナトリウム
と2.5倍容量のエタノールを加え、核酸を析出させ、回
収し、最終的に1mlのTE緩衝液(組成は1mM EDTAを
含む10mMトリス塩酸緩衝液(pH7.6))に溶解させた。
【0138】次に、各サンプルのDNA約10μgを200
ユニットの制限酵素HindIIIまたはHincII と EcoRIで消
化し、これを1%アガロースゲルを用いて、電気泳動し
た。ゲルをエチジウムブロマイドで染色し、各サンプル
の泳動DNA量がほぼ一定であることを確認した後、ゲ
ルを、0.25N 塩酸に浸し、続いて0.6M塩化ナトリウム
を含む0.4N水酸化ナトリウム溶液にて処理を行った。
その後、ゲルを1.5M 塩化ナトリウムを含む0.5Mトリス
塩酸緩衝液(pH7.5)にて中和し、10XSSC(組成は
1.5M塩化ナトリウム、0.15M クエン酸三ナトリウム)
で、ゲル中の核酸をナイロンメンブラン(GeneScreen Pl
us) に写し取った。
ユニットの制限酵素HindIIIまたはHincII と EcoRIで消
化し、これを1%アガロースゲルを用いて、電気泳動し
た。ゲルをエチジウムブロマイドで染色し、各サンプル
の泳動DNA量がほぼ一定であることを確認した後、ゲ
ルを、0.25N 塩酸に浸し、続いて0.6M塩化ナトリウム
を含む0.4N水酸化ナトリウム溶液にて処理を行った。
その後、ゲルを1.5M 塩化ナトリウムを含む0.5Mトリス
塩酸緩衝液(pH7.5)にて中和し、10XSSC(組成は
1.5M塩化ナトリウム、0.15M クエン酸三ナトリウム)
で、ゲル中の核酸をナイロンメンブラン(GeneScreen Pl
us) に写し取った。
【0139】核酸を吸着させたメンブランを、0.6M 塩
化ナトリウムを含む 0.4N 水酸化ナトリウム、続いて1.
5M 塩化ナトリウムを含む0.5M トリス塩酸緩衝液(pH7.
5)にて処理後、2XSSC溶液に浸した。その後、メン
ブランを室温にて30分間放置後80℃で2時間乾燥さ
せた。
化ナトリウムを含む 0.4N 水酸化ナトリウム、続いて1.
5M 塩化ナトリウムを含む0.5M トリス塩酸緩衝液(pH7.
5)にて処理後、2XSSC溶液に浸した。その後、メン
ブランを室温にて30分間放置後80℃で2時間乾燥さ
せた。
【0140】得られたナイロンメンブランに対して65
℃で3時間、プレハイブリダイゼーションを行い、つい
で、60℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、5XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、1XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、1%SDSからな
る。また、ハイブリダイゼーションの際の溶液組成は0.
75M塩化ナトリウム、20mMトリス塩酸(pH8.0)、0.25mM E
DTA、1% SDS、1XDenhardt's溶液、50μg/mlの大腸
菌ゲノム溶液であった。そして、下記の如く作製したD
NAプローブを、2X105 cpm/ml の濃度で用い
た。
℃で3時間、プレハイブリダイゼーションを行い、つい
で、60℃で16時間のハイブリダイゼーションを行っ
た。なお、プレハイブリダイゼーションの溶液の組成
は、5XSSC(1XSSCの組成は、0.15M NaCl, 0.
015M クエン酸ナトリウム,pH7.0)、1XDenhardt's溶液(1X
Denhardt's溶液の組成は、0.02% BSA, 0.02% Ficoll,
0.02% ポリビニルピロリドン)、1%SDSからな
る。また、ハイブリダイゼーションの際の溶液組成は0.
75M塩化ナトリウム、20mMトリス塩酸(pH8.0)、0.25mM E
DTA、1% SDS、1XDenhardt's溶液、50μg/mlの大腸
菌ゲノム溶液であった。そして、下記の如く作製したD
NAプローブを、2X105 cpm/ml の濃度で用い
た。
【0141】DNAプローブとしては、モルモットのト
ランスグルタミナーゼcDNA断片と、本発明者らが取
得したマダイのトランスグルタミナーゼcDNA断片を
それぞれ鋳型にして、ランダムプライマーにて放射能標
識したDNA断片を用いた。なお、モルモットのトラン
スグルタミナーゼcDNA断片は、それを有するプラス
ミドpKTG1(Ikuraら、Eur. J. Biochem、187巻、705-71
1、1990年に記載されている)を制限酵素StuIで処理し
て得られるトランスグルタミナーゼcDNA断片であ
る。また、マダイの場合は、取得したcDNAクローン
pSLTG5を制限酵素ApaI, SacI で切断し、得られるトラ
ンスグルタミナーゼcDNA断片を鋳型とした。
ランスグルタミナーゼcDNA断片と、本発明者らが取
得したマダイのトランスグルタミナーゼcDNA断片を
それぞれ鋳型にして、ランダムプライマーにて放射能標
識したDNA断片を用いた。なお、モルモットのトラン
スグルタミナーゼcDNA断片は、それを有するプラス
ミドpKTG1(Ikuraら、Eur. J. Biochem、187巻、705-71
1、1990年に記載されている)を制限酵素StuIで処理し
て得られるトランスグルタミナーゼcDNA断片であ
る。また、マダイの場合は、取得したcDNAクローン
pSLTG5を制限酵素ApaI, SacI で切断し、得られるトラ
ンスグルタミナーゼcDNA断片を鋳型とした。
【0142】上記の如く、ハイブリダイゼージョンを行
ったメンブランを60℃で、0.1XSSC、0.1% SDS溶
液にて洗浄し、乾燥後、オートラジオグラフィーを取っ
た。その結果、本実験条件において、モルモット由来の
DNAプローブは、全ての実験サンプルの核酸とは対合
しなかった。それに対しマダイに由来するDNAプロー
ブは、枯草菌の染色体DNAとは全く対合しなかった
が、アジ、ハマチ、サバ、カツオ、フグ由来の核酸とは
強く、そして、イワシ、サンマ、サケ由来の核酸とは弱
くではあるが、対合することが判明した。
ったメンブランを60℃で、0.1XSSC、0.1% SDS溶
液にて洗浄し、乾燥後、オートラジオグラフィーを取っ
た。その結果、本実験条件において、モルモット由来の
DNAプローブは、全ての実験サンプルの核酸とは対合
しなかった。それに対しマダイに由来するDNAプロー
ブは、枯草菌の染色体DNAとは全く対合しなかった
が、アジ、ハマチ、サバ、カツオ、フグ由来の核酸とは
強く、そして、イワシ、サンマ、サケ由来の核酸とは弱
くではあるが、対合することが判明した。
【0143】以上の事実により、本発明者らが取得した
トランスグルタミナーゼ遺伝子と相同性の高い遺伝子
が、他の魚種においても存在していることが示されたと
同時に、本取得トランスグルタミナーゼをDNAプロー
ブとすることで、極めて容易に、マダイ、スケソウダ
ラ、ヒラメ以外の魚種においても、トランスグルタミナ
ーゼ遺伝子の取得ができることを初めて示すことができ
た。
トランスグルタミナーゼ遺伝子と相同性の高い遺伝子
が、他の魚種においても存在していることが示されたと
同時に、本取得トランスグルタミナーゼをDNAプロー
ブとすることで、極めて容易に、マダイ、スケソウダ
ラ、ヒラメ以外の魚種においても、トランスグルタミナ
ーゼ遺伝子の取得ができることを初めて示すことができ
た。
【0144】〔12.スケソウダラ肝臓のトランスグル
タミナーゼの部分アミノ酸配列解析〕上記の如く取得で
きたスケソウダラ由来トランスグルタミナーゼ遺伝子
が、実際に発現しているトランスグルタミナーゼ酵素を
発現しうるものであることを示す為に、本酵素を精製、
純化し、その構造を明らかにすることを行った。なお、
トランスグルタミナーゼ活性は、モノダンシルカダベリ
ンのジメチル化カゼインへの結合による蛍光強度変化を
指標とした、上記に記載の活性検出法を基に検定した。
タミナーゼの部分アミノ酸配列解析〕上記の如く取得で
きたスケソウダラ由来トランスグルタミナーゼ遺伝子
が、実際に発現しているトランスグルタミナーゼ酵素を
発現しうるものであることを示す為に、本酵素を精製、
純化し、その構造を明らかにすることを行った。なお、
トランスグルタミナーゼ活性は、モノダンシルカダベリ
ンのジメチル化カゼインへの結合による蛍光強度変化を
指標とした、上記に記載の活性検出法を基に検定した。
【0145】スケソウダラ肝臓15gに10mM NaCl, 5mM ED
TA, 2mM ジチオスレイトールを含む20mM トリス塩酸緩
衝液(pH8.3)30mlを加え、ホモジナイザーにより破
砕した。この破砕液を4℃において3,000rpm、10分の遠
心分離(日立製 Himac CR 20B2、ローター RPR20-2)を行っ
た。次いで上清をさらに4℃において37,000rpm、1時間
遠心分離(日立製 70P-72、ローター RP-70T)を行い、上清
を0.45μmのフィルター(GL サイエンス製 GLクロマトテ゛ィスク)に
かけ粗抽出液24mlを得た。
TA, 2mM ジチオスレイトールを含む20mM トリス塩酸緩
衝液(pH8.3)30mlを加え、ホモジナイザーにより破
砕した。この破砕液を4℃において3,000rpm、10分の遠
心分離(日立製 Himac CR 20B2、ローター RPR20-2)を行っ
た。次いで上清をさらに4℃において37,000rpm、1時間
遠心分離(日立製 70P-72、ローター RP-70T)を行い、上清
を0.45μmのフィルター(GL サイエンス製 GLクロマトテ゛ィスク)に
かけ粗抽出液24mlを得た。
【0146】本溶液のタンパク質濃度を、BioRad社製の
プロテインアッセイキットにて測定したところ、約8.6m
g/mlであった。また、本粗抽出液の5μlを用いてトラ
ンスグルタミナーゼ活性を調べたところ、全活性849ユ
ニットであり、従って、比活性は4.10ユニット/mgタン
パク質であった。
プロテインアッセイキットにて測定したところ、約8.6m
g/mlであった。また、本粗抽出液の5μlを用いてトラ
ンスグルタミナーゼ活性を調べたところ、全活性849ユ
ニットであり、従って、比活性は4.10ユニット/mgタン
パク質であった。
【0147】次に粗抽出液を同緩衝液で平衡化したQ-セ
ファロース充填カラム(ファルマシア製 φ1.6cm x 10c
m)に通液したところ、トランスグルタミナーゼは吸着
された。NaCl濃度勾配によりトランスグルタミナーゼの
溶出を試みたところ、NaCl濃度約100mMで溶出された。
得られたトランスグルタミナーゼ活性画分(10ml)を
同緩衝液に一晩透析し、再度Q-セファロース充填カラム
に通液し、同一条件で溶出させトランスグルタミナーゼ
活性画分(9.5ml)を得た。
ファロース充填カラム(ファルマシア製 φ1.6cm x 10c
m)に通液したところ、トランスグルタミナーゼは吸着
された。NaCl濃度勾配によりトランスグルタミナーゼの
溶出を試みたところ、NaCl濃度約100mMで溶出された。
得られたトランスグルタミナーゼ活性画分(10ml)を
同緩衝液に一晩透析し、再度Q-セファロース充填カラム
に通液し、同一条件で溶出させトランスグルタミナーゼ
活性画分(9.5ml)を得た。
【0148】本活性画分のタンパク質濃度は約0.73mg/
mlであった。またトランスグルタミナーゼの全活性は
249ユニットであり、比活性は36.1ユニット/mgタンパク
質であった。
mlであった。またトランスグルタミナーゼの全活性は
249ユニットであり、比活性は36.1ユニット/mgタンパク
質であった。
【0149】次に得られた活性画分を50mM NaCl, 2mM E
DTA, 0.5mM ジチオスレイトールを含む酢酸ナトリウム
(pH6.45)に一晩透析し、同緩衝液で平衡化したS-セフ
ァロース充填カラム(ファルマシア製 φ1.6cm x 10c
m)に通液したところ、トランスグルタミナーゼは吸着
された。NaCl濃度勾配によりトランスグルタミナーゼ
は、NaCl濃度約200mMで溶出(6.0ml)した。
DTA, 0.5mM ジチオスレイトールを含む酢酸ナトリウム
(pH6.45)に一晩透析し、同緩衝液で平衡化したS-セフ
ァロース充填カラム(ファルマシア製 φ1.6cm x 10c
m)に通液したところ、トランスグルタミナーゼは吸着
された。NaCl濃度勾配によりトランスグルタミナーゼ
は、NaCl濃度約200mMで溶出(6.0ml)した。
【0150】本活性画分のタンパク質濃度は約56μg/m
lであった。また、トランスグルタミナーゼ全活性は20
1ユニットであり、比活性は591.2ユニット/mgタンパク
質であった。
lであった。また、トランスグルタミナーゼ全活性は20
1ユニットであり、比活性は591.2ユニット/mgタンパク
質であった。
【0151】この画分中には、下に記したように電気泳
動上に分子量約77,000の単一バンドを示すタンパク質の
みが存在し、ここにスケソウダラ肝臓由来のトランスグ
ルタミナーゼを精製し、取得した。得られた精製溶液の
比活性は、粗抽出液の143倍であり、回収率は23.7%で
あった。
動上に分子量約77,000の単一バンドを示すタンパク質の
みが存在し、ここにスケソウダラ肝臓由来のトランスグ
ルタミナーゼを精製し、取得した。得られた精製溶液の
比活性は、粗抽出液の143倍であり、回収率は23.7%で
あった。
【0152】a)電気泳動分析 精製トランスグルタミナーゼを30μlとり、同量の10%
メルカプトエタノール,4%SDS,20%グリセリン,0.002%
ブロムフェノールブルーを含む0.125Mトリス塩酸緩衝液
(pH6.8)を加え、沸騰浴中で1分加熱し、泳動試料とし
た。泳動試料40μlをアトー(株)製5-20%ポリアクリ
ルアミド既成ゲルに供し、0.1%SDSを含む0.025Mトリス
グリシン緩衝液で40mA、約2時間泳動を行った。泳動終
了後50%メタノール,7%酢酸を含む0.12%クマシーブリ
リアントブルー溶液で一晩染色し、50%メタノールを含
む7%酢酸溶液にて脱色を行った。その結果、分子量約7
7,000の位置に単一バンドを得た。
メルカプトエタノール,4%SDS,20%グリセリン,0.002%
ブロムフェノールブルーを含む0.125Mトリス塩酸緩衝液
(pH6.8)を加え、沸騰浴中で1分加熱し、泳動試料とし
た。泳動試料40μlをアトー(株)製5-20%ポリアクリ
ルアミド既成ゲルに供し、0.1%SDSを含む0.025Mトリス
グリシン緩衝液で40mA、約2時間泳動を行った。泳動終
了後50%メタノール,7%酢酸を含む0.12%クマシーブリ
リアントブルー溶液で一晩染色し、50%メタノールを含
む7%酢酸溶液にて脱色を行った。その結果、分子量約7
7,000の位置に単一バンドを得た。
【0153】b)スケソウダラ肝臓由来トランスグルタ
ミナーゼの部分アミノ酸配列 精製したトランスグルタミナーゼ約80μgを含むS-セフ
ァロース画分約4mlを透析チューブに入れ、0.001mM E
DTAを含む5mM トリス塩酸緩衝液(pH8.3)に対して、6
時間透析をした後、再度同溶液に12時間透析し、トラン
スグルタミナーゼ酵素標品中のアルカリ金属イオンを除
去した。これを遠心濃縮により乾固させ、蒸留水0.8m
lを加え、37℃、30分攪拌し、再溶解させた。これにト
リプシン(シグマ製 11,700ユニット/mg)を16μg添加
し、37℃で12時間反応させ、ペプチド断片へと分解し
た。反応はギ酸を1滴滴下し終了した。
ミナーゼの部分アミノ酸配列 精製したトランスグルタミナーゼ約80μgを含むS-セフ
ァロース画分約4mlを透析チューブに入れ、0.001mM E
DTAを含む5mM トリス塩酸緩衝液(pH8.3)に対して、6
時間透析をした後、再度同溶液に12時間透析し、トラン
スグルタミナーゼ酵素標品中のアルカリ金属イオンを除
去した。これを遠心濃縮により乾固させ、蒸留水0.8m
lを加え、37℃、30分攪拌し、再溶解させた。これにト
リプシン(シグマ製 11,700ユニット/mg)を16μg添加
し、37℃で12時間反応させ、ペプチド断片へと分解し
た。反応はギ酸を1滴滴下し終了した。
【0154】次に、本反応液を逆相HPLC(Inertsil Pre
p-ODS φ6.0mm x 250mm GLサイエンス製)に供し、溶媒
は0.05% TFA(トリフルオロ酢酸)として、アセトニト
リルの濃度勾配による溶出条件下にて、各ペプチド断片
を分離し、取得した。
p-ODS φ6.0mm x 250mm GLサイエンス製)に供し、溶媒
は0.05% TFA(トリフルオロ酢酸)として、アセトニト
リルの濃度勾配による溶出条件下にて、各ペプチド断片
を分離し、取得した。
【0155】取得したペプチド断片をプロテインシーク
エンサー(MilliGen Biosearch製 6400/6600)に供し、
それらのアミノ酸配列を分析したところ、次の6つの配
列が得られた。すなわち、Xaa-Ala-Gly-Gly-Ser-Gly-As
p(配列番号20)、 Trp-Trp-Leu-His-Gln-Gln-Ser
(配列番号21)、Met-Tyr-Leu-Leu-Phe-Asn-Pro(配
列番号22)、Trp-Gln-Glu-Pro-Tyr-Thr-Gly-Gly(配
列番号23)、 Phe-Asp-Val-Pro-Phe-Val-Phe-Ala-Glu
-Val-Asn-Ala-Asp(配列番号24)、Ser-Xaa-Tyr-Ser-
Asn-Gluであった(配列番号25)。但し、Xaaは未同定
アミノ酸残基を表す。
エンサー(MilliGen Biosearch製 6400/6600)に供し、
それらのアミノ酸配列を分析したところ、次の6つの配
列が得られた。すなわち、Xaa-Ala-Gly-Gly-Ser-Gly-As
p(配列番号20)、 Trp-Trp-Leu-His-Gln-Gln-Ser
(配列番号21)、Met-Tyr-Leu-Leu-Phe-Asn-Pro(配
列番号22)、Trp-Gln-Glu-Pro-Tyr-Thr-Gly-Gly(配
列番号23)、 Phe-Asp-Val-Pro-Phe-Val-Phe-Ala-Glu
-Val-Asn-Ala-Asp(配列番号24)、Ser-Xaa-Tyr-Ser-
Asn-Gluであった(配列番号25)。但し、Xaaは未同定
アミノ酸残基を表す。
【0156】以上の6つのアミノ酸配列は、既に本発明
者らが取得したcDNAの塩基配列から予測されるアミ
ノ酸配列(配列番号6、7)の一部と完全に一致してお
り、このことは、取得したcDNAは、まさに実際にス
ケソウダラの生体内で発現し、活性の有しているトラン
スグルタミナーゼをコードしているものであることを示
した。
者らが取得したcDNAの塩基配列から予測されるアミ
ノ酸配列(配列番号6、7)の一部と完全に一致してお
り、このことは、取得したcDNAは、まさに実際にス
ケソウダラの生体内で発現し、活性の有しているトラン
スグルタミナーゼをコードしているものであることを示
した。
【0157】〔13.マダイ肝臓のトランスグルタミナ
ーゼの部分アミノ酸配列解析〕一方、上記の如く取得で
きたマダイ由来トランスグルタミナーゼ遺伝子が、実際
にマダイ中で発現しているトランスグルタミナーゼ酵素
を発現しうるものであることを示す為に、本酵素を精
製、純化し、その構造を明らかにすることを行った。な
お、トランスグルタミナーゼ活性は、スケソウダラの場
合と同様に、モノダンシルカダベリンのジメチル化カゼ
インへの結合による蛍光強度変化を指標とした、上記に
記載の活性検出法を基に検定した。
ーゼの部分アミノ酸配列解析〕一方、上記の如く取得で
きたマダイ由来トランスグルタミナーゼ遺伝子が、実際
にマダイ中で発現しているトランスグルタミナーゼ酵素
を発現しうるものであることを示す為に、本酵素を精
製、純化し、その構造を明らかにすることを行った。な
お、トランスグルタミナーゼ活性は、スケソウダラの場
合と同様に、モノダンシルカダベリンのジメチル化カゼ
インへの結合による蛍光強度変化を指標とした、上記に
記載の活性検出法を基に検定した。
【0158】マダイ肝臓20g に 10mM NaCl, 5mM EDTA,
2mM ジチオスレイトールを含む20mMトリス塩酸緩衝液(p
H8.3) 46ml を加え、ホモジナイザーにより破砕し
た。この破砕液を遠心チューブに入れ、4℃にて50,000
rpm、45分の遠心分離(日立製 70P-72 ローター RP-6
5T)を行い、この上清液部分を0.45μmのフィルター
(アドバンテック DISMIC-25 ディスポーザブルシリン
ジフィルターユニット)に通し、不溶性高分子を除去し
た。その結果、赤く着色した抽出液30mlを得た。次
に、本抽出液に氷冷した5mMトリス塩酸緩衝液(pH8.3)を
ほぼ等量(30ml)加え、溶液のイオン強度を下げ、これ
をマダイ肝臓の粗抽出液(60ml)とした。
2mM ジチオスレイトールを含む20mMトリス塩酸緩衝液(p
H8.3) 46ml を加え、ホモジナイザーにより破砕し
た。この破砕液を遠心チューブに入れ、4℃にて50,000
rpm、45分の遠心分離(日立製 70P-72 ローター RP-6
5T)を行い、この上清液部分を0.45μmのフィルター
(アドバンテック DISMIC-25 ディスポーザブルシリン
ジフィルターユニット)に通し、不溶性高分子を除去し
た。その結果、赤く着色した抽出液30mlを得た。次
に、本抽出液に氷冷した5mMトリス塩酸緩衝液(pH8.3)を
ほぼ等量(30ml)加え、溶液のイオン強度を下げ、これ
をマダイ肝臓の粗抽出液(60ml)とした。
【0159】本溶液のタンパク質濃度を、BioRad社製の
プロテインアッセイキットにて測定したところ、約8.4m
g/mlであった。また、本粗抽出液の5μlを用いてトラ
ンスグルタミナーゼ活性を調べたところ、総活性2088ユ
ニットであり、従って、比活性は4.14ユニット/mgタン
パク質であった。
プロテインアッセイキットにて測定したところ、約8.4m
g/mlであった。また、本粗抽出液の5μlを用いてトラ
ンスグルタミナーゼ活性を調べたところ、総活性2088ユ
ニットであり、従って、比活性は4.14ユニット/mgタン
パク質であった。
【0160】続いて、本粗抽出液を 5mM NaCl, 2.5mM E
DTA 0.5mM ジチオスレイトールを含む10mMトリス塩酸緩
衝液(pH8.3)で平衡化したDEAE-セファセル充填カラム
(ファルマシア製 φ2.6cm X 11cm)に通液したところ、
トランスグルタミナーゼは本イオン交換体に吸着される
ことがわかった。そこで、NaClの塩濃度勾配による本カ
ラムからの溶出を試みたところ、NaCl濃度約100mMで、
トランスグルタミナーゼ活性を有する画分が溶出でき、
これをDEAE画分とした(約59ml)。
DTA 0.5mM ジチオスレイトールを含む10mMトリス塩酸緩
衝液(pH8.3)で平衡化したDEAE-セファセル充填カラム
(ファルマシア製 φ2.6cm X 11cm)に通液したところ、
トランスグルタミナーゼは本イオン交換体に吸着される
ことがわかった。そこで、NaClの塩濃度勾配による本カ
ラムからの溶出を試みたところ、NaCl濃度約100mMで、
トランスグルタミナーゼ活性を有する画分が溶出でき、
これをDEAE画分とした(約59ml)。
【0161】本活性画分のタンパク質濃度は約145μg/
mlであった。またトランスグルタミナーゼの全活性は
1045ユニットであり、比活性は122ユニット/mgであっ
た。
mlであった。またトランスグルタミナーゼの全活性は
1045ユニットであり、比活性は122ユニット/mgであっ
た。
【0162】DEAE-セファセル樹脂により分画されたト
ランスグルタミナーゼ活性画分を、次に透析チューブに
入れ、2mM EDTA, 0.5mM ジチオスレイトールを含む20mM
酢酸ナトリウム緩衝液(pH6.25)に一晩透析した。その
後、本標品を、同緩衝液にて平衡化したCM-セファロー
ス充填カラム(ファルマシア製 φ1.6cm X 10cm)に通
液したところ、トランスグルタミナーゼは本カラムに吸
着した。そこで、NaClの塩濃度勾配により本カラムから
酵素の溶出を試みたところ、NaCl濃度約200mMで、トラ
ンスグルタミナーゼ活性画分が溶出され、それを取得し
(約35ml)、これをCM画分とした。
ランスグルタミナーゼ活性画分を、次に透析チューブに
入れ、2mM EDTA, 0.5mM ジチオスレイトールを含む20mM
酢酸ナトリウム緩衝液(pH6.25)に一晩透析した。その
後、本標品を、同緩衝液にて平衡化したCM-セファロー
ス充填カラム(ファルマシア製 φ1.6cm X 10cm)に通
液したところ、トランスグルタミナーゼは本カラムに吸
着した。そこで、NaClの塩濃度勾配により本カラムから
酵素の溶出を試みたところ、NaCl濃度約200mMで、トラ
ンスグルタミナーゼ活性画分が溶出され、それを取得し
(約35ml)、これをCM画分とした。
【0163】本活性画分のタンパク質濃度は約20μg/m
lであった。また、トランスグルタミナーゼ全活性は約
530.6ユニットであり、比活性は758ユニット/mgタンパ
ク質であった。
lであった。また、トランスグルタミナーゼ全活性は約
530.6ユニットであり、比活性は758ユニット/mgタンパ
ク質であった。
【0164】CMーセファロース樹脂により分画されたト
ランスグルタミナーゼ活性画分を、再び、透析チューブ
に入れ、50mM NaCl, 2mM EDTA, 0.5mM ジチオスレイト
ールを含む20mM 酢酸ナトリウム緩衝液(pH6.45)に対し
て、一晩透析し、トランスグルタミナーゼ溶液の塩濃度
を下げた。これを同緩衝液にて平衡化したヘパリンーセ
ファロース充填カラム(ファルマシア製 Hi-Trapアフィ
ニティーカラム 容量1ml)に通液したところ、トラン
スグルタミナーゼは同樹脂に吸着された。NaClの塩濃度
勾配をかけることにより、トランスグルタミナーゼはヘ
パリンカラムより、NaCl濃度約200mMで溶出し、これを
取得した(約12.5ml)。これをヘパリン画分とした。
ランスグルタミナーゼ活性画分を、再び、透析チューブ
に入れ、50mM NaCl, 2mM EDTA, 0.5mM ジチオスレイト
ールを含む20mM 酢酸ナトリウム緩衝液(pH6.45)に対し
て、一晩透析し、トランスグルタミナーゼ溶液の塩濃度
を下げた。これを同緩衝液にて平衡化したヘパリンーセ
ファロース充填カラム(ファルマシア製 Hi-Trapアフィ
ニティーカラム 容量1ml)に通液したところ、トラン
スグルタミナーゼは同樹脂に吸着された。NaClの塩濃度
勾配をかけることにより、トランスグルタミナーゼはヘ
パリンカラムより、NaCl濃度約200mMで溶出し、これを
取得した(約12.5ml)。これをヘパリン画分とした。
【0165】本活性画分のタンパク質濃度は約32μg/m
lであった。また、トランスグルタミナーゼ全活性は約
290.5ユニットであり、比活性は807ユニット/mgタンパ
ク質であった。
lであった。また、トランスグルタミナーゼ全活性は約
290.5ユニットであり、比活性は807ユニット/mgタンパ
ク質であった。
【0166】本ヘパリン画分を、SDS-ポリアクリルアミ
ドゲル電気泳動にかけ、電気泳動後、ゲルをクマシーブ
リリアントブルーにて染色を行ったところ、分子量約7
7,000の位置にのみ染色される単一バンドを確認でき
た。ここに、マダイ肝臓由来のトランスグルタミナーゼ
を精製し、取得することができた。得られたマダイトラ
ンスグルタミナーゼの精製溶液の比活性は、粗抽出液の
約195倍であり、回収率は約14%であった。
ドゲル電気泳動にかけ、電気泳動後、ゲルをクマシーブ
リリアントブルーにて染色を行ったところ、分子量約7
7,000の位置にのみ染色される単一バンドを確認でき
た。ここに、マダイ肝臓由来のトランスグルタミナーゼ
を精製し、取得することができた。得られたマダイトラ
ンスグルタミナーゼの精製溶液の比活性は、粗抽出液の
約195倍であり、回収率は約14%であった。
【0167】そこで、マダイ肝臓由来トランスグルタミ
ナーゼの部分アミノ酸配列を解析した。精製したトラン
スグルタミナーゼ約100μgを含むヘパリン画分約4ml
を透析チューブに入れ、0.1mM EDTA, 0.01mM ジチオス
レイトールを含む20mMトリス塩酸緩衝液(pH8.3)に対し
て、13時間透析をした後、続いて、0.001mM EDTA を含
む20mMトリス塩酸緩衝液(pH8.3)に再度、透析し、トラ
ンスグルタミナーゼ酵素標品中のアルカリ金属イオンを
除去した。これに尿素480mgを添加し37℃で30分間処理
した後、リシルエンドペプチダーゼ(和光純薬工業)7.
5μg(0.02ユニット(アミダーゼ活性))を添加し、更
に37℃で12時間酵素処理を施して、トランスグルタミナ
ーゼをペプチド断片化した。処理後、反応溶液に10%濃
度のTFA(トリフルオロ酢酸)溶液を40μl添加し(終濃
度0.1%)、撹拌した。
ナーゼの部分アミノ酸配列を解析した。精製したトラン
スグルタミナーゼ約100μgを含むヘパリン画分約4ml
を透析チューブに入れ、0.1mM EDTA, 0.01mM ジチオス
レイトールを含む20mMトリス塩酸緩衝液(pH8.3)に対し
て、13時間透析をした後、続いて、0.001mM EDTA を含
む20mMトリス塩酸緩衝液(pH8.3)に再度、透析し、トラ
ンスグルタミナーゼ酵素標品中のアルカリ金属イオンを
除去した。これに尿素480mgを添加し37℃で30分間処理
した後、リシルエンドペプチダーゼ(和光純薬工業)7.
5μg(0.02ユニット(アミダーゼ活性))を添加し、更
に37℃で12時間酵素処理を施して、トランスグルタミナ
ーゼをペプチド断片化した。処理後、反応溶液に10%濃
度のTFA(トリフルオロ酢酸)溶液を40μl添加し(終濃
度0.1%)、撹拌した。
【0168】次に、本反応液を、逆相HPLC(Vydac製C4
カラム、φ4.6mm X 250mm)に供し、溶媒は0.1%TFAと
して、アセトニトリルの濃度勾配による溶出条件下に
て、各ペプチド断片を分離し、取得した。
カラム、φ4.6mm X 250mm)に供し、溶媒は0.1%TFAと
して、アセトニトリルの濃度勾配による溶出条件下に
て、各ペプチド断片を分離し、取得した。
【0169】取得したペプチド断片を、プロテインシー
ケンサー(アプライドバイオシステムズ製 470A)に供
し、それらのアミノ酸配列をシークエンス分析機(アプ
ライドバイオシステム製 120A)にて分析したところ、
次の配列が得られた。即ち、His-His-Leu-Glu-Leu-Val-
Leu-Xaa-Leu-Gly(配列番号26)、Xaa-Xaa-Phe-Asn-G
ln-Gln-Gly-Ala-Gln-Asp-Glu-Ile-Leu-Leu-Thr-Leu-His
(配列番号27)、 Ile-Ser-Phe-His-Met-Leu-Phe-Asn
-Pro(配列番号28)、Leu-Gln-Glu-Tyr-Val-Met-Asn-
Glu-Asp-Gly-Val-Ile-Tyr-Met-Gly-Thr(配列番号2
9)、 Asn-Ser-Glu-Met-Asp-Ile-Glu-His-Arg-Ser-As
p-Pro-Val-Tyr-Val-Gly-Arg-Thr(配列番号30)、 Ty
r-Asp-Ala-Pro-Phe-Val-Phe-Ala-Glu-Val-Asn-Ala-Asp-
Thr-Ile-Tyr(配列番号31)、Ser-Val-Tyr-Gly-Asn-H
is-Arg-Glu-Asp-Val-Thr-Leu-His-Tyr(配列番号3
2)、Ala-Gly-Arg-Arg-Val-Thr-Glu-Pro-Ser-Asn-Glu-
Ile-Ala-Glu-Gln-Gly-Arg-Leu(配列番号33)、Xaa-A
la-Gln-Pro-Val-Phe-Gly-Thr-Asp-Phe-Asp-Val-Ile-Val
-Glu(配列番号34)、 Asn-Glu-Gly-Gly-Arg-Asp-Al
a-His-Ala-Gln-Leu-Thr-Xaa-Leu-Ala-Xaa-Ala(配列番
号35)、Thr-Ile-Ser-Val-Thr-Val-Pro-Ala-His(配
列番号36)、 Ala-Val-Val-Xaa-Glu-Pro-Leu-Thr-Ala
(配列番号37)、 Gly-Gly-Val-Phe-Thr-Leu-Glu-gly
-Ala-Gly-Leu-Leu-Ser-Ala-Thr-Gln-Ile-His(配列番号
38)、 Leu-Ser-Phe-Ser-Pro-Met-Arg-Thr-Gly-Val-
Arg(配列番号39)、 Leu-Leu-Val-Asp-Phe-Asp-Ser
-Asp-Arg-Leu(配列番号40)、Gly-Val-Thr-Thr-Val-
Val-Val-His(配列番号41)、Tyr-Arg-Ser-Leu-Ile-T
hr-Gly-Leu-His-Thr-Asp (配列番号42)であった。
但し、Xaaは未同定アミノ酸残基を表す。
ケンサー(アプライドバイオシステムズ製 470A)に供
し、それらのアミノ酸配列をシークエンス分析機(アプ
ライドバイオシステム製 120A)にて分析したところ、
次の配列が得られた。即ち、His-His-Leu-Glu-Leu-Val-
Leu-Xaa-Leu-Gly(配列番号26)、Xaa-Xaa-Phe-Asn-G
ln-Gln-Gly-Ala-Gln-Asp-Glu-Ile-Leu-Leu-Thr-Leu-His
(配列番号27)、 Ile-Ser-Phe-His-Met-Leu-Phe-Asn
-Pro(配列番号28)、Leu-Gln-Glu-Tyr-Val-Met-Asn-
Glu-Asp-Gly-Val-Ile-Tyr-Met-Gly-Thr(配列番号2
9)、 Asn-Ser-Glu-Met-Asp-Ile-Glu-His-Arg-Ser-As
p-Pro-Val-Tyr-Val-Gly-Arg-Thr(配列番号30)、 Ty
r-Asp-Ala-Pro-Phe-Val-Phe-Ala-Glu-Val-Asn-Ala-Asp-
Thr-Ile-Tyr(配列番号31)、Ser-Val-Tyr-Gly-Asn-H
is-Arg-Glu-Asp-Val-Thr-Leu-His-Tyr(配列番号3
2)、Ala-Gly-Arg-Arg-Val-Thr-Glu-Pro-Ser-Asn-Glu-
Ile-Ala-Glu-Gln-Gly-Arg-Leu(配列番号33)、Xaa-A
la-Gln-Pro-Val-Phe-Gly-Thr-Asp-Phe-Asp-Val-Ile-Val
-Glu(配列番号34)、 Asn-Glu-Gly-Gly-Arg-Asp-Al
a-His-Ala-Gln-Leu-Thr-Xaa-Leu-Ala-Xaa-Ala(配列番
号35)、Thr-Ile-Ser-Val-Thr-Val-Pro-Ala-His(配
列番号36)、 Ala-Val-Val-Xaa-Glu-Pro-Leu-Thr-Ala
(配列番号37)、 Gly-Gly-Val-Phe-Thr-Leu-Glu-gly
-Ala-Gly-Leu-Leu-Ser-Ala-Thr-Gln-Ile-His(配列番号
38)、 Leu-Ser-Phe-Ser-Pro-Met-Arg-Thr-Gly-Val-
Arg(配列番号39)、 Leu-Leu-Val-Asp-Phe-Asp-Ser
-Asp-Arg-Leu(配列番号40)、Gly-Val-Thr-Thr-Val-
Val-Val-His(配列番号41)、Tyr-Arg-Ser-Leu-Ile-T
hr-Gly-Leu-His-Thr-Asp (配列番号42)であった。
但し、Xaaは未同定アミノ酸残基を表す。
【0170】これらのアミノ酸配列は、上記の実施例で
得たcDNA配列から考えられるアミノ酸配列(配列番
号2、3)中に存在するものであり、このことはまさ
に、実際にマダイの生体中で機能しているトランスグル
タミナーゼの活性を示す酵素を、本取得cDNAはコー
ドするものであることを示している。
得たcDNA配列から考えられるアミノ酸配列(配列番
号2、3)中に存在するものであり、このことはまさ
に、実際にマダイの生体中で機能しているトランスグル
タミナーゼの活性を示す酵素を、本取得cDNAはコー
ドするものであることを示している。
【0171】〔14.モルモット由来トランスグルタミ
ナーゼと魚由来トランスグルタミナーゼの酵素特性比
較〕魚由来トランスグルタミナーゼ(以後、FTGと略
す)の酵素的特性を、モルモット由来トランスグルタミ
ナーゼ(以後MTGと略す)との比較で、検定し、FT
Gの産業利用上での優位性について検討した。
ナーゼと魚由来トランスグルタミナーゼの酵素特性比
較〕魚由来トランスグルタミナーゼ(以後、FTGと略
す)の酵素的特性を、モルモット由来トランスグルタミ
ナーゼ(以後MTGと略す)との比較で、検定し、FT
Gの産業利用上での優位性について検討した。
【0172】a)比活性 上記の実施例にて、精製、純化したスケソウダラのトラ
ンスグルタミナーゼと市販されているMTGの、蛍光法
を用いた時の酵素比活性について比較検討した。MTG
は、宝酒造(株)製のものと、シグマ社製のものを使用
した。なお、宝酒造製のMTGは純度95%であり、ま
た、シグマ社製MTGも同等な純度であった。
ンスグルタミナーゼと市販されているMTGの、蛍光法
を用いた時の酵素比活性について比較検討した。MTG
は、宝酒造(株)製のものと、シグマ社製のものを使用
した。なお、宝酒造製のMTGは純度95%であり、ま
た、シグマ社製MTGも同等な純度であった。
【0173】上記3つのトランスグルタミナーゼ標品を
同等の酵素濃度(BioRad社製プロテインアッセイキット
でのタンパク質濃度測定による)となるように調製し、
それぞれに至適pH近傍のpH8.5にて、トランスグルタミ
ナーゼ活性を測定したところ、FTGはMTG(宝酒造
製)の10倍、シグマ社製MTGの20倍の比活性を示
す事が判明した。
同等の酵素濃度(BioRad社製プロテインアッセイキット
でのタンパク質濃度測定による)となるように調製し、
それぞれに至適pH近傍のpH8.5にて、トランスグルタミ
ナーゼ活性を測定したところ、FTGはMTG(宝酒造
製)の10倍、シグマ社製MTGの20倍の比活性を示
す事が判明した。
【0174】また、上記3つの濃度調製したトランスグ
ルタミナーゼ標品を、SDS−PAGEにて展開し、ク
マシーブリリアントブルー染色し、デンシトメーター
(LKB社製、Ultro scan XL Lase
r Densitometer)にて、各トランスグル
タミナーゼ量を検定したところ、FTGは、MTGの約
4倍の濃度あることが示された。この事実を考慮して
も、FTGの蛍光法によるトランスグルタミナーゼ比活
性はMTGの2.5〜5倍であることが判明した。
ルタミナーゼ標品を、SDS−PAGEにて展開し、ク
マシーブリリアントブルー染色し、デンシトメーター
(LKB社製、Ultro scan XL Lase
r Densitometer)にて、各トランスグル
タミナーゼ量を検定したところ、FTGは、MTGの約
4倍の濃度あることが示された。この事実を考慮して
も、FTGの蛍光法によるトランスグルタミナーゼ比活
性はMTGの2.5〜5倍であることが判明した。
【0175】上記の如く、MTGの比活性に比べて、F
TGの高比活性特性は、その産業への利用において、同
一効果の発現量に対する使用トランスグルタミナーゼ量
の低減化となるため、製品製造のコストダウンに、より
寄与できると思われる。
TGの高比活性特性は、その産業への利用において、同
一効果の発現量に対する使用トランスグルタミナーゼ量
の低減化となるため、製品製造のコストダウンに、より
寄与できると思われる。
【0176】b)熱安定性 次に、熱失活のしやすさをFTGとMTGとで比較検討
した。使用酵素量は、共に、同程度の活性を示しうる量
を用いた。各トランスグルタミナーゼ標品を、まず、ト
リス塩酸緩衝液(pH8.5)(組成は、0.5Mトリス塩酸緩
衝液(pH8.5)250μl、100mM DTT 80μl、1mM モノダンシ
ルカダベリン 37μl、水 1300からなる溶液)中に入
れ、0℃、または20℃、25℃、30℃、37℃、4
0℃、42℃、50℃、60℃で10分間処理し、その
後、3分間氷冷し、各温度処理を停止した。次に、そこ
へ10mg/mlのジメチル化カゼイン溶液250μl、および5
0mMの塩化カルシウム溶液500μl を添加し、37℃にて
60分間反応させた。その後、各反応液に0.5M EDTA を
100μl添加し、酵素反応を停止させた。
した。使用酵素量は、共に、同程度の活性を示しうる量
を用いた。各トランスグルタミナーゼ標品を、まず、ト
リス塩酸緩衝液(pH8.5)(組成は、0.5Mトリス塩酸緩
衝液(pH8.5)250μl、100mM DTT 80μl、1mM モノダンシ
ルカダベリン 37μl、水 1300からなる溶液)中に入
れ、0℃、または20℃、25℃、30℃、37℃、4
0℃、42℃、50℃、60℃で10分間処理し、その
後、3分間氷冷し、各温度処理を停止した。次に、そこ
へ10mg/mlのジメチル化カゼイン溶液250μl、および5
0mMの塩化カルシウム溶液500μl を添加し、37℃にて
60分間反応させた。その後、各反応液に0.5M EDTA を
100μl添加し、酵素反応を停止させた。
【0177】上記の如く、調製した反応液の蛍光強度測
定をし、各酵素の熱安定性について調べた。その結果、
図13に示したように、残存活性50%を与える処理温
度は、FTGのほうがMTGよりも、約9℃低いことが
明らかになった。このことはFTGはMTGよりも、失
活させ易いことを示しており、上記a)の結果と合わせる
と、FTGは酵素反応しやすく、また、反応産物へのわ
ずかな加熱処理によって失活させることができると言え
る。
定をし、各酵素の熱安定性について調べた。その結果、
図13に示したように、残存活性50%を与える処理温
度は、FTGのほうがMTGよりも、約9℃低いことが
明らかになった。このことはFTGはMTGよりも、失
活させ易いことを示しており、上記a)の結果と合わせる
と、FTGは酵素反応しやすく、また、反応産物へのわ
ずかな加熱処理によって失活させることができると言え
る。
【0178】c)アクトミオシンに対する反応性 アクトミオシン(AM)の調製は、以下のように行っ
た。まず、スケソウダラの冷凍すり身(大洋漁業(株)
製SA級)約30gに対して0.5M塩化ナトリウムを
含む20mMトリス塩酸緩衝液(pH7.5)を約60
ml加え、エクセルオートホモジナイザー(日製産業
(株)製)にてホモジナイズした。これを次に1000
0rpmで30秒間、3回遠心し(日立製HimacC
R20B2型遠心機及びローターRPR20−2を用い
て)、不溶物を除去した。上清溶液を透析チューブ(S
eamless cellulose tubing、
輸入元は三光純薬(株))に入れ、これを0.5M塩化
ナトリウムを含む20mMトリス塩酸緩衝液(pH7.
5)に対して、3時間、そして16時間透析した。
た。まず、スケソウダラの冷凍すり身(大洋漁業(株)
製SA級)約30gに対して0.5M塩化ナトリウムを
含む20mMトリス塩酸緩衝液(pH7.5)を約60
ml加え、エクセルオートホモジナイザー(日製産業
(株)製)にてホモジナイズした。これを次に1000
0rpmで30秒間、3回遠心し(日立製HimacC
R20B2型遠心機及びローターRPR20−2を用い
て)、不溶物を除去した。上清溶液を透析チューブ(S
eamless cellulose tubing、
輸入元は三光純薬(株))に入れ、これを0.5M塩化
ナトリウムを含む20mMトリス塩酸緩衝液(pH7.
5)に対して、3時間、そして16時間透析した。
【0179】その後、透析した溶液を14000rpm
で60分間遠心し、その上清を取得した後、ガーゼにて
濾過することで、アクトミオシン溶液(約27ml)を
調製した。なお、本溶液のタンパク質濃度はBioRad製の
プロテインアッセイキットにて測定したところ、26.
1mg/mlであった。
で60分間遠心し、その上清を取得した後、ガーゼにて
濾過することで、アクトミオシン溶液(約27ml)を
調製した。なお、本溶液のタンパク質濃度はBioRad製の
プロテインアッセイキットにて測定したところ、26.
1mg/mlであった。
【0180】上記のごとく調製したアクトミオシンを用
いて、ミオシンタンパク質の重合化に及ぼすMTGとF
TGの作用効果を比較した。なお、ミオシンの重合化、
多量化は蒲鉾の弾力性発揮機能など、水産練り製品の”
おいしさ”と密接な関連をもつ指標となっている(沼倉
ら、日本水産学会誌 第51巻 第9号、1559-1565、(198
5)、関ら、日本水産学会誌 第56巻 第1号、125-132、
(1990))。
いて、ミオシンタンパク質の重合化に及ぼすMTGとF
TGの作用効果を比較した。なお、ミオシンの重合化、
多量化は蒲鉾の弾力性発揮機能など、水産練り製品の”
おいしさ”と密接な関連をもつ指標となっている(沼倉
ら、日本水産学会誌 第51巻 第9号、1559-1565、(198
5)、関ら、日本水産学会誌 第56巻 第1号、125-132、
(1990))。
【0181】0.5M塩化ナトリウムを含む20mMト
リス塩酸緩衝液(pH7.5)にて、上記のごとく調製
したアクトミオシンを濃度10mg/mlになるよう調
整し、これを試験管(テルモ製、洗浄試験管ラルボ、1
5.5X100mm)に1mlづつ用意した。これに5
0mM塩化カルシウムを200μl添加、撹拌した後、
別途調製したFTG、あるいはMTG(蛍光活性測定で
同活性分)を200μlづつ添加し、充分に撹拌した。
なお、MTGはシグマ社製のものを用いた。
リス塩酸緩衝液(pH7.5)にて、上記のごとく調製
したアクトミオシンを濃度10mg/mlになるよう調
整し、これを試験管(テルモ製、洗浄試験管ラルボ、1
5.5X100mm)に1mlづつ用意した。これに5
0mM塩化カルシウムを200μl添加、撹拌した後、
別途調製したFTG、あるいはMTG(蛍光活性測定で
同活性分)を200μlづつ添加し、充分に撹拌した。
なお、MTGはシグマ社製のものを用いた。
【0182】各トランスグルタミナーゼを添加後、37
℃にて15分、30分、45分そして60分反応させ
た。それぞれの反応後、反応液100μlを試験管から
抜取り、そこへ8M尿素、2%SDS、2%β−メルカ
プトエタノールを含む20mMトリス塩酸(pH8.
5)を100μlずつ添加し、反応を停止させた。次
に、4%SDS、10%β−メルカプトエタノール、2
0%グリセリン、0.002%ブロモフェノールブルー
を含む125mMトリス塩酸緩衝液(pH6.8)を更
にそこへ300μlずつ添加した後、これらのサンプル
を100℃にて1分間加熱し、SDS−PAGE用のサ
ンプルとした。
℃にて15分、30分、45分そして60分反応させ
た。それぞれの反応後、反応液100μlを試験管から
抜取り、そこへ8M尿素、2%SDS、2%β−メルカ
プトエタノールを含む20mMトリス塩酸(pH8.
5)を100μlずつ添加し、反応を停止させた。次
に、4%SDS、10%β−メルカプトエタノール、2
0%グリセリン、0.002%ブロモフェノールブルー
を含む125mMトリス塩酸緩衝液(pH6.8)を更
にそこへ300μlずつ添加した後、これらのサンプル
を100℃にて1分間加熱し、SDS−PAGE用のサ
ンプルとした。
【0183】以上の各サンプル5μlをSDS−PAG
Eに供し、電気泳動後、クマシーブリリアントブルー染
色し、ミオシンH鎖の単量体量をデンシトメーター(L
KB社製、Ultro scan XL Laser
Densitometer)にて測定し、各トランスグ
ルタミナーゼのミオシンタンパク質の重合化、多量化に
及ぼす効果を解析した。その結果を図14に示すがFT
Gのほうが、MTGよりも速やかに、ミオシンタンパク
質を重合化することが判明した。このことは、更に、水
産練り製品へのトランスグルタミナーゼの応用におい
も、MTGよりもFTGの方が、製造コストダウンに寄
与しやすいことを示唆するものである。
Eに供し、電気泳動後、クマシーブリリアントブルー染
色し、ミオシンH鎖の単量体量をデンシトメーター(L
KB社製、Ultro scan XL Laser
Densitometer)にて測定し、各トランスグ
ルタミナーゼのミオシンタンパク質の重合化、多量化に
及ぼす効果を解析した。その結果を図14に示すがFT
Gのほうが、MTGよりも速やかに、ミオシンタンパク
質を重合化することが判明した。このことは、更に、水
産練り製品へのトランスグルタミナーゼの応用におい
も、MTGよりもFTGの方が、製造コストダウンに寄
与しやすいことを示唆するものである。
【0184】
【発明の効果】従来、使用できるトランスグルタミナー
ゼの供給由来源としては、放線菌やモルモットのもので
あったが、本発明により、伝統的に蒲鉾等の水産食品加
工時にテクスチャーの保持、補強などの機能を発現し、
天然物中での作用が知られている魚由来のトランスグル
タミナーゼの遺伝子を有するDNA断片の提供を可能に
した。本発明により得られた魚トランスグルタミナーゼ
の遺伝子に遺伝子組換え技術を応用することでトランス
グルタミナーゼの大量生産が可能であり、該産生酵素を
応用することで、食品タンパク質の物性改変や栄養価の
改善が可能となる。さらに、本酵素は食品以外にも、医
薬品や化成品への応用も期待できるものである。
ゼの供給由来源としては、放線菌やモルモットのもので
あったが、本発明により、伝統的に蒲鉾等の水産食品加
工時にテクスチャーの保持、補強などの機能を発現し、
天然物中での作用が知られている魚由来のトランスグル
タミナーゼの遺伝子を有するDNA断片の提供を可能に
した。本発明により得られた魚トランスグルタミナーゼ
の遺伝子に遺伝子組換え技術を応用することでトランス
グルタミナーゼの大量生産が可能であり、該産生酵素を
応用することで、食品タンパク質の物性改変や栄養価の
改善が可能となる。さらに、本酵素は食品以外にも、医
薬品や化成品への応用も期待できるものである。
【0185】
配列番号:1 配列の長さ:25 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 配列 Val Lys Tyr Gly Gln Cys Trp Val Phe Ala Ala Val Ala Cys Thr 1 5 10 15 Val Leu Arg Cys Leu Gly Ile Pro Thr Arg 16 20 25
【0186】配列番号:2 配列の長さ:694 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 配列 Ala Ser Tyr Lys Gly Leu Ile Val Asp Val Asn Gly Arg Ser His 1 5 10 15 Glu Asn Asn Leu Ala His Arg Thr Arg Glu Ile Asp Arg Glu Arg 20 25 30 Leu Ile Val Arg Arg Gly Gln Pro Phe Ser Ile Thr Leu Gln Cys 35 40 45 Ser Asp Ser Leu Pro Pro Lys His His Leu Glu Leu Val Leu His 50 55 60 Leu Gly Lys Arg Asp Glu Val Val Ile Lys Val Gln Lys Glu His 65 70 75 Gly Ala Arg Asp Lys Trp Trp Phe Asn Gln Gln Gly Ala Gln Asp 80 85 90 Glu Ile Leu Leu Thr Leu His Ser Pro Ala Asn Ala Val Ile Gly 95 100 105 His Tyr Arg Leu Ala Val Leu Val Met Ser Pro Asp Gly His Ile 110 115 120 Val Glu Arg Ala Asp Lys Ile Ser Phe His Met Leu Phe Asn Pro 125 130 135 Trp Cys Arg Asp Asp Met Val Tyr Leu Pro Asp Glu Ser Lys Leu 140 145 150 Gln Glu Tyr Val Met Asn Glu Asp Gly Val Ile Tyr Met Gly Thr 155 160 165 Trp Asp Tyr Ile Arg Ser Ile Pro Trp Asn Tyr Gly Gln Phe Glu 170 175 180 Asp Tyr Val Met Asp Ile Cys Phe Glu Val Leu Asp Asn Ser Pro 185 190 195 Ala Ala Leu Lys Asn Ser Glu Met Asp Ile Glu His Arg Ser Asp 200 205 210 Pro Val Tyr Val Gly Arg Thr Ile Thr Ala Met Val Asn Ser Asn 215 220 225 Gly Asp Arg Gly Val Leu Thr Gly Arg Trp Glu Glu Pro Tyr Thr 230 235 240 Asp Gly Val Ala Pro Tyr Arg Trp Thr Gly Ser Val Pro Ile Leu 245 250 255 Gln Gln Trp Ser Lys Ala Gly Val Arg Pro Val Lys Tyr Gly Gln 260 265 270 Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Leu Arg Cys Leu 275 280 285 Gly Ile Pro Thr Arg Pro Ile Thr Asn Phe Ala Ser Ala His Asp 290 295 300 Val Asp Gly Asn Leu Ser Val Asp Phe Leu Leu Asn Glu Arg Leu 305 310 315 Glu Ser Leu Asp Ser Arg Gln Arg Ser Asp Ser Ser Trp Asn Phe 320 325 330 His Cys Trp Val Glu Ser Trp Met Ser Arg Glu Asp Leu Pro Glu 335 340 345 Gly Asn Asp Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Leu 350 355 360 Ser Asp Gly Glu Phe Cys Cys Gly Pro Cys Pro Val Ala Ala Ile 365 370 375 Lys Glu Gly Asn Leu Gly Val Lys Tyr Asp Ala Pro Phe Val Phe 380 385 390 Ala Glu Val Asn Ala Asp Thr Ile Tyr Trp Ile Val Gln Lys Asp 395 400 405 Gly Gln Arg Arg Lys Ile Thr Glu Asp His Ala Ser Val Gly Lys 410 415 420 Asn Ile Ser Thr Lys Ser Val Tyr Gly Asn His Arg Glu Asp Val 425 430 435 Thr Leu His Tyr Lys Tyr Pro Glu Gly Ser Gln Lys Glu Arg Glu 440 445 450 Val Tyr Lys Lys Ala Gly Arg Arg Val Thr Glu Pro Ser Asn Glu 455 460 465 Ile Ala Glu Gln Gly Arg Leu Gln Leu Ser Ile Lys His Ala Gln 470 475 480 Pro Val Phe Gly Thr Asp Phe Asp Val Ile Val Glu Val Lys Asn 485 490 495 Glu Gly Gly Arg Asp Ala His Ala Gln Leu Thr Met Leu Ala Met 500 505 510 Ala Val Thr Tyr Asn Ser Leu Arg Arg Gly Glu Cys Gln Arg Lys 515 520 525 Thr Ile Ser Val Thr Val Pro Ala His Lys Ala His Lys Glu Val 530 535 540 Met Arg Leu His Tyr Asp Asp Tyr Val Arg Cys Val Ser Glu His 545 550 555 His Leu Ile Arg Val Lys Ala Leu Leu Asp Ala Pro Gly Glu Asn 560 565 570 Gly Pro Ile Met Thr Val Ala Asn Ile Pro Leu Ser Thr Pro Glu 575 580 585 Leu Leu Val Gln Val Pro Gly Lys Ala Val Val Trp Glu Pro Leu 590 595 600 Thr Ala Tyr Val Ser Phe Thr Asn Pro Leu Pro Val Pro Leu Lys 605 610 615 Gly Gly Val Phe Thr Leu Glu Gly Ala Gly Leu Leu Ser Ala Thr 620 625 630 Gln Ile His Val Asn Gly Ala Val Ala Pro Ser Gly Lys Val Ser 635 640 645 Val Lys Leu Ser Phe Ser Pro Met Arg Thr Gly Val Arg Lys Leu 650 655 660 Leu Val Asp Phe Asp Ser Asp Arg Leu Lys Asp Val Lys Gly Val 665 670 675 Thr Thr Val Val Val His Lys Lys Tyr Arg Ser Leu Ile Thr Gly 680 685 690 Leu His Thr Asp
【0187】配列番号:3 配列の長さ:695 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 配列 Met Ala Ser Tyr Lys Gly Leu Ile Val Asp Val Asn Gly Arg Ser 1 5 10 15 His Glu Asn Asn Leu Ala His Arg Thr Arg Glu Ile Asp Arg Glu 20 25 30 Arg Leu Ile Val Arg Arg Gly Gln Pro Phe Ser Ile Thr Leu Gln 35 40 45 Cys Ser Asp Ser Leu Pro Pro Lys His His Leu Glu Leu Val Leu 50 55 60 His Leu Gly Lys Arg Asp Glu Val Val Ile Lys Val Gln Lys Glu 65 70 75 His Gly Ala Arg Asp Lys Trp Trp Phe Asn Gln Gln Gly Ala Gln 80 85 90 Asp Glu Ile Leu Leu Thr Leu His Ser Pro Ala Asn Ala Val Ile 95 100 105 Gly His Tyr Arg Leu Ala Val Leu Val Met Ser Pro Asp Gly His 110 115 120 Ile Val Glu Arg Ala Asp Lys Ile Ser Phe His Met Leu Phe Asn 125 130 135 Pro Trp Cys Arg Asp Asp Met Val Tyr Leu Pro Asp Glu Ser Lys 140 145 150 Leu Gln Glu Tyr Val Met Asn Glu Asp Gly Val Ile Tyr Met Gly 155 160 165 Thr Trp Asp Tyr Ile Arg Ser Ile Pro Trp Asn Tyr Gly Gln Phe 170 175 180 Glu Asp Tyr Val Met Asp Ile Cys Phe Glu Val Leu Asp Asn Ser 185 190 195 Pro Ala Ala Leu Lys Asn Ser Glu Met Asp Ile Glu His Arg Ser 200 205 210 Asp Pro Val Tyr Val Gly Arg Thr Ile Thr Ala Met Val Asn Ser 215 220 225 Asn Gly Asp Arg Gly Val Leu Thr Gly Arg Trp Glu Glu Pro Tyr 230 235 240 Thr Asp Gly Val Ala Pro Tyr Arg Trp Thr Gly Ser Val Pro Ile 245 250 255 Leu Gln Gln Trp Ser Lys Ala Gly Val Arg Pro Val Lys Tyr Gly 260 265 270 Gln Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Leu Arg Cys 275 280 285 Leu Gly Ile Pro Thr Arg Pro Ile Thr Asn Phe Ala Ser Ala His 290 295 300 Asp Val Asp Gly Asn Leu Ser Val Asp Phe Leu Leu Asn Glu Arg 305 310 315 Leu Glu Ser Leu Asp Ser Arg Gln Arg Ser Asp Ser Ser Trp Asn 320 325 330 Phe His Cys Trp Val Glu Ser Trp Met Ser Arg Glu Asp Leu Pro 335 340 345 Glu Gly Asn Asp Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu 350 355 360 Leu Ser Asp Gly Glu Phe Cys Cys Gly Pro Cys Pro Val Ala Ala 365 370 375 Ile Lys Glu Gly Asn Leu Gly Val Lys Tyr Asp Ala Pro Phe Val 380 385 390 Phe Ala Glu Val Asn Ala Asp Thr Ile Tyr Trp Ile Val Gln Lys 395 400 405 Asp Gly Gln Arg Arg Lys Ile Thr Glu Asp His Ala Ser Val Gly 410 415 420 Lys Asn Ile Ser Thr Lys Ser Val Tyr Gly Asn His Arg Glu Asp 425 430 435 Val Thr Leu His Tyr Lys Tyr Pro Glu Gly Ser Gln Lys Glu Arg 440 445 450 Glu Val Tyr Lys Lys Ala Gly Arg Arg Val Thr Glu Pro Ser Asn 455 460 465 Glu Ile Ala Glu Gln Gly Arg Leu Gln Leu Ser Ile Lys His Ala 470 475 480 Gln Pro Val Phe Gly Thr Asp Phe Asp Val Ile Val Glu Val Lys 485 490 495 Asn Glu Gly Gly Arg Asp Ala His Ala Gln Leu Thr Met Leu Ala 500 505 510 Met Ala Val Thr Tyr Asn Ser Leu Arg Arg Gly Glu Cys Gln Arg 515 520 525 Lys Thr Ile Ser Val Thr Val Pro Ala His Lys Ala His Lys Glu 530 535 540 Val Met Arg Leu His Tyr Asp Asp Tyr Val Arg Cys Val Ser Glu 545 550 555 His His Leu Ile Arg Val Lys Ala Leu Leu Asp Ala Pro Gly Glu 560 565 570 Asn Gly Pro Ile Met Thr Val Ala Asn Ile Pro Leu Ser Thr Pro 575 580 585 Glu Leu Leu Val Gln Val Pro Gly Lys Ala Val Val Trp Glu Pro 590 595 600 Leu Thr Ala Tyr Val Ser Phe Thr Asn Pro Leu Pro Val Pro Leu 605 610 615 Lys Gly Gly Val Phe Thr Leu Glu Gly Ala Gly Leu Leu Ser Ala 620 625 630 Thr Gln Ile His Val Asn Gly Ala Val Ala Pro Ser Gly Lys Val 635 640 645 Ser Val Lys Leu Ser Phe Ser Pro Met Arg Thr Gly Val Arg Lys 650 655 660 Leu Leu Val Asp Phe Asp Ser Asp Arg Leu Lys Asp Val Lys Gly 665 670 675 Val Thr Thr Val Val Val His Lys Lys Tyr Arg Ser Leu Ile Thr 680 685 690 Gly Leu His Thr Asp 685
【0188】配列番号:4 配列の長さ:2085 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:1..2085 特徴を決定した方法:P 配列 GCCAGCTACA AGGGGTTGAT TGTTGATGTG AATGGGAGAA GTCATGAAAA CAACTTGGCT 60 CACCGCACCA GGGAGATTGA TCGGGAGCGC CTGATCGTCC GCAGAGGTCA ACCCTTCTCC 120 ATCACTTTGC AGTGCTCTGA CTCTCTGCCG CCCAAACACC ACCTGGAGCT GGTCCTGCAC 180 CTCGGTAAGA GAGACGAGGT GGTGATCAAG GTTCAGAAGG AACATGGGGC CAGAGACAAG 240 TGGTGGTTTA ACCAGCAGGG AGCTCAGGAT GAAATACTGC TGACTCTGCA CAGCCCAGCG 300 AACGCTGTCA TTGGCCACTA CCGTCTGGCT GTGTTGGTGA TGTCACCAGA TGGTCACATC 360 GTAGAGAGGG CAGACAAAAT TAGCTTCCAC ATGCTCTTCA ACCCGTGGTG CAGAGATGAT 420 ATGGTTTACC TCCCTGATGA GAGTAAGCTC CAGGAGTATG TCATGAATGA AGATGGAGTG 480 ATTTACATGG GGACCTGGGA TTACATCAGA AGTATACCCT GGAATTATGG ACAGTTTGAG 540 GACTATGTGA TGGACATCTG TTTTGAAGTC TTGGACAACT CCCCAGCTGC CTTGAAAAAC 600 TCAGAGATGG ACATTGAGCA CAGATCAGAC CCCGTCTATG TCGGCAGGAC AATCACTGCA 660 ATGGTGAACT CTAACGGTGA CAGGGGTGTG TTGACTGGTC GCTGGGAGGA GCCGTACACT 720 GATGGGGTCG CACCGTATCG ATGGACCGGC AGCGTGCCGA TCCTCCAACA GTGGAGCAAG 780 GCCGGGGTGA GGCCGGTCAA ATATGGCCAG TGCTGGGTGT TTGCTGCCGT CGCCTGCACA 840 GTGCTGCGCT GCCTGGGAAT CCCAACACGC CCCATCACCA ACTTCGCTTC AGCCCATGAT 900 GTCGATGGTA ACCTCTCGGT AGACTTCCTG CTGAATGAGA GACTGGAGAG CTTGGACAGT 960 AGACAGAGAA GTGACAGTAG CTGGAACTTC CACTGTTGGG TTGAATCCTG GATGAGCAGA 1020 GAGGATCTCC CTGAAGGAAA TGATGGCTGG CAGGTTTTGG ATCCCACCCC TCAAGAACTG 1080 AGTGATGGTG AGTTTTGCTG TGGTCCGTGT CCAGTGGCGG CCATCAAGGA GGGAAATCTG 1140 GGAGTGAAGT ACGACGCCCC CTTTGTATTC GCTGAGGTGA ACGCTGACAC CATCTACTGG 1200 ATCGTCCAAA AAGATGGCCA ACGACGGAAG ATCACAGAGG ACCATGCTAG TGTGGGGAAG 1260 AACATCAGCA CAAAAAGCGT TTACGGCAAC CACAGAGAAG ATGTCACTCT GCACTACAAA 1320 TATCCTGAAG GCTCCCAGAA GGAGAGGGAA GTGTACAAGA AGGCGGGACG CCGGGTCACA 1380 GAGCCATCCA ACGAGATCGC AGAACAAGGA AGACTTCAGC TGTCAATCAA GCATGCCCAG 1440 CCTGTATTTG GGACAGACTT TGATGTGATT GTTGAGGTGA AGAATGAAGG AGGCAGAGAT 1500 GCTCATGCTC AGCTGACCAT GCTGGCCATG GCAGTAACTT ACAATTCTCT CCGCCGGGGG 1560 GAGTGCCAGA GAAAAACAAT CAGTGTGACT GTGCCCGCTC ACAAAGCCCA CAAGGAGGTT 1620 ATGCGTCTGC ACTACGACGA CTATGTCAGG TGTGTCTCTG AGCATCACCT GATCAGGGTG 1680 AAAGCGCTCT TAGACGCTCC AGGGGAGAAC GGGCCCATCA TGACCGTGGC CAACATCCCA 1740 CTGAGCACGC CTGAACTCCT TGTACAGGTG CCTGGGAAGG CTGTTGTATG GGAACCACTG 1800 ACAGCCTACG TCTCCTTCAC CAATCCTCTG CCAGTTCCTC TGAAGGGTGG CGTTTTCACT 1860 TTGGAGGGTG CTGGCCTGCT GTCTGCCACT CAGATCCATG TTAATGGTGC TGTAGCTCCA 1920 AGTGGGAAAG TGTCTGTCAA GCTCTCTTTC TCCCCCATGC GCACCGGGGT GAGGAAGCTC 1980 CTGGTGGACT TTGACTCTGA CAGACTGAAG GACGTGAAGG GTGTCACCAC CGTGGTTGTC 2040 CACAAGAAAT ACAGATCTCT AATTACTGGA CTTCACACAG ACTAA 2085
【0189】配列番号:5 配列の長さ:2520 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:34..2121 特徴を決定した方法:P CTTTAACAGA CTTTGATAGG AAGAAGATCT GCG ATG GCC AGC TAC AAG GGG 51 Met Ala Ser Tyr Lys Gly 1 5 TTG ATT GTT GAT GTG AAT GGG AGA AGT CAT GAA AAC AAC TTG GCT 96 Leu Ile Val Asp Val Asn Gly Arg Ser His Glu Asn Asn Leu Ala 10 15 20 CAC CGC ACC AGG GAG ATT GAT CGG GAG CGC CTG ATC GTC CGC AGA 141 His Arg Thr Arg Glu Ile Asp Arg Glu Arg Leu Ile Val Arg Arg 25 30 35 GGT CAA CCC TTC TCC ATC ACT TTG CAG TGC TCT GAC TCT CTG CCG 186 Gly Gln Pro Phe Ser Ile Thr Leu Gln Cys Ser Asp Ser Leu Pro 40 45 50 CCC AAA CAC CAC CTG GAG CTG GTC CTG CAC CTC GGT AAG AGA GAC 231 Pro Lys His His Leu Glu Leu Val Leu His Leu Gly Lys Arg Asp 55 60 65 GAG GTG GTG ATC AAG GTT CAG AAG GAA CAT GGG GCC AGA GAC AAG 276 Glu Val Val Ile Lys Val Gln Lys Glu His Gly Ala Arg Asp Lys 70 75 80 TGG TGG TTT AAC CAG CAG GGA GCT CAG GAT GAA ATA CTG CTG ACT 321 Trp Trp Phe Asn Gln Gln Gly Ala Gln Asp Glu Ile Leu Leu Thr 85 90 95 CTG CAC AGC CCA GCG AAC GCT GTC ATT GGC CAC TAC CGT CTG GCT 366 Leu His Ser Pro Ala Asn Ala Val Ile Gly His Tyr Arg Leu Ala 100 105 110 GTG TTG GTG ATG TCA CCA GAT GGT CAC ATC GTA GAG AGG GCA GAC 411 Val Leu Val Met Ser Pro Asp Gly His Ile Val Glu Arg Ala Asp 115 120 125 AAA ATT AGC TTC CAC ATG CTC TTC AAC CCG TGG TGC AGA GAT GAT 456 Lys Ile Ser Phe His Met Leu Phe Asn Pro Trp Cys Arg Asp Asp 130 135 140 ATG GTT TAC CTC CCT GAT GAG AGT AAG CTC CAG GAG TAT GTC ATG 501 Met Val Tyr Leu Pro Asp Glu Ser Lys Leu Gln Glu Tyr Val Met 145 150 155 AAT GAA GAT GGA GTG ATT TAC ATG GGG ACC TGG GAT TAC ATC AGA 546 Asn Glu Asp Gly Val Ile Tyr Met Gly Thr Trp Asp Tyr Ile Arg 160 165 170 AGT ATA CCC TGG AAT TAT GGA CAG TTT GAG GAC TAT GTG ATG GAC 591 Ser Ile Pro Trp Asn Tyr Gly Gln Phe Glu Asp Tyr Val Met Asp 175 180 185 ATC TGT TTT GAA GTC TTG GAC AAC TCC CCA GCT GCC TTG AAA AAC 636 Ile Cys Phe Glu Val Leu Asp Asn Ser Pro Ala Ala Leu Lys Asn 190 195 200 TCA GAG ATG GAC ATT GAG CAC AGA TCA GAC CCC GTC TAT GTC GGC 681 Ser Glu Met Asp Ile Glu His Arg Ser Asp Pro Val Tyr Val Gly 205 210 215 AGG ACA ATC ACT GCA ATG GTG AAC TCT AAC GGT GAC AGG GGT GTG 726 Arg Thr Ile Thr Ala Met Val Asn Ser Asn Gly Asp Arg Gly Val 220 225 230 TTG ACT GGT CGC TGG GAG GAG CCG TAC ACT GAT GGG GTC GCA CCG 771 Leu Thr Gly Arg Trp Glu Glu Pro Tyr Thr Asp Gly Val Ala Pro 235 240 245 TAT CGA TGG ACC GGC AGC GTG CCG ATC CTC CAA CAG TGG AGC AAG 816 Tyr Arg Trp Thr Gly Ser Val Pro Ile Leu Gln Gln Trp Ser Lys 250 255 260 GCC GGG GTG AGG CCG GTC AAA TAT GGC CAG TGC TGG GTG TTT GCT 861 Ala Gly Val Arg Pro Val Lys Tyr Gly Gln Cys Trp Val Phe Ala 265 270 275 GCC GTC GCC TGC ACA GTG CTG CGC TGC CTG GGA ATC CCA ACA CGC 906 Ala Val Ala Cys Thr Val Leu Arg Cys Leu Gly Ile Pro Thr Arg 280 285 290 CCC ATC ACC AAC TTC GCT TCA GCC CAT GAT GTC GAT GGT AAC CTC 951 Pro Ile Thr Asn Phe Ala Ser Ala His Asp Val Asp Gly Asn Leu 295 300 305 TCG GTA GAC TTC CTG CTG AAT GAG AGA CTG GAG AGC TTG GAC AGT 996 Ser Val Asp Phe Leu Leu Asn Glu Arg Leu Glu Ser Leu Asp Ser 310 315 320 AGA CAG AGA AGT GAC AGT AGC TGG AAC TTC CAC TGT TGG GTT GAA 1041 Arg Gln Arg Ser Asp Ser Ser Trp Asn Phe His Cys Trp Val Glu 325 330 335 TCC TGG ATG AGC AGA GAG GAT CTC CCT GAA GGA AAT GAT GGC TGG 1086 Ser Trp Met Ser Arg Glu Asp Leu Pro Glu Gly Asn Asp Gly Trp 340 345 350 CAG GTT TTG GAT CCC ACC CCT CAA GAA CTG AGT GAT GGT GAG TTT 1131 Gln Val Leu Asp Pro Thr Pro Gln Glu Leu Ser Asp Gly Glu Phe 355 360 365 TGC TGT GGT CCG TGT CCA GTG GCG GCC ATC AAG GAG GGA AAT CTG 1176 Cys Cys Gly Pro Cys Pro Val Ala Ala Ile Lys Glu Gly Asn Leu 370 375 380 GGA GTG AAG TAC GAC GCC CCC TTT GTA TTC GCT GAG GTG AAC GCT 1221 Gly Val Lys Tyr Asp Ala Pro Phe Val Phe Ala Glu Val Asn Ala 385 390 395 GAC ACC ATC TAC TGG ATC GTC CAA AAA GAT GGC CAA CGA CGG AAG 1266 Asp Thr Ile Tyr Trp Ile Val Gln Lys Asp Gly Gln Arg Arg Lys 400 405 410 ATC ACA GAG GAC CAT GCT AGT GTG GGG AAG AAC ATC AGC ACA AAA 1311 Ile Thr Glu Asp His Ala Ser Val Gly Lys Asn Ile Ser Thr Lys 415 420 425 AGC GTT TAC GGC AAC CAC AGA GAA GAT GTC ACT CTG CAC TAC AAA 1356 Ser Val Tyr Gly Asn His Arg Glu Asp Val Thr Leu His Tyr Lys 430 435 440 TAT CCT GAA GGC TCC CAG AAG GAG AGG GAA GTG TAC AAG AAG GCG 1401 Tyr Pro Glu Gly Ser Gln Lys Glu Arg Glu Val Tyr Lys Lys Ala 445 450 455 GGA CGC CGG GTC ACA GAG CCA TCC AAC GAG ATC GCA GAA CAA GGA 1446 Gly Arg Arg Val Thr Glu Pro Ser Asn Glu Ile Ala Glu Gln Gly 460 465 470 AGA CTT CAG CTG TCA ATC AAG CAT GCC CAG CCT GTA TTT GGG ACA 1491 Arg Leu Gln Leu Ser Ile Lys His Ala Gln Pro Val Phe Gly Thr 475 480 485 GAC TTT GAT GTG ATT GTT GAG GTG AAG AAT GAA GGA GGC AGA GAT 1536 Asp Phe Asp Val Ile Val Glu Val Lys Asn Glu Gly Gly Arg Asp 490 495 500 GCT CAT GCT CAG CTG ACC ATG CTG GCC ATG GCA GTA ACT TAC AAT 1581 Ala His Ala Gln Leu Thr Met Leu Ala Met Ala Val Thr Tyr Asn 505 510 515 TCT CTC CGC CGG GGG GAG TGC CAG AGA AAA ACA ATC AGT GTG ACT 1626 Ser Leu Arg Arg Gly Glu Cys Gln Arg Lys Thr Ile Ser Val Thr 520 525 530 GTG CCC GCT CAC AAA GCC CAC AAG GAG GTT ATG CGT CTG CAC TAC 1671 Val Pro Ala His Lys Ala His Lys Glu Val Met Arg Leu His Tyr 535 540 545 GAC GAC TAT GTC AGG TGT GTC TCT GAG CAT CAC CTG ATC AGG GTG 1716 Asp Asp Tyr Val Arg Cys Val Ser Glu His His Leu Ile Arg Val 550 555 560 AAA GCG CTC TTA GAC GCT CCA GGG GAG AAC GGG CCC ATC ATG ACC 1761 Lys Ala Leu Leu Asp Ala Pro Gly Glu Asn Gly Pro Ile Met Thr 565 570 575 GTG GCC AAC ATC CCA CTG AGC ACG CCT GAA CTC CTT GTA CAG GTG 1806 Val Ala Asn Ile Pro Leu Ser Thr Pro Glu Leu Leu Val Gln Val 580 585 590 CCT GGG AAG GCT GTT GTA TGG GAA CCA CTG ACA GCC TAC GTC TCC 1851 Pro Gly Lys Ala Val Val Trp Glu Pro Leu Thr Ala Tyr Val Ser 595 600 605 TTC ACC AAT CCT CTG CCA GTT CCT CTG AAG GGT GGC GTT TTC ACT 1896 Phe Thr Asn Pro Leu Pro Val Pro Leu Lys Gly Gly Val Phe Thr 610 615 620 TTG GAG GGT GCT GGC CTG CTG TCT GCC ACT CAG ATC CAT GTT AAT 1941 Leu Glu Gly Ala Gly Leu Leu Ser Ala Thr Gln Ile His Val Asn 625 630 635 GGT GCT GTA GCT CCA AGT GGG AAA GTG TCT GTC AAG CTC TCT TTC 1986 Gly Ala Val Ala Pro Ser Gly Lys Val Ser Val Lys Leu Ser Phe 640 645 650 TCC CCC ATG CGC ACC GGG GTG AGG AAG CTC CTG GTG GAC TTT GAC 2031 Ser Pro Met Arg Thr Gly Val Arg Lys Leu Leu Val Asp Phe Asp 655 660 665 TCT GAC AGA CTG AAG GAC GTG AAG GGT GTC ACC ACC GTG GTT GTC 2076 Ser Asp Arg Leu Lys Asp Val Lys Gly Val Thr Thr Val Val Val 670 675 680 CAC AAG AAA TAC AGA TCT CTA ATT ACT GGA CTT CAC ACA GAC TAA 2121 His Lys Lys Tyr Arg Ser Leu Ile Thr Gly Leu His Thr Asp 685 690 695 AATAGACATA TCTTATATTA TGTGATTTTG TGACATTTCC TAGATGTGAG 2171 GTGGAGGTGA TGTATAAGGT AGATGATATC AACCGCTCAG TGTTATAACA 2221 GTTTATAATG CAAATAAGTT CCACTTAAAT GATACTGTAG CTATGTCCAC 2271 GAAGAAAATT CTTGACACAG TGTTAGTTTG ATTACCTTAA AGCCTTAAAG 2321 CCACTGTATG TCAGATGTGA ACTTGTCTGG CTTTGCATTA AAACCTGGCA 2371 CATGTTGCTC ACATGGAAAT GCACAGAAGC ACAACAGGTG ACGGCCTCTA 2421 GATGGAAAAT ATGTGCGTTT TGTTTCTGTT ACTCCTCTGT TTTATTGCCA 2471 AATTCAAGAT GCTTCCTTCT GTCTTCATTC CAAATGACTG CTGGTTTTT 2520
【0190】配列番号:6 配列の長さ:695 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:肝臓 配列 Ala His Thr Asn Arg Leu Ile Ala Gly Val Asp Leu Arg Ser Gln 1 5 10 15 Glu Asn Asn Arg Glu His Arg Thr Glu Glu Ile Asp Arg Lys Arg 20 25 30 Leu Ile Val Arg Arg Gly Gln Ala Phe Ser Leu Thr Val His Leu 35 40 45 Ser Asp Pro Leu Gln Ser Gly His Glu Leu Ala Leu Val Leu Lys 50 55 60 Gln Asp Lys Asn Asn Asp Asp Ile Val Ile Arg Gln Arg Thr Ala 65 70 75 Gly Gly Ser Gly Asp Lys Trp Trp Leu His Gln Gln Ser Ala Arg 80 85 90 Asn Glu Leu Leu Leu Thr Val Tyr Ser Pro Ala Arg Ala Ala Val 95 100 105 Gly Glu Tyr Arg Leu Ala Val Glu Leu Met Ser Gly Asn Lys Leu 110 115 120 Leu Glu Arg Thr Asp Phe Thr Lys Met Tyr Leu Leu Phe Asn Pro 125 130 135 Trp Cys Lys Asp Asp Ala Val Tyr Leu Pro Asp Glu Ser Leu Leu 140 145 150 Lys Glu Tyr Ile Met Asn Glu Asn Gly Arg Ile Phe Thr Gly Ser 155 160 165 Ala Asp Trp Met Ser Gly Leu Pro Trp Asn Phe Gly Gln Phe Glu 170 175 180 Asp Asn Val Met Asp Ile Cys Phe Glu Ile Leu Asp Arg Phe Lys 185 190 195 Pro Ala Arg Ser Asp Pro Pro Asn Asp Met Arg Gln Arg Trp Asp 200 205 210 Pro Val Tyr Ile Ser Arg Ala Val Val Ala Met Val Asn Ala Asn 215 220 225 Asp Asp Gly Gly Val Leu Val Gly Lys Trp Gln Glu Pro Tyr Thr 230 235 240 Gly Gly Val Gln Pro Thr Lys Trp Met Ser Ser Val Pro Ile Leu 245 250 255 Glu Lys Trp Ser Lys Ser Lys Ser Gly Val Lys Tyr Gly Gln Cys 260 265 270 Trp Val Phe Ala Ala Val Ala Cys Thr Val Leu Arg Cys Leu Gly 275 280 285 Ile Pro Thr Arg Cys Ile Thr Asn Phe Glu Ser Ala His Asp Thr 290 295 300 Asp Gly Asn Leu Ser Ile Asp Arg Val Tyr Asn Thr His Arg Gln 305 310 315 Ser Val Asn His Ala Asp Ser Ile Trp Asn Phe His Cys Trp Ile 320 325 330 Glu Ser Tyr Met Gln Arg Glu Asp Leu Pro Glu Gly Tyr Gly Gly 335 340 345 Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Arg Ser Ser Gly Met 350 355 360 Phe Arg Cys Gly Pro Cys Pro Leu Lys Ala Ile Lys Glu Gly Asp 365 370 375 Leu Asn Val Lys Phe Asp Val Pro Phe Val Phe Ala Glu Val Asn 380 385 390 Ala Asp Ile Ile Asn Trp Glu Ile Arg Pro Asp Gly Gln Arg Met 395 400 405 Arg Leu Ser Ser Asn Ser Ala Lys Val Gly Arg Asn Ile Ser Thr 410 415 420 Lys Ser Pro Tyr Ser Asn Glu Arg Glu Asp Ile Thr Leu Gln Tyr 425 430 435 Lys Tyr Gln Glu Gly Ser Ala Lys Glu Arg Glu Val Tyr Asn Lys 440 445 450 Ala Gly Arg Arg Ile Ser Gly Pro Asp Arg Glu Glu Glu Ser Lys 455 460 465 Pro Ala Asn Glu Pro Gly Asn Val Gln Leu Glu Ile Arg Tyr Ala 470 475 480 Lys Pro Val Phe Gly Thr Asp Phe Asp Val Ile Phe Glu Leu Glu 485 490 495 Asn Met Gly Asp Glu Glu Val Ser Cys Lys Leu Asn Met Met Ser 500 505 510 Lys Ala Val Thr Tyr Asn Ser Val His Leu Gly Glu Cys Gln Asn 515 520 525 Ser Thr Val Asn Val Val Ile Pro Ala His Lys Val His Arg Glu 530 535 540 Thr Val Arg Leu Leu Tyr Thr Lys Tyr Ala Ser Cys Val Ser Glu 545 550 555 His Asn Ile Ile Arg Val Val Gly Val Ala Arg Val Ser Gly Gln 560 565 570 Glu Lys Ser Ile Leu Glu Met Val Asn Ile Pro Leu Ser Lys Pro 575 580 585 Lys Leu Ser Ile Lys Val Pro Gly Trp Val Ile Leu Asn Arg Lys 590 595 600 Ile Thr Thr Val Ile Thr Phe Thr Asn Pro Leu Pro Val Pro Leu 605 610 615 Asn Arg Gly Val Phe Thr Val Glu Gly Ala Gly Leu Leu Ser Thr 620 625 630 Lys Glu Ile Arg Ile Ser Gly Ser Ile Ala Pro Gly Gln Arg Val 635 640 645 Ser Val Glu Leu Ser Phe Thr Pro Met Arg Ala Gly Val Arg Glu 650 655 660 Phe Leu Val Asp Phe Asp Ser Asp Arg Leu Gln Asp Val Lys Gly 665 670 675 Val Ala Thr Leu Val Val Arg Lys Thr Ser Pro Ser Tyr Phe Pro 680 685 690 Met Pro Tyr Thr Leu 695
【0191】配列番号:7 配列の長さ:696 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:肝臓 配列 Met Ala His Thr Asn Arg Leu Ile Ala Gly Val Asp Leu Arg Ser 1 5 10 15 Gln Glu Asn Asn Arg Glu His Arg Thr Glu Glu Ile Asp Arg Lys 20 25 30 Arg Leu Ile Val Arg Arg Gly Gln Ala Phe Ser Leu Thr Val His 35 40 45 Leu Ser Asp Pro Leu Gln Ser Gly His Glu Leu Ala Leu Val Leu 50 55 60 Lys Gln Asp Lys Asn Asn Asp Asp Ile Val Ile Arg Gln Arg Thr 65 70 75 Ala Gly Gly Ser Gly Asp Lys Trp Trp Leu His Gln Gln Ser Ala 80 85 90 Arg Asn Glu Leu Leu Leu Thr Val Tyr Ser Pro Ala Arg Ala Ala 95 100 105 Val Gly Glu Tyr Arg Leu Ala Val Glu Leu Met Ser Gly Asn Lys 110 115 120 Leu Leu Glu Arg Thr Asp Phe Thr Lys Met Tyr Leu Leu Phe Asn 125 130 135 Pro Trp Cys Lys Asp Asp Ala Val Tyr Leu Pro Asp Glu Ser Leu 140 145 150 Leu Lys Glu Tyr Ile Met Asn Glu Asn Gly Arg Ile Phe Thr Gly 155 160 165 Ser Ala Asp Trp Met Ser Gly Leu Pro Trp Asn Phe Gly Gln Phe 170 175 180 Glu Asp Asn Val Met Asp Ile Cys Phe Glu Ile Leu Asp Arg Phe 185 190 195 Lys Pro Ala Arg Ser Asp Pro Pro Asn Asp Met Arg Gln Arg Trp 200 205 210 Asp Pro Val Tyr Ile Ser Arg Ala Val Val Ala Met Val Asn Ala 215 220 225 Asn Asp Asp Gly Gly Val Leu Val Gly Lys Trp Gln Glu Pro Tyr 230 235 240 Thr Gly Gly Val Gln Pro Thr Lys Trp Met Ser Ser Val Pro Ile 245 250 255 Leu Glu Lys Trp Ser Lys Ser Lys Ser Gly Val Lys Tyr Gly Gln 260 265 270 Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Leu Arg Cys Leu 275 280 285 Gly Ile Pro Thr Arg Cys Ile Thr Asn Phe Glu Ser Ala His Asp 290 295 300 Thr Asp Gly Asn Leu Ser Ile Asp Arg Val Tyr Asn Thr His Arg 305 310 315 Gln Ser Val Asn His Ala Asp Ser Ile Trp Asn Phe His Cys Trp 320 325 330 Ile Glu Ser Tyr Met Gln Arg Glu Asp Leu Pro Glu Gly Tyr Gly 335 340 345 Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Arg Ser Ser Gly 350 355 360 Met Phe Arg Cys Gly Pro Cys Pro Leu Lys Ala Ile Lys Glu Gly 365 370 375 Asp Leu Asn Val Lys Phe Asp Val Pro Phe Val Phe Ala Glu Val 380 385 390 Asn Ala Asp Ile Ile Asn Trp Glu Ile Arg Pro Asp Gly Gln Arg 395 400 405 Met Arg Leu Ser Ser Asn Ser Ala Lys Val Gly Arg Asn Ile Ser 410 415 420 Thr Lys Ser Pro Tyr Ser Asn Glu Arg Glu Asp Ile Thr Leu Gln 425 430 435 Tyr Lys Tyr Gln Glu Gly Ser Ala Lys Glu Arg Glu Val Tyr Asn 440 445 450 Lys Ala Gly Arg Arg Ile Ser Gly Pro Asp Arg Glu Glu Glu Ser 455 460 465 Lys Pro Ala Asn Glu Pro Gly Asn Val Gln Leu Glu Ile Arg Tyr 470 475 480 Ala Lys Pro Val Phe Gly Thr Asp Phe Asp Val Ile Phe Glu Leu 485 490 495 Glu Asn Met Gly Asp Glu Glu Val Ser Cys Lys Leu Asn Met Met 500 505 510 Ser Lys Ala Val Thr Tyr Asn Ser Val His Leu Gly Glu Cys Gln 515 520 525 Asn Ser Thr Val Asn Val Val Ile Pro Ala His Lys Val His Arg 530 535 540 Glu Thr Val Arg Leu Leu Tyr Thr Lys Tyr Ala Ser Cys Val Ser 545 550 555 Glu His Asn Ile Ile Arg Val Val Gly Val Ala Arg Val Ser Gly 560 565 570 Gln Glu Lys Ser Ile Leu Glu Met Val Asn Ile Pro Leu Ser Lys 575 580 585 Pro Lys Leu Ser Ile Lys Val Pro Gly Trp Val Ile Leu Asn Arg 590 595 600 Lys Ile Thr Thr Val Ile Thr Phe Thr Asn Pro Leu Pro Val Pro 605 610 615 Leu Asn Arg Gly Val Phe Thr Val Glu Gly Ala Gly Leu Leu Ser 620 625 630 Thr Lys Glu Ile Arg Ile Ser Gly Ser Ile Ala Pro Gly Gln Arg 635 640 645 Val Ser Val Glu Leu Ser Phe Thr Pro Met Arg Ala Gly Val Arg 650 655 660 Glu Phe Leu Val Asp Phe Asp Ser Asp Arg Leu Gln Asp Val Lys 665 670 675 Gly Val Ala Thr Leu Val Val Arg Lys Thr Ser Pro Ser Tyr Phe 680 685 690 Pro Met Pro Tyr Thr Leu 695
【0192】配列番号:8 配列の長さ:2088 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:1..2088 特徴を決定した方法:P 配列 GCCCACACAA ACCGTTTAAT TGCTGGTGTT GATCTGAGAA GCCAGGAAAA CAACCGGGAA 60 CACCGAACTG AGGAGATTGA TAGGAAGCGT TTGATTGTTC GGCGGGGACA AGCCTTCTCC 120 CTGACGGTGC ACCTCTCCGA CCCGCTGCAG TCCGGCCATG AGCTGGCCCT GGTCTTAAAG 180 CAGGATAAGA ACAACGATGA TATTGTGATC AGACAGCGAA CGGCTGGAGG GTCTGGTGAC 240 AAGTGGTGGT TACACCAGCA GAGCGCGAGG AACGAATTAC TGCTGACTGT GTACAGTCCT 300 GCCCGTGCTG CCGTTGGCGA GTACCGCTTG GCTGTTGAAC TGATGTCAGG GAATAAACTT 360 CTGGAGAGGA CGGACTTTAC CAAAATGTAC TTGCTGTTTA ATCCCTGGTG CAAAGATGAT 420 GCTGTGTACC TCCCTGATGA AAGTCTGCTC AAGGAATACA TTATGAACGA GAATGGTCGC 480 ATTTTCACTG GGAGTGCGGA TTGGATGAGT GGGTTGCCAT GGAATTTCGG ACAGTTTGAA 540 GACAATGTGA TGGACATCTG CTTTGAGATC CTTGACCGCT TTAAGCCAGC AAGGTCAGAC 600 CCCCCAAACG ACATGCGTCA GCGATGGGAC CCTGTCTACA TCAGCAGGGC AGTCGTTGCC 660 ATGGTGAATG CCAACGATGA CGGTGGAGTC TTGGTGGGGA AATGGCAGGA ACCTTACACA 720 GGTGGAGTAC AGCCAACCAA ATGGATGAGC AGTGTGCCCA TCCTGGAGAA GTGGAGCAAA 780 TCAAAGTCTG GAGTGAAGTA TGGCCAATGC TGGGTGTTTG CAGCCGTGGC CTGCACAGTG 840 CTGCGATGCC TGGGCATCCC CACACGCTGC ATCACCAACT TTGAGTCAGC CCATGACACA 900 GACGGAAACC TCTCCATCGA CCGAGTGTAC AACACACATA GGCAGAGTGT TAACCATGCT 960 GACAGCATCT GGAACTTTCA TTGTTGGATC GAGTCTTACA TGCAGAGAGA AGATCTACCT 1020 GAAGGATATG GTGGCTGGCA AGTCTTGGAC CCCACACCTC AGGAGAGGAG TAGTGGTATG 1080 TTTCGCTGTG GCCCATGTCC ATTGAAGGCC ATTAAAGAAG GGGACCTCAA TGTGAAGTTT 1140 GATGTTCCAT TTGTCTTTGC TGAGGTGAAT GCAGACATCA TCAATTGGGA AATCAGACCA 1200 GACGGTCAGC GAATGCGGCT TTCATCCAAC TCCGCAAAAG TGGGGAGGAA CATTAGCACC 1260 AAAAGTCCTT ACAGTAACGA GAGGGAAGAT ATAACCCTTC AGTACAAGTA CCAAGAAGGT 1320 TCAGCCAAGG AGCGGGAGGT GTACAACAAG GCAGGGCGGC GCATCTCCGG GCCGGATAGA 1380 GAAGAGGAAT CAAAACCAGC CAATGAACCA GGAAACGTGC AGCTGGAGAT CAGATACGCC 1440 AAGCCTGTGT TCGGGACCGA CTTTGACGTC ATCTTTGAGT TGGAGAACAT GGGAGACGAA 1500 GAAGTCAGCT GCAAATTGAA CATGATGTCA AAGGCTGTCA CGTATAACTC GGTCCACCTG 1560 GGAGAGTGCC AGAATAGCAC AGTCAATGTT GTCATTCCTG CTCACAAAGT CCACAGGGAG 1620 ACGGTGCGTC TACTCTACAC TAAGTATGCA TCGTGCGTCA GCGAACACAA CATCATCCGG 1680 GTGGTAGGGG TGGCAAGAGT GTCCGGCCAG GAAAAATCCA TCCTGGAGAT GGTCAACATC 1740 CCACTGAGCA AGCCCAAACT CAGTATTAAG GTTCCTGGCT GGGTGATTTT AAATAGGAAA 1800 ATCACCACCG TCATCACCTT CACCAATCCA TTGCCAGTGC CACTGAACCG AGGAGTGTTC 1860 ACTGTTGAAG GGGCTGGCCT ACTTTCAACC AAAGAGATCC GCATTTCTGG TAGCATCGCT 1920 CCAGGCCAGC GTGTGTCTGT GGAGCTGTCC TTCACACCCA TGAGGGCGGG GGTCAGGGAG 1980 TTCCTGGTGG ACTTTGACTC CGACAGGCTC CAGGACGTGA AGGGAGTCGC CACACTGGTG 2040 GTCCGCAAGA CTTCACCCTC CTATTTTCCC ATGCCCTACA CGTTGTGA 2088
【0193】配列番号:9 配列の長さ:2921 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:32..2122 特徴を決定した方法:P 配列 AGCAACTCTT GGAAAGAATT TAGCAAAGAT A ATG GCC CAC ACA AAC 46 Met Ala His Thr Asn 1 5 CGT TTA ATT GCT GGT GTT GAT CTG AGA AGC CAG GAA AAC AAC CGG 91 Arg Leu Ile Ala Gly Val Asp Leu Arg Ser Gln Glu Asn Asn Arg 10 15 20 GAA CAC CGA ACT GAG GAG ATT GAT AGG AAG CGT TTG ATT GTT CGG 136 Glu His Arg Thr Glu Glu Ile Asp Arg Lys Arg Leu Ile Val Arg 25 30 35 CGG GGA CAA GCC TTC TCC CTG ACG GTG CAC CTC TCC GAC CCG CTG 181 Arg Gly Gln Ala Phe Ser Leu Thr Val His Leu Ser Asp Pro Leu 40 45 50 CAG TCC GGC CAT GAG CTG GCC CTG GTC TTA AAG CAG GAT AAG AAC 226 Gln Ser Gly His Glu Leu Ala Leu Val Leu Lys Gln Asp Lys Asn 55 60 65 AAC GAT GAT ATT GTG ATC AGA CAG CGA ACG GCT GGA GGG TCT GGT 271 Asn Asp Asp Ile Val Ile Arg Gln Arg Thr Ala Gly Gly Ser Gly 70 75 80 GAC AAG TGG TGG TTA CAC CAG CAG AGC GCG AGG AAC GAA TTA CTG 316 Asp Lys Trp Trp Leu His Gln Gln Ser Ala Arg Asn Glu Leu Leu 85 90 95 CTG ACT GTG TAC AGT CCT GCC CGT GCT GCC GTT GGC GAG TAC CGC 361 Leu Thr Val Tyr Ser Pro Ala Arg Ala Ala Val Gly Glu Tyr Arg 100 105 110 TTG GCT GTT GAA CTG ATG TCA GGG AAT AAA CTT CTG GAG AGG ACG 406 Leu Ala Val Glu Leu Met Ser Gly Asn Lys Leu Leu Glu Arg Thr 115 120 125 GAC TTT ACC AAA ATG TAC TTG CTG TTT AAT CCC TGG TGC AAA GAT 451 Asp Phe Thr Lys Met Tyr Leu Leu Phe Asn Pro Trp Cys Lys Asp 130 135 140 GAT GCT GTG TAC CTC CCT GAT GAA AGT CTG CTC AAG GAA TAC ATT 496 Asp Ala Val Tyr Leu Pro Asp Glu Ser Leu Leu Lys Glu Tyr Ile 145 150 155 ATG AAC GAG AAT GGT CGC ATT TTC ACT GGG AGT GCG GAT TGG ATG 541 Met Asn Glu Asn Gly Arg Ile Phe Thr Gly Ser Ala Asp Trp Met 160 165 170 AGT GGG TTG CCA TGG AAT TTC GGA CAG TTT GAA GAC AAT GTG ATG 586 Ser Gly Leu Pro Trp Asn Phe Gly Gln Phe Glu Asp Asn Val Met 175 180 185 GAC ATC TGC TTT GAG ATC CTT GAC CGC TTT AAG CCA GCA AGG TCA 631 Asp Ile Cys Phe Glu Ile Leu Asp Arg Phe Lys Pro Ala Arg Ser 190 195 200 GAC CCC CCA AAC GAC ATG CGT CAG CGA TGG GAC CCT GTC TAC ATC 676 Asp Pro Pro Asn Asp Met Arg Gln Arg Trp Asp Pro Val Tyr Ile 205 210 215 AGC AGG GCA GTC GTT GCC ATG GTG AAT GCC AAC GAT GAC GGT GGA 721 Ser Arg Ala Val Val Ala Met Val Asn Ala Asn Asp Asp Gly Gly 220 225 230 GTC TTG GTG GGG AAA TGG CAG GAA CCT TAC ACA GGT GGA GTA CAG 766 Val Leu Val Gly Lys Trp Gln Glu Pro Tyr Thr Gly Gly Val Gln 235 240 245 CCA ACC AAA TGG ATG AGC AGT GTG CCC ATC CTG GAG AAG TGG AGC 811 Pro Thr Lys Trp Met Ser Ser Val Pro Ile Leu Glu Lys Trp Ser 250 255 260 AAA TCA AAG TCT GGA GTG AAG TAT GGC CAA TGC TGG GTG TTT GCA 856 Lys Ser Lys Ser Gly Val Lys Tyr Gly Gln Cys Trp Val Phe Ala 265 270 275 GCC GTG GCC TGC ACA GTG CTG CGA TGC CTG GGC ATC CCC ACA CGC 901 Ala Val Ala Cys Thr Val Leu Arg Cys Leu Gly Ile Pro Thr Arg 280 285 290 TGC ATC ACC AAC TTT GAG TCA GCC CAT GAC ACA GAC GGA AAC CTC 946 Cys Ile Thr Asn Phe Glu Ser Ala His Asp Thr Asp Gly Asn Leu 295 300 305 TCC ATC GAC CGA GTG TAC AAC ACA CAT AGG CAG AGT GTT AAC CAT 991 Ser Ile Asp Arg Val Tyr Asn Thr His Arg Gln Ser Val Asn His 310 315 320 GCT GAC AGC ATC TGG AAC TTT CAT TGT TGG ATC GAG TCT TAC ATG 1036 Ala Asp Ser Ile Trp Asn Phe His Cys Trp Ile Glu Ser Tyr Met 325 330 335 CAG AGA GAA GAT CTA CCT GAA GGA TAT GGT GGC TGG CAA GTC TTG 1081 Gln Arg Glu Asp Leu Pro Glu Gly Tyr Gly Gly Trp Gln Val Leu 340 345 350 GAC CCC ACA CCT CAG GAG AGG AGT AGT GGT ATG TTT CGC TGT GGC 1126 Asp Pro Thr Pro Gln Glu Arg Ser Ser Gly Met Phe Arg Cys Gly 355 360 365 CCA TGT CCA TTG AAG GCC ATT AAA GAA GGG GAC CTC AAT GTG AAG 1171 Pro Cys Pro Leu Lys Ala Ile Lys Glu Gly Asp Leu Asn Val Lys 370 375 380 TTT GAT GTT CCA TTT GTC TTT GCT GAG GTG AAT GCA GAC ATC ATC 1216 Phe Asp Val Pro Phe Val Phe Ala Glu Val Asn Ala Asp Ile Ile 385 390 395 AAT TGG GAA ATC AGA CCA GAC GGT CAG CGA ATG CGG CTT TCA TCC 1261 Asn Trp Glu Ile Arg Pro Asp Gly Gln Arg Met Arg Leu Ser Ser 400 405 410 AAC TCC GCA AAA GTG GGG AGG AAC ATT AGC ACC AAA AGT CCT TAC 1306 Asn Ser Ala Lys Val Gly Arg Asn Ile Ser Thr Lys Ser Pro Tyr 415 420 425 AGT AAC GAG AGG GAA GAT ATA ACC CTT CAG TAC AAG TAC CAA GAA 1351 Ser Asn Glu Arg Glu Asp Ile Thr Leu Gln Tyr Lys Tyr Gln Glu 430 435 440 GGT TCA GCC AAG GAG CGG GAG GTG TAC AAC AAG GCA GGG CGG CGC 1396 Gly Ser Ala Lys Glu Arg Glu Val Tyr Asn Lys Ala Gly Arg Arg 445 450 455 ATC TCC GGG CCG GAT AGA GAA GAG GAA TCA AAA CCA GCC AAT GAA 1441 Ile Ser Gly Pro Asp Arg Glu Glu Glu Ser Lys Pro Ala Asn Glu 460 465 470 CCA GGA AAC GTG CAG CTG GAG ATC AGA TAC GCC AAG CCT GTG TTC 1486 Pro Gly Asn Val Gln Leu Glu Ile Arg Tyr Ala Lys Pro Val Phe 475 480 485 GGG ACC GAC TTT GAC GTC ATC TTT GAG TTG GAG AAC ATG GGA GAC 1531 Gly Thr Asp Phe Asp Val Ile Phe Glu Leu Glu Asn Met Gly Asp 490 495 500 GAA GAA GTC AGC TGC AAA TTG AAC ATG ATG TCA AAG GCT GTC ACG 1576 Glu Glu Val Ser Cys Lys Leu Asn Met Met Ser Lys Ala Val Thr 505 510 515 TAT AAC TCG GTC CAC CTG GGA GAG TGC CAG AAT AGC ACA GTC AAT 1621 Tyr Asn Ser Val His Leu Gly Glu Cys Gln Asn Ser Thr Val Asn 520 525 530 GTT GTC ATT CCT GCT CAC AAA GTC CAC AGG GAG ACG GTG CGT CTA 1666 Val Val Ile Pro Ala His Lys Val His Arg Glu Thr Val Arg Leu 535 540 545 CTC TAC ACT AAG TAT GCA TCG TGC GTC AGC GAA CAC AAC ATC ATC 1711 Leu Tyr Thr Lys Tyr Ala Ser Cys Val Ser Glu His Asn Ile Ile 550 555 560 CGG GTG GTA GGG GTG GCA AGA GTG TCC GGC CAG GAA AAA TCC ATC 1756 Arg Val Val Gly Val Ala Arg Val Ser Gly Gln Glu Lys Ser Ile 565 570 575 CTG GAG ATG GTC AAC ATC CCA CTG AGC AAG CCC AAA CTC AGT ATT 1801 Leu Glu Met Val Asn Ile Pro Leu Ser Lys Pro Lys Leu Ser Ile 580 585 590 AAG GTT CCT GGC TGG GTG ATT TTA AAT AGG AAA ATC ACC ACC GTC 1846 Lys Val Pro Gly Trp Val Ile Leu Asn Arg Lys Ile Thr Thr Val 595 600 605 ATC ACC TTC ACC AAT CCA TTG CCA GTG CCA CTG AAC CGA GGA GTG 1891 Ile Thr Phe Thr Asn Pro Leu Pro Val Pro Leu Asn Arg Gly Val 610 615 620 TTC ACT GTT GAA GGG GCT GGC CTA CTT TCA ACC AAA GAG ATC CGC 1936 Phe Thr Val Glu Gly Ala Gly Leu Leu Ser Thr Lys Glu Ile Arg 625 630 635 ATT TCT GGT AGC ATC GCT CCA GGC CAG CGT GTG TCT GTG GAG CTG 1981 Ile Ser Gly Ser Ile Ala Pro Gly Gln Arg Val Ser Val Glu Leu 640 645 650 TCC TTC ACA CCC ATG AGG GCG GGG GTC AGG GAG TTC CTG GTG GAC 2026 Ser Phe Thr Pro Met Arg Ala Gly Val Arg Glu Phe Leu Val Asp 655 660 665 TTT GAC TCC GAC AGG CTC CAG GAC GTG AAG GGA GTC GCC ACA CTG 2071 Phe Asp Ser Asp Arg Leu Gln Asp Val Lys Gly Val Ala Thr Leu 670 675 680 GTG GTC CGC AAG ACT TCA CCC TCC TAT TTT CCC ATG CCC TAC ACG 2116 Val Val Arg Lys Thr Ser Pro Ser Tyr Phe Pro Met Pro Tyr Thr 685 690 695 TTG TGATCAAACC TATAGCTGTC AACAGGGCTC TGGCACTCAT TCTTATACTA 2169 Leu 696 ACAAATATAT TTAGCAAAGT CAAGCAAGGG TTTCACTTTT CTTAATATAC 2219 CATGATGTGT AGCGCTGATT CAATTAATGA ATAAATTAAT TTCAATTAAT 2269 GTGAAGAAAA TGCAAACATT GCCTTAATTC TTTGCAATGT CACAGGAATA 2319 GCGTAAATCA TGGCTCATTG ATATTAAATG TAGTATTGAC ATATATCCAT 2369 GCATTTTGCA CTTCTGCAAA TCACCATTTT GTTGTTAATC AATGTTTTAC 2419 CACGATTTTT GCATCTATTC TTGTTTAATT GTAATCAAGA CATTTACATG 2469 ATTGTGGGGG CCAAAGTATA TAGATGTTGT GGTTGGGAAA TGGGGCAATA 2519 ATAGGGGAAG GGTTAATTAT AGGGTCAGTG TTAGTAATTG GTTAAGGTTA 2569 CTAATAGGGT AAGTGTTACA GTGTAAAGAT AAGCCTTTGA TTTTGTTAAA 2619 TTTATTATGC CTTTCATCAA CAGTGGTTTG GGGTTTTATA ACAACAATTA 2669 AAGTGCTTAA CTACTGGTGA ACGACGTTGC AGAACGTATA TGGTACAAGT 2719 TTGTGTTGAT CGCATGGAAA AGGGAATAAC CAGTTACAAC TTATATGGTA 2769 AGAGCCTGGT AATACCATGG AAACAAACGA GGCTTCCTTT TACAGTACAG 2819 TTTCAGCGTC ATGAATATTT GGCCTGTTAA GCCCTTTGAG ACTGTAATGG 2869 TGATTAAGGG CTATACAAAT AAAATTGAAT TGAATTGAAT TAAAAAAAAA 2919 AA 2921
【0194】配列番号:10 配列の長さ:29 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GTCAAGTACG GCCAGTGCTG GGTCTTCGC 30
【0195】配列番号:11 配列の長さ:8 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド 配列 Tyr Gly Gln Cys Trp Val Phe Ala 8 1 5
【0196】配列番号:12 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列の特徴 特徴を表す記号:RBS 存在位置:15..23 特徴を決定した方法:S 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 理想的RBSの導入 配列 AATTCATCGA TTAGTAAGGA GGTTTAAAAT 30
成 理想的RBSの導入 配列 AATTCATCGA TTAGTAAGGA GGTTTAAAAT 30
【0197】配列番号:13 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列の特徴 特徴を表す記号:CDS 存在位置:1..30 特徴を決定した方法:P 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 真鯛トランスグルタミナーゼのN末端領域をコード 配列番号12の下流塩基配列を構成 配列 GGCTTCTTAT AAAGGTCTGA TTGTTGATGT 30
成 真鯛トランスグルタミナーゼのN末端領域をコード 配列番号12の下流塩基配列を構成 配列 GGCTTCTTAT AAAGGTCTGA TTGTTGATGT 30
【0198】配列番号:14 配列の長さ:32 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列の特徴 特徴を表す記号:CDS 存在位置:1..32 特徴を決定した方法:P 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 真鯛トランスグルタミナーゼのN末端領域をコード 配列番号13の下流塩基配列を構成 配列 TAATGGTCGT TCTCATGAAA ACAACCTGGC AC 32
成 真鯛トランスグルタミナーゼのN末端領域をコード 配列番号13の下流塩基配列を構成 配列 TAATGGTCGT TCTCATGAAA ACAACCTGGC AC 32
【0199】配列番号:15 配列の長さ:33 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列の特徴 特徴を表す記号:CDS 存在位置:1..33 特徴を決定した方法:P 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 真鯛トランスグルタミナーゼのN末端領域をコード 配列番号14の下流塩基配列を構成 配列 ATCGTACGCG TGAAATCGAC CGTGAGCGCC TGA 33
成 真鯛トランスグルタミナーゼのN末端領域をコード 配列番号14の下流塩基配列を構成 配列 ATCGTACGCG TGAAATCGAC CGTGAGCGCC TGA 33
【0200】配列番号:16 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 配列番号12の相補鎖的役割 配列 AGCCATTTTA AACCTCCTTA CTAATCGATG 30
成 配列番号12の相補鎖的役割 配列 AGCCATTTTA AACCTCCTTA CTAATCGATG 30
【0201】配列番号:17 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 配列番号13の相補鎖的役割 配列 ATTAACATCA ACAATCAGAC CTTTATAAGA 30
成 配列番号13の相補鎖的役割 配列 ATTAACATCA ACAATCAGAC CTTTATAAGA 30
【0202】配列番号:18 配列の長さ:32 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 配列番号14の相補鎖的役割 配列 CGATGTGCCA GGTTGTTTTC ATGAGAACGA CC 32
成 配列番号14の相補鎖的役割 配列 CGATGTGCCA GGTTGTTTTC ATGAGAACGA CC 32
【0203】配列番号:19 配列の長さ:33 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 意図した機能:明細書内、図4中の化学合成DNA-1を構
成 配列番号15の相補鎖的役割 配列 AGCTTCAGGC GCTCACGGTC GATTTCACGC GTA 33
成 配列番号15の相補鎖的役割 配列 AGCTTCAGGC GCTCACGGTC GATTTCACGC GTA 33
【0204】配列番号: 20 配列の長さ: 7 配列の型: アミノ酸 トポロジー: 直鎖状 配列の種類: ペプチド フラグメント型: 中間型フラグメント 起源 生物名:スケソウダラ(Teragra chalcogramma) 組織の種類: 肝臓
【0205】配列番号: 21 配列の長さ: 7 配列の型: アミノ酸 トポロジー: 直鎖状 配列の種類: ペプチド フラグメント型: 中間型フラグメント 起源 生物名:スケソウダラ(Teragra chalcogramma) 組織の種類: 肝臓
【0206】配列番号: 22 配列の長さ: 7 配列の型: アミノ酸 トポロジー: 直鎖状 配列の種類: ペプチド フラグメント型: 中間型フラグメント 起源 生物名:スケソウダラ(Teragra chalcogramma) 組織の種類: 肝臓
【0207】配列番号: 23 配列の長さ: 8 配列の型: アミノ酸 トポロジー: 直鎖状 配列の種類: ペプチド フラグメント型: 中間型フラグメント 起源 生物名:スケソウダラ(Teragra chalcogramma) 組織の種類: 肝臓
【0208】配列番号: 24 配列の長さ: 13 配列の型: アミノ酸 トポロジー: 直鎖状 配列の種類: ペプチド フラグメント型: 中間型フラグメント 起源 生物名:スケソウダラ(Teragra chalcogramma) 組織の種類: 肝臓 配列 Phe Asp Val Pro Phe Val Phe Ala Glu Val Asn Ala Asp 1 5 10
【0209】配列番号: 25 配列の長さ: 6 配列の型: アミノ酸 トポロジー: 直鎖状 配列の種類: ペプチド フラグメント型: 中間型フラグメント 起源 生物名:スケソウダラ(Teragra chalcogramma) 組織の種類: 肝臓
【0210】配列番号 : 26 配列の長さ: 10 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0211】配列番号 : 27 配列の長さ: 17 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Xaa Xaa Phe Asn Gln Gln Gly Ala Gln Asp Glu Ile Leu Leu Thr Leu 1 5 10 15 His
【0212】配列番号 : 28 配列の長さ: 9 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0213】配列番号 : 29 配列の長さ: 16 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Leu Gln Glu Tyr Val Met Asn Glu Asp Gly Val Ile Tyr Met Gly Thr 1 5 10 15
【0214】配列番号 : 30 配列の長さ: 18 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Asn Ser Glu Met Asp Ile Glu His Arg Ser Asp Pro Val Tyr Val Gly 1 5 10 15 Arg Thr
【0215】配列番号 : 31 配列の長さ: 16 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Tyr Asp Ala Pro Phe Val Phe Ala Glu Val Asn Ala Asp Thr Ile Tyr 1 5 10 15
【0216】配列番号 : 32 配列の長さ: 14 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Ser Val Tyr Gly Asn His Arg Glu Asp Val Thr Leu His Tyr 1 5 10
【0217】配列番号 : 33 配列の長さ: 18 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Ala Gly Arg Arg Val Thr Glu Pro Ser Asn Glu Ile Ala Glu Gln Gly 1 5 10 15 Arg Leu
【0218】配列番号 : 34 配列の長さ: 15 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Xaa Ala Gln Pro Val Phe Gly Thr Asp Phe Asp Val Ile Val Glu 1 5 10 15
【0219】配列番号 : 35 配列の長さ: 17 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Asn Glu Gly Gly Arg Asp Ala His Ala Gln Leu Thr Xaa Leu Ala Xaa 1 5 10 15 Ala
【0220】配列番号 : 36 配列の長さ: 9 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0221】配列番号 : 37 配列の長さ: 9 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0222】配列番号 : 38 配列の長さ: 18 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓 Gly Gly Val Phe Thr Leu Glu Gly Ala Gly Leu Leu Ser Ala Thr Gln 1 5 10 15 Ile His
【0223】配列番号 : 39 配列の長さ: 11 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0224】配列番号 : 40 配列の長さ: 10 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0225】配列番号 : 41 配列の長さ: 8 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0226】配列番号 : 42 配列の長さ: 11 配列の型: アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメントの型: 中間型フラグメント 起源 生物名:マダイ(Pagrus majo r) 組織の種類:肝臓
【0227】配列番号:43 配列の長さ:687 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:ヒラメ(Paralichthys olivaceus) 組織の種類: 肝臓 配列 Asp Asn Gln Asn Ile Pro Ile Thr Asp Val Asp Val Arg Ser His 1 5 10 15 Glu Asn Asn Leu Ala His Arg Thr Arg Glu Ile Asp Arg Glu Arg 20 25 30 Leu Ile Val Arg Arg Gly Gln Pro Phe Ser Ile Ser Leu Gln Cys 35 40 45 Cys Asp Ser Leu Thr Arg Asn His His Leu Glu Leu Ser Leu His 50 55 60 Leu Gly Lys Lys Asp Glu Val Val Ile Lys Val His Asn Glu Pro 65 70 75 Glu Ala Gly Gly Lys Trp Trp Phe Asn His Gln Lys Val Gln Asp 80 85 90 Glu Ile Leu Leu Thr Leu His Ser Pro Ala Asp Ala Ile Ile Gly 95 100 105 Glu Tyr His Leu Thr Val Leu Ile Lys Ser Pro Asp Gly His Phe 110 115 120 Val Lys Lys Thr Lys Asn Ile Gly Phe His Leu Leu Phe Asn Pro 125 130 135 Trp Cys Lys Asp Asp Ala Val Tyr Leu Pro Asp Glu Arg Met Leu 140 145 150 Asp Glu Tyr Val Met Asn Glu Glu Gly Ile Ile Tyr Arg Gly Thr 155 160 165 Ser Asn His Ile Ser Ser Ile Pro Trp Asn Tyr Gly Gln Phe Glu 170 175 180 Asp Tyr Val Met Asp Ile Cys Phe Gln Val Leu Asp Asn Ser Lys 185 190 195 Glu Ala Leu Lys Asn Ser Lys Met Asp Ile Glu Lys Arg Ser Asp 200 205 210 Pro Val Tyr Val Ser Arg Met Ile Thr Ala Met Val Asn Ser Asn 215 220 225 Gly Asp Arg Gly Val Leu Thr Gly Gln Trp His Glu Pro Tyr Thr 230 235 240 Gly Gly Phe Ser Pro Leu Arg Trp Thr Gly Ser Val Pro Ile Leu 245 250 255 Arg Lys Trp Ser Lys Ala Glu Val Arg Ala Val Lys Tyr Gly Gln 260 265 270 Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Leu Arg Cys Leu 275 280 285 Gly Ile Pro Thr Arg Asn Ile Thr Asn Phe Asn Ser Ala His Asp 290 295 300 Val Asp Gly Asn Leu Ser Val Asp Ile Val Leu Asn Lys Glu Met 305 310 315 Glu Ser Val Gly Lys Lys Asp Ser Ser Trp Asn Phe His Cys Trp 320 325 330 Ile Glu Ser Trp Met Arg Arg Asp Asp Leu Ser Lys Gly Asn Asp 335 340 345 Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Leu Ser Asp Gly 350 355 360 Glu Tyr Cys Cys Gly Pro Cys Pro Val Thr Ala Ile Lys Glu Gly 365 370 375 Asn Leu Ser Val Lys Tyr Asp Ala Pro Phe Ile Phe Ala Glu Val 380 385 390 Asn Ala Asp Ile Ile Tyr Trp Met Ala Gly Pro Gly Gly Glu Arg 395 400 405 Lys Lys Ile Asp Val Asp Gln Ser Gly Val Gly Lys Asn Ile Ser 410 415 420 Thr Lys Ser Leu Tyr Gly Asp Tyr Arg Glu Asp Val Thr Leu His 425 430 435 Tyr Lys Tyr Pro Glu Gly Ser Lys Lys Glu Arg Glu Val Tyr Gln 440 445 450 Lys Ala Gly His Arg Ile Lys Glu Gln Ile Cys Glu Asn Lys Gly 455 460 465 Pro Gln Gln Leu Gln Leu Ser Val Lys His Gly Lys Pro Val Phe 470 475 480 Gly Thr Asp Phe Asp Val Ile Val Glu Val Lys Asn Glu Gly Gln 485 490 495 Lys Asp Thr Ser Pro Gln Leu Leu Ile Val Val Met Ala Val Thr 500 505 510 Tyr Asn Ser Ile Asn Gln Gly Glu Cys Gln Arg Lys Ala Thr Ile 515 520 525 Val Thr Val Pro Ala Arg Lys Thr His Lys Glu Val Leu Arg Leu 530 535 540 Arg Tyr Asp Asp Tyr Val Lys Cys Val Ser Glu His His Leu Ile 545 550 555 Arg Val Lys Ala Leu Met Glu Val Pro Gly Asp Asn Lys Pro Val 560 565 570 Met Ser Val Ala Asn Ile Pro Leu Ser Met Pro Glu Leu Leu Val 575 580 585 Glu Val Pro Gly Ser Ile Ile Val Gln Glu Lys Val Thr Ala Phe 590 595 600 Ile Ser Phe Thr Asn Pro Leu Thr Val Pro Leu Lys Arg Gly Met 605 610 615 Phe Thr Val Glu Gly Ser Gly Leu Leu Ser Ala Ser Glu Ile Tyr 620 625 630 Val Lys Gly Asp Ile Ala Pro Gly Gln Lys Val Ser Val Lys Ile 635 640 645 Thr Phe Thr Pro Met Arg Val Gly Val Arg Lys Leu Leu Val Asp 650 655 660 Phe Asp Ser Asp Arg Leu Lys Asp Val Lys Gly Val Thr Thr Val 665 670 675 Val Val Arg Lys Lys Ser Cys Phe Ile Arg Cys Pro 680 685
【0228】配列番号:44 配列の長さ:688 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:ヒラメ(Paralichthys olivaceus) 組織の種類: 肝臓 配列 Met Asp Asn Gln Asn Ile Pro Ile Thr Asp Val Asp Val Arg Ser 1 5 10 15 His Glu Asn Asn Leu Ala His Arg Thr Arg Glu Ile Asp Arg Glu 20 25 30 Arg Leu Ile Val Arg Arg Gly Gln Pro Phe Ser Ile Ser Leu Gln 35 40 45 Cys Cys Asp Ser Leu Thr Arg Asn His His Leu Glu Leu Ser Leu 50 55 60 His Leu Gly Lys Lys Asp Glu Val Val Ile Lys Val His Asn Glu 65 70 75 Pro Glu Ala Gly Gly Lys Trp Trp Phe Asn His Gln Lys Val Gln 80 85 90 Asp Glu Ile Leu Leu Thr Leu His Ser Pro Ala Asp Ala Ile Ile 95 100 105 Gly Glu Tyr His Leu Thr Val Leu Ile Lys Ser Pro Asp Gly His 110 115 120 Phe Val Lys Lys Thr Lys Asn Ile Gly Phe His Leu Leu Phe Asn 125 130 135 Pro Trp Cys Lys Asp Asp Ala Val Tyr Leu Pro Asp Glu Arg Met 140 145 150 Leu Asp Glu Tyr Val Met Asn Glu Glu Gly Ile Ile Tyr Arg Gly 155 160 165 Thr Ser Asn His Ile Ser Ser Ile Pro Trp Asn Tyr Gly Gln Phe 170 175 180 Glu Asp Tyr Val Met Asp Ile Cys Phe Gln Val Leu Asp Asn Ser 185 190 195 Lys Glu Ala Leu Lys Asn Ser Lys Met Asp Ile Glu Lys Arg Ser 200 205 210 Asp Pro Val Tyr Val Ser Arg Met Ile Thr Ala Met Val Asn Ser 215 220 225 Asn Gly Asp Arg Gly Val Leu Thr Gly Gln Trp His Glu Pro Tyr 230 235 240 Thr Gly Gly Phe Ser Pro Leu Arg Trp Thr Gly Ser Val Pro Ile 245 250 255 Leu Arg Lys Trp Ser Lys Ala Glu Val Arg Ala Val Lys Tyr Gly 260 265 270 Gln Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Leu Arg Cys 275 280 285 Leu Gly Ile Pro Thr Arg Asn Ile Thr Asn Phe Asn Ser Ala His 290 295 300 Asp Val Asp Gly Asn Leu Ser Val Asp Ile Val Leu Asn Lys Glu 305 310 315 Met Glu Ser Val Gly Lys Lys Asp Ser Ser Trp Asn Phe His Cys 320 325 330 Trp Ile Glu Ser Trp Met Arg Arg Asp Asp Leu Ser Lys Gly Asn 335 340 345 Asp Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Leu Ser Asp 350 355 360 Gly Glu Tyr Cys Cys Gly Pro Cys Pro Val Thr Ala Ile Lys Glu 365 370 375 Gly Asn Leu Ser Val Lys Tyr Asp Ala Pro Phe Ile Phe Ala Glu 380 385 390 Val Asn Ala Asp Ile Ile Tyr Trp Met Ala Gly Pro Gly Gly Glu 395 400 405 Arg Lys Lys Ile Asp Val Asp Gln Ser Gly Val Gly Lys Asn Ile 410 415 420 Ser Thr Lys Ser Leu Tyr Gly Asp Tyr Arg Glu Asp Val Thr Leu 425 430 435 His Tyr Lys Tyr Pro Glu Gly Ser Lys Lys Glu Arg Glu Val Tyr 440 445 450 Gln Lys Ala Gly His Arg Ile Lys Glu Gln Ile Cys Glu Asn Lys 455 460 465 Gly Pro Gln Gln Leu Gln Leu Ser Val Lys His Gly Lys Pro Val 470 475 480 Phe Gly Thr Asp Phe Asp Val Ile Val Glu Val Lys Asn Glu Gly 485 490 495 Gln Lys Asp Thr Ser Pro Gln Leu Leu Ile Val Val Met Ala Val 500 505 510 Thr Tyr Asn Ser Ile Asn Gln Gly Glu Cys Gln Arg Lys Ala Thr 515 520 525 Ile Val Thr Val Pro Ala Arg Lys Thr His Lys Glu Val Leu Arg 530 535 540 Leu Arg Tyr Asp Asp Tyr Val Lys Cys Val Ser Glu His His Leu 545 550 555 Ile Arg Val Lys Ala Leu Met Glu Val Pro Gly Asp Asn Lys Pro 560 565 570 Val Met Ser Val Ala Asn Ile Pro Leu Ser Met Pro Glu Leu Leu 575 580 585 Val Glu Val Pro Gly Ser Ile Ile Val Gln Glu Lys Val Thr Ala 590 595 600 Phe Ile Ser Phe Thr Asn Pro Leu Thr Val Pro Leu Lys Arg Gly 605 610 615 Met Phe Thr Val Glu Gly Ser Gly Leu Leu Ser Ala Ser Glu Ile 620 625 630 Tyr Val Lys Gly Asp Ile Ala Pro Gly Gln Lys Val Ser Val Lys 635 640 645 Ile Thr Phe Thr Pro Met Arg Val Gly Val Arg Lys Leu Leu Val 650 655 660 Asp Phe Asp Ser Asp Arg Leu Lys Asp Val Lys Gly Val Thr Thr 665 670 675 Val Val Val Arg Lys Lys Ser Cys Phe Ile Arg Cys Pro 680 685
【0229】配列番号:45 配列の長さ:2054 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒラメ(Paralichthys olivaceus) 組織の種類: 肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:1..2054 特徴を決定した方法:P 配列 GACAATCAGA ACATTCCGAT CACTGATGTG GATGTGAGAA GTCATGAAAA CAACTTGGCT 60 CACCGCACCA GGGAGATTGA TCGGGAGCGC TTGATCGTCC GCAGGGGTCA ACCCTTCTCC 120 ATATCTCTGC AGTGCTGCGA CTCGCTGACC CGGAATCACC ATCTGGAACT GTCCCTGCAC 180 CTCGGTAAGA AAGATGAGGT GGTGATTAAG GTGCACAATG AGCCTGAGGC TGGAGGCAAG 240 TGGTGGTTTA ACCATCAGAA AGTGCAGGAT GAAATTCTGC TGACTCTACA CAGTCCAGCG 300 GACGCCATAA TTGGCGAGTA CCACCTGACT GTGTTGATCA AGTCACCGGA TGGACACTTT 360 GTGAAGAAGA CTAAGAACAT TGGATTCCAC CTGCTCTTTA ACCCCTGGTG CAAAGATGAT 420 GCTGTGTACC TCCCTGATGA AAGGATGCTC GACGAGTATG TTATGAATGA GGAGGGGATC 480 ATTTACAGGG GAACCTCGAA TCACATCAGT AGCATACCCT GGAATTACGG ACAGTTTGAG 540 GACTATGTGA TGGACATCTG TTTTCAAGTT CTGGACAACT CCAAGGAAGC CCTGAAGAAT 600 TCAAAGATGG ACATTGAGAA GAGATCTGAC CCTGTCTATG TCAGCAGGAT GATCACTGCG 660 ATGGTGAACT CTAACGGTGA CAGGGGTGTG CTGACTGGTC AGTGGCACGA GCCATACACT 720 GGCGGGTTCT CACCACTTCG ATGGACCGGC AGCGTGCCCA TCCTCCGGAA GTGGAGCAAG 780 GCCGAGGTCA GGGCGGTCAA ATATGGCCAG TGCTGGGTGT TTGCTGCTGT CGCCTGCACA 840 GTGCTGCGTT GTCTGGGAAT CCCAACACGC AACATCACTA ACTTCAATTC AGCACATGAT 900 GTCGATGGAA ACCTCTCCGT CGACATCGTG TTGAACAAAG AAATGGAGAG CGTTGGCAAG 960 AAGGACAGTA GCTGGAACTT CCACTGTTGG ATCGAGTCCT GGATGAGGAG AGACGACCTC 1020 TCTAAAGGAA ATGACGGCTG GCAGGTTTTG GACCCCACCC CTCAAGAACT GAGTGATGGT 1080 GAGTATTGCT GCGGCCCGTG TCCAGTCACC GCCATCAAGG AGGGAAATCT GAGTGTGAAG 1140 TACGACGCTC CGTTTATCTT CGCTGAGGTG AACGCTGACA TCATCTACTG GATGGCTGGA 1200 CCAGGAGGCG AACGGAAGAA GATCGATGTG GACCAGAGTG GTGTGGGGAA GAACATCAGC 1260 ACCAAAAGTC TTTATGGCGA CTACAGGGAG GATGTCACTC TGCACTACAA ATACCCCGAA 1320 GGCTCCAAGA AGGAGAGAGA GGTGTACCAG AAGGCCGGAC ACCGAATCAA AGAGCAGATC 1380 TGTGAAAACA AAGGTCCACA ACAACTGCAG CTGTCAGTCA AGCACGGGAA ACCTGTATTT 1440 GGCACTGACT TCGATGTGAT AGTTGAGGTG AAGAATGAAG GACAGAAAGA CACCAGTCCA 1500 CAGCTGCTGA TTGTGGTCAT GGCCGTGACC TACAATTCCA TCAATCAAGG GGAGTGTCAG 1560 AGGAAGGCGA CCATAGTGAC CGTGCCGGCT CGCAAAACCC ACAAGGAAGT GCTGCGTCTG 1620 CGCTACGACG ACTATGTCAA ATGTGTCTCT GAGCACCATC TGATCAGGGT GAAAGCGCTC 1680 ATGGAGGTTC CAGGGGACAA CAAACCCGTC ATGAGTGTGG CCAACATTCC ACTGAGCATG 1740 CCTGAGCTCC TGGTAGAGGT ACCTGGGAGC ATCATTGTTC AGGAGAAGGT GACAGCCTTC 1800 ATCTCCTTCA CAAATCCTCT AACTGTCCCA CTGAAGCGTG GCATGTTCAC CGTTGAGGGG 1860 TCCGGACTAC TGTCTGCCTC TGAGATCTAT GTGAAAGGGG ACATTGCTCC AGGCCAGAAG 1920 GTTTCTGTCA AGATCACCTT CACGCCCATG AGGGTCGGGG TGAGGAAGCT CCTGGTGGAC 1980 TTTGACTCTG ACAGGCTGAA GGATGTGAAA GGAGTCACGA CAGTGGTCGT CCGCAAGAAA 2040 TCCTGTTTTA TTAGGTGTCC TTAA 2054
【0230】配列番号:46 配列の長さ:2148 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒラメ(Paralichthys olivaceus) 組織の種類: 肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:26..2092 特徴を決定した方法:P 配列 GAGAAGACGA GGAAAAAGGT CTGCG ATG GAC AAT CAG AAC ATT CCG ATC ACT 52 Met Asp Asn Gln Asn Ile Pro Ile Thr 1 5 GAT GTG GAT GTG AGA AGT CAT GAA AAC AAC TTG GCT CAC CGC ACC 97 Asp Val Asp Val Arg Ser His Glu Asn Asn Leu Ala His Arg Thr 10 15 20 AGG GAG ATT GAT CGG GAG CGC TTG ATC GTC CGC AGG GGT CAA CCC 142 Arg Glu Ile Asp Arg Glu Arg Leu Ile Val Arg Arg Gly Gln Pro 25 30 35 TTC TCC ATA TCT CTG CAG TGC TGC GAC TCG CTG ACC CGG AAT CAC 187 Phe Ser Ile Ser Leu Gln Cys Cys Asp Ser Leu Thr Arg Asn His 40 45 50 CAT CTG GAA CTG TCC CTG CAC CTC GGT AAG AAA GAT GAG GTG GTG 232 His Leu Glu Leu Ser Leu His Leu Gly Lys Lys Asp Glu Val Val 55 60 65 ATT AAG GTG CAC AAT GAG CCT GAG GCT GGA GGC AAG TGG TGG TTT 277 Ile Lys Val His Asn Glu Pro Glu Ala Gly Gly Lys Trp Trp Phe 70 75 80 AAC CAT CAG AAA GTG CAG GAT GAA ATT CTG CTG ACT CTA CAC AGT 322 Asn His Gln Lys Val Gln Asp Glu Ile Leu Leu Thr Leu His Ser 85 90 95 CCA GCG GAC GCC ATA ATT GGC GAG TAC CAC CTG ACT GTG TTG ATC 367 Pro Ala Asp Ala Ile Ile Gly Glu Tyr His Leu Thr Val Leu Ile 100 105 110 AAG TCA CCG GAT GGA CAC TTT GTG AAG AAG ACT AAG AAC ATT GGA 412 Lys Ser Pro Asp Gly His Phe Val Lys Lys Thr Lys Asn Ile Gly 115 120 125 TTC CAC CTG CTC TTT AAC CCC TGG TGC AAA GAT GAT GCT GTG TAC 457 Phe His Leu Leu Phe Asn Pro Trp Cys Lys Asp Asp Ala Val Tyr 130 135 140 CTC CCT GAT GAA AGG ATG CTC GAC GAG TAT GTT ATG AAT GAG GAG 502 Leu Pro Asp Glu Arg Met Leu Asp Glu Tyr Val Met Asn Glu Glu 145 150 155 GGG ATC ATT TAC AGG GGA ACC TCG AAT CAC ATC AGT AGC ATA CCC 547 Gly Ile Ile Tyr Arg Gly Thr Ser Asn His Ile Ser Ser Ile Pro 160 165 170 TGG AAT TAC GGA CAG TTT GAG GAC TAT GTG ATG GAC ATC TGT TTT 592 Trp Asn Tyr Gly Gln Phe Glu Asp Tyr Val Met Asp Ile Cys Phe 175 180 185 CAA GTT CTG GAC AAC TCC AAG GAA GCC CTG AAG AAT TCA AAG ATG 637 Gln Val Leu Asp Asn Ser Lys Glu Ala Leu Lys Asn Ser Lys Met 190 195 200 GAC ATT GAG AAG AGA TCT GAC CCT GTC TAT GTC AGC AGG ATG ATC 682 Asp Ile Glu Lys Arg Ser Asp Pro Val Tyr Val Ser Arg Met Ile 205 210 215 ACT GCG ATG GTG AAC TCT AAC GGT GAC AGG GGT GTG CTG ACT GGT 727 Thr Ala Met Val Asn Ser Asn Gly Asp Arg Gly Val Leu Thr Gly 220 225 230 CAG TGG CAC GAG CCA TAC ACT GGC GGG TTC TCA CCA CTT CGA TGG 772 Gln Trp His Glu Pro Tyr Thr Gly Gly Phe Ser Pro Leu Arg Trp 235 240 245 ACC GGC AGC GTG CCC ATC CTC CGG AAG TGG AGC AAG GCC GAG GTC 817 Thr Gly Ser Val Pro Ile Leu Arg Lys Trp Ser Lys Ala Glu Val 250 255 260 AGG GCG GTC AAA TAT GGC CAG TGC TGG GTG TTT GCT GCT GTC GCC 862 Arg Ala Val Lys Tyr Gly Gln Cys Trp Val Phe Ala Ala Val Ala 265 270 275 TGC ACA GTG CTG CGT TGT CTG GGA ATC CCA ACA CGC AAC ATC ACT 907 Cys Thr Val Leu Arg Cys Leu Gly Ile Pro Thr Arg Asn Ile Thr 280 285 290 AAC TTC AAT TCA GCA CAT GAT GTC GAT GGA AAC CTC TCC GTC GAC 952 Asn Phe Asn Ser Ala His Asp Val Asp Gly Asn Leu Ser Val Asp 295 300 305 ATC GTG TTG AAC AAA GAA ATG GAG AGC GTT GGC AAG AAG GAC AGT 997 Ile Val Leu Asn Lys Glu Met Glu Ser Val Gly Lys Lys Asp Ser 310 315 320 AGC TGG AAC TTC CAC TGT TGG ATC GAG TCC TGG ATG AGG AGA GAC 1042 Ser Trp Asn Phe His Cys Trp Ile Glu Ser Trp Met Arg Arg Asp 325 330 335 GAC CTC TCT AAA GGA AAT GAC GGC TGG CAG GTT TTG GAC CCC ACC 1087 Asp Leu Ser Lys Gly Asn Asp Gly Trp Gln Val Leu Asp Pro Thr 340 345 350 CCT CAA GAA CTG AGT GAT GGT GAG TAT TGC TGC GGC CCG TGT CCA 1132 Pro Gln Glu Leu Ser Asp Gly Glu Tyr Cys Cys Gly Pro Cys Pro 355 360 365 GTC ACC GCC ATC AAG GAG GGA AAT CTG AGT GTG AAG TAC GAC GCT 1177 Val Thr Ala Ile Lys Glu Gly Asn Leu Ser Val Lys Tyr Asp Ala 370 375 380 CCG TTT ATC TTC GCT GAG GTG AAC GCT GAC ATC ATC TAC TGG ATG 1222 Pro Phe Ile Phe Ala Glu Val Asn Ala Asp Ile Ile Tyr Trp Met 385 390 395 GCT GGA CCA GGA GGC GAA CGG AAG AAG ATC GAT GTG GAC CAG AGT 1267 Ala Gly Pro Gly Gly Glu Arg Lys Lys Ile Asp Val Asp Gln Ser 400 405 410 GGT GTG GGG AAG AAC ATC AGC ACC AAA AGT CTT TAT GGC GAC TAC 1312 Gly Val Gly Lys Asn Ile Ser Thr Lys Ser Leu Tyr Gly Asp Tyr 415 420 425 AGG GAG GAT GTC ACT CTG CAC TAC AAA TAC CCC GAA GGC TCC AAG 1357 Arg Glu Asp Val Thr Leu His Tyr Lys Tyr Pro Glu Gly Ser Lys 430 435 440 AAG GAG AGA GAG GTG TAC CAG AAG GCC GGA CAC CGA ATC AAA GAG 1402
Lys Glu Arg Glu Val Tyr Gln Lys Ala Gly His Arg Ile Lys Glu 445 450 455 CAG ATC TGT GAA AAC AAA GGT CCA CAA CAA CTG CAG CTG TCA GTC 1447 Gln Ile Cys Glu Asn Lys Gly Pro Gln Gln Leu Gln Leu Ser Val 460 465 470 AAG CAC GGG AAA CCT GTA TTT GGC ACT GAC TTC GAT GTG ATA GTT 1492 Lys His Gly Lys Pro Val Phe Gly Thr Asp Phe Asp Val Ile Val 475 480 485 GAG GTG AAG AAT GAA GGA CAG AAA GAC ACC AGT CCA CAG CTG CTG 1537 Glu Val Lys Asn Glu Gly Gln Lys Asp Thr Ser Pro Gln Leu Leu 490 495 500 ATT GTG GTC ATG GCC GTG ACC TAC AAT TCC ATC AAT CAA GGG GAG 1582 Ile Val Val Met Ala Val Thr Tyr Asn Ser Ile Asn Gln Gly Glu 505 510 515 TGT CAG AGG AAG GCG ACC ATA GTG ACC GTG CCG GCT CGC AAA ACC 1627 Cys Gln Arg Lys Ala Thr Ile Val Thr Val Pro Ala Arg Lys Thr 520 525 530 CAC AAG GAA GTG CTG CGT CTG CGC TAC GAC GAC TAT GTC AAA TGT 1672 His Lys Glu Val Leu Arg Leu Arg Tyr Asp Asp Tyr Val Lys Cys 535 540 545 GTC TCT GAG CAC CAT CTG ATC AGG GTG AAA GCG CTC ATG GAG GTT 1717 Val Ser Glu His His Leu Ile Arg Val Lys Ala Leu Met Glu Val 550 555 560 CCA GGG GAC AAC AAA CCC GTC ATG AGT GTG GCC AAC ATT CCA CTG 1762 Pro Gly Asp Asn Lys Pro Val Met Ser Val Ala Asn Ile Pro Leu 565 570 575 AGC ATG CCT GAG CTC CTG GTA GAG GTA CCT GGG AGC ATC ATT GTT 1807 Ser Met Pro Glu Leu Leu Val Glu Val Pro Gly Ser Ile Ile Val 580 585 590
CAG GAG AAG GTG ACA GCC TTC ATC TCC TTC ACA AAT CCT CTA ACT 1852 Gln Glu Lys Val Thr Ala Phe Ile Ser Phe Thr Asn Pro Leu Thr 595 600 605 GTC CCA CTG AAG CGT GGC ATG TTC ACC GTT GAG GGG TCC GGA CTA 1897 Val Pro Leu Lys Arg Gly Met Phe Thr Val Glu Gly Ser Gly Leu 610 615 620 CTG TCT GCC TCT GAG ATC TAT GTG AAA GGG GAC ATT GCT CCA GGC 1942 Leu Ser Ala Ser Glu Ile Tyr Val Lys Gly Asp Ile Ala Pro Gly 625 630 635 CAG AAG GTT TCT GTC AAG ATC ACC TTC ACG CCC ATG AGG GTC GGG 1987 Gln Lys Val Ser Val Lys Ile Thr Phe Thr Pro Met Arg Val Gly 640 645 650 GTG AGG AAG CTC CTG GTG GAC TTT GAC TCT GAC AGG CTG AAG GAT 2032 Val Arg Lys Leu Leu Val Asp Phe Asp Ser Asp Arg Leu Lys Asp 655 660 665 GTG AAA GGA GTC ACG ACA GTG GTC GTC CGC AAG AAA TCC TGT TTT 2077 Val Lys Gly Val Thr Thr Val Val Val Arg Lys Lys Ser Cys Phe 670 675 680 ATT AGG TGT CCT TAAAAACAGA CGGACACGTA TTAAAGTGTG AGATAACCTG 2129 Ile Arg Cys Pro 685 AGAGGTGTAA CTCCCCTGT 2148
Lys Glu Arg Glu Val Tyr Gln Lys Ala Gly His Arg Ile Lys Glu 445 450 455 CAG ATC TGT GAA AAC AAA GGT CCA CAA CAA CTG CAG CTG TCA GTC 1447 Gln Ile Cys Glu Asn Lys Gly Pro Gln Gln Leu Gln Leu Ser Val 460 465 470 AAG CAC GGG AAA CCT GTA TTT GGC ACT GAC TTC GAT GTG ATA GTT 1492 Lys His Gly Lys Pro Val Phe Gly Thr Asp Phe Asp Val Ile Val 475 480 485 GAG GTG AAG AAT GAA GGA CAG AAA GAC ACC AGT CCA CAG CTG CTG 1537 Glu Val Lys Asn Glu Gly Gln Lys Asp Thr Ser Pro Gln Leu Leu 490 495 500 ATT GTG GTC ATG GCC GTG ACC TAC AAT TCC ATC AAT CAA GGG GAG 1582 Ile Val Val Met Ala Val Thr Tyr Asn Ser Ile Asn Gln Gly Glu 505 510 515 TGT CAG AGG AAG GCG ACC ATA GTG ACC GTG CCG GCT CGC AAA ACC 1627 Cys Gln Arg Lys Ala Thr Ile Val Thr Val Pro Ala Arg Lys Thr 520 525 530 CAC AAG GAA GTG CTG CGT CTG CGC TAC GAC GAC TAT GTC AAA TGT 1672 His Lys Glu Val Leu Arg Leu Arg Tyr Asp Asp Tyr Val Lys Cys 535 540 545 GTC TCT GAG CAC CAT CTG ATC AGG GTG AAA GCG CTC ATG GAG GTT 1717 Val Ser Glu His His Leu Ile Arg Val Lys Ala Leu Met Glu Val 550 555 560 CCA GGG GAC AAC AAA CCC GTC ATG AGT GTG GCC AAC ATT CCA CTG 1762 Pro Gly Asp Asn Lys Pro Val Met Ser Val Ala Asn Ile Pro Leu 565 570 575 AGC ATG CCT GAG CTC CTG GTA GAG GTA CCT GGG AGC ATC ATT GTT 1807 Ser Met Pro Glu Leu Leu Val Glu Val Pro Gly Ser Ile Ile Val 580 585 590
CAG GAG AAG GTG ACA GCC TTC ATC TCC TTC ACA AAT CCT CTA ACT 1852 Gln Glu Lys Val Thr Ala Phe Ile Ser Phe Thr Asn Pro Leu Thr 595 600 605 GTC CCA CTG AAG CGT GGC ATG TTC ACC GTT GAG GGG TCC GGA CTA 1897 Val Pro Leu Lys Arg Gly Met Phe Thr Val Glu Gly Ser Gly Leu 610 615 620 CTG TCT GCC TCT GAG ATC TAT GTG AAA GGG GAC ATT GCT CCA GGC 1942 Leu Ser Ala Ser Glu Ile Tyr Val Lys Gly Asp Ile Ala Pro Gly 625 630 635 CAG AAG GTT TCT GTC AAG ATC ACC TTC ACG CCC ATG AGG GTC GGG 1987 Gln Lys Val Ser Val Lys Ile Thr Phe Thr Pro Met Arg Val Gly 640 645 650 GTG AGG AAG CTC CTG GTG GAC TTT GAC TCT GAC AGG CTG AAG GAT 2032 Val Arg Lys Leu Leu Val Asp Phe Asp Ser Asp Arg Leu Lys Asp 655 660 665 GTG AAA GGA GTC ACG ACA GTG GTC GTC CGC AAG AAA TCC TGT TTT 2077 Val Lys Gly Val Thr Thr Val Val Val Arg Lys Lys Ser Cys Phe 670 675 680 ATT AGG TGT CCT TAAAAACAGA CGGACACGTA TTAAAGTGTG AGATAACCTG 2129 Ile Arg Cys Pro 685 AGAGGTGTAA CTCCCCTGT 2148
【0231】配列番号:47 配列の長さ:2054 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒラメ(Paralichthys olivaceus) 組織の種類: 肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:1..2054 特徴を決定した方法:P 配列 GACAATCAGA ACATTCCGAT CACTGATGTG GATGTGAGAA GTCATGAAAA CAACTTGGCT 60 CACCGCACCA GGGAGATTGA TCGGGAGCGC TTGATCGTCC GCAGGGGTCA ACCCTTCTCC 120 ATATCTCTGC AGTGCTGCGA CTCGCTGACC CGGAATCACC ATCTGGAACT GTCCCTGCAC 180 CTCGGTAAGA AAGATGAGGT GGTGATTAAG GTGCACAATG AGCCTGAGGC TGGAGGCAAG 240 TGGTGGTTTA ACCATCAGAA AGTGCAGGAT GAAATTCTGC TGACTCTACA CAGTCCAGCG 300 GACGCCATAA TTGGCGAGTA CCACCTGACT GTGTTGATCA AGTCACCGGA TGGACACTTT 360 GTGAAGAAGA CTAAGAACAT TGGATTCCAC CTGCTCTTTA ACCCCTGGTG CAAAGATGAT 420 GCTGTGTACC TCCCTGATGA AAGGATGCTC GACGAGTATG TTATGAATGA GGAGGGGATC 480 ATTTACAGGG GAACCTCGAA TCACATCAGT AGCATACCCT GGAATTACGG ACAGTTTGAG 540 GACTATGTGA TGGACATCTG TTTTCAAGTT CTGGACAACT CCAAGGAAGC CCTGAAGAAT 600 TCAAAGATGG ACATTGAGAA GAGATCTGAC CCTGTCTATG TCAGCAGGAT GATCACTGCG 660 ATGGTGAACT CTAACGGTGA CAGGGGTGTG CTGACTGGTC AGTGGCACGA GCCATACACT 720 GGCGGGTTCT CACCACTTCG ATGGACCGGC AGCGTGCCCA TCCTCCGGAA GTGGAGCAAG 780 GCCGAGGTCA GGGCGGTCAA ATATGGCCAG TGCTGGGTGT TTGCTGCTGT CGCCTGCACA 840 GTGCTGCGTT GTCTGGGAAT CCCAACACGC AACATCACTA ACTTCAATTC AGCACATGAT 900 GTCGATGGAA ACCTCTCCGT CGACATCGTG TTGAACAAAG AAATGGAGAG CGTTGGCAAG 960 AAGGACAGTA GCTGGAACTT CCACTGTTGG ATCGAGTCCT GGATGAGGAG AGACGACCTC 1020 TCTAAAGGAA ATGACGGCTG GCAGGTTTTG GACCCCACCC CTCAAGAACT GAGTGATGGT 1080 GAGTATTGCT GCGGCCCGTG TCCAGTCACC GCCATCAAGG AGGGAAATCT GAGTGTGAAG 1140 TACGACGCTC CGTTTATCTT CGCTGAGGTG AACGCTGACA TCATCTACTG GATGGCTGGA 1200 CCAGGAGGCG AACGGAAGAA GATCGATGTG GACCAGAGTG GTGTGGGGAA GAACATCAGC 1260 ACCAAAAGTC TTTATGGCGA CTACAGGGAG GATGTCACTC TGCACTACAA ATACCCCGAA 1320 GGCTCCAAGA AGGAGAGAGA GGTGTACCAG AAGGCCGGAC ACCGAATCAA AGAGCAGATC 1380 TGTGAAAACA AAGGTCCACA ACAACTGCAG CTGTCAGTCA AGCACGGGAA ACCTGTATTT 1440 GGCACTGACT TCGATGTGAT AGTTGAGGTG AAGAATGAAG GACAGAAAGA CACCAGTCCA 1500 CAGCTGCTGA TTGTGGTCAT GGCCGTGACC TACAATTCCA TCAATCAAGG GGAGTGTCAG 1560 AGGAAGGCGA CCATAGTGAC CGTGCCGGCT CGCAAAACCC ACAAGGAAGT GCTGCGTCTG 1620 CGCTACGACG ACTATGTCAA ATGTGTCTCT GAGCACCATC TGATCAGGGT GAAAGCGCTC 1680 ATGGAGGTTC CAGGGGACAA CAAACCCGTC ATGAGTGTGG CCAACATTCC ACTGAGCATG 1740 CCTGAGCTCC TGGTAGAGGT ACCTGGGAGC ATCATTGTTC AGGAGAAGGT GACAGCCTTC 1800 ATCTCCTTCA CAAATCCTCT AACTGTCCCA CTGAAGCGTG GCATGTTCAC CGTGGAGGGG 1860 TCCGGACTAC TGTCTGCCTC TGAGATCTAT GTGAAAGGGG ACATTGCTCC AGGCCAGAAG 1920 GTTTCTGTCA AGATCACCTT CACGCCCATG AGGGTCGGGG TGAGGAAGCT CCTGGTGGAC 1980 TTTGACTCTG ACAGGCTGAA GGATGTGAAA GGAGTCACGA CAGTGGTCGT CCGCAAGAAA 2040 TCCTGTTTTA TTAGGTGTCC TTAA 2054
【0232】配列番号:48 配列の長さ:2148 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:ヒラメ(Paralichthys olivaceus) 組織の種類: 肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:26..2092 特徴を決定した方法:P 配列 GAGAAGACGA GGAAAAAGGT CTGCG ATG GAC AAT CAG AAC ATT CCG ATC ACT 52 Met Asp Asn Gln Asn Ile Pro Ile Thr 1 5 GAT GTG GAT GTG AGA AGT CAT GAA AAC AAC TTG GCT CAC CGC ACC 97 Asp Val Asp Val Arg Ser His Glu Asn Asn Leu Ala His Arg Thr 10 15 20 AGG GAG ATT GAT CGG GAG CGC TTG ATC GTC CGC AGG GGT CAA CCC 142 Arg Glu Ile Asp Arg Glu Arg Leu Ile Val Arg Arg Gly Gln Pro 25 30 35 TTC TCC ATA TCT CTG CAG TGC TGC GAC TCG CTG ACC CGG AAT CAC 187 Phe Ser Ile Ser Leu Gln Cys Cys Asp Ser Leu Thr Arg Asn His 40 45 50 CAT CTG GAA CTG TCC CTG CAC CTC GGT AAG AAA GAT GAG GTG GTG 232 His Leu Glu Leu Ser Leu His Leu Gly Lys Lys Asp Glu Val Val 55 60 65 ATT AAG GTG CAC AAT GAG CCT GAG GCT GGA GGC AAG TGG TGG TTT 277 Ile Lys Val His Asn Glu Pro Glu Ala Gly Gly Lys Trp Trp Phe 70 75 80 AAC CAT CAG AAA GTG CAG GAT GAA ATT CTG CTG ACT CTA CAC AGT 322 Asn His Gln Lys Val Gln Asp Glu Ile Leu Leu Thr Leu His Ser 85 90 95 CCA GCG GAC GCC ATA ATT GGC GAG TAC CAC CTG ACT GTG TTG ATC 367 Pro Ala Asp Ala Ile Ile Gly Glu Tyr His Leu Thr Val Leu Ile 100 105 110 AAG TCA CCG GAT GGA CAC TTT GTG AAG AAG ACT AAG AAC ATT GGA 412 Lys Ser Pro Asp Gly His Phe Val Lys Lys Thr Lys Asn Ile Gly 115 120 125 TTC CAC CTG CTC TTT AAC CCC TGG TGC AAA GAT GAT GCT GTG TAC 457 Phe His Leu Leu Phe Asn Pro Trp Cys Lys Asp Asp Ala Val Tyr
130 135 140 CTC CCT GAT GAA AGG ATG CTC GAC GAG TAT GTT ATG AAT GAG GAG 502 Leu Pro Asp Glu Arg Met Leu Asp Glu Tyr Val Met Asn Glu Glu 145 150 155 GGG ATC ATT TAC AGG GGA ACC TCG AAT CAC ATC AGT AGC ATA CCC 547 Gly Ile Ile Tyr Arg Gly Thr Ser Asn His Ile Ser Ser Ile Pro 160 165 170 TGG AAT TAC GGA CAG TTT GAG GAC TAT GTG ATG GAC ATC TGT TTT 592 Trp Asn Tyr Gly Gln Phe Glu Asp Tyr Val Met Asp Ile Cys Phe 175 180 185 CAA GTT CTG GAC AAC TCC AAG GAA GCC CTG AAG AAT TCA AAG ATG 637 Gln Val Leu Asp Asn Ser Lys Glu Ala Leu Lys Asn Ser Lys Met 190 195 200 GAC ATT GAG AAG AGA TCT GAC CCT GTC TAT GTC AGC AGG ATG ATC 682 Asp Ile Glu Lys Arg Ser Asp Pro Val Tyr Val Ser Arg Met Ile 205 210 215 ACT GCG ATG GTG AAC TCT AAC GGT GAC AGG GGT GTG CTG ACT GGT 727 Thr Ala Met Val Asn Ser Asn Gly Asp Arg Gly Val Leu Thr Gly 220 225 230 CAG TGG CAC GAG CCA TAC ACT GGC GGG TTC TCA CCA CTT CGA TGG 772 Gln Trp His Glu Pro Tyr Thr Gly Gly Phe Ser Pro Leu Arg Trp 235 240 245 ACC GGC AGC GTG CCC ATC CTC CGG AAG TGG AGC AAG GCC GAG GTC 817 Thr Gly Ser Val Pro Ile Leu Arg Lys Trp Ser Lys Ala Glu Val 250 255 260 AGG GCG GTC AAA TAT GGC CAG TGC TGG GTG TTT GCT GCT GTC GCC 862 Arg Ala Val Lys Tyr Gly Gln Cys Trp Val Phe Ala Ala Val Ala 265 270 275 TGC ACA GTG CTG CGT TGT CTG GGA ATC CCA ACA CGC AAC ATC ACT 907 Cys Thr Val Leu Arg Cys Leu Gly Ile Pro Thr Arg Asn Ile Thr 280 285 290 AAC TTC AAT TCA GCA CAT GAT GTC GAT GGA AAC CTC TCC GTC GAC 952 Asn Phe Asn Ser Ala His Asp Val Asp Gly Asn Leu Ser Val Asp 295 300 305 ATC GTG TTG AAC AAA GAA ATG GAG AGC GTT GGC AAG AAG GAC AGT 997 Ile Val Leu Asn Lys Glu Met Glu Ser Val Gly Lys Lys Asp Ser 310 315 320 AGC TGG AAC TTC CAC TGT TGG ATC GAG TCC TGG ATG AGG AGA GAC 1042 Ser Trp Asn Phe His Cys Trp Ile Glu Ser Trp Met Arg Arg Asp 325 330 335 GAC CTC TCT AAA GGA AAT GAC GGC TGG CAG GTT TTG GAC CCC ACC 1087 Asp Leu Ser Lys Gly Asn Asp Gly Trp Gln Val Leu Asp Pro Thr 340 345 350 CCT CAA GAA CTG AGT GAT GGT GAG TAT TGC TGC GGC CCG TGT CCA 1132 Pro Gln Glu Leu Ser Asp Gly Glu Tyr Cys Cys Gly Pro Cys Pro 355 360 365 GTC ACC GCC ATC AAG GAG GGA AAT CTG AGT GTG AAG TAC GAC GCT 1177 Val Thr Ala Ile Lys Glu Gly Asn Leu Ser Val Lys Tyr Asp Ala 370 375 380 CCG TTT ATC TTC GCT GAG GTG AAC GCT GAC ATC ATC TAC TGG ATG 1222 Pro Phe Ile Phe Ala Glu Val Asn Ala Asp Ile Ile Tyr Trp Met 385 390 395 GCT GGA CCA GGA GGC GAA CGG AAG AAG ATC GAT GTG GAC CAG AGT 1267 Ala Gly Pro Gly Gly Glu Arg Lys Lys Ile Asp Val Asp Gln Ser 400 405 410 GGT GTG GGG AAG AAC ATC AGC ACC AAA AGT CTT TAT GGC GAC TAC 1312 Gly Val Gly Lys Asn Ile Ser Thr Lys Ser Leu Tyr Gly Asp Tyr 415 420 425
AGG GAG GAT GTC ACT CTG CAC TAC AAA TAC CCC GAA GGC TCC AAG 1357 Arg Glu Asp Val Thr Leu His Tyr Lys Tyr Pro Glu Gly Ser Lys 430 435 440 AAG GAG AGA GAG GTG TAC CAG AAG GCC GGA CAC CGA ATC AAA GAG 1402 Lys Glu Arg Glu Val Tyr Gln Lys Ala Gly His Arg Ile Lys Glu 445 450 455 CAG ATC TGT GAA AAC AAA GGT CCA CAA CAA CTG CAG CTG TCA GTC 1447 Gln Ile Cys Glu Asn Lys Gly Pro Gln Gln Leu Gln Leu Ser Val 460 465 470 AAG CAC GGG AAA CCT GTA TTT GGC ACT GAC TTC GAT GTG ATA GTT 1492 Lys His Gly Lys Pro Val Phe Gly Thr Asp Phe Asp Val Ile Val 475 480 485 GAG GTG AAG AAT GAA GGA CAG AAA GAC ACC AGT CCA CAG CTG CTG 1537 Glu Val Lys Asn Glu Gly Gln Lys Asp Thr Ser Pro Gln Leu Leu 490 495 500 ATT GTG GTC ATG GCC GTG ACC TAC AAT TCC ATC AAT CAA GGG GAG 1582 Ile Val Val Met Ala Val Thr Tyr Asn Ser Ile Asn Gln Gly Glu 505 510 515 TGT CAG AGG AAG GCG ACC ATA GTG ACC GTG CCG GCT CGC AAA ACC 1627 Cys Gln Arg Lys Ala Thr Ile Val Thr Val Pro Ala Arg Lys Thr 520 525 530 CAC AAG GAA GTG CTG CGT CTG CGC TAC GAC GAC TAT GTC AAA TGT 1672 His Lys Glu Val Leu Arg Leu Arg Tyr Asp Asp Tyr Val Lys Cys 535 540 545 GTC TCT GAG CAC CAT CTG ATC AGG GTG AAA GCG CTC ATG GAG GTT 1717 Val Ser Glu His His Leu Ile Arg Val Lys Ala Leu Met Glu Val 550 555 560 CCA GGG GAC AAC AAA CCC GTC ATG AGT GTG GCC AAC ATT CCA CTG 1762 Pro Gly Asp Asn Lys Pro Val Met Ser Val Ala Asn Ile Pro Leu
565 570 575 AGC ATG CCT GAG CTC CTG GTA GAG GTA CCT GGG AGC ATC ATT GTT 1807 Ser Met Pro Glu Leu Leu Val Glu Val Pro Gly Ser Ile Ile Val 580 585 590 CAG GAG AAG GTG ACA GCC TTC ATC TCC TTC ACA AAT CCT CTA ACT 1852 Gln Glu Lys Val Thr Ala Phe Ile Ser Phe Thr Asn Pro Leu Thr 595 600 605 GTC CCA CTG AAG CGT GGC ATG TTC ACC GTG GAG GGG TCC GGA CTA 1897 Val Pro Leu Lys Arg Gly Met Phe Thr Val Glu Gly Ser Gly Leu 610 615 620 CTG TCT GCC TCT GAG ATC TAT GTG AAA GGG GAC ATT GCT CCA GGC 1942 Leu Ser Ala Ser Glu Ile Tyr Val Lys Gly Asp Ile Ala Pro Gly 625 630 635 CAG AAG GTT TCT GTC AAG ATC ACC TTC ACG CCC ATG AGG GTC GGG 1987 Gln Lys Val Ser Val Lys Ile Thr Phe Thr Pro Met Arg Val Gly 640 645 650 GTG AGG AAG CTC CTG GTG GAC TTT GAC TCT GAC AGG CTG AAG GAT 2032 Val Arg Lys Leu Leu Val Asp Phe Asp Ser Asp Arg Leu Lys Asp 655 660 665 GTG AAA GGA GTC ACG ACA GTG GTC GTC CGC AAG AAA TCC TGT TTT 2077 Val Lys Gly Val Thr Thr Val Val Val Arg Lys Lys Ser Cys Phe 670 675 680 ATT AGG TGT CCT TAAAAACAGA CGGACACGTA TTAAAGTGTG AGATAACCTG 2129 Ile Arg Cys Pro 685 AGAGGTGTAA CTCCCCTGT 2148
130 135 140 CTC CCT GAT GAA AGG ATG CTC GAC GAG TAT GTT ATG AAT GAG GAG 502 Leu Pro Asp Glu Arg Met Leu Asp Glu Tyr Val Met Asn Glu Glu 145 150 155 GGG ATC ATT TAC AGG GGA ACC TCG AAT CAC ATC AGT AGC ATA CCC 547 Gly Ile Ile Tyr Arg Gly Thr Ser Asn His Ile Ser Ser Ile Pro 160 165 170 TGG AAT TAC GGA CAG TTT GAG GAC TAT GTG ATG GAC ATC TGT TTT 592 Trp Asn Tyr Gly Gln Phe Glu Asp Tyr Val Met Asp Ile Cys Phe 175 180 185 CAA GTT CTG GAC AAC TCC AAG GAA GCC CTG AAG AAT TCA AAG ATG 637 Gln Val Leu Asp Asn Ser Lys Glu Ala Leu Lys Asn Ser Lys Met 190 195 200 GAC ATT GAG AAG AGA TCT GAC CCT GTC TAT GTC AGC AGG ATG ATC 682 Asp Ile Glu Lys Arg Ser Asp Pro Val Tyr Val Ser Arg Met Ile 205 210 215 ACT GCG ATG GTG AAC TCT AAC GGT GAC AGG GGT GTG CTG ACT GGT 727 Thr Ala Met Val Asn Ser Asn Gly Asp Arg Gly Val Leu Thr Gly 220 225 230 CAG TGG CAC GAG CCA TAC ACT GGC GGG TTC TCA CCA CTT CGA TGG 772 Gln Trp His Glu Pro Tyr Thr Gly Gly Phe Ser Pro Leu Arg Trp 235 240 245 ACC GGC AGC GTG CCC ATC CTC CGG AAG TGG AGC AAG GCC GAG GTC 817 Thr Gly Ser Val Pro Ile Leu Arg Lys Trp Ser Lys Ala Glu Val 250 255 260 AGG GCG GTC AAA TAT GGC CAG TGC TGG GTG TTT GCT GCT GTC GCC 862 Arg Ala Val Lys Tyr Gly Gln Cys Trp Val Phe Ala Ala Val Ala 265 270 275 TGC ACA GTG CTG CGT TGT CTG GGA ATC CCA ACA CGC AAC ATC ACT 907 Cys Thr Val Leu Arg Cys Leu Gly Ile Pro Thr Arg Asn Ile Thr 280 285 290 AAC TTC AAT TCA GCA CAT GAT GTC GAT GGA AAC CTC TCC GTC GAC 952 Asn Phe Asn Ser Ala His Asp Val Asp Gly Asn Leu Ser Val Asp 295 300 305 ATC GTG TTG AAC AAA GAA ATG GAG AGC GTT GGC AAG AAG GAC AGT 997 Ile Val Leu Asn Lys Glu Met Glu Ser Val Gly Lys Lys Asp Ser 310 315 320 AGC TGG AAC TTC CAC TGT TGG ATC GAG TCC TGG ATG AGG AGA GAC 1042 Ser Trp Asn Phe His Cys Trp Ile Glu Ser Trp Met Arg Arg Asp 325 330 335 GAC CTC TCT AAA GGA AAT GAC GGC TGG CAG GTT TTG GAC CCC ACC 1087 Asp Leu Ser Lys Gly Asn Asp Gly Trp Gln Val Leu Asp Pro Thr 340 345 350 CCT CAA GAA CTG AGT GAT GGT GAG TAT TGC TGC GGC CCG TGT CCA 1132 Pro Gln Glu Leu Ser Asp Gly Glu Tyr Cys Cys Gly Pro Cys Pro 355 360 365 GTC ACC GCC ATC AAG GAG GGA AAT CTG AGT GTG AAG TAC GAC GCT 1177 Val Thr Ala Ile Lys Glu Gly Asn Leu Ser Val Lys Tyr Asp Ala 370 375 380 CCG TTT ATC TTC GCT GAG GTG AAC GCT GAC ATC ATC TAC TGG ATG 1222 Pro Phe Ile Phe Ala Glu Val Asn Ala Asp Ile Ile Tyr Trp Met 385 390 395 GCT GGA CCA GGA GGC GAA CGG AAG AAG ATC GAT GTG GAC CAG AGT 1267 Ala Gly Pro Gly Gly Glu Arg Lys Lys Ile Asp Val Asp Gln Ser 400 405 410 GGT GTG GGG AAG AAC ATC AGC ACC AAA AGT CTT TAT GGC GAC TAC 1312 Gly Val Gly Lys Asn Ile Ser Thr Lys Ser Leu Tyr Gly Asp Tyr 415 420 425
AGG GAG GAT GTC ACT CTG CAC TAC AAA TAC CCC GAA GGC TCC AAG 1357 Arg Glu Asp Val Thr Leu His Tyr Lys Tyr Pro Glu Gly Ser Lys 430 435 440 AAG GAG AGA GAG GTG TAC CAG AAG GCC GGA CAC CGA ATC AAA GAG 1402 Lys Glu Arg Glu Val Tyr Gln Lys Ala Gly His Arg Ile Lys Glu 445 450 455 CAG ATC TGT GAA AAC AAA GGT CCA CAA CAA CTG CAG CTG TCA GTC 1447 Gln Ile Cys Glu Asn Lys Gly Pro Gln Gln Leu Gln Leu Ser Val 460 465 470 AAG CAC GGG AAA CCT GTA TTT GGC ACT GAC TTC GAT GTG ATA GTT 1492 Lys His Gly Lys Pro Val Phe Gly Thr Asp Phe Asp Val Ile Val 475 480 485 GAG GTG AAG AAT GAA GGA CAG AAA GAC ACC AGT CCA CAG CTG CTG 1537 Glu Val Lys Asn Glu Gly Gln Lys Asp Thr Ser Pro Gln Leu Leu 490 495 500 ATT GTG GTC ATG GCC GTG ACC TAC AAT TCC ATC AAT CAA GGG GAG 1582 Ile Val Val Met Ala Val Thr Tyr Asn Ser Ile Asn Gln Gly Glu 505 510 515 TGT CAG AGG AAG GCG ACC ATA GTG ACC GTG CCG GCT CGC AAA ACC 1627 Cys Gln Arg Lys Ala Thr Ile Val Thr Val Pro Ala Arg Lys Thr 520 525 530 CAC AAG GAA GTG CTG CGT CTG CGC TAC GAC GAC TAT GTC AAA TGT 1672 His Lys Glu Val Leu Arg Leu Arg Tyr Asp Asp Tyr Val Lys Cys 535 540 545 GTC TCT GAG CAC CAT CTG ATC AGG GTG AAA GCG CTC ATG GAG GTT 1717 Val Ser Glu His His Leu Ile Arg Val Lys Ala Leu Met Glu Val 550 555 560 CCA GGG GAC AAC AAA CCC GTC ATG AGT GTG GCC AAC ATT CCA CTG 1762 Pro Gly Asp Asn Lys Pro Val Met Ser Val Ala Asn Ile Pro Leu
565 570 575 AGC ATG CCT GAG CTC CTG GTA GAG GTA CCT GGG AGC ATC ATT GTT 1807 Ser Met Pro Glu Leu Leu Val Glu Val Pro Gly Ser Ile Ile Val 580 585 590 CAG GAG AAG GTG ACA GCC TTC ATC TCC TTC ACA AAT CCT CTA ACT 1852 Gln Glu Lys Val Thr Ala Phe Ile Ser Phe Thr Asn Pro Leu Thr 595 600 605 GTC CCA CTG AAG CGT GGC ATG TTC ACC GTG GAG GGG TCC GGA CTA 1897 Val Pro Leu Lys Arg Gly Met Phe Thr Val Glu Gly Ser Gly Leu 610 615 620 CTG TCT GCC TCT GAG ATC TAT GTG AAA GGG GAC ATT GCT CCA GGC 1942 Leu Ser Ala Ser Glu Ile Tyr Val Lys Gly Asp Ile Ala Pro Gly 625 630 635 CAG AAG GTT TCT GTC AAG ATC ACC TTC ACG CCC ATG AGG GTC GGG 1987 Gln Lys Val Ser Val Lys Ile Thr Phe Thr Pro Met Arg Val Gly 640 645 650 GTG AGG AAG CTC CTG GTG GAC TTT GAC TCT GAC AGG CTG AAG GAT 2032 Val Arg Lys Leu Leu Val Asp Phe Asp Ser Asp Arg Leu Lys Asp 655 660 665 GTG AAA GGA GTC ACG ACA GTG GTC GTC CGC AAG AAA TCC TGT TTT 2077 Val Lys Gly Val Thr Thr Val Val Val Arg Lys Lys Ser Cys Phe 670 675 680 ATT AGG TGT CCT TAAAAACAGA CGGACACGTA TTAAAGTGTG AGATAACCTG 2129 Ile Arg Cys Pro 685 AGAGGTGTAA CTCCCCTGT 2148
【0233】配列番号:49 配列の長さ:640 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:筋肉 配列 Ala His Thr Asn Arg Leu Ile Ala Gly Val Asp Leu Arg Ser Gln 1 5 10 15 Glu Asn Asn Arg Glu His Arg Thr Glu Glu Ile Asp Arg Lys Arg 20 25 30 Leu Ile Val Arg Arg Gly Gln Ala Phe Ser Leu Thr Val His Leu 35 40 45 Ser Asp Pro Leu Gln Ser Gly His Glu Leu Ala Leu Val Leu Lys 50 55 60 Gln Asp Lys Ile Asn Asp Asp Ile Val Ile Arg Gln Arg Thr Thr 65 70 75 Gly Gly Ser Gly Asp Lys Trp Trp Leu His Gln Gln Ser Ala Asn 80 85 90 Asn Glu Leu Leu Leu Thr Val Tyr Ser Pro Ala Arg Ala Ala Val 95 100 105 Gly Glu Tyr Arg Leu Ala Val Glu Leu Met Ser Gly Asn Lys Leu 110 115 120 Leu Glu Arg Thr Asp Phe Thr Lys Met Tyr Leu Leu Phe Asn Pro 125 130 135 Trp Cys Lys Glu Asp Ala Val Tyr Leu Pro Asp Glu Cys Leu Leu 140 145 150 Lys Glu Tyr Ile Met Asn Glu Asn Gly Arg Ile Phe Thr Gly Ser 155 160 165 Ala Asp Trp Met Ser Gly Leu Pro Trp Asn Phe Gly Gln Phe Glu 170 175 180 Asp Asn Val Met Asp Ile Cys Phe Glu Ile Leu Asp Arg Phe Asn 185 190 195 Pro Ala Arg Ser Asp Pro Pro Ser Asp Met Leu Gln Arg Trp Asp 200 205 210 Pro Val Tyr Ile Ser Arg Ala Val Val Ala Met Val Asn Ala Asn 215 220 225 Asp Asp Asp Gly Gly Val Val Val Gly Arg Trp Gln Glu Pro Tyr 230 235 240 Thr Gly Gly Val Gln Pro Thr Lys Trp Met Ser Ser Val Pro Ile 245 250 255 Leu Glu Glu Trp Ser Lys Ser Lys Ser Gly Val Lys Tyr Gly Gln 260 265 270 Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Met Arg Cys Leu 275 280 285 Gly Ile Pro Thr Arg Cys Ile Thr Asn Phe Gln Ser Ala His Asp 290 295 300 Thr Asp Gly Asn Leu Ser Ile Asp Arg Val Tyr Asn Ile His Arg 305 310 315 Gln Leu Val Asp Gly Asp Asp Ser Ile Trp Asn Phe His Cys Trp 320 325 330 Ile Glu Ser Tyr Met Gln Arg Glu Asp Leu Pro Glu Gly Tyr Gly 335 340 345 Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Arg Ser Ser Gly 350 355 360 Met Phe Arg Cys Gly Pro Cys Pro Leu Lys Ala Ile Lys Glu Gly 365 370 375 Asp Leu Asn Val Lys Phe Asp Val Pro Phe Val Phe Ala Glu Val
380 385 390 Asn Ala Asp Ile Ile Asn Trp Glu Ile Arg Pro Asp Gly Gln Arg 395 400 405 Lys Arg Leu Ser Ser Asn Ser Ala Asn Val Gly Arg Asn Ile Ser 410 415 420 Thr Lys Ser Pro Tyr Gly Asn Glu Arg Glu Asp Ile Thr His Gln 425 430 435 Tyr Lys Tyr Gln Glu Gly Ser Ala Lys Glu Arg Glu Val Tyr Asn 440 445 450 Lys Ala Gly Arg Arg Ile Ser Gly Pro Asp Gly Glu Glu Glu Ser 455 460 465 Lys Pro Gly Asn Val Gln Leu Glu Ile Lys His Ala Lys Pro Val 470 475 480 Phe Gly Thr Asp Phe Asp Val Ile Phe Glu Leu Glu Asn Met Gly 485 490 495 Asp Lys Glu Val Ser Cys Lys Leu Asn Met Met Ser Glu Ala Val 500 505 510 Thr Tyr Asn Ser Val His Leu Gly Arg Phe Gln Asn Ser Thr Val 515 520 525 Asn Val Val Ile Pro Ala His Lys Val His Ser Glu Thr Val Arg 530 535 540 Leu Leu Tyr Thr Lys Tyr Ala Ser Val Val Ser Glu His Asn Ile 545 550 555 Ile Arg Val Thr Gly Val Ala Glu Val Ser Gly Gln Glu Lys Ser 560 565 570 Ile Leu Glu Met Val Asn Ile Pro Leu Ser Lys Pro Lys Leu Ser 575 580 585 Ile Lys Val Pro Gly Trp Val Ile Leu Asn Arg Lys Ile Thr Thr 590 595 600
Phe Ile Ser Phe Thr Asn Pro Leu Pro Val Pro Leu Asn Arg Gly 605 610 615 Val Phe Thr Val Glu Gly Ala Gly Leu Leu Pro Thr Lys Glu Ile 620 625 630 Arg Ile Ser Gly Ser Ile Ala Pro Gly Gln 635 640
380 385 390 Asn Ala Asp Ile Ile Asn Trp Glu Ile Arg Pro Asp Gly Gln Arg 395 400 405 Lys Arg Leu Ser Ser Asn Ser Ala Asn Val Gly Arg Asn Ile Ser 410 415 420 Thr Lys Ser Pro Tyr Gly Asn Glu Arg Glu Asp Ile Thr His Gln 425 430 435 Tyr Lys Tyr Gln Glu Gly Ser Ala Lys Glu Arg Glu Val Tyr Asn 440 445 450 Lys Ala Gly Arg Arg Ile Ser Gly Pro Asp Gly Glu Glu Glu Ser 455 460 465 Lys Pro Gly Asn Val Gln Leu Glu Ile Lys His Ala Lys Pro Val 470 475 480 Phe Gly Thr Asp Phe Asp Val Ile Phe Glu Leu Glu Asn Met Gly 485 490 495 Asp Lys Glu Val Ser Cys Lys Leu Asn Met Met Ser Glu Ala Val 500 505 510 Thr Tyr Asn Ser Val His Leu Gly Arg Phe Gln Asn Ser Thr Val 515 520 525 Asn Val Val Ile Pro Ala His Lys Val His Ser Glu Thr Val Arg 530 535 540 Leu Leu Tyr Thr Lys Tyr Ala Ser Val Val Ser Glu His Asn Ile 545 550 555 Ile Arg Val Thr Gly Val Ala Glu Val Ser Gly Gln Glu Lys Ser 560 565 570 Ile Leu Glu Met Val Asn Ile Pro Leu Ser Lys Pro Lys Leu Ser 575 580 585 Ile Lys Val Pro Gly Trp Val Ile Leu Asn Arg Lys Ile Thr Thr 590 595 600
Phe Ile Ser Phe Thr Asn Pro Leu Pro Val Pro Leu Asn Arg Gly 605 610 615 Val Phe Thr Val Glu Gly Ala Gly Leu Leu Pro Thr Lys Glu Ile 620 625 630 Arg Ile Ser Gly Ser Ile Ala Pro Gly Gln 635 640
【0234】配列番号:50 配列の長さ:641 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:筋肉 配列 Met Ala His Thr Asn Arg Leu Ile Ala Gly Val Asp Leu Arg Ser 1 5 10 15 Gln Glu Asn Asn Arg Glu His Arg Thr Glu Glu Ile Asp Arg Lys 20 25 30 Arg Leu Ile Val Arg Arg Gly Gln Ala Phe Ser Leu Thr Val His 35 40 45 Leu Ser Asp Pro Leu Gln Ser Gly His Glu Leu Ala Leu Val Leu 50 55 60 Lys Gln Asp Lys Ile Asn Asp Asp Ile Val Ile Arg Gln Arg Thr 65 70 75 Thr Gly Gly Ser Gly Asp Lys Trp Trp Leu His Gln Gln Ser Ala 80 85 90 Asn Asn Glu Leu Leu Leu Thr Val Tyr Ser Pro Ala Arg Ala Ala 95 100 105 Val Gly Glu Tyr Arg Leu Ala Val Glu Leu Met Ser Gly Asn Lys 110 115 120 Leu Leu Glu Arg Thr Asp Phe Thr Lys Met Tyr Leu Leu Phe Asn 125 130 135 Pro Trp Cys Lys Glu Asp Ala Val Tyr Leu Pro Asp Glu Cys Leu 140 145 150 Leu Lys Glu Tyr Ile Met Asn Glu Asn Gly Arg Ile Phe Thr Gly 155 160 165 Ser Ala Asp Trp Met Ser Gly Leu Pro Trp Asn Phe Gly Gln Phe 170 175 180 Glu Asp Asn Val Met Asp Ile Cys Phe Glu Ile Leu Asp Arg Phe 185 190 195 Asn Pro Ala Arg Ser Asp Pro Pro Ser Asp Met Leu Gln Arg Trp 200 205 210 Asp Pro Val Tyr Ile Ser Arg Ala Val Val Ala Met Val Asn Ala 215 220 225 Asn Asp Asp Asp Gly Gly Val Val Val Gly Arg Trp Gln Glu Pro 230 235 240 Tyr Thr Gly Gly Val Gln Pro Thr Lys Trp Met Ser Ser Val Pro 245 250 255 Ile Leu Glu Glu Trp Ser Lys Ser Lys Ser Gly Val Lys Tyr Gly 260 265 270 Gln Cys Trp Val Phe Ala Ala Val Ala Cys Thr Val Met Arg Cys 275 280 285 Leu Gly Ile Pro Thr Arg Cys Ile Thr Asn Phe Gln Ser Ala His 290 295 300 Asp Thr Asp Gly Asn Leu Ser Ile Asp Arg Val Tyr Asn Ile His 305 310 315
Arg Gln Leu Val Asp Gly Asp Asp Ser Ile Trp Asn Phe His Cys 320 325 330 Trp Ile Glu Ser Tyr Met Gln Arg Glu Asp Leu Pro Glu Gly Tyr 335 340 345 Gly Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Arg Ser Ser 350 355 360 Gly Met Phe Arg Cys Gly Pro Cys Pro Leu Lys Ala Ile Lys Glu 365 370 375 Gly Asp Leu Asn Val Lys Phe Asp Val Pro Phe Val Phe Ala Glu 380 385 390 Val Asn Ala Asp Ile Ile Asn Trp Glu Ile Arg Pro Asp Gly Gln 395 400 405 Arg Lys Arg Leu Ser Ser Asn Ser Ala Asn Val Gly Arg Asn Ile 410 415 420 Ser Thr Lys Ser Pro Tyr Gly Asn Glu Arg Glu Asp Ile Thr His 425 430 435 Gln Tyr Lys Tyr Gln Glu Gly Ser Ala Lys Glu Arg Glu Val Tyr 440 445 450 Asn Lys Ala Gly Arg Arg Ile Ser Gly Pro Asp Gly Glu Glu Glu 455 460 465 Ser Lys Pro Gly Asn Val Gln Leu Glu Ile Lys His Ala Lys Pro 470 475 480 Val Phe Gly Thr Asp Phe Asp Val Ile Phe Glu Leu Glu Asn Met 485 490 495 Gly Asp Lys Glu Val Ser Cys Lys Leu Asn Met Met Ser Glu Ala 500 505 510 Val Thr Tyr Asn Ser Val His Leu Gly Arg Phe Gln Asn Ser Thr 515 520 525 Val Asn Val Val Ile Pro Ala His Lys Val His Ser Glu Thr Val
530 535 540 Arg Leu Leu Tyr Thr Lys Tyr Ala Ser Val Val Ser Glu His Asn 545 550 555 Ile Ile Arg Val Thr Gly Val Ala Glu Val Ser Gly Gln Glu Lys 560 565 570 Ser Ile Leu Glu Met Val Asn Ile Pro Leu Ser Lys Pro Lys Leu 575 580 585 Ser Ile Lys Val Pro Gly Trp Val Ile Leu Asn Arg Lys Ile Thr 590 595 600 Thr Phe Ile Ser Phe Thr Asn Pro Leu Pro Val Pro Leu Asn Arg 605 610 615 Gly Val Phe Thr Val Glu Gly Ala Gly Leu Leu Pro Thr Lys Glu 620 625 630 Ile Arg Ile Ser Gly Ser Ile Ala Pro Gly Gln 635 640
Arg Gln Leu Val Asp Gly Asp Asp Ser Ile Trp Asn Phe His Cys 320 325 330 Trp Ile Glu Ser Tyr Met Gln Arg Glu Asp Leu Pro Glu Gly Tyr 335 340 345 Gly Gly Trp Gln Val Leu Asp Pro Thr Pro Gln Glu Arg Ser Ser 350 355 360 Gly Met Phe Arg Cys Gly Pro Cys Pro Leu Lys Ala Ile Lys Glu 365 370 375 Gly Asp Leu Asn Val Lys Phe Asp Val Pro Phe Val Phe Ala Glu 380 385 390 Val Asn Ala Asp Ile Ile Asn Trp Glu Ile Arg Pro Asp Gly Gln 395 400 405 Arg Lys Arg Leu Ser Ser Asn Ser Ala Asn Val Gly Arg Asn Ile 410 415 420 Ser Thr Lys Ser Pro Tyr Gly Asn Glu Arg Glu Asp Ile Thr His 425 430 435 Gln Tyr Lys Tyr Gln Glu Gly Ser Ala Lys Glu Arg Glu Val Tyr 440 445 450 Asn Lys Ala Gly Arg Arg Ile Ser Gly Pro Asp Gly Glu Glu Glu 455 460 465 Ser Lys Pro Gly Asn Val Gln Leu Glu Ile Lys His Ala Lys Pro 470 475 480 Val Phe Gly Thr Asp Phe Asp Val Ile Phe Glu Leu Glu Asn Met 485 490 495 Gly Asp Lys Glu Val Ser Cys Lys Leu Asn Met Met Ser Glu Ala 500 505 510 Val Thr Tyr Asn Ser Val His Leu Gly Arg Phe Gln Asn Ser Thr 515 520 525 Val Asn Val Val Ile Pro Ala His Lys Val His Ser Glu Thr Val
530 535 540 Arg Leu Leu Tyr Thr Lys Tyr Ala Ser Val Val Ser Glu His Asn 545 550 555 Ile Ile Arg Val Thr Gly Val Ala Glu Val Ser Gly Gln Glu Lys 560 565 570 Ser Ile Leu Glu Met Val Asn Ile Pro Leu Ser Lys Pro Lys Leu 575 580 585 Ser Ile Lys Val Pro Gly Trp Val Ile Leu Asn Arg Lys Ile Thr 590 595 600 Thr Phe Ile Ser Phe Thr Asn Pro Leu Pro Val Pro Leu Asn Arg 605 610 615 Gly Val Phe Thr Val Glu Gly Ala Gly Leu Leu Pro Thr Lys Glu 620 625 630 Ile Arg Ile Ser Gly Ser Ile Ala Pro Gly Gln 635 640
【0235】配列番号:51 配列の長さ:1921 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:筋肉 配列の特徴 特徴を表す記号:CDS 存在位置:1.. 特徴を決定した方法:P 配列 GCCCACACAA ACCGTTTAAT TGCTGGTGTT GATCTGAGAA GCCAGGAAAA CAACCGGGAA 60 CACCGAACTG AGGAGATTGA TAGGAAGCGT TTGATTGTTC GGCGGGGACA AGCCTTCTCC 120 CTGACGGTGC ACCTCTCCGA CCCGCTGCAG TCCGGCCATG AGCTGGCCCT GGTCTTAAAG 180 CAGGATAAAA TCAACGATGA TATTGTGATC AGACAGCGAA CGACTGGAGG GTCCGGTGAC 240 AAGTGGTGGT TACACCAGCA GAGCGCGAAC AACGAATTAC TGCTGACTGT GTACAGTCCC 300 GCCCGTGCTG CCGTTGGCGA GTACCGCTTG GCTGTTGAAC TGATGTCAGG GAATAAACTT 360 CTGGAGAGGA CGGACTTTAC CAAAATGTAC TTGCTGTTTA ATCCCTGGTG CAAAGAAGAT 420 GCCGTGTACC TCCCTGATGA GTGTCTGCTC AAGGAATACA TTATGAACGA GAATGGTCGC 480 ATTTTCACTG GGAGTGCGGA TTGGATGAGT GGGTTGCCAT GGAATTTCGG ACAGTTTGAA 540 GATAATGTGA TGGACATCTG CTTTGAGATC CTTGACCGCT TTAACCCAGC GAGGTCAGAC 600 CCCCCAAGCG ACATGCTTCA GCGATGGGAC CCTGTCTACA TCAGCAGGGC AGTCGTTGCC 660 ATGGTGAATG CCAACGATGA TGACGGTGGA GTCGTGGTGG GTCGATGGCA GGAACCTTAC 720 ACAGGTGGAG TACAGCCAAC CAAATGGATG AGCAGTGTGC CCATCCTGGA AGAGTGGAGC 780 AAATCAAAGT CTGGAGTGAA ATATGGCCAA TGCTGGGTGT TTGCAGCCGT GGCCTGCACA 840 GTGATGCGAT GCCTGGGCAT CCCCACACGC TGCATCACCA ACTTTCAGTC GGCCCATGAC 900 ACAGACGGAA ACCTCTCCAT CGACCGAGTG TACAACATAC ATAGGCAGCT AGTTGACGGT 960 GATGACAGTA TCTGGAACTT TCATTGTTGG ATCGAGTCTT ACATGCAGAG AGAAGATCTA 1020 CCTGAAGGAT ATGGTGGCTG GCAAGTCTTG GACCCCACAC CTCAGGAGAG GAGTAGTGGT 1080 ATGTTTCGCT GTGGCCCATG TCCTTTGAAG GCCATTAAAG AAGGGGACCT CAATGTGAAG 1140 TTTGATGTTC CATTTGTCTT TGCTGAGGTG AATGCAGACA TCATCAATTG GGAAATCAGA 1200 CCAGACGGTC AGCGAAAGCG GCTTTCATCC AACTCTGCAA ATGTGGGGAG GAACATTAGC 1260 ACCAAAAGTC CTTATGGTAA CGAGAGGGAA GATATAACCC ATCAGTACAA GTACCAAGAA 1320 GGTTCAGCCA AGGAGCGGGA GGTGTACAAC AAGGCAGGGC GGCGCATCTC CGGGCCGGAT 1380 GGAGAAGAGG AATCAAAACC AGGAAACGTG CAGCTGGAGA TCAAGCACGC CAAACCTGTG 1440 TTCGGGACCG ACTTTGACGT CATCTTTGAG TTGGAGAACA TGGGAGACAA AGAAGTCAGC 1500 TGCAAATTAA ACATGATGTC AGAGGCTGTC ACCTATAACT CAGTTCACCT TGGACGGTTC 1560 CAGAACAGCA CGGTCAATGT TGTCATTCCT GCTCACAAAG TCCACAGTGA GACGGTGCGT 1620 CTACTCTACA CTAAGTATGC CTCAGTTGTC AGCGAGCACA ACATCATCCG GGTGACAGGG 1680 GTGGCGGAAG TGTCCGGCCA GGAAAAATCC ATCCTGGAGA TGGTCAACAT CCCACTGAGC 1740 AAGCCCAAAC TCAGTATTAA GGTTCCTGGC TGGGTGATTT TAAATAGGAA AATCACCACC 1800 TTCATCTCCT TCACCAATCC ATTGCCAGTG CCACTGAACC GAGGAGTGTT CACTGTTGAA 1860 GGGGCTGGCC TACTTCCCAC CAAAGAGATC CGCATTTCTG GTAGCATCGC TCCAGGCCAG 1920 C 1921
【0236】配列番号:52 配列の長さ:1962 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:スケソウタラ(Theragra c halcogramma) 組織の種類:筋肉 配列の特徴 特徴を表す記号:CDS 存在位置:1.. 特徴を決定した方法:P 配列 TTGTAAGAGC AACTCTTGGA AAGAATTTAG CAAAGATA ATG GCC CAC ACA 50 Met Ala His Thr 1 AAC CGT TTA ATT GCT GGT GTT GAT CTG AGA AGC CAG GAA AAC AAC 95 Asn Arg Leu Ile Ala Gly Val Asp Leu Arg Ser Gln Glu Asn Asn 5 10 15 CGG GAA CAC CGA ACT GAG GAG ATT GAT AGG AAG CGT TTG ATT GTT 140 Arg Glu His Arg Thr Glu Glu Ile Asp Arg Lys Arg Leu Ile Val 20 25 30 CGG CGG GGA CAA GCC TTC TCC CTG ACG GTG CAC CTC TCC GAC CCG 185 Arg Arg Gly Gln Ala Phe Ser Leu Thr Val His Leu Ser Asp Pro 35 40 45 CTG CAG TCC GGC CAT GAG CTG GCC CTG GTC TTA AAG CAG GAT AAA 230 Leu Gln Ser Gly His Glu Leu Ala Leu Val Leu Lys Gln Asp Lys 50 55 60 ATC AAC GAT GAT ATT GTG ATC AGA CAG CGA ACG ACT GGA GGG TCC 275 Ile Asn Asp Asp Ile Val Ile Arg Gln Arg Thr Thr Gly Gly Ser 65 70 75 GGT GAC AAG TGG TGG TTA CAC CAG CAG AGC GCG AAC AAC GAA TTA 320 Gly Asp Lys Trp Trp Leu His Gln Gln Ser Ala Asn Asn Glu Leu 80 85 90 CTG CTG ACT GTG TAC AGT CCC GCC CGT GCT GCC GTT GGC GAG TAC 365 Leu Leu Thr Val Tyr Ser Pro Ala Arg Ala Ala Val Gly Glu Tyr 95 100 105 CGC TTG GCT GTT GAA CTG ATG TCA GGG AAT AAA CTT CTG GAG AGG 410 Arg Leu Ala Val Glu Leu Met Ser Gly Asn Lys Leu Leu Glu Arg 110 115 120 ACG GAC TTT ACC AAA ATG TAC TTG CTG TTT AAT CCC TGG TGC AAA 455 Thr Asp Phe Thr Lys Met Tyr Leu Leu Phe Asn Pro Trp Cys Lys 125 130 135 GAA GAT GCC GTG TAC CTC CCT GAT GAG TGT CTG CTC AAG GAA TAC 500 Glu Asp Ala Val Tyr Leu Pro Asp Glu Cys Leu Leu Lys Glu Tyr 140 145 150 ATT ATG AAC GAG AAT GGT CGC ATT TTC ACT GGG AGT GCG GAT TGG 545 Ile Met Asn Glu Asn Gly Arg Ile Phe Thr Gly Ser Ala Asp Trp 155 160 165 ATG AGT GGG TTG CCA TGG AAT TTC GGA CAG TTT GAA GAT AAT GTG 590 Met Ser Gly Leu Pro Trp Asn Phe Gly Gln Phe Glu Asp Asn Val 170 175 180 ATG GAC ATC TGC TTT GAG ATC CTT GAC CGC TTT AAC CCA GCG AGG 635 Met Asp Ile Cys Phe Glu Ile Leu Asp Arg Phe Asn Pro Ala Arg 185 190 195 TCA GAC CCC CCA AGC GAC ATG CTT CAG CGA TGG GAC CCT GTC TAC 680 Ser Asp Pro Pro Ser Asp Met Leu Gln Arg Trp Asp Pro Val Tyr 200 205 210 ATC AGC AGG GCA GTC GTT GCC ATG GTG AAT GCC AAC GAT GAT GAC 725 Ile Ser Arg Ala Val Val Ala Met Val Asn Ala Asn Asp Asp Asp 215 220 225 GGT GGA GTC GTG GTG GGT CGA TGG CAG GAA CCT TAC ACA GGT GGA 770 Gly Gly Val Val Val Gly Arg Trp Gln Glu Pro Tyr Thr Gly Gly 230 235 240 GTA CAG CCA ACC AAA TGG ATG AGC AGT GTG CCC ATC CTG GAA GAG 815 Val Gln Pro Thr Lys Trp Met Ser Ser Val Pro Ile Leu Glu Glu 245 250 255 TGG AGC AAA TCA AAG TCT GGA GTG AAA TAT GGC CAA TGC TGG GTG 860 Trp Ser Lys Ser Lys Ser Gly Val Lys Tyr Gly Gln Cys Trp Val 260 265 270 TTT GCA GCC GTG GCC TGC ACA GTG ATG CGA TGC CTG GGC ATC CCC 905 Phe Ala Ala Val Ala Cys Thr Val Met Arg Cys Leu Gly Ile Pro 275 280 285 ACA CGC TGC ATC ACC AAC TTT CAG TCG GCC CAT GAC ACA GAC GGA 950 Thr Arg Cys Ile Thr Asn Phe Gln Ser Ala His Asp Thr Asp Gly 290 295 300 AAC CTC TCC ATC GAC CGA GTG TAC AAC ATA CAT AGG CAG CTA GTT 995 Asn Leu Ser Ile Asp Arg Val Tyr Asn Ile His Arg Gln Leu Val 305 310 315 GAC GGT GAT GAC AGT ATC TGG AAC TTT CAT TGT TGG ATC GAG TCT 1040 Asp Gly Asp Asp Ser Ile Trp Asn Phe His Cys Trp Ile Glu Ser 320 325 330 TAC ATG CAG AGA GAA GAT CTA CCT GAA GGA TAT GGT GGC TGG CAA 1085 Tyr Met Gln Arg Glu Asp Leu Pro Glu Gly Tyr Gly Gly Trp Gln 335 340 345 GTC TTG GAC CCC ACA CCT CAG GAG AGG AGT AGT GGT ATG TTT CGC 1130 Val Leu Asp Pro Thr Pro Gln Glu Arg Ser Ser Gly Met Phe Arg 350 355 360 TGT GGC CCA TGT CCT TTG AAG GCC ATT AAA GAA GGG GAC CTC AAT 1175 Cys Gly Pro Cys Pro Leu Lys Ala Ile Lys Glu Gly Asp Leu Asn 365 370 375 GTG AAG TTT GAT GTT CCA TTT GTC TTT GCT GAG GTG AAT GCA GAC 1220 Val Lys Phe Asp Val Pro Phe Val Phe Ala Glu Val Asn Ala Asp 380 385 390 ATC ATC AAT TGG GAA ATC AGA CCA GAC GGT CAG CGA AAG CGG CTT 1265 Ile Ile Asn Trp Glu Ile Arg Pro Asp Gly Gln Arg Lys Arg Leu 395 400 405 TCA TCC AAC TCT GCA AAT GTG GGG AGG AAC ATT AGC ACC AAA AGT 1310 Ser Ser Asn Ser Ala Asn Val Gly Arg Asn Ile Ser Thr Lys Ser 410 415 420 CCT TAT GGT AAC GAG AGG GAA GAT ATA ACC CAT CAG TAC AAG TAC 1355 Pro Tyr Gly Asn Glu Arg Glu Asp Ile Thr His Gln Tyr Lys Tyr 425 430 435 CAA GAA GGT TCA GCC AAG GAG CGG GAG GTG TAC AAC AAG GCA GGG 1400 Gln Glu Gly Ser Ala Lys Glu Arg Glu Val Tyr Asn Lys Ala Gly 440 445 450 CGG CGC ATC TCC GGG CCG GAT GGA GAA GAG GAA TCA AAA CCA GGA 1445 Arg Arg Ile Ser Gly Pro Asp Gly Glu Glu Glu Ser Lys Pro Gly 455 460 465 AAC GTG CAG CTG GAG ATC AAG CAC GCC AAA CCT GTG TTC GGG ACC 1490 Asn Val Gln Leu Glu Ile Lys His Ala Lys Pro Val Phe Gly Thr 470 475 480 GAC TTT GAC GTC ATC TTT GAG TTG GAG AAC ATG GGA GAC AAA GAA 1535 Asp Phe Asp Val Ile Phe Glu Leu Glu Asn Met Gly Asp Lys Glu 485 490 495 GTC AGC TGC AAA TTA AAC ATG ATG TCA GAG GCT GTC ACC TAT AAC 1580 Val Ser Cys Lys Leu Asn Met Met Ser Glu Ala Val Thr Tyr Asn 500 505 510 TCA GTT CAC CTT GGA CGG TTC CAG AAC AGC ACG GTC AAT GTT GTC 1625 Ser Val His Leu Gly Arg Phe Gln Asn Ser Thr Val Asn Val Val 515 520 525 ATT CCT GCT CAC AAA GTC CAC AGT GAG ACG GTG CGT CTA CTC TAC 1670 Ile Pro Ala His Lys Val His Ser Glu Thr Val Arg Leu Leu Tyr 530 535 540 ACT AAG TAT GCC TCA GTT GTC AGC GAG CAC AAC ATC ATC CGG GTG 1715 Thr Lys Tyr Ala Ser Val Val Ser Glu His Asn Ile Ile Arg Val 545 550 555 ACA GGG GTG GCG GAA GTG TCC GGC CAG GAA AAA TCC ATC CTG GAG 1760 Thr Gly Val Ala Glu Val Ser Gly Gln Glu Lys Ser Ile Leu Glu 560 565 570 ATG GTC AAC ATC CCA CTG AGC AAG CCC AAA CTC AGT ATT AAG GTT 1805 Met Val Asn Ile Pro Leu Ser Lys Pro Lys Leu Ser Ile Lys Val 575 580 585 CCT GGC TGG GTG ATT TTA AAT AGG AAA ATC ACC ACC TTC ATC TCC 1850 Pro Gly Trp Val Ile Leu Asn Arg Lys Ile Thr Thr Phe Ile Ser 590 595 600 TTC ACC AAT CCA TTG CCA GTG CCA CTG AAC CGA GGA GTG TTC ACT 1895 Phe Thr Asn Pro Leu Pro Val Pro Leu Asn Arg Gly Val Phe Thr 605 610 615 GTT GAA GGG GCT GGC CTA CTT CCC ACC AAA GAG ATC CGC ATT TCT 1940 Val Glu Gly Ala Gly Leu Leu Pro Thr Lys Glu Ile Arg Ile Ser 620 625 630 GGT AGC ATC GCT CCA GGC CAG C 1962 Gly Ser Ile Ala Pro Gly Gln 635 640
【0237】配列番号:53 配列の長さ:6 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類
【0238】配列番号:54 配列の長さ:6 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類 配列の特徴:Xaa は Met または Val
【0239】配列番号:55 配列の長さ:7 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類 配列の特徴:5番目の Xaa は Ser または Asn。6番目の
Xaa は Val またはIle。
Xaa は Val またはIle。
【0240】配列番号:56 配列の長さ:10 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類
【0241】配列番号:57 配列の長さ:8 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類 配列の特徴:6番目の Xaa は Val または Phe。8番目の
Xaa は Val またはLeu。
Xaa は Val またはLeu。
【0242】配列番号:58 配列の長さ:6 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類
【0243】配列番号:59 配列の長さ:8 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類 配列の特徴:7番目の Xaa は Lys または Arg。
【0244】配列番号:60 配列の長さ:5 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類
【0245】配列番号:61 配列の長さ:8 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間型フラグメント 起源 生物名:魚類 配列の特徴:1番目の Xaa は Leu または Met。6番目の
Xaa は Ser またはAla。
Xaa は Ser またはAla。
【0246】配列番号:62 配列の長さ:27 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GGATCGATGC CACTGCCTAT TACCCTC 27
【0247】配列番号:63 配列の長さ:16 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GGCGTGTTTA CTGTGG 16
【0248】配列番号:64 配列の長さ:19 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 ACACTGCCGG TCCATCGAA 19
【0249】配列番号:65 配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTGGAAGCTT GTAAGAGCAA CTCTTGGAAA 30
【0250】配列番号:66 配列の長さ:25 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTGTACACTC GATCGATGGA GAGGT 25
【0251】配列番号:67 配列の長さ:24 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TCTGCTTTGG GATCCTTGAC CGCT 24
【0252】配列番号:68 配列の長さ:23 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGAAGGAGAG CTCCACAGAC ACA 23
【0253】配列番号:69 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 ATGATGTCAA AGGCTGTCAC 20
【0254】配列番号:70 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TCTTACCATA TAAGTTGTAA 20
【0255】配列番号:71 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 ATTGATTAAC AACAAAATGG 20
【0256】配列番号:72 配列の長さ:679 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列 Thr Asp Gln Asn Gly Val Phe Met Gly Met Asp Leu Leu Cys Gln 1 5 10 15 Val Asn Ser His Ala His Arg Thr Glu Glu Met Asp Val Glu Arg 20 25 30 Leu Leu Val Arg Arg Gly Gln Pro Phe Ser Leu Ala Leu Gln Cys 35 40 45 His Thr Thr Leu Pro Pro Lys His Lys Leu Ala Ile Ile Leu His 50 55 60 Leu Gly Lys Glu Gly Glu Val Val Val Lys Val Leu Asp Ala Arg 65 70 75 Ala Gly Arg Asp Lys Trp Trp Phe Arg Gln Gln Gly Ala Gln Ser 80 85 90 Glu Val Leu Leu Thr Ile His Ser Pro Ala Asp Ala Pro Val Gly 95 100 105 Leu Tyr Ser Val Thr Val Leu Leu Leu Ser Pro Asp Gly His Ile 110 115 120 Leu Glu Lys Thr Thr Pro Glu Thr Phe Tyr Leu Leu Phe Asn Pro 125 130 135 Trp Cys Lys Ala Asp Ser Val Tyr Leu Pro Asp Glu Glu Leu Leu 140 145 150 Glu Glu Tyr Ile Leu Asn Glu Asn Gly Leu Leu Tyr Gln Gly Ser 155 160 165 Trp Asp Gln Ile Ser Ser Leu Pro Trp Asn Phe Gly Gln Phe Glu 170 175 180 Gln Asp Val Val Asp Ile Cys Phe Glu Ile Leu Asp Asn Ser Pro 185 190 195 Ala Ala Leu Thr Asn Pro Glu Met Asp Thr Ala Asn Arg Ala Asp 200 205 210 Pro Val Tyr Val Ser Arg Thr Ile Thr Ala Met Val Asn Ala Asn 215 220 225 Asp Asp Leu Gly Val Val Ser Gly Arg Trp Asp Gly Lys Tyr Asp 230 235 240 Asp Gly Val Pro Pro Thr Arg Trp Thr Gly Ser Val Pro Ile Leu 245 250 255 Arg Arg Trp Ser Glu Ala Gly Ala Gln Arg Val Arg Tyr Gly Gln 260 265 270 Cys Trp Val Phe Ser Gly Val Ala Cys Thr Val Leu Arg Cys Leu 275 280 285 Gly Ile Pro Thr Arg Pro Val Thr Asn Tyr Ser Ser Ala His Asp 290 295 300 Thr Asp Gly Asn Leu Asn Val Asp Tyr Leu Tyr Asp Glu Gln Leu 305 310 315 Glu Ser Val Ser Glu Gly Arg Lys Asp Met Ile Trp Asn Tyr His 320 325 330 Cys Trp Val Glu Ser Trp Met Asp Arg Glu Asp Leu Pro Lys Gly 335 340 345 Tyr Asp Gly Trp Gln Ala Leu Asp Pro Thr Pro Gln Glu Arg Ser 350 355 360 Asp Gly Val Tyr Cys Cys Gly Pro Cys Pro Val Lys Ala Val Arg 365 370 375 Asp Gly Asp Val Gly Met Lys Tyr Asp Ala Ala Phe Val Phe Ser 380 385 390 Glu Val Asn Ala Asp Leu Val Thr Trp Ile Val His Pro Asp Gly 395 400 405 Gln Arg Ser Gln Val Ser Leu Asn Gln Asn Thr Val Gly Gln Asn 410 415 420 Ile Ser Thr Lys Ser Val Tyr Gly Asp Tyr Arg Glu Asp Ile Thr 425 430 435 Lys His Tyr Lys Tyr Pro Glu Gly Ser Val Lys Glu Arg Glu Val 440 445 450 Tyr Glu Lys Ala Gly Arg Gln Val Thr Gln Pro Asn Gly Ala Pro 455 460 465 Gly Gln Leu Glu Leu Lys Ile Lys His Ala Gln Ala Ile Leu Gly 470 475 480 Thr Asp Phe Asp Val Ile Val Glu Val His Asn Val Gly Gly Glu 485 490 495 Asp Thr Pro Ala Gln Leu Thr Val Thr Ser Asn Ala Val Thr Tyr 500 505 510 Asn Ser Leu His Arg Gly Glu Cys His Arg Lys Thr Ala Ser Leu 515 520 525 Thr Val Pro Ala Gln Lys Ala His Lys Glu Val Leu Arg Leu Arg 530 535 540 Tyr Asp His Tyr Gly Ala Cys Val Ser Glu His Asn Leu Ile Arg 545 550 555 Val Thr Ala Leu Leu Gln Val Ser Gly Gln Pro Glu Val Val Leu 560 565 570 Gln Glu Val Asn Ile Gln Leu Ser Met Pro Gln Leu His Val Lys 575 580 585 Val Val Gly Asp Ala Val Val Ser Arg Lys Leu Ile Ala His Ile 590 595 600 Ser Phe Thr Asn Pro Leu Pro Ile Thr Leu Arg Gly Gly Val Phe 605 610 615 Thr Val Glu Gly Ala Gly Leu Thr Ala Ala Arg Glu Ile Gln Ala 620 625 630 Pro Asp Asp Ile Gly Pro Gly Gln Glu Val Lys Val Lys Leu Ser 635 640 645 Phe Lys Pro Thr Arg Ala Gly Leu Arg Lys Leu Met Val Asp Phe 650 655 660 Asp Ala Asp Arg Ile Arg Asp Val Lys Gly Ile Ala Thr Leu Ile 665 670 675 Val Arg Asn Lys 679
【0257】配列番号:73 配列の長さ:680 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列 Met Thr Asp Gln Asn Gly Val Phe Met Gly Met Asp Leu Leu Cys 1 5 10 15 Gln Val Asn Ser His Ala His Arg Thr Glu Glu Met Asp Val Glu 20 25 30 Arg Leu Leu Val Arg Arg Gly Gln Pro Phe Ser Leu Ala Leu Gln 35 40 45 Cys His Thr Thr Leu Pro Pro Lys His Lys Leu Ala Ile Ile Leu 50 55 60 His Leu Gly Lys Glu Gly Glu Val Val Val Lys Val Leu Asp Ala 65 70 75 Arg Ala Gly Arg Asp Lys Trp Trp Phe Arg Gln Gln Gly Ala Gln 80 85 90 Ser Glu Val Leu Leu Thr Ile His Ser Pro Ala Asp Ala Pro Val 95 100 105 Gly Leu Tyr Ser Val Thr Val Leu Leu Leu Ser Pro Asp Gly His 110 115 120 Ile Leu Glu Lys Thr Thr Pro Glu Thr Phe Tyr Leu Leu Phe Asn 125 130 135 Pro Trp Cys Lys Ala Asp Ser Val Tyr Leu Pro Asp Glu Glu Leu 140 145 150 Leu Glu Glu Tyr Ile Leu Asn Glu Asn Gly Leu Leu Tyr Gln Gly 155 160 165 Ser Trp Asp Gln Ile Ser Ser Leu Pro Trp Asn Phe Gly Gln Phe 170 175 180 Glu Gln Asp Val Val Asp Ile Cys Phe Glu Ile Leu Asp Asn Ser 185 190 195 Pro Ala Ala Leu Thr Asn Pro Glu Met Asp Thr Ala Asn Arg Ala 200 205 210 Asp Pro Val Tyr Val Ser Arg Thr Ile Thr Ala Met Val Asn Ala 215 220 225 Asn Asp Asp Leu Gly Val Val Ser Gly Arg Trp Asp Gly Lys Tyr 230 235 240 Asp Asp Gly Val Pro Pro Thr Arg Trp Thr Gly Ser Val Pro Ile 245 250 255 Leu Arg Arg Trp Ser Glu Ala Gly Ala Gln Arg Val Arg Tyr Gly 260 265 270 Gln Cys Trp Val Phe Ser Gly Val Ala Cys Thr Val Leu Arg Cys 275 280 285 Leu Gly Ile Pro Thr Arg Pro Val Thr Asn Tyr Ser Ser Ala His 290 295 300 Asp Thr Asp Gly Asn Leu Asn Val Asp Tyr Leu Tyr Asp Glu Gln 305 310 315 Leu Glu Ser Val Ser Glu Gly Arg Lys Asp Met Ile Trp Asn Tyr 320 325 330 His Cys Trp Val Glu Ser Trp Met Asp Arg Glu Asp Leu Pro Lys 335 340 345 Gly Tyr Asp Gly Trp Gln Ala Leu Asp Pro Thr Pro Gln Glu Arg 350 355 360 Ser Asp Gly Val Tyr Cys Cys Gly Pro Cys Pro Val Lys Ala Val 365 370 375 Arg Asp Gly Asp Val Gly Met Lys Tyr Asp Ala Ala Phe Val Phe 380 385 390 Ser Glu Val Asn Ala Asp Leu Val Thr Trp Ile Val His Pro Asp 395 400 405 Gly Gln Arg Ser Gln Val Ser Leu Asn Gln Asn Thr Val Gly Gln 410 415 420 Asn Ile Ser Thr Lys Ser Val Tyr Gly Asp Tyr Arg Glu Asp Ile 425 430 435 Thr Lys His Tyr Lys Tyr Pro Glu Gly Ser Val Lys Glu Arg Glu 440 445 450 Val Tyr Glu Lys Ala Gly Arg Gln Val Thr Gln Pro Asn Gly Ala 455 460 465 Pro Gly Gln Leu Glu Leu Lys Ile Lys His Ala Gln Ala Ile Leu 470 475 480 Gly Thr Asp Phe Asp Val Ile Val Glu Val His Asn Val Gly Gly 485 490 495 Glu Asp Thr Pro Ala Gln Leu Thr Val Thr Ser Asn Ala Val Thr 500 505 510 Tyr Asn Ser Leu His Arg Gly Glu Cys His Arg Lys Thr Ala Ser 515 520 525 Leu Thr Val Pro Ala Gln Lys Ala His Lys Glu Val Leu Arg Leu 530 535 540 Arg Tyr Asp His Tyr Gly Ala Cys Val Ser Glu His Asn Leu Ile 545 550 555 Arg Val Thr Ala Leu Leu Gln Val Ser Gly Gln Pro Glu Val Val 560 565 570 Leu Gln Glu Val Asn Ile Gln Leu Ser Met Pro Gln Leu His Val 575 580 585 Lys Val Val Gly Asp Ala Val Val Ser Arg Lys Leu Ile Ala His 590 595 600 Ile Ser Phe Thr Asn Pro Leu Pro Ile Thr Leu Arg Gly Gly Val 605 610 615 Phe Thr Val Glu Gly Ala Gly Leu Thr Ala Ala Arg Glu Ile Gln 620 625 630 Ala Pro Asp Asp Ile Gly Pro Gly Gln Glu Val Lys Val Lys Leu 635 640 645 Ser Phe Lys Pro Thr Arg Ala Gly Leu Arg Lys Leu Met Val Asp 650 655 660 Phe Asp Ala Asp Arg Ile Arg Asp Val Lys Gly Ile Ala Thr Leu 665 670 675 Ile Val Arg Asn Lys 680
【0258】配列番号:74 配列の長さ:2040 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:1..2040 特徴を決定した方法:P 配列 ACTGACCAAA ACGGTGTATT TATGGGGATG GACCTGCTTT GCCAGGTGAA CAGCCATGCC 60 CATCGTACAG AGGAGATGGA CGTGGAAAGG CTTCTGGTTC GTCGGGGGCA GCCCTTCTCC 120 CTTGCCTTGC AGTGCCACAC AACCCTGCCC CCTAAACACA AACTAGCCAT AATCTTGCAT 180 CTAGGTAAGG AGGGTGAGGT GGTGGTGAAG GTGTTGGATG CCCGTGCTGG CAGGGACAAG 240 TGGTGGTTCC GCCAGCAGGG GGCTCAGAGT GAGGTGCTGC TGACGATCCA CAGCCCAGCA 300 GACGCCCCTG TGGGACTCTA CAGCGTGACA GTGCTGCTCC TCTCCCCTGA CGGACACATC 360 CTGGAGAAGA CAACACCAGA GACGTTCTAC CTGCTCTTCA ACCCCTGGTG CAAAGCTGAC 420 TCTGTGTACC TCCCTGATGA GGAGCTGCTA GAGGAGTACA TCCTGAATGA AAATGGCCTC 480 CTTTACCAGG GTTCCTGGGA CCAGATTTCC TCACTACCCT GGAACTTTGG ACAGTTTGAA 540 CAAGATGTGG TGGACATCTG TTTTGAAATC CTGGACAATT CACCTGCTGC ACTGACAAAC 600 CCAGAGATGG ACACAGCCAA CCGAGCAGAC CCAGTGTACG TGAGCAGGAC AATTACTGCC 660 ATGGTGAACG CTAATGATGA CCTTGGCGTG GTGTCGGGCC GTTGGGACGG GAAGTACGAT 720 GACGGGGTGC CGCCCACACG TTGGACTGGC AGTGTGCCCA TCCTCAGGCG CTGGAGTGAG 780 GCCGGGGCAC AGAGGGTGCG CTACGGACAG TGCTGGGTGT TTTCAGGCGT AGCCTGTACA 840 GTTCTTCGCT GTCTGGGCAT ACCCACTCGC CCAGTTACAA ACTACTCTTC TGCCCATGAC 900 ACTGATGGCA ACCTGAATGT GGACTATCTG TATGATGAGC AGCTGGAGAG TGTGTCTGAA 960 GGCAGGAAGG ACATGATCTG GAACTACCAT TGCTGGGTGG AGTCCTGGAT GGACAGGGAG 1020 GATCTTCCTA AAGGCTATGA TGGGTGGCAG GCTCTGGATC CCACCCCACA GGAGAGGAGT 1080 GATGGGGTGT ACTGTTGTGG GCCCTGTCCA GTGAAGGCAG TGAGGGACGG TGATGTGGGG 1140 ATGAAGTATG ATGCAGCCTT CGTGTTCTCT GAGGTGAACG CAGACCTGGT CACCTGGATC 1200 GTCCACCCAG ATGGCCAACG CTCACAGGTT TCCCTCAACC AGAATACAGT GGGCCAAAAC 1260 ATCAGCACCA AGAGTGTGTA CGGAGACTAC AGAGAGGACA TCACTAAACA TTACAAATAC 1320 CCTGAAGGTT CAGTGAAGGA GCGTGAGGTG TATGAGAAGG CAGGACGTCA GGTAACGCAG 1380 CCGAATGGAG CACCAGGGCA GCTGGAGCTG AAGATCAAAC ACGCCCAGGC CATCCTGGGC 1440 ACAGACTTTG ATGTGATAGT GGAGGTGCAC AACGTCGGTG GAGAGGACAC CCCAGCCCAG 1500 CTGACTGTGA CGTCCAACGC TGTCACCTAC AACAGCCTCC ACCGGGGGGA GTGCCATAGG 1560 AAGACTGCCA GCCTGACAGT GCCAGCCCAG AAAGCTCATA AGGAAGTGCT GCGGCTACGG 1620 TACGATCACT ACGGGGCATG TGTGTCTGAG CATAACCTGA TCAGGGTCAC AGCACTACTC 1680 CAGGTCAGCG GCCAGCCCGA AGTCGTCTTA CAAGAGGTCA ACATCCAACT GAGCATGCCT 1740 CAGCTCCATG TCAAGGTAGT GGGAGATGCA GTTGTATCTC GGAAATTGAT TGCCCACATC 1800 AGCTTCACCA ATCCACTGCC TATTACCCTC AGAGGGGGCG TGTTTACTGT GGAGGGGGCA 1860 GGTCTGACAG CAGCGCGGGA GATCCAAGCA CCAGATGACA TTGGACCAGG TCAAGAGGTC 1920 AAGGTCAAGT TGTCCTTCAA GCCCACCCGA GCAGGTCTGA GAAAACTGAT GGTCGACTTT 1980 GATGCAGACA GAATAAGGGA TGTTAAAGGC ATTGCCACTT TGATTGTGAG AAACAAGTGA 2040
【0259】配列番号: 75 配列の長さ: 2205 配列の型: 核酸 鎖の数: 二本鎖 トポロジ−: 直鎖状 配列の種類: cDNA to mRNA 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列の特徴 特徴を表す記号: CDS 存在位置: 98..2140 特徴を決定した方法: P GAAAAGACAA AAGAGGAGTC AAACTTACCA TAAAAGGAGG TTACACGGCA 50 GAGAAGAGAA GATTCACAGA GGAGTTATTC ACCACAAAGA GTGGAGA ATG 100 Met 1 ACT GAC CAA AAC GGT GTA TTT ATG GGG ATG GAC CTG CTT TGC CAG 145 Thr Asp Gln Asn Gly Val Phe Met Gly Met Asp Leu Leu Cys Gln 5 10 15 GTG AAC AGC CAT GCC CAT CGT ACA GAG GAG ATG GAC GTG GAA AGG 190 Val Asn Ser His Ala His Arg Thr Glu Glu Met Asp Val Glu Arg 20 25 30 CTT CTG GTT CGT CGG GGG CAG CCC TTC TCC CTT GCC TTG CAG TGC 235 Leu Leu Val Arg Arg Gly Gln Pro Phe Ser Leu Ala Leu Gln Cys 35 40 45 CAC ACA ACC CTG CCC CCT AAA CAC AAA CTA GCC ATA ATC TTG CAT 280 His Thr Thr Leu Pro Pro Lys His Lys Leu Ala Ile Ile Leu His 50 55 60 CTA GGT AAG GAG GGT GAG GTG GTG GTG AAG GTG TTG GAT GCC CGT 325 Leu Gly Lys Glu Gly Glu Val Val Val Lys Val Leu Asp Ala Arg 65 70 75 GCT GGC AGG GAC AAG TGG TGG TTC CGC CAG CAG GGG GCT CAG AGT 370 Ala Gly Arg Asp Lys Trp Trp Phe Arg Gln Gln Gly Ala Gln Ser 80 85 90 GAG GTG CTG CTG ACG ATC CAC AGC CCA GCA GAC GCC CCT GTG GGA 415 Glu Val Leu Leu Thr Ile His Ser Pro Ala Asp Ala Pro Val Gly 95 100 105 CTC TAC AGC GTG ACA GTG CTG CTC CTC TCC CCT GAC GGA CAC ATC 460 Leu Tyr Ser Val Thr Val Leu Leu Leu Ser Pro Asp Gly His Ile 110 115 120 CTG GAG AAG ACA ACA CCA GAG ACG TTC TAC CTG CTC TTC AAC CCC 505 Leu Glu Lys Thr Thr Pro Glu Thr Phe Tyr Leu Leu Phe Asn Pro 125 130 135 TGG TGC AAA GCT GAC TCT GTG TAC CTC CCT GAT GAG GAG CTG CTA 550 Trp Cys Lys Ala Asp Ser Val Tyr Leu Pro Asp Glu Glu Leu Leu 140 145 150 GAG GAG TAC ATC CTG AAT GAA AAT GGC CTC CTT TAC CAG GGT TCC 595 Glu Glu Tyr Ile Leu Asn Glu Asn Gly Leu Leu Tyr Gln Gly Ser 155 160 165 TGG GAC CAG ATT TCC TCA CTA CCC TGG AAC TTT GGA CAG TTT GAA 640 Trp Asp Gln Ile Ser Ser Leu Pro Trp Asn Phe Gly Gln Phe Glu 170 175 180 CAA GAT GTG GTG GAC ATC TGT TTT GAA ATC CTG GAC AAT TCA CCT 685 Gln Asp Val Val Asp Ile Cys Phe Glu Ile Leu Asp Asn Ser Pro 185 190 195 GCT GCA CTG ACA AAC CCA GAG ATG GAC ACA GCC AAC CGA GCA GAC 730 Ala Ala Leu Thr Asn Pro Glu Met Asp Thr Ala Asn Arg Ala Asp 200 205 210 CCA GTG TAC GTG AGC AGG ACA ATT ACT GCC ATG GTG AAC GCT AAT 775 Pro Val Tyr Val Ser Arg Thr Ile Thr Ala Met Val Asn Ala Asn 215 220 225 GAT GAC CTT GGC GTG GTG TCG GGC CGT TGG GAC GGG AAG TAC GAT 820 Asp Asp Leu Gly Val Val Ser Gly Arg Trp Asp Gly Lys Tyr Asp 230 235 240 GAC GGG GTG CCG CCC ACA CGT TGG ACT GGC AGT GTG CCC ATC CTC 865 Asp Gly Val Pro Pro Thr Arg Trp Thr Gly Ser Val Pro Ile Leu 245 250 255 AGG CGC TGG AGT GAG GCC GGG GCA CAG AGG GTG CGC TAC GGA CAG 910 Arg Arg Trp Ser Glu Ala Gly Ala Gln Arg Val Arg Tyr Gly Gln 260 265 270 TGC TGG GTG TTT TCA GGC GTA GCC TGT ACA GTT CTT CGC TGT CTG 955 Cys Trp Val Phe Ser Gly Val Ala Cys Thr Val Leu Arg Cys Leu 275 280 285 GGC ATA CCC ACT CGC CCA GTT ACA AAC TAC TCT TCT GCC CAT GAC 1000 Gly Ile Pro Thr Arg Pro Val Thr Asn Tyr Ser Ser Ala His Asp 290 295 300 ACT GAT GGC AAC CTG AAT GTG GAC TAT CTG TAT GAT GAG CAG CTG 1045 Thr Asp Gly Asn Leu Asn Val Asp Tyr Leu Tyr Asp Glu Gln Leu 305 310 315 GAG AGT GTG TCT GAA GGC AGG AAG GAC ATG ATC TGG AAC TAC CAT 1090 Glu Ser Val Ser Glu Gly Arg Lys Asp Met Ile Trp Asn Tyr His 320 325 330 TGC TGG GTG GAG TCC TGG ATG GAC AGG GAG GAT CTT CCT AAA GGC 1135 Cys Trp Val Glu Ser Trp Met Asp Arg Glu Asp Leu Pro Lys Gly 335 340 345 TAT GAT GGG TGG CAG GCT CTG GAT CCC ACC CCA CAG GAG AGG AGT 1180 Tyr Asp Gly Trp Gln Ala Leu Asp Pro Thr Pro Gln Glu Arg Ser 350 355 360 GAT GGG GTG TAC TGT TGT GGG CCC TGT CCA GTG AAG GCA GTG AGG 1225 Asp Gly Val Tyr Cys Cys Gly Pro Cys Pro Val Lys Ala Val Arg 365 370 375 GAC GGT GAT GTG GGG ATG AAG TAT GAT GCA GCC TTC GTG TTC TCT 1270 Asp Gly Asp Val Gly Met Lys Tyr Asp Ala Ala Phe Val Phe Ser 380 385 390 GAG GTG AAC GCA GAC CTG GTC ACC TGG ATC GTC CAC CCA GAT GGC 1315 Glu Val Asn Ala Asp Leu Val Thr Trp Ile Val His Pro Asp Gly 395 400 405 CAA CGC TCA CAG GTT TCC CTC AAC CAG AAT ACA GTG GGC CAA AAC 1360 Gln Arg Ser Gln Val Ser Leu Asn Gln Asn Thr Val Gly Gln Asn 410 415 420 ATC AGC ACC AAG AGT GTG TAC GGA GAC TAC AGA GAG GAC ATC ACT 1405 Ile Ser Thr Lys Ser Val Tyr Gly Asp Tyr Arg Glu Asp Ile Thr 425 430 435 AAA CAT TAC AAA TAC CCT GAA GGT TCA GTG AAG GAG CGT GAG GTG 1450 Lys His Tyr Lys Tyr Pro Glu Gly Ser Val Lys Glu Arg Glu Val 440 445 450 TAT GAG AAG GCA GGA CGT CAG GTA ACG CAG CCG AAT GGA GCA CCA 1495 Tyr Glu Lys Ala Gly Arg Gln Val Thr Gln Pro Asn Gly Ala Pro 455 460 465 GGG CAG CTG GAG CTG AAG ATC AAA CAC GCC CAG GCC ATC CTG GGC 1540 Gly Gln Leu Glu Leu Lys Ile Lys His Ala Gln Ala Ile Leu Gly 470 475 480 ACA GAC TTT GAT GTG ATA GTG GAG GTG CAC AAC GTC GGT GGA GAG 1585 Thr Asp Phe Asp Val Ile Val Glu Val His Asn Val Gly Gly Glu 485 490 495 GAC ACC CCA GCC CAG CTG ACT GTG ACG TCC AAC GCT GTC ACC TAC 1630 Asp Thr Pro Ala Gln Leu Thr Val Thr Ser Asn Ala Val Thr Tyr 500 505 510 AAC AGC CTC CAC CGG GGG GAG TGC CAT AGG AAG ACT GCC AGC CTG 1675 Asn Ser Leu His Arg Gly Glu Cys His Arg Lys Thr Ala Ser Leu 515 520 525 ACA GTG CCA GCC CAG AAA GCT CAT AAG GAA GTG CTG CGG CTA CGG 1720 Thr Val Pro Ala Gln Lys Ala His Lys Glu Val Leu Arg Leu Arg 530 535 540 TAC GAT CAC TAC GGG GCA TGT GTG TCT GAG CAT AAC CTG ATC AGG 1765 Tyr Asp His Tyr Gly Ala Cys Val Ser Glu His Asn Leu Ile Arg 545 550 555 GTC ACA GCA CTA CTC CAG GTC AGC GGC CAG CCC GAA GTC GTC TTA 1810 Val Thr Ala Leu Leu Gln Val Ser Gly Gln Pro Glu Val Val Leu 560 565 570 CAA GAG GTC AAC ATC CAA CTG AGC ATG CCT CAG CTC CAT GTC AAG 1855 Gln Glu Val Asn Ile Gln Leu Ser Met Pro Gln Leu His Val Lys 575 580 585 GTA GTG GGA GAT GCA GTT GTA TCT CGG AAA TTG ATT GCC CAC ATC 1900 Val Val Gly Asp Ala Val Val Ser Arg Lys Leu Ile Ala His Ile 590 595 600 AGC TTC ACC AAT CCA CTG CCT ATT ACC CTC AGA GGG GGC GTG TTT 1945 Ser Phe Thr Asn Pro Leu Pro Ile Thr Leu Arg Gly Gly Val Phe 605 610 615 ACT GTG GAG GGG GCA GGT CTG ACA GCA GCG CGG GAG ATC CAA GCA 1990 Thr Val Glu Gly Ala Gly Leu Thr Ala Ala Arg Glu Ile Gln Ala 620 625 630 CCA GAT GAC ATT GGA CCA GGT CAA GAG GTC AAG GTC AAG TTG TCC 2035 Pro Asp Asp Ile Gly Pro Gly Gln Glu Val Lys Val Lys Leu Ser 635 640 645 TTC AAG CCC ACC CGA GCA GGT CTG AGA AAA CTG ATG GTC GAC TTT 2080 Phe Lys Pro Thr Arg Ala Gly Leu Arg Lys Leu Met Val Asp Phe 650 655 660 GAT GCA GAC AGA ATA AGG GAT GTT AAA GGC ATT GCC ACT TTG ATT 2125 Asp Ala Asp Arg Ile Arg Asp Val Lys Gly Ile Ala Thr Leu Ile 665 670 675 GTG AGA AAC AAG TGAACTGTCA ATTAACAACG TATATCATAT CATGTATATT 2177 Val Arg Asn Lys 680 TCTATATAAA ATAATTACCT GTAAATGC 2205
【0260】配列番号:76 配列の長さ:679 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列 Thr Asp Gln Asn Gly Val Phe Met Gly Met Asp Leu Leu Cys Gln 1 5 10 15 Val Asn Ser His Ala His Arg Thr Glu Glu Met Asp Val Glu Arg 20 25 30 Leu Leu Val Arg Arg Gly Gln Pro Phe Ser Leu Ala Leu Gln Cys 35 40 45 His Thr Thr Leu Pro Pro Lys His Lys Leu Ala Ile Ile Leu His 50 55 60 Leu Gly Lys Glu Gly Glu Val Val Val Lys Val Leu Asp Ala Arg 65 70 75 Ala Gly Arg Asp Lys Trp Trp Phe Arg Gln Gln Gly Ala Gln Ser 80 85 90 Glu Val Leu Leu Thr Ile His Ser Pro Ala Asp Ala Pro Val Gly 95 100 105 Leu Tyr Ser Val Thr Val Leu Leu Leu Ser Pro Asp Gly His Ile 110 115 120 Leu Glu Lys Thr Thr Pro Glu Thr Phe Tyr Leu Leu Phe Asn Pro 125 130 135 Trp Cys Lys Ala Asp Ser Val Tyr Leu Pro Asp Glu Glu Leu Leu 140 145 150 Glu Glu Tyr Ile Leu Asn Glu Asn Gly Leu Leu Tyr Gln Gly Ser 155 160 165 Trp Asp Gln Ile Ser Ser Leu Pro Trp Asn Phe Gly Gln Phe Glu 170 175 180 Gln Asp Val Val Asp Ile Cys Phe Glu Ile Leu Asp Asn Ser Pro 185 190 195 Ala Ala Leu Thr Asn Pro Glu Met Asp Thr Ala Asn Arg Ala Asp 200 205 210 Pro Val Tyr Val Ser Arg Thr Ile Thr Ala Met Val Asn Ala Asn 215 220 225 Asp Asp Leu Gly Val Val Ser Gly Arg Trp Asp Gly Lys Tyr Asp 230 235 240 Asp Gly Val Pro Pro Thr Arg Trp Thr Gly Ser Val Pro Ile Leu 245 250 255 Arg Arg Trp Ser Glu Ala Gly Ala Gln Arg Val Arg Tyr Gly Gln 260 265 270 Cys Trp Val Phe Ser Gly Val Ala Cys Thr Val Leu Arg Cys Leu 275 280 285 Gly Ile Pro Thr Arg Pro Val Thr Asn Tyr Ser Ser Ala His Asp 290 295 300 Thr Asp Gly Asn Leu Asn Val Asp Tyr Leu Tyr Asp Glu Gln Leu 305 310 315 Glu Ser Val Ser Glu Gly Arg Lys Asp Met Ile Trp Asn Tyr His 320 325 330 Cys Trp Val Glu Ser Trp Met Asp Arg Glu Asp Leu Pro Lys Gly 335 340 345 Tyr Asp Gly Trp Gln Ala Leu Asp Pro Thr Pro Gln Glu Arg Ser 350 355 360 Asp Gly Val Tyr Cys Cys Gly Pro Cys Pro Val Lys Ala Val Arg 365 370 375 Asp Gly Asp Val Gly Met Lys Tyr Asp Ala Ala Phe Val Phe Ser 380 385 390 Glu Val Asn Ala Asp Leu Val Thr Trp Ile Val His Pro Asp Gly 395 400 405 Gln Arg Ser Gln Val Ser Leu Asn Gln Asn Thr Val Gly Gln Asn 410 415 420 Ile Ser Thr Lys Ser Val Tyr Gly Asp Tyr Arg Glu Asp Ile Thr 425 430 435 Lys His Tyr Lys Tyr Pro Glu Gly Ser Val Lys Glu Arg Glu Val 440 445 450 Tyr Glu Lys Ala Gly Arg Gln Val Thr Gln Pro Asn Gly Ala Pro 455 460 465 Gly Gln Leu Glu Leu Lys Ile Lys His Ala Gln Ala Ile Leu Gly 470 475 480 Thr Asp Phe Asp Val Ile Val Glu Val His Asn Val Gly Gly Glu 485 490 495 Asp Thr Pro Ala Gln Leu Thr Val Thr Ser Asn Ala Val Thr Tyr 500 505 510 Asn Ser Leu His Arg Gly Glu Cys His Arg Lys Thr Ala Ser Leu 515 520 525 Thr Val Pro Ala Gln Lys Ala His Lys Glu Val Leu Arg Leu Arg 530 535 540 Tyr Asp His Tyr Gly Ala Cys Val Ser Glu His Asn Leu Ile Arg 545 550 555 Val Thr Ala Leu Leu Gln Val Ser Gly Gln Pro Glu Val Val Leu 560 565 570 Gln Glu Val Asn Ile Gln Leu Ser Met Pro Gln Leu His Val Lys 575 580 585 Val Val Gly Asp Ala Val Val Ser Arg Lys Leu Ile Ala His Ile 590 595 600 Ser Phe Thr Asn Pro Leu Pro Ile Thr Leu Arg Gly Gly Val Phe 605 610 615 Thr Val Glu Gly Ala Gly Leu Thr Ala Ala Arg Glu Ile Gln Ala 620 625 630 Pro Asp Asp Ile Gly Pro Gly Gln Glu Val Lys Val Lys Leu Ser 635 640 645 Phe Lys Pro Thr Arg Ala Gly Leu Arg Arg Leu Met Val Asp Phe 650 655 660 Asp Ala Asp Arg Ile Arg Asp Val Lys Gly Ile Ala Thr Leu Ile 665 670 675 Val Arg Asn Lys 679
【0261】配列番号:77 配列の長さ:680 配列の型:アミノ酸 トポロジー:直鎖状 配列の種類:タンパク質 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列 Met Thr Asp Gln Asn Gly Val Phe Met Gly Met Asp Leu Leu Cys 1 5 10 15 Gln Val Asn Ser His Ala His Arg Thr Glu Glu Met Asp Val Glu 20 25 30 Arg Leu Leu Val Arg Arg Gly Gln Pro Phe Ser Leu Ala Leu Gln 35 40 45 Cys His Thr Thr Leu Pro Pro Lys His Lys Leu Ala Ile Ile Leu 50 55 60 His Leu Gly Lys Glu Gly Glu Val Val Val Lys Val Leu Asp Ala 65 70 75 Arg Ala Gly Arg Asp Lys Trp Trp Phe Arg Gln Gln Gly Ala Gln 80 85 90 Ser Glu Val Leu Leu Thr Ile His Ser Pro Ala Asp Ala Pro Val 95 100 105 Gly Leu Tyr Ser Val Thr Val Leu Leu Leu Ser Pro Asp Gly His 110 115 120 Ile Leu Glu Lys Thr Thr Pro Glu Thr Phe Tyr Leu Leu Phe Asn 125 130 135 Pro Trp Cys Lys Ala Asp Ser Val Tyr Leu Pro Asp Glu Glu Leu 140 145 150 Leu Glu Glu Tyr Ile Leu Asn Glu Asn Gly Leu Leu Tyr Gln Gly 155 160 165 Ser Trp Asp Gln Ile Ser Ser Leu Pro Trp Asn Phe Gly Gln Phe 170 175 180 Glu Gln Asp Val Val Asp Ile Cys Phe Glu Ile Leu Asp Asn Ser 185 190 195 Pro Ala Ala Leu Thr Asn Pro Glu Met Asp Thr Ala Asn Arg Ala 200 205 210 Asp Pro Val Tyr Val Ser Arg Thr Ile Thr Ala Met Val Asn Ala 215 220 225 Asn Asp Asp Leu Gly Val Val Ser Gly Arg Trp Asp Gly Lys Tyr 230 235 240 Asp Asp Gly Val Pro Pro Thr Arg Trp Thr Gly Ser Val Pro Ile 245 250 255 Leu Arg Arg Trp Ser Glu Ala Gly Ala Gln Arg Val Arg Tyr Gly 260 265 270 Gln Cys Trp Val Phe Ser Gly Val Ala Cys Thr Val Leu Arg Cys 275 280 285 Leu Gly Ile Pro Thr Arg Pro Val Thr Asn Tyr Ser Ser Ala His 290 295 300 Asp Thr Asp Gly Asn Leu Asn Val Asp Tyr Leu Tyr Asp Glu Gln 305 310 315 Leu Glu Ser Val Ser Glu Gly Arg Lys Asp Met Ile Trp Asn Tyr 320 325 330 His Cys Trp Val Glu Ser Trp Met Asp Arg Glu Asp Leu Pro Lys 335 340 345 Gly Tyr Asp Gly Trp Gln Ala Leu Asp Pro Thr Pro Gln Glu Arg 350 355 360 Ser Asp Gly Val Tyr Cys Cys Gly Pro Cys Pro Val Lys Ala Val 365 370 375 Arg Asp Gly Asp Val Gly Met Lys Tyr Asp Ala Ala Phe Val Phe 380 385 390 Ser Glu Val Asn Ala Asp Leu Val Thr Trp Ile Val His Pro Asp 395 400 405 Gly Gln Arg Ser Gln Val Ser Leu Asn Gln Asn Thr Val Gly Gln 410 415 420 Asn Ile Ser Thr Lys Ser Val Tyr Gly Asp Tyr Arg Glu Asp Ile 425 430 435 Thr Lys His Tyr Lys Tyr Pro Glu Gly Ser Val Lys Glu Arg Glu 440 445 450 Val Tyr Glu Lys Ala Gly Arg Gln Val Thr Gln Pro Asn Gly Ala 455 460 465 Pro Gly Gln Leu Glu Leu Lys Ile Lys His Ala Gln Ala Ile Leu 470 475 480 Gly Thr Asp Phe Asp Val Ile Val Glu Val His Asn Val Gly Gly 485 490 495 Glu Asp Thr Pro Ala Gln Leu Thr Val Thr Ser Asn Ala Val Thr 500 505 510 Tyr Asn Ser Leu His Arg Gly Glu Cys His Arg Lys Thr Ala Ser 515 520 525 Leu Thr Val Pro Ala Gln Lys Ala His Lys Glu Val Leu Arg Leu 530 535 540 Arg Tyr Asp His Tyr Gly Ala Cys Val Ser Glu His Asn Leu Ile 545 550 555 Arg Val Thr Ala Leu Leu Gln Val Ser Gly Gln Pro Glu Val Val 560 565 570 Leu Gln Glu Val Asn Ile Gln Leu Ser Met Pro Gln Leu His Val 575 580 585 Lys Val Val Gly Asp Ala Val Val Ser Arg Lys Leu Ile Ala His 590 595 600 Ile Ser Phe Thr Asn Pro Leu Pro Ile Thr Leu Arg Gly Gly Val 605 610 615 Phe Thr Val Glu Gly Ala Gly Leu Thr Ala Ala Arg Glu Ile Gln 620 625 630 Ala Pro Asp Asp Ile Gly Pro Gly Gln Glu Val Lys Val Lys Leu 635 640 645 Ser Phe Lys Pro Thr Arg Ala Gly Leu Arg Arg Leu Met Val Asp 650 655 660 Phe Asp Ala Asp Arg Ile Arg Asp Val Lys Gly Ile Ala Thr Leu 665 670 675 Ile Val Arg Asn Lys 680
【0262】配列番号:78 配列の長さ:2040 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列の特徴 特徴を表す記号:CDS 存在位置:1..2040 特徴を決定した方法:P 配列 ACTGACCAAA ACGGTGTATT TATGGGGATG GACCTGCTTT GCCAGGTGAA CAGCCATGCC 60 CATCGTACAG AGGAGATGGA CGTGGAAAGG CTTCTGGTTC GTCGGGGGCA GCCCTTCTCC 120 CTTGCCTTGC AGTGCCACAC AACCCTGCCC CCTAAACACA AACTAGCCAT AATCTTGCAT 180 CTAGGTAAGG AGGGTGAGGT GGTGGTGAAG GTGTTGGATG CCCGTGCTGG CAGGGACAAG 240 TGGTGGTTCC GCCAGCAGGG GGCTCAGAGT GAGGTGCTGC TGACGATCCA CAGCCCAGCA 300 GACGCCCCTG TGGGACTCTA CAGCGTGACA GTGCTGCTCC TCTCCCCTGA CGGACACATC 360 CTGGAGAAGA CAACACCAGA GACGTTCTAC CTGCTCTTCA ACCCCTGGTG CAAAGCTGAC 420 TCTGTGTACC TCCCTGATGA GGAGCTGCTA GAGGAGTACA TCCTGAATGA AAATGGCCTC 480 CTTTACCAGG GTTCCTGGGA CCAGATTTCC TCACTACCCT GGAACTTTGG ACAGTTTGAA 540 CAAGATGTGG TGGACATCTG TTTTGAAATC CTGGACAATT CACCTGCTGC ACTGACAAAC 600 CCAGAGATGG ACACAGCCAA CCGAGCAGAC CCAGTGTACG TGAGCAGGAC AATTACTGCC 660 ATGGTGAACG CTAATGATGA CCTTGGCGTG GTGTCGGGCC GTTGGGACGG GAAGTACGAT 720 GACGGGGTGC CGCCCACACG TTGGACTGGC AGTGTGCCCA TCCTCAGGCG CTGGAGTGAG 780 GCCGGGGCAC AGAGGGTGCG CTACGGACAG TGCTGGGTGT TTTCAGGCGT AGCCTGTACA 840 GTTCTTCGCT GTCTGGGCAT ACCCACTCGC CCAGTTACAA ACTACTCTTC TGCCCATGAC 900 ACTGATGGCA ACCTGAATGT GGACTATCTG TATGATGAGC AGCTGGAGAG TGTGTCTGAA 960 GGCAGGAAGG ACATGATCTG GAACTACCAT TGCTGGGTGG AGTCCTGGAT GGACAGGGAG 1020 GATCTTCCTA AAGGCTATGA TGGGTGGCAG GCTCTGGATC CCACCCCACA GGAGAGGAGT 1080 GATGGGGTGT ACTGTTGTGG GCCCTGTCCA GTGAAGGCAG TGAGGGACGG TGATGTGGGG 1140 ATGAAGTATG ATGCAGCCTT CGTGTTCTCT GAGGTGAACG CAGACCTGGT CACCTGGATC 1200 GTCCACCCAG ATGGCCAACG CTCACAGGTT TCCCTCAACC AGAATACAGT GGGCCAAAAC 1260 ATCAGCACCA AGAGTGTGTA CGGAGACTAC AGAGAGGACA TCACTAAACA TTACAAATAC 1320 CCTGAAGGTT CAGTGAAGGA GCGTGAGGTG TATGAGAAGG CAGGACGTCA GGTAACGCAG 1380 CCGAATGGAG CACCAGGGCA GCTGGAGCTG AAGATCAAAC ACGCCCAGGC CATCCTGGGC 1440 ACAGACTTTG ATGTGATAGT GGAGGTGCAC AACGTCGGTG GAGAGGACAC CCCAGCCCAG 1500 CTGACTGTGA CGTCCAACGC TGTCACCTAC AACAGCCTCC ACCGGGGGGA GTGCCATAGG 1560 AAGACTGCCA GCCTGACAGT GCCAGCCCAG AAAGCTCATA AGGAAGTGCT GCGGCTACGG 1620 TACGATCACT ACGGGGCATG TGTGTCTGAG CATAACCTGA TCAGGGTCAC AGCACTACTC 1680 CAGGTCAGCG GCCAGCCCGA AGTCGTCTTA CAAGAGGTCA ACATCCAACT GAGCATGCCT 1740 CAGCTCCATG TCAAGGTAGT GGGAGATGCA GTTGTATCTC GGAAATTGAT TGCCCACATC 1800 AGCTTCACCA ATCCACTGCC TATTACCCTC AGAGGGGGCG TGTTTACTGT GGAGGGGGCA 1860 GGTCTGACAG CAGCGCGGGA GATCCAAGCA CCAGATGACA TTGGACCAGG TCAAGAGGTC 1920 AAGGTCAAGT TGTCCTTCAA GCCCACCCGA GCAGGTCTGA GAAGACTGAT GGTCGACTTT 1980 GATGCAGACA GAATAAGGGA TGTTAAAGGC ATTGCCACTT TGATTGTGAG AAACAAGTGA 2040
【0263】配列番号: 79 配列の長さ: 2205 配列の型: 核酸 鎖の数: 二本鎖 トポロジ−: 直鎖状 配列の種類: cDNA to mRNA 起源 生物名:サケ(Oncorhynchus keta) 組織の種類:肝臓 配列の特徴 特徴を表す記号: CDS 存在位置: 98..2140 特徴を決定した方法: P 配列 GAAAAGACAA AAGAGGAGTC AAACTTACCA TAAAAGGAGG TTACACGGCA 50 GAGAAGAGAA GATTCACAGA GGAGTTATTC ACCACAAAGA GTGGAGA ATG 100 Met 1 ACT GAC CAA AAC GGT GTA TTT ATG GGG ATG GAC CTG CTT TGC CAG 145 Thr Asp Gln Asn Gly Val Phe Met Gly Met Asp Leu Leu Cys Gln 5 10 15 GTG AAC AGC CAT GCC CAT CGT ACA GAG GAG ATG GAC GTG GAA AGG 190 Val Asn Ser His Ala His Arg Thr Glu Glu Met Asp Val Glu Arg 20 25 30 CTT CTG GTT CGT CGG GGG CAG CCC TTC TCC CTT GCC TTG CAG TGC 235 Leu Leu Val Arg Arg Gly Gln Pro Phe Ser Leu Ala Leu Gln Cys 35 40 45 CAC ACA ACC CTG CCC CCT AAA CAC AAA CTA GCC ATA ATC TTG CAT 280 His Thr Thr Leu Pro Pro Lys His Lys Leu Ala Ile Ile Leu His 50 55 60 CTA GGT AAG GAG GGT GAG GTG GTG GTG AAG GTG TTG GAT GCC CGT 325 Leu Gly Lys Glu Gly Glu Val Val Val Lys Val Leu Asp Ala Arg 65 70 75 GCT GGC AGG GAC AAG TGG TGG TTC CGC CAG CAG GGG GCT CAG AGT 370 Ala Gly Arg Asp Lys Trp Trp Phe Arg Gln Gln Gly Ala Gln Ser 80 85 90 GAG GTG CTG CTG ACG ATC CAC AGC CCA GCA GAC GCC CCT GTG GGA 415 Glu Val Leu Leu Thr Ile His Ser Pro Ala Asp Ala Pro Val Gly 95 100 105 CTC TAC AGC GTG ACA GTG CTG CTC CTC TCC CCT GAC GGA CAC ATC 460 Leu Tyr Ser Val Thr Val Leu Leu Leu Ser Pro Asp Gly His Ile 110 115 120 CTG GAG AAG ACA ACA CCA GAG ACG TTC TAC CTG CTC TTC AAC CCC 505 Leu Glu Lys Thr Thr Pro Glu Thr Phe Tyr Leu Leu Phe Asn Pro 125 130 135 TGG TGC AAA GCT GAC TCT GTG TAC CTC CCT GAT GAG GAG CTG CTA 550 Trp Cys Lys Ala Asp Ser Val Tyr Leu Pro Asp Glu Glu Leu Leu 140 145 150 GAG GAG TAC ATC CTG AAT GAA AAT GGC CTC CTT TAC CAG GGT TCC 595 Glu Glu Tyr Ile Leu Asn Glu Asn Gly Leu Leu Tyr Gln Gly Ser 155 160 165 TGG GAC CAG ATT TCC TCA CTA CCC TGG AAC TTT GGA CAG TTT GAA 640 Trp Asp Gln Ile Ser Ser Leu Pro Trp Asn Phe Gly Gln Phe Glu 170 175 180 CAA GAT GTG GTG GAC ATC TGT TTT GAA ATC CTG GAC AAT TCA CCT 685 Gln Asp Val Val Asp Ile Cys Phe Glu Ile Leu Asp Asn Ser Pro 185 190 195 GCT GCA CTG ACA AAC CCA GAG ATG GAC ACA GCC AAC CGA GCA GAC 730 Ala Ala Leu Thr Asn Pro Glu Met Asp Thr Ala Asn Arg Ala Asp 200 205 210 CCA GTG TAC GTG AGC AGG ACA ATT ACT GCC ATG GTG AAC GCT AAT 775 Pro Val Tyr Val Ser Arg Thr Ile Thr Ala Met Val Asn Ala Asn 215 220 225 GAT GAC CTT GGC GTG GTG TCG GGC CGT TGG GAC GGG AAG TAC GAT 820 Asp Asp Leu Gly Val Val Ser Gly Arg Trp Asp Gly Lys Tyr Asp 230 235 240 GAC GGG GTG CCG CCC ACA CGT TGG ACT GGC AGT GTG CCC ATC CTC 865 Asp Gly Val Pro Pro Thr Arg Trp Thr Gly Ser Val Pro Ile Leu 245 250 255 AGG CGC TGG AGT GAG GCC GGG GCA CAG AGG GTG CGC TAC GGA CAG 910 Arg Arg Trp Ser Glu Ala Gly Ala Gln Arg Val Arg Tyr Gly Gln 260 265 270 TGC TGG GTG TTT TCA GGC GTA GCC TGT ACA GTT CTT CGC TGT CTG 955 Cys Trp Val Phe Ser Gly Val Ala Cys Thr Val Leu Arg Cys Leu 275 280 285 GGC ATA CCC ACT CGC CCA GTT ACA AAC TAC TCT TCT GCC CAT GAC 1000 Gly Ile Pro Thr Arg Pro Val Thr Asn Tyr Ser Ser Ala His Asp 290 295 300 ACT GAT GGC AAC CTG AAT GTG GAC TAT CTG TAT GAT GAG CAG CTG 1045 Thr Asp Gly Asn Leu Asn Val Asp Tyr Leu Tyr Asp Glu Gln Leu 305 310 315 GAG AGT GTG TCT GAA GGC AGG AAG GAC ATG ATC TGG AAC TAC CAT 1090 Glu Ser Val Ser Glu Gly Arg Lys Asp Met Ile Trp Asn Tyr His 320 325 330 TGC TGG GTG GAG TCC TGG ATG GAC AGG GAG GAT CTT CCT AAA GGC 1135 Cys Trp Val Glu Ser Trp Met Asp Arg Glu Asp Leu Pro Lys Gly 335 340 345 TAT GAT GGG TGG CAG GCT CTG GAT CCC ACC CCA CAG GAG AGG AGT 1180 Tyr Asp Gly Trp Gln Ala Leu Asp Pro Thr Pro Gln Glu Arg Ser 350 355 360 GAT GGG GTG TAC TGT TGT GGG CCC TGT CCA GTG AAG GCA GTG AGG 1225 Asp Gly Val Tyr Cys Cys Gly Pro Cys Pro Val Lys Ala Val Arg 365 370 375 GAC GGT GAT GTG GGG ATG AAG TAT GAT GCA GCC TTC GTG TTC TCT 1270 Asp Gly Asp Val Gly Met Lys Tyr Asp Ala Ala Phe Val Phe Ser 380 385 390 GAG GTG AAC GCA GAC CTG GTC ACC TGG ATC GTC CAC CCA GAT GGC 1315 Glu Val Asn Ala Asp Leu Val Thr Trp Ile Val His Pro Asp Gly 395 400 405 CAA CGC TCA CAG GTT TCC CTC AAC CAG AAT ACA GTG GGC CAA AAC 1360 Gln Arg Ser Gln Val Ser Leu Asn Gln Asn Thr Val Gly Gln Asn 410 415 420 ATC AGC ACC AAG AGT GTG TAC GGA GAC TAC AGA GAG GAC ATC ACT 1405 Ile Ser Thr Lys Ser Val Tyr Gly Asp Tyr Arg Glu Asp Ile Thr 425 430 435 AAA CAT TAC AAA TAC CCT GAA GGT TCA GTG AAG GAG CGT GAG GTG 1450 Lys His Tyr Lys Tyr Pro Glu Gly Ser Val Lys Glu Arg Glu Val 440 445 450 TAT GAG AAG GCA GGA CGT CAG GTA ACG CAG CCG AAT GGA GCA CCA 1495 Tyr Glu Lys Ala Gly Arg Gln Val Thr Gln Pro Asn Gly Ala Pro 455 460 465 GGG CAG CTG GAG CTG AAG ATC AAA CAC GCC CAG GCC ATC CTG GGC 1540 Gly Gln Leu Glu Leu Lys Ile Lys His Ala Gln Ala Ile Leu Gly 470 475 480 ACA GAC TTT GAT GTG ATA GTG GAG GTG CAC AAC GTC GGT GGA GAG 1585 Thr Asp Phe Asp Val Ile Val Glu Val His Asn Val Gly Gly Glu 485 490 495 GAC ACC CCA GCC CAG CTG ACT GTG ACG TCC AAC GCT GTC ACC TAC 1630 Asp Thr Pro Ala Gln Leu Thr Val Thr Ser Asn Ala Val Thr Tyr 500 505 510 AAC AGC CTC CAC CGG GGG GAG TGC CAT AGG AAG ACT GCC AGC CTG 1675 Asn Ser Leu His Arg Gly Glu Cys His Arg Lys Thr Ala Ser Leu 515 520 525 ACA GTG CCA GCC CAG AAA GCT CAT AAG GAA GTG CTG CGG CTA CGG 1720 Thr Val Pro Ala Gln Lys Ala His Lys Glu Val Leu Arg Leu Arg 530 535 540 TAC GAT CAC TAC GGG GCA TGT GTG TCT GAG CAT AAC CTG ATC AGG 1765 Tyr Asp His Tyr Gly Ala Cys Val Ser Glu His Asn Leu Ile Arg 545 550 555 GTC ACA GCA CTA CTC CAG GTC AGC GGC CAG CCC GAA GTC GTC TTA 1810 Val Thr Ala Leu Leu Gln Val Ser Gly Gln Pro Glu Val Val Leu 560 565 570 CAA GAG GTC AAC ATC CAA CTG AGC ATG CCT CAG CTC CAT GTC AAG 1855 Gln Glu Val Asn Ile Gln Leu Ser Met Pro Gln Leu His Val Lys 575 580 585 GTA GTG GGA GAT GCA GTT GTA TCT CGG AAA TTG ATT GCC CAC ATC 1900 Val Val Gly Asp Ala Val Val Ser Arg Lys Leu Ile Ala His Ile 590 595 600 AGC TTC ACC AAT CCA CTG CCT ATT ACC CTC AGA GGG GGC GTG TTT 1945 Ser Phe Thr Asn Pro Leu Pro Ile Thr Leu Arg Gly Gly Val Phe 605 610 615 ACT GTG GAG GGG GCA GGT CTG ACA GCA GCG CGG GAG ATC CAA GCA 1990 Thr Val Glu Gly Ala Gly Leu Thr Ala Ala Arg Glu Ile Gln Ala 620 625 630 CCA GAT GAC ATT GGA CCA GGT CAA GAG GTC AAG GTC AAG TTG TCC 2035 Pro Asp Asp Ile Gly Pro Gly Gln Glu Val Lys Val Lys Leu Ser 635 640 645 TTC AAG CCC ACC CGA GCA GGT CTG AGA AGA CTG ATG GTC GAC TTT 2080 Phe Lys Pro Thr Arg Ala Gly Leu Arg Arg Leu Met Val Asp Phe 650 655 660 GAT GCA GAC AGA ATA AGG GAT GTT AAA GGC ATT GCC ACT TTG ATT 2125 Asp Ala Asp Arg Ile Arg Asp Val Lys Gly Ile Ala Thr Leu Ile 665 670 675 GTG AGA AAC AAG TGAACTGTCA ATTAACAACG TATATCATAT CATGTATATT 2177 Val Arg Asn Lys 680 TCTATATAAA ATAATTACCT GTAAATGC 2205
【0264】配列番号:80 配列の長さ:15 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CATGGTGAAC GCTAA 15
【0265】配列番号:81 配列の長さ:15 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GAGATACAAC TGCAT 15
【0266】配列番号:82 配列の長さ:20 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CGAGACACAT CCTGGAGAGA 20
【0267】配列番号:83 配列の長さ:19 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CTGCAGGTGA ATTGTCCAG 19
【0268】配列番号:84 配列の長さ:36 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AAGCTCGAGT CGACATCGAT TTTTTTTTTT TTTTTT 36
【0269】配列番号:85 配列の長さ:28 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TTACTGCAGA GGGGGCAGGT CTGACAGC 28
【0270】配列番号:86 配列の長さ:19 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 GCGAATTGGG TACCGGGCC 19
【0271】配列番号:87 配列の長さ:20 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 TGGGACGGGA AGTACGATGA 20
【0272】配列番号:88 配列の長さ:20 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CACAGTAAAC ACGCCCCCTC 20
【0273】配列番号:89 配列の長さ:20 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 AAGGTGTTGG ATGCCCGTGC 20
【0274】配列番号:90 配列の長さ:20 鎖の数:一本鎖 トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列 CGTCATCGTA CTTCCCGTCC
20
20
【図1】 取得したマダイのトランスグルタミナーゼを
コードする遺伝子を有するcDNAを保持するプラスミ
ドpSLTG5の制限酵素地図
コードする遺伝子を有するcDNAを保持するプラスミ
ドpSLTG5の制限酵素地図
【図2】 スケソウダラのトランスグルタミナーゼをコ
ードする遺伝子を有するcDNAクローン間の相関関係
及びcDNAの制限酵素地図
ードする遺伝子を有するcDNAクローン間の相関関係
及びcDNAの制限酵素地図
【図3】 マダイトランスグルタミナーゼcDNAの発
現プラスミドpIL6TG1の構築工程図及び制限酵素
図
現プラスミドpIL6TG1の構築工程図及び制限酵素
図
【図4】 化学合成DNA−1の塩基配列表示図大腸菌
のコンセンサスSD(シャイン−ダルガルノ)配列及
び、マダイトランスグ ルタミナーゼのアミノ末端であ
るメチオニンから32番目のロイシンまでをコードする
DNA塩基配列を示す。
のコンセンサスSD(シャイン−ダルガルノ)配列及
び、マダイトランスグ ルタミナーゼのアミノ末端であ
るメチオニンから32番目のロイシンまでをコードする
DNA塩基配列を示す。
【図5】 マダイトランスグルタミナーゼcDNAの発
現プラスミドpTTG2ー22の構築のためのプラスミ
ドpFTGN6の構築工程図
現プラスミドpTTG2ー22の構築のためのプラスミ
ドpFTGN6の構築工程図
【図6】 マダイトランスグルタミナーゼcDNAの発
現プラスミドpTTG2ー22の構築のためのDNA断
片A、B,Cの取得工程図
現プラスミドpTTG2ー22の構築のためのDNA断
片A、B,Cの取得工程図
【図7】 プラスミドpTTG1の構築工程図
【図8】 マダイトランスグルタミナーゼcDNAの発
現プラスミドpTTG2ー22の構築工程図
現プラスミドpTTG2ー22の構築工程図
【図9】 マダイトランスグルタミナーゼcDNAの酵
母での発現プラスミドpYSTG1の構築工程図
母での発現プラスミドpYSTG1の構築工程図
【図10】スケソウダラ筋肉由来トランスグルタミナー
ゼcDNAクローンの制限酵素地図
ゼcDNAクローンの制限酵素地図
【図11】ヒラメトランスグルタミナーゼをコードする
cDNAの制限酵素地図
cDNAの制限酵素地図
【図12】ヒラメトランスグルタミナーゼをコードする
cDNA断片を有するプラスミド
cDNA断片を有するプラスミド
【図13】 スケソウダラ由来トランスグルタミナーゼ
(FTG)とモルモット由来トランスグルタミナーゼ
(MTG)の温度安定性比較 ○−○、FTGの相対残存活性 ●−●、MTGの相
対残存活性
(FTG)とモルモット由来トランスグルタミナーゼ
(MTG)の温度安定性比較 ○−○、FTGの相対残存活性 ●−●、MTGの相
対残存活性
【図14】 スケソウダラ由来トランスグルタミナーゼ
(FTG)とモルモット由来トランスグルタミナーゼ
(MTG)のミオシンH鎖重合化反応における反応性比
較 △−△、FTG ○−○、MTG ●−●、無添加
対照
(FTG)とモルモット由来トランスグルタミナーゼ
(MTG)のミオシンH鎖重合化反応における反応性比
較 △−△、FTG ○−○、MTG ●−●、無添加
対照
【図15】ヒラメトランスグルタミナーゼをコードする
cDNAを保持する発現用プラスミドpFLTGNC1
3の制限酵素地図
cDNAを保持する発現用プラスミドpFLTGNC1
3の制限酵素地図
【図16】サケトランスグルタミナーゼをコードするc
DNAの制限酵素地図
DNAの制限酵素地図
【図17】サケトランスグルタミナーゼをコードするc
DNAを保持する発現用プラスミドpCLTGF3、及
びpCLTGF4の制限酵素地図
DNAを保持する発現用プラスミドpCLTGF3、及
びpCLTGF4の制限酵素地図
【手続補正書】
【提出日】平成5年8月4日
【手続補正1】
【補正対象書類名】図面
【補正対象項目名】図18
【補正方法】変更
【補正内容】
【図18図】
フロントページの続き (72)発明者 長瀬 和男 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 松井 裕 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 佐野 公一朗 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社食品総合研究所内
Claims (28)
- 【請求項1】 魚由来のトランスグルタミナーゼ活性を
保持するポリペプチドをコードする遺伝子を有するDN
A断片 - 【請求項2】 配列表配列番号53に示す6残基のアミ
ノ酸配列、配列番号54に示す6残基のアミノ酸配列、
配列番号55に示す7残基のアミノ酸配列、配列番号5
6に示す10残基のアミノ酸配列、配列番号57に示す
8残基のアミノ酸配列、配列番号58に示す6残基のア
ミノ酸配列、配列番号59に示す8残基のアミノ酸配
列、配列番号60に示す5残基のアミノ酸配列、配列番
号61に示す8残基のアミノ酸配列のいずれか、もしく
は全てを含む、魚由来のトランスグルタミナーゼ活性を
保持するポリペプチドをコードする遺伝子を有する特許
請求の範囲第1項記載のDNA断片。 - 【請求項3】 配列表配列番号2に示す694残基のア
ミノ酸配列を含む、魚由来のトランスグルタミナーゼ活
性を保持するポリペプチドをコードする遺伝子を有する
特許請求の範囲第1項記載のDNA断片。 - 【請求項4】 配列表配列番号4に示す塩基配列を有す
る特許請求の範囲第3項記載のDNA断片。 - 【請求項5】 配列表配列番号3に示す695残基のア
ミノ酸配列を含む、魚由来のトランスグルタミナーゼ活
性を保持するポリペプチドをコードする遺伝子を有する
特許請求の範囲第1項記載のDNA断片。 - 【請求項6】 配列表配列番号6に示す695残基のア
ミノ酸配列を含む、魚由来のトランスグルタミナーゼ活
性を保持するポリペプチドをコードする遺伝子を有する
特許請求の範囲第1項記載のDNA断片。 - 【請求項7】 配列表配列番号8に示す塩基配列を有す
る特許請求の範囲第6項記載のDNA断片。 - 【請求項8】 配列表配列番号7に示す696残基のア
ミノ酸配列を含む、魚由来のトランスグルタミナーゼ活
性を保持するポリペプチドをコードする遺伝子を有する
特許請求の範囲第1項記載のDNA断片。 - 【請求項9】 配列表配列番号43に示す687残基の
アミノ酸配列を含む、魚由来のトランスグルタミナーゼ
活性を保持するポリペプチドをコードする遺伝子を有す
る特許請求の範囲第1項記載のDNA断片。 - 【請求項10】 配列表配列番号45に示す塩基配列を
有する特許請求の範囲第9項記載のDNA断片。 - 【請求項11】 配列表配列番号44に示す688残基
のアミノ酸配列を含む、魚由来のトランスグルタミナー
ゼ活性を保持するポリペプチドをコードする遺伝子を有
する特許請求の範囲第1項記載のDNA断片。 - 【請求項12】 配列表配列番号47に示す塩基配列を
有する特許請求の範囲第9項記載のDNA断片。 - 【請求項13】 配列表配列番号72に示す679残基
のアミノ酸配列を含む、魚由来のトランスグルタミナー
ゼ活性を保持するポリペプチドをコードする遺伝子を有
する特許請求の範囲第1項記載のDNA断片。 - 【請求項14】 配列表配列番号74に示す塩基配列を
有する特許請求の範囲第13項記載のDNA断片。 - 【請求項15】 配列表配列番号73に示す680残基
のアミノ酸配列を含む、魚由来のトランスグルタミナー
ゼ活性を保持するポリペプチドをコードする遺伝子を有
する特許請求の範囲第1項記載のDNA断片。 - 【請求項16】 配列表配列番号76に示す679残基
のアミノ酸配列を含む、魚由来のトランスグルタミナー
ゼ活性を保持するポリペプチドをコードする遺伝子を有
する特許請求の範囲第1項記載のDNA断片。 - 【請求項17】 配列表配列番号78に示す塩基配列を
有する特許請求の範囲第16項記載のDNA断片。 - 【請求項18】 配列表配列番号77に示す680残基
のアミノ酸配列を含む、魚由来のトランスグルタミナー
ゼ活性を保持するポリペプチドをコードする遺伝子を有
する特許請求の範囲第1項記載のDNA断片。 - 【請求項19】 塩基配列中に自然のソースに由来す
る、または人為的に起こされた1つまたは複数個の塩基
の置換、欠失、挿入、付加または逆位を伴う、依然とし
てトランスグルタミナーゼ活性を保持するポリペプチド
をコードする遺伝子を有する特許請求の範囲第1項ない
し第18項記載のDNA断片。 - 【請求項20】 特許請求の範囲第1項ないし第19項
のいずれか一項記載のDNA断片を組み込んだ組換えプ
ラスミド。 - 【請求項21】 プラスミドが発現ベクターである特許
請求の範囲第20項記載の組換えプラスミド。 - 【請求項22】 特許請求の範囲第20項あるいは第2
1項記載の組換えプラスミドにより形質転換された形質
転換体。 - 【請求項23】 魚がマダイ(学名、Pagrus m ajor)で
あることを特徴とする特許請求の範囲第1項記載のトラ
ンスグルタミナーゼ活性を保持するポリペプチドをコー
ドする遺伝子を有するDNA断片。 - 【請求項24】 魚がスケソウダラ(学名、Theragra c
halcogramma)であることを特徴とする特許請求の範囲
第1項記載のトランスグルタミナーゼ活性を保持するポ
リペプチドをコードする遺伝子を有するDNA断片。 - 【請求項25】 魚がヒラメ(学名、Paralichthys oli
vaceus)であることを特徴とする特許請求の範囲第1項
記載のトランスグルタミナーゼ活性を保持するポリペプ
チドをコードする遺伝子を有するDNA断片。 - 【請求項26】 魚がサケ(学名、Oncorhynchus ket
a)であることを特徴とする特許請求の範囲第1項記載
のトランスグルタミナーゼ活性を保持するポリペプチド
をコードする遺伝子を有するDNA断片。 - 【請求項27】 特許請求の範囲第22項記載の形質転
換体を培養することを特徴とする遺伝子工学的手法によ
り魚由来のトランスグルタミナーゼ活性を保有するポリ
ペプチドの製造法。 - 【請求項28】 特許請求の範囲第22項記載の形質転
換体を培養することを特徴とする遺伝子工学的手法によ
り得られる魚由来のトランスグルタミナーゼ活性を保有
するポリペプチド。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17299893A JP3477746B2 (ja) | 1993-07-13 | 1993-07-13 | 魚由来トランスグルタミナーゼ遺伝子 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17299893A JP3477746B2 (ja) | 1993-07-13 | 1993-07-13 | 魚由来トランスグルタミナーゼ遺伝子 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0723787A true JPH0723787A (ja) | 1995-01-27 |
JP3477746B2 JP3477746B2 (ja) | 2003-12-10 |
Family
ID=15952294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17299893A Expired - Fee Related JP3477746B2 (ja) | 1993-07-13 | 1993-07-13 | 魚由来トランスグルタミナーゼ遺伝子 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3477746B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010507A1 (en) * | 1997-08-29 | 1999-03-04 | Wisconsin Alumni Research Foundation | Transglutaminase and gene encoding same |
JP2001321176A (ja) * | 2000-05-15 | 2001-11-20 | Bio Quest:Kk | ゼブラフィッシュトランスグルタミナーゼ |
-
1993
- 1993-07-13 JP JP17299893A patent/JP3477746B2/ja not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999010507A1 (en) * | 1997-08-29 | 1999-03-04 | Wisconsin Alumni Research Foundation | Transglutaminase and gene encoding same |
US6020178A (en) * | 1997-08-29 | 2000-02-01 | Wisconsin Alumni Research Foundation | Transglutaminase and gene encoding same |
JP2001321176A (ja) * | 2000-05-15 | 2001-11-20 | Bio Quest:Kk | ゼブラフィッシュトランスグルタミナーゼ |
Also Published As
Publication number | Publication date |
---|---|
JP3477746B2 (ja) | 2003-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5514573A (en) | Gene encoding transglutaminase derived from fish | |
EP0693556B1 (en) | Transglutaminase originating in japanese oyster | |
Rentier-Delrue et al. | Cloning and overexpression of the triosephosphate isomerase genes from psychrophilic and thermophilic bacteria: structural comparison of the predicted protein sequences | |
JP3742659B2 (ja) | Dnaポリメラーゼ関連因子 | |
JP5224572B2 (ja) | デキストラン生成酵素遺伝子、デキストラン生成酵素およびその製造方法、デキストランの製造方法 | |
JP3880624B2 (ja) | (2.5―dkg)リダクターゼの各種改良型変異体 | |
Savijoki et al. | Molecular genetic characterization of the L-lactate dehydrogenase gene (ldhL) of Lactobacillus helveticus and biochemical characterization of the enzyme | |
US7501262B2 (en) | Promoters and gene expression method by using the promoters | |
US6660510B2 (en) | Transglutaminase gene of Streptoverticillium ladakanum and the transglutaminase encoded therefrom | |
JP3364972B2 (ja) | 魚由来トランスグルタミナーゼ遺伝子 | |
TWI282370B (en) | Improved method for the recombinant production of polypeptides | |
JP3477746B2 (ja) | 魚由来トランスグルタミナーゼ遺伝子 | |
AU636500B2 (en) | Cloning and overexpression of glucose-6-phosphate dehydrogenase from leuconostoc dextranicus | |
JPH05501651A (ja) | P.クリソゲナムから得られるオキシドリダクターゼ酵素系、それをコードする遺伝子のセットと、抗生物質を増産するためのオキシドリダクターゼ酵素系あるいはそれをコードする遺伝子の使用 | |
JPH11137254A (ja) | バチルス属細菌由来のトランスグルタミナーゼの製造法 | |
JP3046142B2 (ja) | Dnaポリメラーゼ遺伝子 | |
JP3498808B2 (ja) | Dnaポリメラーゼ遺伝子 | |
JP3014159B2 (ja) | ヒト表皮トランスグルタミナーゼをコードするdna配列 | |
KR101153400B1 (ko) | 신규 리포산 합성효소와 리포산 단백질 리가제를 이용한 알파-리포산의 생산방법 | |
WO2004020621A1 (ja) | 耐熱性リボヌクレアーゼh | |
US6214590B1 (en) | 2-aminothiazoline-4-carboxylate racemase and gene encoding therefor | |
JP4415247B2 (ja) | 新規なグリセロールキナーゼ、該遺伝子及び該遺伝子を用いたグリセロールキナーゼの製造法 | |
JPH10248574A (ja) | 新規な乳酸酸化酵素 | |
JP2978001B2 (ja) | ポルi型dnaポリメラーゼ遺伝子のクローニング方法 | |
JPH10262674A (ja) | アルカリホスファターゼをコードする遺伝子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091003 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091003 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091003 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |