JPH0723489B2 - Nozzle for blowing pulverized coal in blast furnace - Google Patents

Nozzle for blowing pulverized coal in blast furnace

Info

Publication number
JPH0723489B2
JPH0723489B2 JP62136412A JP13641287A JPH0723489B2 JP H0723489 B2 JPH0723489 B2 JP H0723489B2 JP 62136412 A JP62136412 A JP 62136412A JP 13641287 A JP13641287 A JP 13641287A JP H0723489 B2 JPH0723489 B2 JP H0723489B2
Authority
JP
Japan
Prior art keywords
pulverized coal
nozzle
blowing
tuyere
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62136412A
Other languages
Japanese (ja)
Other versions
JPH0192304A (en
Inventor
秀行 山岡
富夫 宮崎
康夫 亀井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP62136412A priority Critical patent/JPH0723489B2/en
Publication of JPH0192304A publication Critical patent/JPH0192304A/en
Publication of JPH0723489B2 publication Critical patent/JPH0723489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/001Injecting additional fuel or reducing agents
    • C21B5/003Injection of pulverulent coal

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> この発明は、多量の微粉炭を効果的に燃焼させてコーク
ス消費量の大幅節減を可能ならしめるための、高炉への
微粉炭吹込み用ノズルに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial field of application> The present invention is for blowing pulverized coal into a blast furnace in order to effectively burn a large amount of pulverized coal and significantly reduce coke consumption. It concerns a nozzle.

<背景技術> 周知の如く、鉄の高炉製錬における主要燃料はコークス
である。しかし、高炉用のコークスは石炭埋蔵量の約25
%程度に過ぎない高価な粘結炭を原料としているので価
格が高く、このため一段と厳しさを増してきた鉄鋼材料
へのコスト低減要求に応じるには、コークスの消費量を
極力抑えることが必要になってきた。そのため、近年、
高炉製錬に際して各種補助燃料の羽口吹込みが実施され
るようになってきた。
<Background Art> As is well known, the main fuel in iron blast furnace smelting is coke. However, blast furnace coke has about 25
The cost is high because the raw material is expensive coking coal, which is only about%. Therefore, it is necessary to suppress the consumption of coke as much as possible in order to meet the demand for cost reduction of steel materials that has become more severe. Has become. Therefore, in recent years
The tuyere injection of various auxiliary fuels has come to be carried out in blast furnace smelting.

振り返ると、まず1950年代から重油の吹込みが行われる
ようになり、その吹込み量は銑鉄トン当り100kgを上回
るまでになってコークスの節減に貢献してきた。ところ
が、1970年代後半以降は、重油価格が高騰したがために
重油吹き込みを実施する高炉は世界的に減少し、代って
非粘結炭を微粉砕した微粉炭の吹込みが各国高炉操業の
主流を占めるようになった。なお、このような微粉炭の
吹込みは、例えば第4図で示すように、羽口5につなが
る送風支管6に設置された微粉炭吹込み用ノズル8によ
って実施される。
Looking back, first, heavy oil was blown in from the 1950s, and the amount of blown oil exceeded 100 kg per ton of pig iron, contributing to coke savings. However, since the late 1970s, the price of heavy oil has soared, so the number of blast furnaces that inject heavy oil has decreased worldwide. It has become the mainstream. It should be noted that such pulverized coal injection is performed by a pulverized coal injection nozzle 8 installed in a blower branch pipe 6 connected to a tuyere 5, as shown in FIG. 4, for example.

しかしながら、微粉炭は粉体(固体)であるがために重
油等の液体燃料に比べて燃焼性が悪く、多量に使用する
ためには燃焼性を高めるべく ○羽口通風中の酸素濃度を高める、 ○送風温度を高める、 ○バーナーをできるだけ羽口から離れた位置に設置し、
羽口から炉内に流入するまでの間における微粉炭の燃焼
を促進する、 等の対策がとられてきた。
However, because pulverized coal is a powder (solid), it has poorer combustibility than liquid fuel such as heavy oil, and in order to use it in large quantities, it is necessary to improve combustibility. ○ Increase the oxygen concentration in the tuyere ventilation. , ○ Raise the air temperature, ○ Install the burner as far from the tuyere as possible,
Measures have been taken, such as promoting combustion of pulverized coal between the tuyere and the flow into the furnace.

ところが、このような方法によって微粉炭の燃焼性を向
上させた場合には、次の如き別な問題が発生しがちだっ
たのである。即ち、微粉炭には灰分が含まれており、そ
のため送風支管から吹込まれて羽口先端に至るまでの間
に燃焼した微粉炭中の灰分が羽口内面に付着して羽口口
径の縮小を引き起こし、通風を阻害する現象を引き起こ
し易くなると共に、その付着状態も各羽口で均一とはな
らないので各羽口間への送風量分配の著しいアンバラン
スをも誘発して安定操業の遂行を阻害すると言う問題で
ある。
However, when the combustibility of pulverized coal is improved by such a method, another problem as described below tends to occur. In other words, pulverized coal contains ash, so the ash contained in the pulverized coal burned between the blast branch pipe and the tip of the tuyere adheres to the inner surface of the tuyere to reduce the diameter of the tuyere. It is easy to cause a phenomenon that obstructs ventilation, and since the adhered state is not uniform in each tuyere, it also induces a significant imbalance in the distribution of air flow between each tuyere and hinders stable operation. That is the problem.

第5図は、上述した灰分の付着状況を示したものである
が、羽口5の内面に熱ロス防止のための断熱リングを取
付けてある場合には“イ”で示す如くに、また前記断熱
リング不使用時には“ロ”で示す如くに付着し易い。
FIG. 5 shows the above-mentioned ash content adhesion state. As shown in "a" when the heat insulating ring for preventing heat loss is attached to the inner surface of the tuyere 5, When the heat insulating ring is not used, it easily adheres as shown by "b".

従って、「良好でない燃焼性の故に炉内に未燃焼微粉炭
が蓄積されて安定操業が阻害される現象」や、これに対
処すべく前記の如き燃焼性改善策をとった際に生じがち
な「羽口内における燃焼熱上昇のために溶融状態となっ
た燃焼灰分が羽口内面に付着して“羽口閉塞”や“羽口
間での送風量分配の偏り”を生じ安定操業を阻害する現
象」等を引き起こすことなく微粉炭を使用するには、自
ずとその使用限界は限定されることになる。
Therefore, "a phenomenon in which unburned pulverized coal is accumulated in the furnace due to unfavorable combustibility and hinders stable operation", and it tends to occur when the above-mentioned combustibility improvement measures are taken to address this. "Combustion ash, which has become molten due to the increase in combustion heat in the tuyere, adheres to the inner surface of the tuyere, causing" tuyle blockage "and" uneven distribution of air flow between the tuyere "and hinders stable operation. In order to use pulverized coal without causing "phenomenon" etc., its use limit is naturally limited.

因に、現時点では我が国の高炉における微粉炭使用量は
銑鉄トン当りで最高100kg台に止まっており、国外の高
炉においても、重油操業やオールコークス操業の条件下
では容易に達成が可能である“燃料比が500kg/t・pig
(銑鉄)以下”の条件で200kg/tを超えて微粉炭を使用
した例はみられない。
At present, the amount of pulverized coal used in Japan's blast furnace is limited to the maximum 100 kg per ton of pig iron, and it can be easily achieved even in overseas blast furnaces under the conditions of heavy oil operation and all coke operation. Fuel ratio is 500kg / t ・ pig
There is no example of using pulverized coal in excess of 200 kg / t under the condition of (pig iron) or less ”.

<問題点を解決する手段> 本発明者等は、上述のような観点から、高炉製錬に際し
て多量の微粉炭を吹込んで効率良く燃焼させると共に、
“灰分の羽口付着”等の問題を十分に抑えつつ、コーク
ス使用量の大幅節減を可能ならしめるために種々検討を
行った結果、微粉炭を例えば200kg/t・pig以上まで多量
使用して安定に高燃料比を達成させるためには、“燃焼
性向上”と“灰分羽口内面付着防止”の双方を同時に達
成する方策がどうしても必要であるとの結論に達し、こ
れを満足させるべく 「中心の微粉炭吹出し孔を取り囲んで複数個の酸素ガス
吹出し孔を有すると共に、これら各酸素ガス吹出し孔の
少なくとも先端部の軸線がノズル前方において前記微粉
炭吹き出し孔の軸線と交わっていることを特徴とする、
高炉の微粉炭吹込み用ノズル」 を開発した。
<Means for Solving Problems> From the viewpoints described above, the present inventors blow a large amount of pulverized coal during blast furnace smelting and efficiently burn it, and
As a result of various studies to make it possible to significantly reduce the amount of coke used while sufficiently suppressing the problem of "ash tuyere adhesion", etc., pulverized coal was used in large amounts up to, for example, 200 kg / t ・ pig or more. In order to achieve a stable high fuel ratio, we came to the conclusion that it is absolutely necessary to take measures to simultaneously achieve both "combustibility improvement" and "ash content tuyere inner surface adhesion prevention." A plurality of oxygen gas blowing holes are provided so as to surround the pulverized coal blowing hole at the center, and the axis line of at least the tip of each oxygen gas blowing hole intersects with the axis line of the pulverized coal blowing hole in front of the nozzle. And
Developed a blast furnace pulverized coal injection nozzle.

第1図は、本発明に係る微粉炭吹込み用ノズルの例を示
す概略図であり、第1図(a)はその縦断面図を、第1
図(b)はノズル吹き出し面の正面図を、そして、第1
図(c)は第1図(a)におけるA−A部に相当する断
面図をそれぞれ示している。
FIG. 1 is a schematic view showing an example of a pulverized coal blowing nozzle according to the present invention, and FIG. 1 (a) is a vertical sectional view thereof.
Figure (b) is a front view of the nozzle blowing surface, and
FIG. 3C is a sectional view corresponding to the portion AA in FIG.

第1図において、微粉炭吹込み用ノズル1はその中心に
微粉炭吹込み用パイプ2を有し、その周囲に複数個の酸
素ガス吹込み用パイプ3を有して構成されており、しか
も酸素ガス吹込み用パイプ3の吹出し先端部分がノズル
中心部方向に屈折し、該部分の中心線が微粉炭吹込み用
パイプ2の中心線と微粉炭吹込み用ノズル1の前方の一
点pで交わるように構成されている。
In FIG. 1, a pulverized coal injection nozzle 1 has a pulverized coal injection pipe 2 at its center and a plurality of oxygen gas injection pipes 3 around it. The blowout tip of the oxygen gas blowing pipe 3 is bent in the direction of the center of the nozzle, and the centerline of the portion is at a point p in front of the centerline of the pulverized coal blowing pipe 2 and the pulverized coal blowing nozzle 1. It is configured to intersect.

ここで、ノズル先端から前記p点までの距離は、短か過
ぎるとノズル先端の溶損を招く恐れが強くなり、一方長
くなり過ぎると吹込み微粉炭と酸素ガスとの混合性が悪
くなりがちであることから、好ましくは50〜500mmに設
定するのが良い。
Here, if the distance from the tip of the nozzle to the point p is too short, there is a strong possibility of causing meltdown of the nozzle tip, while if it is too long, the mixing property of the blown pulverized coal and oxygen gas tends to deteriorate. Therefore, it is preferable to set it to 50 to 500 mm.

なお、第1図に示された微粉炭吹込み用ノズルは、冷却
水流路4が設けられた水冷構造となっている例である。
The pulverized coal blowing nozzle shown in FIG. 1 is an example having a water cooling structure in which a cooling water passage 4 is provided.

そして、この微粉炭吹込み用ノズル1は、例えば第2図
に示すように高炉の羽口5につらなる送風支管6に取付
けられて使用される。
The pulverized coal blowing nozzle 1 is used by being attached to a blower branch pipe 6 formed on a tuyere 5 of a blast furnace as shown in FIG. 2, for example.

本発明において、微粉炭吹出し孔の周囲に酸素ガス吹出
し孔を複数個設置し、これら各酸素ガス吹出し孔の少な
くとも先端部の軸線をノズル前方で微粉炭吹出し孔の軸
線と交差させるように設定する理由は 吹込み微粉炭の燃焼開始位置の規定、 微粉炭の燃焼性向上、 微粉炭吹込み用ノズルの損耗防止 の3点にある。以下、この点について更に詳しく説明す
る。
In the present invention, a plurality of oxygen gas blowing holes are installed around the pulverized coal blowing hole, and the axis of at least the tip of each oxygen gas blowing hole is set to intersect the axis of the pulverized coal blowing hole in front of the nozzle. There are three reasons: the regulation of the starting position of combustion of pulverized coal, improvement of combustibility of pulverized coal, and prevention of wear of the nozzle for blowing pulverized coal. Hereinafter, this point will be described in more detail.

即ち、微粉炭吹出し孔と酸素ガス吹出し孔とを別体と
し、その軸線がノズルの前方において始めて交差するよ
うにした理由の1つは吹込み微粉炭の燃焼開始位置を規
定することにあるが、このようなノズル構成により、微
粉炭吹出し孔から流出した微粉炭は吹出し孔軸線の交点
(第1図におけるp点)に至るまでの間は助燃剤である
熱風又は酸素ガスと殆んど混合しない。従って、前記p
点に至るまでの間では微粉炭が燃焼することがない。
That is, one of the reasons why the pulverized coal blowing hole and the oxygen gas blowing hole are formed as separate bodies and their axes intersect at the front of the nozzle for the first time is that the combustion starting position of the blowing pulverized coal is defined. With such a nozzle configuration, the pulverized coal flowing out from the pulverized coal blowing hole is almost mixed with hot air or oxygen gas which is a combustion improver until it reaches the intersection (point p in FIG. 1) of the blowing hole axis. do not do. Therefore, p
Pulverized coal does not burn up to the point.

一方、微粉炭吹出し孔から流出した微粉炭が前記交点p
に達すると、該微粉炭は酸素ガス吹出し孔から吹込まれ
る酸素ガスと混合するため、ここで始めて燃焼が開始す
ることとなる。
On the other hand, the pulverized coal flowing out from the pulverized coal blowing hole is
When the temperature reaches, the pulverized coal mixes with the oxygen gas blown from the oxygen gas blow-out hole, so that the combustion starts for the first time.

また、酸素ガスと微粉炭との混合点(前記p点)以降に
おいては微粉炭は主に酸素ガス吹出し孔から吹込まれた
酸素ガスと混合するため、微粉炭の周囲は非常に酸素濃
度の高い状況となる。従って、ここでは高濃度の酸素富
化送風と同様の雰囲気が形成されるため、微粉炭の燃焼
性は十分に向上することとなる。
In addition, after the mixing point of oxygen gas and pulverized coal (point p above), the pulverized coal mainly mixes with the oxygen gas blown from the oxygen gas blowing hole, so that the pulverized coal has a very high oxygen concentration around it. It becomes a situation. Therefore, an atmosphere similar to the high-concentration oxygen-enriched blast is formed here, so that the combustibility of the pulverized coal is sufficiently improved.

一般に、助燃剤中の酸素濃度を向上させれば微粉炭の燃
焼性を向上させ得ることは周知の事実であるが、本発明
者等の実験によると、送風中酸素濃度が21%の場合(空
気を送風した場合)には、従来通りに、1000℃の熱風を
使用し、送風中酸素1Nm3に対して微粉炭(固定炭素53
%,揮発分35%,灰分10%で、粒子の90%が44μ以下)
を約0.3kg程度以上燃焼させようとしたところ著しく低
い燃焼性を示したのに対して、送風中酸素濃度を31%に
すると酸素1Nm3に対して微粉炭を0.6kgまで、送風中酸
素濃度を41%にすると微粉炭を0.9kgまで、更に送風中
酸素濃度を60%に上げると微粉炭を1.4kgまで、それぞ
れ高い燃焼性の下で燃焼させることができた。しかしな
がら、高炉で1トンの銑鉄を製造するのに要する送風中
の酸素量は、燃料比が500kg/t程度である条件の場合に
は約270Nm3/tである。従って、200kg/t・pigの割合で微
粉炭を吹込もうとする場合には送風中酸素1Nm3に対する
微粉炭使用量は約0.75kgとなり、これを高燃焼率で燃焼
させるためには送風内酸素濃度を約36%にする必要があ
る。このため、高い燃焼率を確保するために富化しなけ
ればならない酸素濃度は約140Nm3/t・pigと言う高い値
となる。
In general, it is a well-known fact that the combustibility of pulverized coal can be improved by increasing the oxygen concentration in the combustion improver, but according to the experiments by the present inventors, when the oxygen concentration in the blast is 21% ( when blowing air) is conventionally, using hot air at 1000 ° C., pulverized coal (fixed carbon 53 relative to blowing oxygen 1 Nm 3
%, Volatile content 35%, ash content 10%, 90% of particles 44μ or less)
However, when the oxygen concentration in the blast was set to 31%, the oxygen concentration in the blast was up to 0.6 kg per 1 Nm 3 of oxygen when the oxygen concentration in the blast was set to 31%. It was possible to burn pulverized coal up to 0.9 kg, and pulverized coal up to 1.4 kg under high flammability by increasing the oxygen concentration in the blast to 60%. However, the amount of oxygen in the blast required to produce 1 ton of pig iron in the blast furnace is about 270 Nm 3 / t under the condition that the fuel ratio is about 500 kg / t. Therefore, when blowing pulverized coal at a rate of 200 kg / t ・ pig, the amount of pulverized coal used for blowing oxygen of 1 Nm 3 is approximately 0.75 kg. The concentration should be about 36%. Therefore, the oxygen concentration that must be enriched in order to secure a high burning rate is a high value of about 140 Nm 3 / t · pig.

ところが、この酸素を本発明に係る微粉炭吹込み用ノズ
ルを使用しその酸素吹出し孔を通じて吹込めば、酸素ガ
スと微粉炭の混合点(前述のp点)以降において雰囲気
中酸素濃度が100%に近い条件で微粉炭を燃焼させるこ
とが可能となる。そのため、前記実験結果のように酸素
濃度が60%の場合では酸素1Nm3に対して1.4kgの微粉炭
使用が可能なことを考慮すると、酸素量の増量なく200k
g/t・pigの微粉炭使用が可能になり、酸素使用量の節減
につながることが明らかである。
However, if this oxygen is blown through the oxygen blowing hole using the pulverized coal blowing nozzle according to the present invention, the oxygen concentration in the atmosphere becomes 100% after the mixing point of oxygen gas and pulverized coal (point p above). It becomes possible to burn pulverized coal under conditions close to the above. Therefore, considering that it is possible to use 1.4 kg of pulverized coal for 1 Nm 3 of oxygen when the oxygen concentration is 60% as in the above experimental results, 200 k without increasing the oxygen amount.
It is clear that the use of pulverized coal of g / t · pig is possible, which leads to a reduction in oxygen consumption.

ところで、従来、高炉への重油吹込み用ノズルとして
「2重管構造であって、中心の孔から重油を吹込み、周
囲の環状スリットから酸素ガスを吹込む構造等のノズ
ル」が使用された例がある。しかし、この場合には燃料
の燃焼開始点が定まらない上、2重管構造のため内管の
燃料口と周囲の環状酸素口との隔壁の冷却が不十分であ
る等のために、火炎がノズルに近付いて隔壁が溶損され
たり、吹出される酸素ガスにより隔壁が急速酸化されて
損耗する等の問題があった。
By the way, conventionally, as a nozzle for injecting heavy oil into a blast furnace, a "nozzle having a double pipe structure, in which heavy oil is injected through a central hole and oxygen gas is injected through a peripheral annular slit", has been used. There is an example. However, in this case, the combustion start point of the fuel is not determined, and due to the double pipe structure, the cooling of the partition wall between the fuel port of the inner tube and the surrounding annular oxygen port is insufficient, etc. There are problems that the partition wall is melted and damaged when approaching the nozzle, and that the partition wall is rapidly oxidized by the blown oxygen gas and worn.

これに対して、本発明に係る微粉炭吹込み用ノズルで
は、酸素ガスの吹込みのためにもパイプ状の複数の吹出
し孔を有していて微粉炭流路と酸素ガス流路とが完全に
分離されている上、微粉炭と酸素ガスとの混合・燃焼点
をノズル先端から離れた位置に確実に規制でき、しかも
冷却を強化させることも可能なためノズル損耗の恐れは
極力少ない。
On the other hand, in the pulverized coal blowing nozzle according to the present invention, the pulverized coal flow path and the oxygen gas flow path are completely formed by having a plurality of pipe-shaped blowout holes even for the injection of oxygen gas. In addition, since the mixing / burning point of pulverized coal and oxygen gas can be reliably regulated at a position away from the nozzle tip, and cooling can be enhanced, the risk of nozzle wear is minimized.

このように、本発明に係る微粉炭吹込み用ノズルを上述
のような構成としたために、微粉炭の燃焼開始位置が規
定され、微粉炭の燃焼性が向上できるので、微粉炭の燃
焼火炎を安定化させることができる上、ノズル寿命延長
による消耗品費用の大きな削減効果が得られる。つま
り、本発明に係る微粉炭吹込み用ノズルでは、送風条件
や炉内状況に依存せず必然的に燃焼開始位置が定まり、
かつ微粉炭燃焼性が向上するので、一旦適正位置にノズ
ルをセットすれば、多少の送風条件変更を実施したとし
ても安定した火炎で微粉炭使用が可能なため、結果とし
て多量の微粉炭使用が可能となる。
Thus, since the pulverized coal blowing nozzle according to the present invention is configured as described above, the combustion start position of the pulverized coal is defined, and the combustibility of the pulverized coal can be improved, so that the combustion flame of the pulverized coal is reduced. In addition to being stabilized, the effect of greatly reducing the cost of consumables by extending the life of the nozzle can be obtained. That is, in the pulverized coal blowing nozzle according to the present invention, the combustion start position is inevitably determined without depending on the blowing conditions or the in-furnace conditions,
In addition, since the pulverized coal combustibility is improved, once the nozzle is set at the proper position, it is possible to use pulverized coal with a stable flame even if the blowing conditions are changed to some extent.As a result, a large amount of pulverized coal can be used. It will be possible.

これに対して、従来ノズルを使用した場合には微粉炭の
燃焼開始位置が安定化せず、かつ微粉炭のノズル先端を
できる限り羽口先端から引き込んだ位置にしなければ燃
焼性を向上させることができない。勿論、この場合に各
種送風条件に対するノズルの適正位置は存在するが、燃
焼開始温度が安定しないため火炎がノズルに接近し過ぎ
て羽口や送風支管の内面に接触し、灰分の羽口内面付着
を引き起こしたり、微粉炭が未燃焼のまま炉内に入ると
言った不都合が生じがちとなる。特に、送風条件を変更
する際には、しかるべきノズル位置の変更をも実施しな
ければ“微粉炭未燃焼”或いは“灰分の羽口付着”の問
題を必ず発生することになる。従って、微粉炭の多量使
用は非常に困難である。
On the other hand, the combustion start position of pulverized coal is not stabilized when the conventional nozzle is used, and the combustibility is improved unless the nozzle end of the pulverized coal is pulled out from the tuyere tip as much as possible. I can't. Of course, in this case, there is a proper position of the nozzle for various blowing conditions, but since the combustion start temperature is not stable, the flame comes too close to the nozzle and comes into contact with the tuyere or the inner surface of the blower branch pipe, and the ash adheres to the inner surface of the tuyere. And the pulverized coal enters the furnace without being burned. In particular, when changing the blowing conditions, the problem of "non-burning of pulverized coal" or "adhesion of ash tuyere" will always occur unless the nozzle position is changed appropriately. Therefore, it is very difficult to use a large amount of pulverized coal.

続いて、本発明を実施例により具体的に説明する。Next, the present invention will be specifically described with reference to examples.

<実施例> まず、1000m3級高炉の羽口を含む下部を模擬した扇形構
造の高炉下部燃焼模型を用意し、これによって微粉炭吹
込み時の燃焼試験を実施した。なお、この高炉下部燃焼
模型は1本の羽口を有したものであり、上部からコーク
スを装入してコークス充填層を形成させ、高炉と同じく
コークス充填層で燃料を燃焼試験し得る構造になったも
のである。
<Examples> First, a blast furnace lower combustion model having a fan-shaped structure simulating the lower part including the tuyere of a 1000 m 3 class blast furnace was prepared, and a combustion test was carried out when pulverized coal was injected. The lower combustion model of the blast furnace has one tuyere, and the coke is charged from the upper part to form a coke packed layer, and the structure is such that the fuel can be burnt in the coke packed layer as in the blast furnace. It has become.

羽口としては、先端径135mmφのものを内径200mmφの送
風支管に設置した。
The tuyere with a tip diameter of 135 mmφ was installed on a blower branch pipe with an inner diameter of 200 mmφ.

使用したコークスは商業用高炉に適用されるもの(炭素
分が88%で灰分が11%程度、平均径が20mmφ、▲DI30 15
▼=93.5%)で、微粉炭としては固定炭素53%,揮発分
35%,灰分10%,水分2%の非粘結炭を44μ以下が90%
以上となるように粉砕して用いた。
The coke used is for commercial blast furnaces (carbon content is 88%, ash content is about 11%, average diameter is 20mmφ, ▲ DI 30 15
▼ = 93.5%), as pulverized coal 53% fixed carbon, volatile matter
Non-caking coal of 35%, ash content 10%, water content 2% is 90% for 44μ or less
It was crushed and used as described above.

送風条件は、空気量:3000Nm3/h,送風温度:1000℃とした
が、このときの送風中酸素濃度は32.3%であった。ま
た、このときの送風支管内流速は123m/secであった。
The blowing conditions were air volume: 3000 Nm 3 / h and blowing temperature: 1000 ° C., but the oxygen concentration during blowing was 32.3%. The flow velocity in the blast branch pipe at this time was 123 m / sec.

さて、まず比較として、微粉炭吹込み口径15mmφの水冷
式微粉炭吹込み用単孔ノズルを 設置位置:ノズル先端と羽口先端とが600mm隔たり、か
つノズル先端が送風支管中心軸から30mm上方となる位
置, ノズルと送風支管中心軸の角度:20°,に設置し、空気
及び富化酸素を共に熱風炉を通して羽口から吹き込みつ
つ微粉炭を60Nm3/hの窒素で輸送して吹込み、吹込み量
と微粉炭燃焼率及び羽口内面への灰分付着状況を調査し
た。このときの微粉炭吹出し速度は94m/secであった。
なお、微粉炭燃焼率は、羽口前800mm炉内に入った位置
でダストを採取し、その残存燃焼性成分比率を微粉炭中
の燃焼性成分比率の関係から求めた。
As a comparison, first, a water-cooled pulverized coal injection single-hole nozzle with a pulverized coal injection diameter of 15 mmφ is installed: the nozzle tip and tuyere tip are 600 mm apart, and the nozzle tip is 30 mm above the center axis of the blower branch pipe. Position, the angle between the nozzle and the central axis of the blast branch pipe: 20 °, the air and the enriched oxygen are both blown from the tuyere through the hot air stove, and the pulverized coal is transported and blown with nitrogen of 60 Nm 3 / h. The amount of entrapment, pulverized coal burning rate, and ash deposition on the tuyere inner surface were investigated. The pulverized coal blowing rate at this time was 94 m / sec.
The combustion rate of pulverized coal was obtained by collecting dust at a position that entered the furnace 800 mm in front of the tuyere and the ratio of the residual combustible components in the pulverized coal.

この結果、微粉炭吹込み量が約600kg/hを超えた時点で
燃焼性が著しく低下した。
As a result, the combustibility was remarkably reduced when the pulverized coal injection rate exceeded about 600 kg / h.

引き続き、ノズル位置を羽口先端から1mの位置まで引っ
込めてテストしたところ、この場合には微粉炭吹込み量
が約850kg/hを超えるまで良好な燃焼性が得られた。し
かし、この時には多量の灰分が羽口内面に付着し、約10
時間の後には羽口先端口径が約50mmφまで縮小して通風
不能となった。なお、この場合、微粉炭を減少させても
灰分の羽口内面付着は解消しなかった。
Subsequently, the nozzle position was retracted to a position 1 m from the tuyere tip and tested. In this case, good combustibility was obtained until the amount of pulverized coal injected exceeded about 850 kg / h. However, at this time, a large amount of ash adhered to the inner surface of the tuyere, and about 10
After a lapse of time, the diameter of the tuyere tip decreased to about 50 mmφ and ventilation was disabled. In this case, even if the amount of pulverized coal was reduced, the adhesion of ash to the tuyere inner surface was not eliminated.

更にテストを続行し、灰分の羽口付着を発生させずに微
粉炭を最大限使用し得るノズル位置を調査した結果、こ
の位置は羽口先端から700mmの位置であり、この時の微
粉炭吹込み量の最高値は700kg/hとなった。
The test was further continued, and as a result of investigating the nozzle position where the pulverized coal can be used to the maximum without causing the adhesion of tuyere to the ash, this position is 700 mm from the tip of the tuyere. The maximum value of loading was 700 kg / h.

次に、本発明に係る微粉炭吹込み用ノズルを使用した場
合の状況を調べた。
Next, the situation when the pulverized coal blowing nozzle according to the present invention was used was examined.

この際に使用した微粉炭吹込み用ノズル(外径:65mm)
は、第3図に示す如き、微粉炭吹込み用パイプ2(内
径:15mm)を取り囲んで酸素ガス吹込み用パイプ3(内
径:8mm)を6本設け(微粉炭吹込み用パイプ2と酸素ガ
ス吹込み用パイプ3との中心距離は18.5mm)、かつノズ
ル先端から酸素ガスと微粉炭の混合点pまでの距離を10
0mmに設定したもので、吹込み酸素ガスの全量を酸素ガ
ス吹込み用パイプ3から吹込んでテストを実施した。こ
のとき、微粉炭吹出し速度は比較条件と同じ94m/secで
あり、酸素ガス吹出し速度は312m/secであった。
Pulverized coal injection nozzle used at this time (outer diameter: 65 mm)
As shown in FIG. 3, 6 pieces of oxygen gas injection pipes 3 (inner diameter: 8 mm) are provided surrounding the pulverized coal injection pipe 2 (inner diameter: 15 mm) (powdered coal injection pipe 2 and oxygen The center distance from the gas injection pipe 3 is 18.5 mm), and the distance from the nozzle tip to the mixing point p of oxygen gas and pulverized coal is 10 mm.
The test was carried out by setting the length to 0 mm and blowing the entire amount of the blown oxygen gas from the oxygen gas blowing pipe 3. At this time, the pulverized coal blowing rate was 94 m / sec, which was the same as the comparison condition, and the oxygen gas blowing rate was 312 m / sec.

その結果は次の通りであった。The results were as follows.

まず、ノズル先端と羽口先端との距離を0.6mに設定した
ときには灰分の羽口付着は発生せず、微粉炭を800kg/h
まで燃焼させることができた。
First, when the distance between the tip of the nozzle and the tip of the tuyere was set to 0.6 m, tuyere adhesion of ash did not occur and 800 kg / h of pulverized coal was used.
Could be burned up to.

次いで、ノズル先端と羽口先端との間隔を1mにしたとこ
ろ、微粉炭を1000kg/hまで燃焼することができ、やはり
灰分の羽口内面付着はなかった。
Next, when the distance between the tip of the nozzle and the tip of the tuyere was set to 1 m, pulverized coal could be burned up to 1000 kg / h, and ash did not adhere to the tuyere inner surface.

続いて、ノズル先端を羽口先端から1.2mの位置まで後退
させたところ、燃焼性が更に向上して1200kg/hまでの微
粉炭を使用できたが、この場合には羽口内面に灰分が付
着する傾向が見られるようになった。
Subsequently, when the nozzle tip was retracted to a position 1.2 m from the tuyere tip, the combustibility was further improved and pulverized coal up to 1200 kg / h could be used, but in this case ash content was found on the tuyere inner surface. A tendency to adhere has become visible.

以上のように、従来のもの及び本発明に係るものの2つ
のノズルでの微粉炭吹込み操業を比較した結果、従来の
単孔ノズルでは700kg/hまでしか微粉炭を安定使用でき
なかったのに対して、本発明に係るノズルの場合には10
00kg/hと言う高い値まで微粉炭の安定使用が確保でき
た。
As described above, as a result of comparing the pulverized coal injection operation with the two nozzles of the conventional one and the one according to the present invention, it was found that the conventional single-hole nozzle could stably use the pulverized coal up to 700 kg / h. On the other hand, in the case of the nozzle according to the present invention, 10
Stable use of pulverized coal was secured up to a high value of 00 kg / h.

この結果を微粉炭比で比較すると、従来ノズルでは約17
0kg/tであるのに対し、本発明に係るノズルでは240kg/t
の微粉炭となる。即ち、同一の送風温度と酸素使用の条
件で、微粉炭使用量を40%以上増加させ得ることにな
る。
Comparing this result with the pulverized coal ratio, about 17
While it is 0 kg / t, it is 240 kg / t in the nozzle according to the present invention.
It becomes pulverized coal. That is, the amount of pulverized coal used can be increased by 40% or more under the same blast temperature and oxygen use conditions.

<効果の総括> 上述のように、この発明によれば、高炉製錬に際し、操
業の不安定を来たすことなく補助燃料として多量の微粉
炭を使用することが可能となり、主要燃料たるコークス
の使用量を大幅に節減して鉄の製錬コスト低減が達成で
きるなど、産業上有用な効果がもたらされるのである。
<Summary of Effects> As described above, according to the present invention, it becomes possible to use a large amount of pulverized coal as an auxiliary fuel during blast furnace smelting without causing unstable operation, and use of coke as a main fuel. Industrially useful effects are brought about, such as a significant reduction in the amount and a reduction in iron smelting cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明に係る微粉炭吹込み用ノズルの例を示
す概略図であり、第1図(a)はその縦断面図を、第1
図(b)はノズル吹き出し面の正面図を、そして第1図
(c)は第1図(a)におけるA−A部に相当する断面
図をそれぞれ示す。 第2図は、送風支管への本発明に係る微粉炭吹込み用ノ
ズルの取付け例を示す概念図である。 第3図は、実施例で使用した本発明に係る微粉炭吹込み
用ノズルの概略図であり、第3図(a)はその縦断面図
を、第3図(b)はノズル吹き出し面の正面図ををそれ
ぞれ示す。 第4図は、高炉操業における従来の微粉炭吹込み状態を
示す概念図である。 第5図は、羽口内面付近への灰分付着状況を示す概念図
である。 図面において、 1,8…微粉炭吹込み用ノズル、2…微粉炭吹込み用パイ
プ、3…酸素ガス吹込み用パイプ、4…冷却水通路、5
…羽口、6…送風支管、7…高炉壁、イ,ロ…付着灰
分。
FIG. 1 is a schematic view showing an example of a pulverized coal blowing nozzle according to the present invention, and FIG. 1 (a) is a vertical sectional view thereof.
FIG. 1 (b) is a front view of the nozzle blowing surface, and FIG. 1 (c) is a sectional view corresponding to the portion AA in FIG. 1 (a). FIG. 2 is a conceptual diagram showing an example of attaching the pulverized coal blowing nozzle according to the present invention to the blower branch pipe. FIG. 3 is a schematic view of a pulverized coal blowing nozzle according to the present invention used in Examples. FIG. 3 (a) is a longitudinal sectional view thereof, and FIG. 3 (b) is a nozzle blowing surface. The front views are respectively shown. FIG. 4 is a conceptual diagram showing a conventional pulverized coal injection state in a blast furnace operation. FIG. 5 is a conceptual diagram showing the ash adhesion state near the inner surface of the tuyere. In the drawings, 1,8 ... Pulverized coal injection nozzle, 2 ... Pulverized coal injection pipe, 3 ... Oxygen gas injection pipe, 4 ... Cooling water passage, 5
... tuyere, 6 ... blast branch pipe, 7 ... blast furnace wall, a, b ... adhering ash.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】中心の微粉炭吹出し孔を取り囲んで複数個
の酸素ガス吹出し孔を有すると共に、これら各酸素ガス
吹出し孔の少なくとも先端部の軸線がノズル前方におい
て前記微粉炭吹き出し孔の軸線と交わっていることを特
徴とする、高炉の微粉炭吹込み用ノズル。
1. A plurality of oxygen gas blowing holes are provided so as to surround a central pulverized coal blowing hole, and an axis of at least the tip of each oxygen gas blowing hole intersects with the axis of the pulverized coal blowing hole in front of the nozzle. Nozzle for blowing pulverized coal in a blast furnace.
JP62136412A 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace Expired - Fee Related JPH0723489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62136412A JPH0723489B2 (en) 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62136412A JPH0723489B2 (en) 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace

Publications (2)

Publication Number Publication Date
JPH0192304A JPH0192304A (en) 1989-04-11
JPH0723489B2 true JPH0723489B2 (en) 1995-03-15

Family

ID=15174556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62136412A Expired - Fee Related JPH0723489B2 (en) 1987-05-30 1987-05-30 Nozzle for blowing pulverized coal in blast furnace

Country Status (1)

Country Link
JP (1) JPH0723489B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4008963C1 (en) * 1990-03-20 1991-11-14 Hoesch Stahl Ag, 4600 Dortmund, De
JP5273166B2 (en) * 2000-08-10 2013-08-28 Jfeスチール株式会社 Blast furnace operation method by large amount of pulverized coal injection
JP6003535B2 (en) * 2012-10-31 2016-10-05 Jfeスチール株式会社 Blast furnace operation method and blast furnace tuyere lance
WO2014162965A1 (en) * 2013-04-03 2014-10-09 Jfeスチール株式会社 Blast furnace operation method and lance
AU2014250567C1 (en) 2013-04-03 2017-06-29 Jfe Steel Corporation Blast furnace operation method
JP6034313B2 (en) * 2014-01-08 2016-11-30 Jfeスチール株式会社 Combined lance for blast furnace tuyere
JP6061107B2 (en) * 2014-02-17 2017-01-18 Jfeスチール株式会社 Blast furnace operation method
JP2015193927A (en) * 2014-03-26 2015-11-05 Jfeスチール株式会社 Oxygen blast furnace operation method
JP6547142B2 (en) * 2016-02-17 2019-07-24 Jfeスチール株式会社 Method of estimating combustion position of particulate reductant at blast tuyere of blast furnace and blower tuyere used for the method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153010A (en) * 1982-03-08 1983-09-10 Kawasaki Steel Corp Powder fuel blowing burner for blast furnace
JPS6053082B2 (en) * 1982-03-31 1985-11-22 株式会社神戸製鋼所 Method of injecting powdered fuel into a blast furnace
CA1218903A (en) * 1982-10-19 1987-03-10 Ian Poll Process and burner for the partial combustion of solid fuel
GB8317251D0 (en) * 1983-06-24 1983-07-27 Shell Int Research Burner for gasification of solid fuel

Also Published As

Publication number Publication date
JPH0192304A (en) 1989-04-11

Similar Documents

Publication Publication Date Title
JP5923968B2 (en) Blast furnace operation method
JPH0723489B2 (en) Nozzle for blowing pulverized coal in blast furnace
JPH0762162B2 (en) Method for producing gas and molten iron in an iron bath reactor
US3701517A (en) Oxy-fuel burners in furnace tuyeres
JP2001200308A (en) Pulverized coal blowing burner
AU657034B2 (en) Operation of vertical shaft furnaces
JPH0129847B2 (en)
JP4506337B2 (en) Pulverized coal blowing burner for metallurgical furnace and method for blowing pulverized coal into metallurgical furnace
JPS62238307A (en) Method for blowing noncombustible fuel into blast furnace
JPH0235885B2 (en)
US4469509A (en) Process of producing sponge iron by a direct reduction of iron oxide-containing material in a rotary kiln
JPH0652122B2 (en) Coal burning equipment
JPS6053082B2 (en) Method of injecting powdered fuel into a blast furnace
JP3493937B2 (en) How to blow pulverized coal into the blast furnace
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
US2811953A (en) Slagging flyash
JP2004091921A (en) Method for blowing solid fuel into blast furnace and blown lance
JPS62270709A (en) Method for blowing powdery fuel into blast furnace
JP3523720B2 (en) Scrap melting method
JP2629108B2 (en) Waste melting furnace
JPS6036575Y2 (en) Burner with tip for injecting powdered fuel into blast furnace
JPH04110405A (en) Method for operating blast furnace
CN114250328A (en) Blowing device and blowing method for total oxygen smelting
JPH0343220Y2 (en)
JPH049415A (en) Method for blowing pulverized coal to blast furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees