JPH07235837A - Frequency doubler circuit - Google Patents

Frequency doubler circuit

Info

Publication number
JPH07235837A
JPH07235837A JP6026773A JP2677394A JPH07235837A JP H07235837 A JPH07235837 A JP H07235837A JP 6026773 A JP6026773 A JP 6026773A JP 2677394 A JP2677394 A JP 2677394A JP H07235837 A JPH07235837 A JP H07235837A
Authority
JP
Japan
Prior art keywords
signal
phase
phase shifter
output
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6026773A
Other languages
Japanese (ja)
Inventor
Akihiro Murayama
明宏 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP6026773A priority Critical patent/JPH07235837A/en
Publication of JPH07235837A publication Critical patent/JPH07235837A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Color Television Signals (AREA)
  • Television Signal Processing For Recording (AREA)

Abstract

PURPOSE:To provide the multiplier circuit at a low cost in which the spurious performance is maintained and improved. CONSTITUTION:A lag/lead phase shifter is adopted for a phase shifter 1 having a transfer function of (1+sT2)/(1+sT2) [where T1 and T2 are time constants] to suppress an attenuation for a high frequency to be a prescribed level, a phase shift shifting a received original signal accurately by 90 deg. is obtained and a multiplier 2 multiplies the original signal and a signal obtained by phase- shitting the original signal by 90 deg. to obtain a doubled output with a desired spurious performance regardless of simple circuit configuration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、SECAM方式VT
Rの信号処理回路などに用いて好適な、周波数2逓倍回
路に関する。
BACKGROUND OF THE INVENTION The present invention relates to a SECAM type VT.
The present invention relates to a frequency doubling circuit suitable for use in an R signal processing circuit and the like.

【0002】[0002]

【従来の技術】SECAM方式VTRのクロマ信号処理
回路では、テープから再生したクロマ信号の周波数を4
逓倍し、高域変換してTV等に出力している。周波数逓
倍回路で発生するスプリアス成分が大きいと、クロマ信
号と輝度信号を加算合成したときに、輝度信号への妨害
となる。したがって、スプリアス成分の少ない逓倍回路
が要求される。実際には、4逓倍回路は2逓倍回路を2
段従属接続して構成しており、各2逓倍回路でのスプリ
アスが問題になる。
2. Description of the Related Art In a chroma signal processing circuit of a SECAM system VTR, the frequency of a chroma signal reproduced from a tape is 4
The signal is multiplied, converted to high frequency, and output to a TV or the like. If the spurious component generated in the frequency multiplication circuit is large, it interferes with the luminance signal when the chroma signal and the luminance signal are added and combined. Therefore, a multiplier circuit with less spurious components is required. Actually, the 4 × circuit is a 2 × circuit.
Since they are connected in stages, the spurious in each doubler circuit becomes a problem.

【0003】スプリアスを極力小さくするために、従来
は図18のような2逓倍回路を採用していた。入力in
に入力された原信号を積分器181に入力し、積分出力
と原信号をかけ算器182によりかけ算する。かけ算さ
れた信号は、デューティー50%の2逓倍周波数信号と
し、半波対称でかつ奇対称な波形として出力outに出
力する。したがって、入力信号finの2逓倍信号2×
finの奇数次高調波N×2×fin(ただし、Nは3
以上の奇数)だけが出力スペクトル中に現れ、偶数次の
高調波M×fin(ただし、Mは偶数)は発生しない。
In order to reduce spurious as much as possible, conventionally, a doubler circuit as shown in FIG. 18 has been adopted. Input in
The original signal input to is input to the integrator 181, and the integrated output and the original signal are multiplied by the multiplier 182. The multiplied signal is a doubled frequency signal with a duty of 50%, and is output to the output out as a half-wave symmetrical and odd-symmetrical waveform. Therefore, the multiplied signal 2 × of the input signal fin
odd harmonics of fin N × 2 × fin (where N is 3
Only the above odd numbers appear in the output spectrum, and the even harmonics M × fin (M is an even number) are not generated.

【0004】積分器181は図19のような回路で実現
している。正負の入力端子を持つgmアンプ(gm:ト
ランスコンダクタンス)A1 の出力と接地との間に容量
C12を接続し、出力からバッファB5を介してgmアン
プA1の負入力に帰還する。正入力端子を積分入力と
し、バッファB5の出力を積分出力とする。この積分器
181の周波数特性を図21と22に示す。積分回路の
−3dB周波数は100KHzに設定した。図22を見
てわかるように、1MHzでは約90度移相する。原信
号をsin(ωt)とすると、積分器出力はcos(ω
t)となり、これらをかけ算した結果は、2倍角の公式
のとおり、 sin(ωt)×cos(ωt)=(sin(2ωt))/2 … (1) となる。この様子を図20に示す。原信号が(a)であ
り、これを移相した積分器181の出力信号は(b)に
なる。かけ算した結果は(c)となり、周波数は2倍に
なる。実際のかけ算動作はリミッタ的に行うため、図2
0の各波形は矩形波に近くなり、前記のような奇数次高
調波が現れるが、偶数次高調波は発生しない。
The integrator 181 is realized by a circuit as shown in FIG. A capacitor C12 is connected between the output of the gm amplifier (gm: transconductance) A1 having positive and negative input terminals and the ground, and the output is fed back to the negative input of the gm amplifier A1 via the buffer B5. The positive input terminal is used as the integral input, and the output of the buffer B5 is used as the integral output. The frequency characteristics of this integrator 181 are shown in FIGS. The -3 dB frequency of the integrating circuit was set to 100 KHz. As can be seen from FIG. 22, a phase shift of about 90 degrees occurs at 1 MHz. When the original signal is sin (ωt), the integrator output is cos (ω
t), and the result of multiplication of these is sin (ωt) × cos (ωt) = (sin (2ωt)) / 2 (1) according to the double angle formula. This state is shown in FIG. The original signal is (a) and the phase-shifted output signal of the integrator 181 becomes (b). The result of multiplication is (c), and the frequency is doubled. Since the actual multiplication operation is performed as a limiter, FIG.
Each waveform of 0 becomes close to a rectangular wave, and the odd harmonics as described above appear, but the even harmonics do not occur.

【0005】図22の位相特性を見てもわかるように、
説明で設定した1MHzでの移相量は85度であり、正
確に90度ではない。このため、かけ算出力には僅かな
がら原信号成分や原信号の奇数倍の混変調成分が現れ、
不要スペクトルすなわちスプリアスが、それら周波数で
発生するという欠点がある。また、図21に示すよう
に、90度移相する周波数では積分出力信号が−20d
B近く減衰しており、別途増幅回路が必要になる。加え
て、積分回路自体がトランジスタを多数使うため素子数
大であり、コストが高いというデメリットがある。図1
8の回路ではシングル入力・シングル出力として説明し
たが、実際には差動入力・差動出力の構成をとることが
多く、この場合には積分回路が2つ必要になり、さらに
コスト大となる。
As can be seen from the phase characteristic of FIG. 22,
The amount of phase shift at 1 MHz set in the description is 85 degrees, not exactly 90 degrees. For this reason, an original signal component or an intermodulation component that is an odd multiple of the original signal appears in the multiplying power,
The disadvantage is that unwanted spectra or spurs occur at those frequencies. In addition, as shown in FIG. 21, the integrated output signal is −20d at the frequency where the phase is shifted by 90 degrees.
It is attenuated near B, and a separate amplifier circuit is required. In addition, since the integrating circuit itself uses a large number of transistors, the number of elements is large, which has the disadvantage of high cost. Figure 1
Although the circuit of 8 has been described as a single input / single output, in practice, a differential input / differential output configuration is often adopted, and in this case, two integrating circuits are required, which further increases the cost. .

【0006】さらに、差動信号処理の場合には積分器の
出力DCオフセットが問題になる。差動信号経路にそれ
ぞれ積分器を入れると積分器で発生するオフセットがそ
れぞれ異なるため、かけ算器に入力すると、差動信号の
クロスタイミングが変わり、差動信号自身が偶数次歪を
持つことになる。この影響によりかけ算出力にも偶数次
高調波が発生し、スプリアス性能が劣化する。図19の
帰還路にLPFなどを入れ、所望の周波数で利得を大き
くとれ、かつ移相量が90度に近くなるようにして、こ
れらの問題を対策した例がある。この場合には低域側で
振幅特性が盛り上がって、Qが上がったことと等価にな
り、入力信号が到来した時点から、出力DC/AC信号
が安定的に動作するまで、長時間かかってしまう。その
間は2逓倍周波数成分が出力されないか、歪の多い波形
になるので、SECAMクロマ信号のように信号が存在
する期間と存在しない水平帰線期間がある信号を2逓倍
する場合には、非常に不都合な結果となる。
Further, in the case of differential signal processing, the output DC offset of the integrator becomes a problem. When integrators are inserted in the differential signal paths, the offsets generated in the integrators are different, so when input to the multiplier, the cross timing of the differential signals changes, and the differential signals themselves have even-order distortion. . Due to this effect, even harmonics are generated in the calculated power, and the spurious performance is deteriorated. There is an example in which an LPF or the like is inserted in the feedback path of FIG. 19 so that a large gain can be obtained at a desired frequency and the amount of phase shift is close to 90 degrees, to solve these problems. In this case, the amplitude characteristic rises on the low frequency side, which is equivalent to an increase in Q, and it takes a long time from the time when the input signal arrives until the output DC / AC signal operates stably. . During that time, the doubled frequency component is not output or has a waveform with a lot of distortion. Therefore, when a signal with a signal existing period and a signal with a horizontal blanking period that does not exist, such as a SECAM chroma signal, is doubled, Inconvenient results.

【0007】[0007]

【発明が解決しようとする課題】上記した従来の2逓倍
回路では、スプリアスが発生するという問題があるとと
もに、回路規模が大きくなりコスト高となっていた。2
逓倍回路を差動入力・差動出力の構成とした場合、スプ
リアス性能が劣化する。この対策として帰還路にLPF
などを入れ、所望の周波数で利得を得、かつ移相量が9
0度に近くなるようにしたものがある。この場合、低域
側で振幅特性が盛り上がって、Qが上がったことと等価
になり、入力信号が到来した時点から、出力のDC/A
C信号が安定的に動作するまで、長時間かかってしま
い、その間は2逓倍周波数成分が出力されないか、歪の
多い波形になるので、SECAMクロマ信号のように信
号が存在する期間と存在しない水平帰線期間がある信号
を2逓倍する場合には、非常に不都合な結果となる。
In the above-mentioned conventional doubler circuit, there is a problem that spurious is generated, and the circuit scale becomes large and the cost becomes high. Two
If the multiplier circuit has a differential input / differential output configuration, spurious performance is degraded. As a countermeasure against this, LPF on the return path
Etc., gain is obtained at the desired frequency, and the amount of phase shift is 9
There are some that are close to 0 degrees. In this case, the amplitude characteristic rises on the low frequency side, which is equivalent to an increase in Q, and DC / A of the output from the time when the input signal arrives.
It takes a long time until the C signal operates stably, and during that time, the doubled frequency component is not output or has a waveform with a lot of distortion. If a signal with a blanking period is multiplied by 2, the result is very inconvenient.

【0008】この発明は、2逓倍回路のスプリアス性能
を維持・向上しつつ、コストの安い2逓倍回路を提供す
ることにある。
It is an object of the present invention to provide a low cost doubler circuit while maintaining and improving the spurious performance of the doubler circuit.

【0009】[0009]

【課題を解決するための手段】この発明の2逓倍回路
は、(1+ST2 )/(1+ST1 )[ただし、T1 ,
T2は時定数]なる伝達関数を持つ回路を複数段接続
し、入力された原信号を移相する移相器と、前記原信号
と前記移相器の出力信号とをかけ算して2逓倍の出力を
得るかけ算器とからなることを特徴とする。
The doubler circuit of the present invention is (1 + ST2) / (1 + ST1) [where T1,
T2 is a time constant] and a plurality of circuits having a transfer function are connected, and a phase shifter for shifting the input original signal and the output signal of the original signal and the phase shifter are multiplied to obtain a doubled signal. And a multiplier for obtaining an output.

【0010】[0010]

【作用】上記した手段により、(1+ST2 )/(1+
ST1 )[ただし、T1 ,T2は時定数]なる伝達関数
を持つ移相器としてラグリード型の移相器を用いると、
高域での減衰量をある一定レベルで抑えることができ、
45度のラグリード移相器を2段従属にすれば、入力さ
れた原信号を正確に90度の移相量が得られ、原信号と
原信号に90度の移相された信号とをかけ算することに
より、簡単な回路構成でありながら所望のスプリアス性
能を持った2逓倍の出力を得ることができる。
[Function] By the above means, (1 + ST2) / (1+
ST1) [where T1 and T2 are time constants] If a lag lead type phase shifter is used as a phase shifter having a transfer function,
The amount of attenuation in the high range can be suppressed to a certain level,
If the 45-degree lag lead phase shifter is subordinated to two stages, the input original signal can be accurately obtained by 90 degrees, and the original signal and the original signal can be multiplied by 90 degrees. By doing so, it is possible to obtain a doubled output having a desired spurious performance with a simple circuit configuration.

【0011】また単純ラグと減算回路の場合でも45度
移相周波数で動作させることができるので、移相した信
号レベルを−3dB程度の減衰で抑えることができる。
この場合も正確に90度の移相が可能であり、性能面で
はばらつきを考慮しても、従来と同等以上のスプリアス
性能が得られる。コスト面では受動素子で構成できるの
で、トランジスタの数は激減し、安価になる。差動入・
出力の場合には、受動素子構成を変えて、素子規模を2
倍以下にすることが可能である。
Further, even in the case of the simple lag and subtraction circuit, it is possible to operate at the phase shift frequency of 45 degrees, so that the phase shifted signal level can be suppressed by the attenuation of about -3 dB.
Even in this case, it is possible to accurately shift the phase by 90 degrees, and spurious performance equal to or higher than that of the conventional case can be obtained even in consideration of variations in performance. In terms of cost, since it can be configured with passive elements, the number of transistors is drastically reduced and the cost is reduced. Differential input
In the case of output, change the passive element configuration to reduce the element scale to 2
It is possible to make it less than double.

【0012】[0012]

【実施例】以下、この発明の一実施例について図面を参
照して詳細に説明する。図1はこの発明の一実施例を説
明するための回路構成図である。入力inより原信号を
ラグリード型の90度移相器1に入力し、移相出力と原
信号をかけ算器2にてかけ算して出力outに出力す
る。かけ算動作の波形は従来例で説明した図20のとお
りであり、基本動作は変わっていない。このラグリード
移相器1の構成例を図2に示す。45度の移相量を持つ
ラグリード型移相器1a,1bを従属に接続している。
ここで言うラグリード移相器1は伝達関数が、 (1+ST2 )/(1+ST1 ) … (2) の形になるものを指す。この1例として図3の回路を用
いる。図3の回路が図2の45度移相器に相当してお
り、式(2)のT1 =(R1 +R2 )C1 ,T2 =R2
C1 で与えられる。R1 =20K,R2 =4K,C1 =
16pのときの周波数特性は図4,図5のようになる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. FIG. 1 is a circuit configuration diagram for explaining one embodiment of the present invention. The original signal is input from the input in to the lag lead type 90 degree phase shifter 1, and the phase shift output and the original signal are multiplied by the multiplier 2 and output to the output out. The waveform of the multiplication operation is as shown in FIG. 20 described in the conventional example, and the basic operation is unchanged. FIG. 2 shows a configuration example of this lag lead phase shifter 1. The lag lead type phase shifters 1a and 1b having a phase shift amount of 45 degrees are connected subordinately.
The lag lead phase shifter 1 referred to here is one in which the transfer function has the form of (1 + ST2) / (1 + ST1) (2). As an example of this, the circuit of FIG. 3 is used. The circuit of FIG. 3 corresponds to the 45 degree phase shifter of FIG. 2, and T1 = (R1 + R2) C1 and T2 = R2 of the equation (2).
Given by C1. R1 = 20K, R2 = 4K, C1 =
The frequency characteristics at 16p are as shown in FIGS.

【0013】ラグリード移相器では、高域の減衰量がR
2 /(R1 +R2 )となり、無限小まで減衰することは
ない。この例の場合1MHzで約−15dBであり、従
来に比べ5dB程度利得を上げることができる。この周
波数での移相量はほぼ90度であり、従来問題にしてい
た入力信号の出力への漏れや奇数倍の混変調成分の発生
を抑えることができる。図3のとおり、非常に簡単な構
成で実現できるので、コストメリットも大きい。シング
ル入力の場合には図3のような構成で実現するのが最も
簡単であるが、差動入力の場合には別な方法もある。こ
れを図6に示す。 図6の回路は差動入力であり、45
度ラグリード移相器を従属接続してある。抵抗R3 から
R6 の回路が前段のラグリード移相器であり、抵抗R7
からR10の回路が後段の移相器である。前段と後段の移
相器間にはバッファB1 ,B2 を介しており、出力にも
バッファB3 ,B4 を配した。バッファ回路には、エミ
ッタフォロワを用いるのが好ましい。図3の回路では容
量C1 を対接地に接続していたが、差動入力の場合には
仮想接地点ができるので、容量を正負信号移相器間に接
続できる。この接続での容量値は図3の場合の半分でよ
い。特にIC化した場合には容量面積が小さい方が望ま
しいので、この接続によるチップ面積縮小効果は大き
い。
In the lag lead phase shifter, the attenuation amount in the high range is R
It becomes 2 / (R1 + R2) and it does not decay to infinity. In the case of this example, it is about -15 dB at 1 MHz, and the gain can be increased by about 5 dB as compared with the conventional case. The amount of phase shift at this frequency is approximately 90 degrees, so that it is possible to suppress the leakage of the input signal to the output and the generation of the intermodulation component of an odd multiple, which have been conventionally problems. As shown in FIG. 3, since it can be realized with a very simple structure, cost merit is large. In the case of a single input, it is the simplest to realize with the configuration shown in FIG. 3, but in the case of a differential input, there is another method. This is shown in FIG. The circuit of FIG. 6 has a differential input,
The lag lead phase shifter is connected in cascade. The circuit of resistors R3 to R6 is the preceding lag lead phase shifter, and resistor R7
The circuit from R10 to R10 is the latter phase shifter. Buffers B1 and B2 are provided between the front and rear phase shifters, and buffers B3 and B4 are also provided at the output. It is preferable to use an emitter follower for the buffer circuit. In the circuit of FIG. 3, the capacitance C1 is connected to the ground, but in the case of a differential input, a virtual ground point is formed, so that the capacitance can be connected between the positive and negative signal phase shifters. The capacitance value in this connection may be half that in the case of FIG. Especially in the case of an IC, it is desirable that the capacitance area is small, so that the chip area reduction effect by this connection is large.

【0014】図6の回路より明かなように、DCオフセ
ットを発生する素子がバッファのみであり、入出力のD
Cオフセットは差動信号間で非常に小さい。図6のよう
な回路を用いても、信号減衰量が大きい場合には、図7
のように、移相器2の出力を増幅するアンプ3を設け
る。アンプ3は、差動信号処理している場合、トランジ
スタQ1 ,Q2 、抵抗R13,R14、電流源I1 からな
る、図8に示すような簡単な構成の差動アンプでよい。
As is clear from the circuit of FIG. 6, the element that generates the DC offset is only the buffer, and the input / output D
The C offset is very small between the differential signals. Even if the circuit as shown in FIG. 6 is used, if the signal attenuation is large,
As described above, the amplifier 3 that amplifies the output of the phase shifter 2 is provided. In the case of differential signal processing, the amplifier 3 may be a differential amplifier having a simple structure as shown in FIG. 8 and composed of transistors Q1 and Q2, resistors R13 and R14, and a current source I1.

【0015】式(1)の伝達関数を持つものであると定
義したラグリード回路は、種々考えられる。式(2)の
伝達関数を持つラグリード回路の他の具体例について、
図9と図10を用いて説明する。図9の回路の場合、図
6と逆に低域で利得が小さく、高域で利得が大きくなる
が、伝達関数は式(1)と同じであり進み移相になる。
同様に45度移相器を2段従属に接続すればよい。図1
0の回路は図4と同じ利得傾向である。進み・遅れの位
相に関係なく、90度移相できればよいので、どちらの
場合でも、上記のように性能を維持・向上しつつ、コス
ト低減することができる。
There are various conceivable lag lead circuits defined to have the transfer function of equation (1). Regarding another specific example of the lag lead circuit having the transfer function of Expression (2),
This will be described with reference to FIGS. 9 and 10. In the case of the circuit of FIG. 9, contrary to FIG. 6, the gain is small in the low range and large in the high range, but the transfer function is the same as that of the equation (1) and leads to a phase shift.
Similarly, the 45-degree phase shifter may be connected in two stages. Figure 1
The 0 circuit has the same gain tendency as in FIG. Since it suffices that the phase can be shifted by 90 degrees regardless of the lead / lag phase, in either case, the cost can be reduced while maintaining / improving the performance as described above.

【0016】図11は、この発明の他の実施例を説明す
るための回路構成図である。入力inより原信号を移相
器11に入力し、移相器11の移相信号と原信号を減算
器12に入力する。減算器12の減算出力と移相出力を
かけ算し、かけ算器13の出力より出力outに2逓倍
信号を得る。移相器11の1例を図13,図14に示
す。図13は単純ラグ型の移相器であり、1次のLPF
形式である。この場合−3dB周波数で45度の遅れ位
相となる。図14は単純リード型の移相器であり、同様
に−3dB周波数で45度の進み位相となる。これら移
相器の移相動作をベクトル図12を用いて説明する。図
14の移相器を用いたとする。原信号をベクトルaとす
ると、移相した信号はベクトルbとなる。aとbを減算
するとベクトル(a−b)となり、bとa−bは直角に
なる。移相器の移相量がばらつき等の要因で45度から
ずれた場合でも、bの奇跡は円周上を動くので、aとb
とa−bでできる三角形は円に内接しており、bとa−
bの直角関係は変動しない。図14の回路(R18=10
K,C11=16p)と減算器12の出力を図16,図1
7に示す(実線がHPF出力であり、点線が減算器出
力)。図17を見てわかるとおり、2つの信号間の位相
差は周波数によらず90度で一定である。45度位相が
1MHzになるように選んだので、2信号の振幅は−3
dBしか減衰していない。
FIG. 11 is a circuit configuration diagram for explaining another embodiment of the present invention. The original signal is input from the input in to the phase shifter 11, and the phase shifter 11 and the original signal are input to the subtractor 12. The subtraction output of the subtracter 12 and the phase shift output are multiplied, and a doubled signal is obtained from the output of the multiplier 13 at the output out. One example of the phase shifter 11 is shown in FIGS. FIG. 13 shows a simple lag type phase shifter, which is a first-order LPF.
Format. In this case, the delay phase is 45 degrees at the -3 dB frequency. FIG. 14 shows a simple lead type phase shifter, which similarly has a lead phase of 45 degrees at a -3 dB frequency. The phase shift operation of these phase shifters will be described with reference to the vector diagram 12. It is assumed that the phase shifter shown in FIG. 14 is used. When the original signal is vector a, the phase-shifted signal is vector b. When a and b are subtracted, a vector (ab) is obtained, and b and ab are at a right angle. Even if the phase shift amount of the phase shifter deviates from 45 degrees due to variations or the like, the miracle of b moves on the circumference, so a and b
The triangle formed by and a-b is inscribed in a circle, and b and a-
The right angle relationship of b does not change. Circuit of FIG. 14 (R18 = 10
K, C11 = 16p) and the output of the subtractor 12 are shown in FIGS.
7 (solid line is HPF output, dotted line is subtractor output). As can be seen from FIG. 17, the phase difference between the two signals is constant at 90 degrees regardless of frequency. Since the 45 degree phase was selected to be 1 MHz, the amplitude of the two signals is -3.
Only dB is attenuated.

【0017】図11の回路では、減算器を独立にブロッ
クとして示したが、現実にはかけ算器13が差動入力の
ダブルバランスミキサであることが多く、減算器12を
見かけ上かけ算器に内蔵することが可能なので、これに
ついて説明する。ダブルバランスミキサは図15のよう
な回路構成になっている。トランジスタQ3 とQ4 が差
動入力形式で上側のトランジスタQ5 からQ8 も差動入
力形式である。例えば移相信号を上側の差動回路に入力
し、トランジスタQ3 のベースに原信号を、トランジス
タQ4 のベースに移相信号を入力すると、トランジスタ
Q3 、Q4 は差入力により動作するので、減算が実現て
きる。
In the circuit of FIG. 11, the subtractor is shown as a block independently, but in reality, the multiplier 13 is often a double-balanced mixer with a differential input, and the subtractor 12 is apparently built in the multiplier. This can be done, so this will be explained. The double balance mixer has a circuit configuration as shown in FIG. The transistors Q3 and Q4 are of the differential input type, and the upper transistors Q5 to Q8 are also of the differential input type. For example, if the phase shift signal is input to the upper differential circuit, the original signal is input to the base of the transistor Q3, and the phase shift signal is input to the base of the transistor Q4, the transistors Q3 and Q4 operate by the differential input, so subtraction is realized. Come on.

【0018】この実施例では、減算器を省略できること
から、回路的に必要なのは図14の回路とミキサだけに
なる。減算器なしに90度移相を正確に行うことが可能
であるから、性能面では従来回路と同等以上であり、素
子規模的にも、HPFがシングル信号処理の時に1つ、
差動信号処理の時には2個必要なだけなので、非常に少
なくコストメリット大である。
In this embodiment, since the subtracter can be omitted, only the circuit and the mixer shown in FIG. 14 are necessary in terms of the circuit. Since it is possible to perform a 90-degree phase shift accurately without a subtracter, the performance is equal to or higher than that of the conventional circuit, and in terms of the element scale, one when the HPF is a single signal processing,
Since only two are required for differential signal processing, there are very few cost advantages.

【0019】図13のLPF型移相器でも、同様の効果
が得られる。ただし、図14の回路はHPFのため、前
段からのDCオフセットをキャンセルすることができる
というメリットを併せ持つ。
The LPF type phase shifter shown in FIG. 13 has the same effect. However, since the circuit of FIG. 14 is an HPF, it also has the advantage of being able to cancel the DC offset from the previous stage.

【0020】[0020]

【発明の効果】以上説明したように、この発明の2逓倍
回路によれば、スプリアス性能を持ちつつ、コスト的に
は安価な2逓倍回路を提供することができる。
As described above, according to the doubler circuit of the present invention, it is possible to provide a doubler circuit which has spurious performance and is inexpensive in cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を説明するための回路構成
図。
FIG. 1 is a circuit configuration diagram for explaining an embodiment of the present invention.

【図2】図1の移相器の実施例を説明するための回路
図。
FIG. 2 is a circuit diagram for explaining an embodiment of the phase shifter of FIG.

【図3】図2の移相器の具体例を示す回路図。3 is a circuit diagram showing a specific example of the phase shifter of FIG.

【図4】図2の周波数と利得の関係を示す特性図。FIG. 4 is a characteristic diagram showing the relationship between frequency and gain in FIG.

【図5】図2の周波数と位相の関係を示す特性図。FIG. 5 is a characteristic diagram showing the relationship between frequency and phase in FIG.

【図6】図2を差動信号処理した時の構成を示す回路
図。
FIG. 6 is a circuit diagram showing a configuration when the differential signal processing of FIG. 2 is performed.

【図7】図1の構成にアンプを挿入したときの状態を示
す回路図。
7 is a circuit diagram showing a state when an amplifier is inserted in the configuration of FIG.

【図8】図7のアンプの具体例を示す回路図。8 is a circuit diagram showing a specific example of the amplifier shown in FIG.

【図9】図2の移相器の他の具体例を示す回路図。9 is a circuit diagram showing another specific example of the phase shifter of FIG.

【図10】図2の移相器のもう一つの他の具体例を示す
回路図。
FIG. 10 is a circuit diagram showing another specific example of the phase shifter of FIG.

【図11】この発明の他の実施例を説明するための回路
図。
FIG. 11 is a circuit diagram for explaining another embodiment of the present invention.

【図12】図11の動作を説明するためのベクトル図。FIG. 12 is a vector diagram for explaining the operation of FIG. 11.

【図13】図11の移相器の具体例を示す回路図。13 is a circuit diagram showing a specific example of the phase shifter of FIG.

【図14】図11の移相器の他の具体例を示す回路図。14 is a circuit diagram showing another specific example of the phase shifter of FIG.

【図15】図11のミキサの具体例を説明するための回
路図
FIG. 15 is a circuit diagram for explaining a specific example of the mixer in FIG.

【図16】図11の周波数と利得の関係を示す特性図。16 is a characteristic diagram showing the relationship between frequency and gain in FIG.

【図17】図11の周波数と位相の関係を示す特性図。FIG. 17 is a characteristic diagram showing the relationship between frequency and phase in FIG.

【図18】従来の2逓倍回路を説明するための回路図。FIG. 18 is a circuit diagram for explaining a conventional doubler circuit.

【図19】図18の積分器の具体例を示す回路図。FIG. 19 is a circuit diagram showing a specific example of the integrator in FIG.

【図20】図18の動作波形を示す波形図。20 is a waveform diagram showing the operation waveforms of FIG.

【図21】図18の積分器の周波数と利得の関係を示す
特性図。
21 is a characteristic diagram showing the relationship between frequency and gain of the integrator in FIG.

【図22】図18の積分器の周波数と位相の関係を示す
特性図。
22 is a characteristic diagram showing the relationship between frequency and phase of the integrator in FIG.

【符号の説明】[Explanation of symbols]

1,11…移相器、 2,13…かけ算器、 3,アン
プ、12…減算器
1, 11 ... Phase shifter, 2, 13 ... Multiplier, 3, Amplifier, 12 ... Subtractor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 (1+ST2 )/(1+ST1 )[ただ
し、T1 ,T2 は時定数]なる伝達関数を持つ回路を複
数段接続し、入力された原信号を移相する移相器と、 前記原信号と前記移相器の出力信号とをかけ算して2逓
倍の出力を得るかけ算器とからなることを特徴とする2
逓倍回路。
1. A phase shifter that shifts the phase of an input original signal by connecting a plurality of circuits having a transfer function of (1 + ST2) / (1 + ST1) [where T1 and T2 are time constants], And a signal for multiplying the output signal of the phase shifter to obtain a doubled output.
Multiplier circuit.
【請求項2】 移相器出力を増幅するアンプを備え、該
アンプの出力と原信号とをかけ算したことを特徴とする
請求項1記載の2逓倍回路。
2. A doubling circuit according to claim 1, further comprising an amplifier for amplifying the output of the phase shifter, wherein the output of the amplifier and the original signal are multiplied.
【請求項3】 2つの直列接続した抵抗素子と1つの容
量からなり、直列抵抗の片側端子から信号を入力し、も
う片方の端子には接地との間に容量を接続し、直列抵抗
の中点から出力信号を得るようにして伝達関数を構成し
たことを特徴とする請求項1記載の2逓倍回路。
3. A series resistor comprising two series-connected resistance elements and one capacitor, wherein a signal is input from one terminal of the series resistor and a capacitor is connected to the other terminal to ground, 2. The doubling circuit according to claim 1, wherein the transfer function is constructed so as to obtain the output signal from the point.
【請求項4】 移相器の移相量は90度であることを特
徴とする請求項1記載の2逓倍回路。
4. A doubling circuit according to claim 1, wherein the phase shift amount of the phase shifter is 90 degrees.
【請求項5】 移相量が45度の移相器を用い、該移相
器を従属接続して90度の移相量を得ることを特徴とす
る請求項3記載の2逓倍回路。
5. The doubler circuit according to claim 3, wherein a phase shifter having a phase shift amount of 45 degrees is used, and the phase shifters are cascade-connected to obtain a phase shift amount of 90 degrees.
【請求項6】 移相器と減算器とかけ算器を具備し、移
相信号と原信号を減算し、減算信号と移相信号をかけ算
したことを特徴とする請求項1記載の2逓倍回路。
6. A doubler circuit according to claim 1, further comprising a phase shifter, a subtracter and a multiplier, subtracting the phase shift signal and the original signal, and multiplying the subtraction signal and the phase shift signal. .
【請求項7】 差動入力形式のかけ算器であって、移相
信号と原信号とをかけ算器の入力に接続し、前記差動入
力段により減算してなることを特徴とする請求項6記載
の2逓倍回路。
7. A differential input type multiplier, wherein the phase shift signal and the original signal are connected to the input of the multiplier and subtracted by the differential input stage. The described doubler circuit.
【請求項8】 1次のHPFまたは1次のLPFにより
移相器を構成してなることを特徴とする請求項6または
7記載の2逓倍回路。
8. The doubler circuit according to claim 6 or 7, wherein the phase shifter is configured by a first-order HPF or a first-order LPF.
【請求項9】 移相器の移相量が45度であることを特
徴とする請求項6〜8のいずれかに記載の2逓倍回路。
9. The doubling circuit according to claim 6, wherein the phase shift amount of the phase shifter is 45 degrees.
JP6026773A 1994-02-24 1994-02-24 Frequency doubler circuit Pending JPH07235837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6026773A JPH07235837A (en) 1994-02-24 1994-02-24 Frequency doubler circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6026773A JPH07235837A (en) 1994-02-24 1994-02-24 Frequency doubler circuit

Publications (1)

Publication Number Publication Date
JPH07235837A true JPH07235837A (en) 1995-09-05

Family

ID=12202626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6026773A Pending JPH07235837A (en) 1994-02-24 1994-02-24 Frequency doubler circuit

Country Status (1)

Country Link
JP (1) JPH07235837A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1191680A2 (en) * 2000-09-26 2002-03-27 Samsung Electronics Co., Ltd. Frequency doubler circuit having detect-control unit for improving frequency doubling performance
US6456143B2 (en) 2000-04-27 2002-09-24 Kabushiki Kaisha Toshiba Frequency multiplier circuit and semiconductor integrated circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6456143B2 (en) 2000-04-27 2002-09-24 Kabushiki Kaisha Toshiba Frequency multiplier circuit and semiconductor integrated circuit
EP1191680A2 (en) * 2000-09-26 2002-03-27 Samsung Electronics Co., Ltd. Frequency doubler circuit having detect-control unit for improving frequency doubling performance
EP1191680A3 (en) * 2000-09-26 2003-07-23 Samsung Electronics Co., Ltd. Frequency doubler circuit having detect-control unit for improving frequency doubling performance

Similar Documents

Publication Publication Date Title
JP5015770B2 (en) Improvements in or related to the circuit
JP3565281B2 (en) Receiving machine
CA1078029A (en) Third harmonic signal generator
JPH05505069A (en) Image rejection mixer circuit on integrated circuit chip
US7042960B2 (en) Low order spur cancellation mixer topologies
EP1160717A1 (en) Analog multiplying circuit and variable gain amplifying circuit
JPH07235837A (en) Frequency doubler circuit
JPH0156563B2 (en)
US6124742A (en) Wide bandwidth frequency multiplier
JP2000286643A (en) Frequency converter circuit
JP2808927B2 (en) Frequency discriminator
US5159442A (en) Color signal processing apparatus
JP2844664B2 (en) Differential amplifier circuit
JP2856002B2 (en) Analog multiplier circuit
JPH10209813A (en) Unbalanced/balanced conversion circuit
JPH08223233A (en) Orthogonal modulator
JP3388603B2 (en) Multiplication circuit
WO2004001992A1 (en) Improvements in or relating to rf receivers
JP2789601B2 (en) Nonlinear signal processor
JPH0955629A (en) Broad band multiplier
JPH0831772B2 (en) Phase synthesis / branch circuit
GB2390242A (en) RF receivers
JPH01268217A (en) Variable phase shift circuit
JPS5992692A (en) Carrier signal generating circuit
JPH11298293A (en) Phase shift circuit

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010515